JP5284542B1 - アルミニウム合金クラッド材の製造方法 - Google Patents

アルミニウム合金クラッド材の製造方法 Download PDF

Info

Publication number
JP5284542B1
JP5284542B1 JP2012544979A JP2012544979A JP5284542B1 JP 5284542 B1 JP5284542 B1 JP 5284542B1 JP 2012544979 A JP2012544979 A JP 2012544979A JP 2012544979 A JP2012544979 A JP 2012544979A JP 5284542 B1 JP5284542 B1 JP 5284542B1
Authority
JP
Japan
Prior art keywords
mass
aluminum alloy
bonding
liquid phase
clad material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012544979A
Other languages
English (en)
Other versions
JPWO2013065160A1 (ja
Inventor
和子 藤田
崇 村瀬
昭男 新倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky Aluminum Corp
Original Assignee
Furukawa Sky Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky Aluminum Corp filed Critical Furukawa Sky Aluminum Corp
Application granted granted Critical
Publication of JP5284542B1 publication Critical patent/JP5284542B1/ja
Publication of JPWO2013065160A1 publication Critical patent/JPWO2013065160A1/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/04Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a rolling mill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • B23K20/233Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded without ferrous layer
    • B23K20/2336Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded without ferrous layer both layers being aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

第1層(11)と第2層(12)とを中間層(21)を介在させて積層する。その積層体を中間層(21)から生成される液相の質量の比が5%以上35%以下となる温度で加熱して接合し、圧延することでクラッド材(1)を製造する。上記のような第1層(11)と第2層(12)との2層材であるクラッド材(1)の他に、第3層、第4層及び第5層などを有することとしてもよい。

Description

本発明は自動車、船舶、航空機等の構造部材や部品に用いられるアルミニウム合金クラッド材の製造方法に関するものである。
アルミニウム合金クラッド材の製造方法は、従来から、例えば以下に示すような熱間合わせ圧延により行われている。まず、目的のクラッド率に応じて心材と皮材を準備する。通常、心材は鋳塊を面削して所定の厚さにする。皮材は鋳塊の面削、熱間圧延を経て所定の板厚まで圧延し、心材合金の長さに合わせて切断する。必要に応じて心材の均質化処理を行った後、心材と皮材を合わせ、熱間圧延前の加熱を行い、リバースタイプの熱間圧延機で合わせ圧延を行う。合わせ圧延により心材と皮材は圧着され、圧着した後は通常のアルミニウム合金鋳塊を熱間圧延する要領で目的の厚さまで圧延する。
しかし、この熱間合わせ圧延では剥離や板反り抑制のために圧着強度が十分になるまで低圧下で圧延する必要があり、通常の圧延より生産性が劣る。また、アルミニウム合金材又は純アルミニウム材(以下、アルミニウム合金材で統一する)同士が圧着されるためには圧着界面の酸化皮膜が変形により機械的に破壊され新生面が出る必要がある。そのため、クラッド率が高い場合にはロールの接触面からより遠い部分に圧着界面の酸化皮膜を破壊するのに十分な荷重をかける必要があり、圧延機設備による制約もある。よって、圧着圧延によるクラッド材の製造方法では20%を超える高クラッド率の材料を製造するのはかなり困難である。また、多層材についても難易度は高く、例えば圧着圧延を2度以上に分けて行う方法があるが、この方法ではかなりの手間を有する。
上記のようなクラッド材製造の問題点に対し、特許文献1ではアルミニウム合金のクラッド材を製造する際に、合わせ材の表層部のみを加熱し、合わせ圧延時のクラッド界面の剥離を防止しつつ、高圧下率にて圧着圧延を行うことのできる製造方法が提案されている。しかし、特許文献1では、想定を超える高圧下で圧着圧延を行うと合わせ面同士が未接合であるために、反りが生じて圧着面が剥離し、クラッド材が製造できない可能性がある。
高クラッド率のクラッド材を得る方法としては特許文献2に示された方法によると可能であると考えられる。特許文献2では金属材料の接合方法として、接合しようとする金属合わせ材との間にアルミニウムなどの軟質金属中に固体状態では母相に溶け込まない元素を点在させた中間材を挟んで、圧延や押出、引き抜き等で加熱・加圧する方法が提案されている。この方法では、中間材が溶融する温度範囲内で強い圧下を加えなければならないという製造上の制約がある。また、中間材に添加されているのは融点が低く、固体状態では固溶しない元素であり、接合に使用できるのは表面に存在する低融点金属のみと推定される。そのため、十分な接合強度を得るための添加量はかなり多くなり、接合後に接合界面に残存する低融点金属成分が多く、金属母材の特性に悪影響を及ぼすことが懸念される。
また、固相拡散接合や液相拡散接合により面接合することでクラッド材を製造する方法もある。固相拡散接合では、拡散現象を利用するために、溶接やろう付などと比べて接合に長時間を要する。通常、30分程度からそれ以上の時間、所定温度での保持が必要となる。また、接合に加圧が必要であるため、接合操作の煩雑化やコスト増加が避けられない。更に、アルミニウム合金材の場合には、その表面に安定で強固な酸化皮膜が存在しこれによって拡散が阻害されるために、固相拡散接合の適用が難しい。液相拡散接合では特に大型の工業製品に用いた場合、液相となるインサート材の接合後における残存量を最適に制御することが難しく、また、接合部に生成される金属間化合物の成長を抑制することも困難である。よって、液相拡散接合では健全な接合性を保つのは難しい。
特開2008−264825号公報 特開平8−318381号公報
アルミニウム合金クラッド材の製造には熱間合わせ圧延で行う場合には高度な製造技術が必要とされ、さらに熱間圧延機の能力による制約や、クラッド率や多層材等の製造限界があった。さらには接合界面の剥離防止や板反り抑制のために熱間合わせ圧延で生産性が劣る問題もあった。そのため、より簡便でクラッド材構成の自由度の高い生産性に優れたアルミニウム合金クラッド材の製造方法が望まれていた。
本発明は、上記課題に鑑みてなされたものであって、容易にクラッド材を製造できるとともに、高クラッド率かつ多層で構成することが可能なアルミニウム合金クラッド材の製造方法を提供することを目的とする。
上記目的を達成するため、本発明に係るアルミニウム合金クラッド材の製造方法は、複数のアルミニウム合金材(純アルミニウム材を含む)を各層間に中間層を介在させて積層し、前記中間層から生成される液相の質量の比が5%以上35%以下となる温度で加熱により接合し、接合した後に圧延することを特徴とする。
前記中間層の材料がMg:0.5mass%以下(0mass%を含む)、Si:0.4〜4.5mass%を含有するアルミニウム合金であり、フッ化物系のフラックスが接合部材間に塗布された状態で非酸化性雰囲気中で接合することとしてもよい。
前記中間層の材料がMg:0.5mass%以下(0mass%を含む)、Cu:0.7〜10mass%を含有するアルミニウム合金であり、フッ化物系のフラックスが接合部材間に塗布された状態で非酸化性雰囲気中で接合することとしてもよい。
前記中間層の材料がMg:0.5mass%以下(0mass%を含む)、Cu:0.4〜10mass%、Si:0.3〜4.5mass%を含有するアルミニウム合金であり、フッ化物系のフラックスが接合部材間に塗布された状態で非酸化性雰囲気中で接合することとしてもよい。
前記中間層の材料がMg:0.5mass%以下(0mass%を含む)、Si:0.3〜4.5mass%、Zn:0.5〜20mass%、Cu:0.3〜10mass%を含有するアルミニウム合金であり、フッ化物系のフラックスが接合部材間に塗布された状態で非酸化性雰囲気中で接合することとしてもよい。
前記中間層の材料がMg:0.2〜2.0mass%、Si:0.3〜5.0mass%を含有するアルミニウム合金であり、大気中、非酸化性雰囲気中または真空中で接合することとしてもよい。
前記中間層の材料がMg:0.2〜2.0mass%、Cu:0.1〜10mass%を含有するアルミニウム合金であり、大気中、非酸化性雰囲気中または真空中で接合することとしてもよい。
前記中間層の材料がMg:0.2〜2.0mass%、Cu:0.15〜10mass%、Si:0.1〜4.5mass%を含有するアルミニウム合金であり、大気中、非酸化性雰囲気中または真空中で接合することとしてもよい。
前記中間層の材料がMg:0.2〜2.0mass%、Si:0.1〜4.5mass%、Zn:0.1〜20mass%、Cu:0.1〜10mass%を含有するアルミニウム合金であり、大気中、非酸化性雰囲気中または真空中で接合することとしてもよい。
前記中間層の前記アルミニウム合金が、さらにSi:0.05〜1.0mass%、Cu:0.05〜0.5mass%、Fe:0.05〜1.0mass%、Zn:0.05〜3.0mass%、Mn:0.1〜1.8mass%、Ti:0.01〜0.3mass%、Zr:0.01〜0.3mass%から選択される1種又は2種以上を更に含有することとしてもよい。
上記アルミニウム合金クラッド材の製造方法において、前記接合の熱処理を露点0℃以下の雰囲気で行うこととしてもよい。
本発明によれば、容易にクラッド材を製造できるとともに、高クラッド率かつ多層で構成することが可能なアルミニウム合金クラッド材の製造方法が得られる。
Al−Si合金の組成と温度との関係を示す状態図である。 液相の生成過程を示す模式図である。 図2Aに引き続き、液相の生成過程を示す模式図である。 図2Bに引き続き、液相の生成過程を示す模式図である。 図2Cに引き続き、液相の生成過程を示す模式図である。 クラッド材の構成例を示す断面図である。 クラッド材の構成例を示す断面図である。 クラッド材の構成例を示す断面図である。 クラッド材の構成例を示す断面図である。
以下、本発明の実施形態について具体的に説明する。
本発明のアルミニウム合金クラッド材の製造方法は、複数のアルミニウム合金材を中間層を介在させて積層し、該アルミニウム合金材の固相線温度より低く前記中間層から生成される液相の質量の比(以下、「液相率」と記す)が5.0%以上35%以下となる温度に加熱することにより、積層された層の接合面を全面あるいは部分的に接合し、その後圧延を行うものである。接合は積層された層の接合面を全面あるいは部分的に接合し、その後の圧延を容易にする。
液相率が35%を超えると、生成する液相の量が多過ぎてアルミニウム合金材が形状を維持できなくなり大きな変形をしてしまう。そのため、接合が均一になされず、接合率が低下する。一方、液相率が5.0%未満では接合が困難となる。好ましい液相率は5.0〜30%であり、より好ましい液相率は10〜20%である。
加熱中における実際の液相率を測定することは、極めて困難である。そこで、本発明で規定する液相率は平衡計算によって求めるものとする。具体的には、Thermo−Calcなどの熱力学平衡計算ソフトによって合金組成と加熱時の最高到達温度から計算される。
なお、接合を確実に行う為には、中間層の液相率が5.0%以上となる温度に少なくとも10分以上保持することが望ましい。本発明において、接合は接合時間が長いほどより確実となる。
<接合における金属組織の挙動>
液相の生成メカニズムについて説明する。図1に代表的な2元系共晶合金であるAl−Si合金の状態図を模式的に示す。Si濃度がc1であるアルミニウム合金材を加熱すると、共晶温度(固相線温度)Teを超えた付近の温度T1で液相の生成が始まる。共晶温度Te以下では、図2Aに示すように、結晶粒界で区分されるマトリクス中に晶析出物が分布している。ここで液相の生成が始まると、図2Bに示すように、晶析出物分布の偏析の多い結晶粒界が溶融して液相となる。次いで、図2Cに示すように、アルミニウム合金のマトリクス中に分散する主添加元素成分であるSiの晶析出物粒子や金属間化合物の周辺が球状に溶融して液相となる。更に図2Dに示すように、マトリクス中に生成したこの球状の液相は、界面エネルギーにより時間の経過や温度上昇と共にマトリクスに再固溶し、固相内拡散によって結晶粒界や表面に移動する。
次いで、図1に示すように温度がT2に上昇すると、状態図より液相量は増加する。図1に示すように、一方のアルミニウム合金材のSi濃度が最大固溶限濃度より小さいc2の場合には、固相線温度Ts2を超えた付近で液相の生成が始まる。但し、c1の場合と異なり、溶融直前の組織は図2Aに示すように、マトリクス中に晶析出物が存在しない場合がある。この場合、図2Bに示すように粒界でまず溶融して液相となった後、図2Cに示すようにマトリクス中において局所的に溶質元素濃度が高い場所から液相が発生する。図2Dに示すように、マトリクス中に生成したこの球状の液相は、c1の場合と同様に、界面エネルギーにより時間の経過や温度上昇と共にマトリクスに再固溶し、固相内拡散によって結晶粒界や表面に移動する。温度がT3に上昇すると、状態図より液相量は増加する。このように、本発明に係るクラッド材の製造方法は、アルミニウム合金材内部の部分的な溶融により生成される液相を利用して積層されたアルミニウム合金材をあらかじめ接合するものである。
<酸化皮膜の破壊>
アルミニウム合金材の表層には酸化皮膜が形成されており、これによって接合が阻害される。従って、接合においては酸化皮膜を破壊する必要がある。本発明に係るクラッド材の製造方法では、接合時に酸化被膜を破壊するために以下のD−1又はD−2に示すいずれかの方法が採用される。
D−1.フラックスによる酸化皮膜の破壊
この方法では、酸化皮膜を破壊する為に少なくとも接合部にフラックスを塗布する。フラックスはアルミニウム合金のろう付で用いるKAlFやCsAlFなどのフッ化物系フラックス又はKClやNaClなどの塩化物系フラックスが用いられる。これらフラックスは、液相が溶融する前に又は接合温度に至る前に溶融し、酸化皮膜と反応して酸化皮膜を破壊する。
更にこの方法では、酸化皮膜の形成を抑制するために、窒素ガスやアルゴンガスなどの非酸化性雰囲気中で接合する。特にフッ化物系のフラックスを用いる場合は、酸素濃度を250ppm以下に抑え、露点を−25℃以下に抑えた非酸化性ガス雰囲気中で接合するのが好ましい。
また、フッ化物系のフラックスを用いる場合、一方及び他方の被接合部材のアルミニウム合金材においてアルミニウム合金中にMgが0.50mass%を超えて含有されると、フラックスとMgが反応してフラックスの酸化皮膜破壊作用が損なわれる。従って、本発明では、液相を生成するアルミニウム合金が0.50mass%以下のMgを含有するものとする。
D−2.Mgのゲッター作用による酸化皮膜の破壊
アルミニウム合金材にMgが所定量添加されている場合は、接合部にフラックスを塗布しなくても、酸化被膜が破壊されて接合が可能になる。この場合、真空フラックスレスろう付と同様に、アルミニウム合金が溶融し液相が表層に出てくるときに、アルミニウム合金中より蒸発するMgのゲッター作用によって酸化皮膜が破壊される。Mgのゲッター作用により酸化皮膜を破壊する場合、酸化皮膜の形成を抑制するために、真空中又は上記の非酸化性雰囲気中で接合する。但し、本発明の場合は面接合であるので、乾燥した大気であっても接合可能である。Mgのゲッター作用により酸化皮膜を破壊する為には、本発明では、液相を生成するアルミニウム合金材が0.20mass%以上かつ2.0mass%以下のMgを含有するものとする。0.20mass%未満では、十分なゲッター作用が得られず良好な接合が達成されない。一方、2.0mass%を超えると、表面でMgが雰囲気中の酸素と反応して酸化物MgOが多く生成され接合が阻害される。
<液相を生成するアルミニウム合金の成分(Mg以外)>
Al−Si合金:
Siの含有量が0.40〜4.5mass%のものが好適に用いられる。0.40mass%未満の場合、液相率が5.0%〜35%となる温度範囲が狭くなり、安定した接合が困難となる場合がある。一方、4.5mass%を超えると、固相線温度=共晶温度で発生する液相の量が35%に近くなり、固相線温度から液相率35%の温度範囲が狭くなって安定した接合が困難となる場合がある。より好ましいSi含有量は、1.2〜3.0mass%である。
Al−Cu合金:
Cuの含有量が0.70〜10mass%のものが好適に用いられる。0.70mass%未満の場合、液相率が5.0%〜35%となる温度範囲が狭くなり、安定した接合が困難となる場合がある。一方、10mass%を超えると、強度が高くなり、圧延時に割れが発生して製造できない。より好ましいCu含有量は、1.5〜6.0mass%である。
Al−Cu−Si合金:
Cuの含有量が0.40〜10mass%、Siの含有量が0.30〜4.5mass%のものが好適に用いられる。Cuの含有量が0.40mass%未満の場合、液相率が5.0%〜35%となる温度範囲が狭くなり、安定した接合が困難となる場合がある。一方、10mass%を超えると、強度が高くなり、圧延時に割れが発生して製造できない。Siの含有量が0.30mass%未満の場合、液相率が5.0%〜35%となる温度範囲が狭くなり、安定した接合が困難となる場合がある。一方、4.5mass%を超えると、固相線温度=共晶温度で発生する液相の量が35%に近くなり、固相線温度から液相率35%の温度範囲が狭くなって安定した接合が困難となる場合がある。より好ましいCu含有量は、1.5〜6.0mass%であり、より好ましいSi含有量は1.2〜3.0mass%である。
Al−Si−Zn−Cu合金:
Siの含有量が0.30〜4.5mass%、Znの含有量が0.50〜20mass%、Cuの含有量が0.30〜10mass%のものが好適に用いられる。Siの含有量が0.30mass%未満の場合、液相率が5.0%〜35%となる温度範囲が狭くなり、安定した接合が困難となる場合がある。一方、4.5mass%を超えると、固相線温度=共晶温度で発生する液相の量が35%に近くなり、固相線温度から液相率35%の温度範囲が狭くなって安定した接合が困難となる場合がある。Znの含有量が0.50mass%未満の場合、液相率が5.0%〜35%となる温度範囲が狭くなり、安定した接合が困難となる場合がある。一方、20mass%を超えると、アルミニウムマトリックスが脆くなり、圧延時に割れが発生して製造できない。Cuの含有量が0.30mass%未満の場合、液相率が5.0%〜35%となる温度範囲が狭くなり、安定した接合が困難となる場合がある。一方、10mass%を超えると、強度が高くなり、圧延時に割れが発生して製造できない。
Al−Si−Mg合金:
Siの含有量が0.30〜5.0mass%のものが好適に用いられる。0.40mass%未満の場合、液相率が5.0%〜35%となる温度範囲が狭くなり、安定した接合が困難となる場合がある。一方、4.5mass%を超えると、固相線温度=共晶温度で発生する液相の量が35%に近くなり、固相線温度から液相率35%の温度範囲が狭くなって安定した接合が困難となる場合がある。より好ましいSi含有量は、1.2〜3.0mass%である。
Al−Cu−Mg合金:
Cuの含有量が0.10〜10mass%のものが好適に用いられる。0.70mass%未満の場合、液相率が5.0%〜35%となる温度範囲が狭くなり、安定した接合が困難となる場合がある。一方、10mass%を超えると、強度が高くなり、圧延時に割れが発生して製造できない。より好ましいCu含有量は、1.5〜6.0mass%である。
Al−Cu−Si−Mg合金:
Cuの含有量が0.15〜10mass%、Siの含有量が0.10〜4.5mass%のものが好適に用いられる。Cuの含有量が0.15mass%未満の場合、液相率が5.0%〜35%となる温度範囲が狭くなり、安定した接合が困難となる場合がある。一方、10mass%を超えると、強度が高くなり、圧延時に割れが発生して製造できない。Siの含有量が0.10mass%未満の場合、液相率が5.0%〜35%となる温度範囲が狭くなり、安定した接合が困難となる場合がある。一方、4.5mass%を超えると、固相線温度=共晶温度で発生する液相の量が35%に近くなり、固相線温度から液相率35%の温度範囲が狭くなって安定した接合が困難となる場合がある。
Al−Si−Zn−Cu−Mg合金:
Siの含有量が0.10〜4.5mass%、Znの含有量が0.10〜20mass%、Cuの含有量が0.10〜10mass%のものが好適に用いられる。Siの含有量が0.10mass%未満の場合、液相率が5.0%〜35%となる温度範囲が狭くなり、安定した接合が困難となる場合がある。一方、Siの含有量が4.5mass%を超えると、固相線温度=共晶温度で発生する液相の量が35%に近くなり、固相線温度から液相率35%の温度範囲が狭くなって安定した接合が困難となる場合がある。Znの含有量が0.10mass%未満の場合、液相率が5.0%〜35%となる温度範囲が狭くなり、安定した接合が困難となる場合がある。一方、Znの含有量が20mass%を超えると、アルミニウムマトリックスが脆くなり、圧延時に割れが発生して製造できない。Cuの含有量が0.10mass%未満の場合、液相率が5.0%〜35%となる温度範囲が狭くなり、安定した接合が困難となる場合がある。一方、Cuの含有量が10mass%を超えると、強度が高くなり、圧延時に割れが発生して製造できない。
また、上記の各合金は、さらにSi:0.05〜1.0mass%、Cu:0.05〜0.50mass%、Fe:0.05〜1.0mass%、Zn:0.05〜3.0mass%、Mn:0.10〜1.8mass%、Ti:0.01〜0.30mass%、Zr:0.01〜0.30mass%から選択される1種又は2種以上を更に含有してもよい。
本発明のアルミニウム合金クラッド材の製造方法では、液相を生成するアルミニウム合金材の固相線温度と液相線温度の差を10℃以上とするのが好ましい。固相線温度を超えると液相の生成が始まるが、固相線温度と液相線温度の差が小さいと、固体と液体が共存する温度範囲が狭くなり、発生する液相の量を制御することが困難となる。
なお、固相線温度と液相線温度の差は大きくなるほど適切な液相量に制御するのが容易になる。従って、固相線温度と液相線温度の差に上限は特に設けない。また、液相を生成するアルミニウム合金は、液相率が5.0%〜35%の温度が10℃以上であることがより好ましく、液相率が5.0〜35%の温度が20℃以上であることが更に好ましい。
接合の熱処理は露点を0℃以下に制御した炉を用いることが望ましい。炉中の酸素濃度については好ましくは5.0%以下とする。
本発明のアルミニウム合金クラッド材の製造方法では、高温での接合後に圧延を実施する。圧延は熱間圧延でも冷間圧延でも可能であり、接合前のアルミニウム合金材の板厚が厚い場合は熱間圧延を行う。圧延を実施するのは、液相による接合では接合が不十分であるのを補う効果があり、圧延を実施することでより信頼度の高いアルミニウム合金クラッド材を製造することができる。
接合を確実に行うためには、熱処理中に鉄バンドで固定をするか、重りを載せるなどして、接合界面に極力隙間を作らないことが望ましい。ただし、接合する鋳塊厚さが厚い場合には自重により接合面の隙間が小さくなるため、必ずしも加圧は必要ではない。接合率(後述)が高ければ高いほど圧延が容易になるが、接合率が低かったとしても圧延中に圧着され、接合がなされる。その接合率としては10〜100%が好ましく、20〜100%であることがより望ましい。接合率が10%未満であると、圧延中に各層が分離してしまう可能性が高い。
接合する材料はクラッド率に応じて鋳塊を面削するか、あらかじめ熱間圧延にて所定の厚さに準備しておく。接合界面に関しては接合率を高めるために酸またはアルカリで洗浄することも可能である。
液相を生成するアルミニウム合金材によって接合されるアルミニウム合金材は、液相を生じるアルミニウム合金材の固相線温度(共晶温度)よりも固相線温度(共晶温度)が高くなければならない。つまり、接合するアルミニウム合金に応じて液相を生成するアルミニウム合金材の成分を選定する必要がある。例えば、非酸化性雰囲気中でフッ化物系のフラックスを使用して接合する場合は、接合するアルミニウム合金もMg量を0.50mass%以下とする必要がある。Mgが0.50mass%を超えて含有されると、フラックスとMgが反応してフラックスの酸化皮膜破壊作用が損なわれる。
また、大気中、非酸化性雰囲気中または真空中でMgのゲッター作用を利用して接合する場合は、接合するアルミニウム合金のMg量を2.0mass%以下とする必要がある。2.0mass%を超えると、表面でMgが雰囲気中の酸素と反応して酸化物MgOが多く生成され接合が阻害される。ただし、この場合の接合は面接合であるため、炉中の雰囲気を非酸化性の雰囲気または真空とする場合は、Mg量を6.0mass%まで引き上げても接合が可能である。
熱処理後の接合率については、15%以上接合していることが好ましい。接合率が15%未満であると、圧延時に剥離が生じ、クラッド材が製造できない。
液相を生成する層の厚さに関しては0.10〜10mmが好ましい。0.10mmより小さいと生成する液相量が十分ではなく、接合が不十分となる。10mmを超える厚さになると、生成する液相が多過ぎて炉中で液相が流れ出すおそれがあり、好ましくない。図3A〜図3Dに示すように、クラッド材1〜4のような例えば2層材、3層材、4層材及び5層材とすることができる。また、さらに多層材としてもよい。図3A〜図3Dでは、第1層11〜15の各層間に、液相を生成する層、即ち中間層21〜24を挿入してあらかじめ接合がなされることで、合わせ圧延を簡便かつ有利にすることができる。
以上説明したように、本発明者らは上記問題に鑑み鋭意検討の結果、熱間圧延前にクラッドするアルミニウム合金材層同士をあらかじめ接合させ、熱間合わせ圧延を不要または簡便にし、高クラッド率かつ多層のアルミニウム材料を製造することのできる方法を見出した。本製造方法を用いると熱間合わせ圧延を高圧下率にすることができるので生産性にも優れる。
本発明のアルミニウム合金クラッド材の製造方法は、熱間圧延前にあらかじめクラッドする材料同士を全面あるいは部分的に接合し、通常は熱間合わせ圧延が必要である製造工程を容易にするものである。接合は固相線温度の最も低いアルミニウム合金層のみが部分溶融する温度での熱処理により行う。本発明の製造方法では、通常は高い製造技術が求められる合わせ圧延が必要なくなるか、または熱間合わせ圧延に対する負荷が大きく低減される。そのため、熱間圧延機の能力による制約が小さくなる。また、通常は困難である高クラッド率の場合や3層材以上の多層材の場合も比較的容易にクラッド材とすることができる。さらには、通常の鋳塊を圧延する際と近い状態で圧延できるため、幅方向および長手方向でのクラッド率の安定領域が広がり、歩留まりを向上することができる。さらには、接合の熱処理と心材の均質化熱処理を兼ねることができる場合は、工程を増やすことなく製造方法を簡便にすることができ、コストダウンが可能である。
以下にこの発明の実施例を比較例とともに記す。なお以下の実施例は、この発明の効果を説明するためのものであり、実施例記載のプロセス及び条件がこの発明の技術的範囲を制限するものではない
(実施例1:2層材)
表1,2に接合にクラッド材製造に用いた液相を生じる役目を果たすアルミニウム合金材(以下、実施例及び表において「中間層」ともいう)の成分を示す。表3に接合するアルミニウム合金材(以下、実施例及び表において「主層」ともいう)の成分を示す。表1〜3には各合金の固相線温度を併記した。固相線温度は、熱力学計算ソフトThermo−Calcによる計算値である。なお、表1〜3における各成分「−」は当該元素を含有していない(検出限界未満)ことを意味する。
表1,2に示す成分の合金鋳塊を調製した後、面削し、熱間圧延を実施した。また、表3に示す合金鋳塊を調製した後、面削加工を実施し、必要により熱間圧延及び冷間圧延により所定の厚さの圧延板を得た。表3に示す各合金材から選ばれた主層の2種類の鋳塊の間に表1,2に示す中間層の合金材を挟み込むかたちで積層し、鉄バンドで軽く固定してから接合のための熱処理を行った。フラックスを塗布して接合するクラッド材では、フッ化カリウム系又はフッ化セシウム系の非腐食性フラックスを接合面に塗布した。フラックス塗布の有無と種類を表4、5に示す。これらの表において、「K」はフッ化カリウム系非腐食性フラックス(KAlF)を、「Cs」はフッ化セシウム系の非腐食性フラックス(CsAlF)を、「無」はフラックスを塗布しなかった場合を示す。
Figure 0005284542
Figure 0005284542
Figure 0005284542
表4,5に積層する合金の組み合わせおよび接合条件、接合後の結果を示す。鋳塊サイズは幅1000mm×長さ2000mmとし、厚さは各々表4,5に示した値とした。接合にはバッチ式の炉を使用し、表4,5に示す接合時の加熱温度に到達するまで加熱し、保持時間は3時間とした。熱間圧延は接合加熱後に冷却し、接合加熱温度から冷却して表4,5に示す温度から開始した。圧延の条件は各パスの圧延率を5〜50%で実施した。接合後の結果は熱処理後の接合率調査と組織観察、圧延後の結果を示した。接合率は長さ中央位置で幅方向の3点(中央、両端)で測定した平均値とした。測定方法は接合部を切り出し、断面を光学顕微鏡で観察し、測定長さに対する接合割合を計算して接合率とした。接合後の組織観察において、接合するアルミニウム合金材で溶融が生じたものを×、生じなかったものを○とした。圧延後の結果については、液相を生じる合金材を製造する際の圧延で割れが発生したものを×、割れが発生せずに製造できた合金材については○と示した。また、接合後の圧延で接合界面が剥離することなく、圧延できたクラッド材を○、圧延途中に剥離が生じたものを×とした。
Figure 0005284542
Figure 0005284542
実施例1〜72では熱処理での接合が十分になされたため、その後の圧延時に剥離することなく、クラッド材が製造できた。
比較例1、3、5、7、11、12、13、15、17、18、23では、中間層から生成する液相が5.0%未満で十分であったため、接合が十分になされず、圧延後の層の剥離が起こり、不十分な結果となった。また、接合に必要な液相を生成させる目的で温度を上げ過ぎた場合は第1層又は第2層の溶融が発生した。
比較例2、24では、中間層から生成する液相が35%を超えたため、接合が十分になされず、圧延後の層の剥離が起こり、不十分な結果となった。
比較例10では、フラックスを使用する場合の中間層のMg添加量が本発明の範囲外であり、接合時に表面の酸化膜が破壊されず、接合が十分になされず、圧延後の層の剥離が起こり、不十分な結果となった。
比較例21、22では、フラックスを使用しない場合の中間層のMg添加量が本発明の範囲外であり、接合時に表面の酸化膜が破壊されず、接合が十分になされず、圧延後の層の剥離が起こり、不十分な結果となった。
比較例4,6,8,9,14,16,19,20では、液相を生じるアルミニウム合金材(中間層)の熱延時に割れが生じたため、クラッド材の製造ができなかった。なお、表5では、当該比較例について中間層自体に関する項目以外は「−」で表示している。
(実施例2:3層材以上)
次に3層材以上の多層材の実施例73〜77を示す。表6に接合条件および接合率を示す。いずれの実施例でも接合するアルミニウム合金材の溶融はなく、圧延時の各層の剥離もなく、良好に圧延できた。
Figure 0005284542
本発明は、2層又は3層以上のアルミニウム合金材を積層して構成されるアルミニウム合金クラッド材に適用できる。
1〜4 クラッド材
11〜15 第1層〜第5層
21〜24 中間層

Claims (11)

  1. 複数のアルミニウム合金材(純アルミニウム材を含む)を各層間に中間層を介在させて積層し、前記中間層から生成される液相の質量の比が5%以上35%以下となる温度で加熱により接合し、接合した後に圧延することを特徴とするアルミニウム合金クラッド材の製造方法。
  2. 前記中間層の材料がMg:0.5mass%以下(0mass%を含む)、Si:0.4〜4.5mass%を含有するアルミニウム合金であり、フッ化物系のフラックスが接合部材間に塗布された状態で非酸化性雰囲気中で接合することを特徴とする請求項1に記載のアルミニウム合金クラッド材の製造方法。
  3. 前記中間層の材料がMg:0.5mass%以下(0mass%を含む)、Cu:0.7〜10mass%を含有するアルミニウム合金であり、フッ化物系のフラックスが接合部材間に塗布された状態で非酸化性雰囲気中で接合することを特徴とする請求項1に記載のアルミニウム合金クラッド材の製造方法。
  4. 前記中間層の材料がMg:0.5mass%以下(0mass%を含む)、Cu:0.4〜10mass%、Si:0.3〜4.5mass%を含有するアルミニウム合金であり、フッ化物系のフラックスが接合部材間に塗布された状態で非酸化性雰囲気中で接合することを特徴とする請求項1に記載のアルミニウム合金クラッド材の製造方法。
  5. 前記中間層の材料がMg:0.5mass%以下(0mass%を含む)、Si:0.3〜4.5mass%、Zn:0.5〜20mass%、Cu:0.3〜10mass%を含有するアルミニウム合金であり、フッ化物系のフラックスが接合部材間に塗布された状態で非酸化性雰囲気中で接合することを特徴とする請求項1に記載のアルミニウム合金クラッド材の製造方法。
  6. 前記中間層の材料がMg:0.2〜2.0mass%、Si:0.3〜5.0mass%を含有するアルミニウム合金であり、大気中、非酸化性雰囲気中または真空中で接合することを特徴とする請求項1に記載のアルミニウム合金クラッド材の製造方法。
  7. 前記中間層の材料がMg:0.2〜2.0mass%、Cu:0.1〜10mass%を含有するアルミニウム合金であり、大気中、非酸化性雰囲気中または真空中で接合することを特徴とする請求項1に記載のアルミニウム合金クラッド材の製造方法。
  8. 前記中間層の材料がMg:0.2〜2.0mass%、Cu:0.15〜10mass%、Si:0.1〜4.5mass%を含有するアルミニウム合金であり、大気中、非酸化性雰囲気中または真空中で接合することを特徴とする請求項1に記載のアルミニウム合金クラッド材の製造方法。
  9. 前記中間層の材料がMg:0.2〜2.0mass%、Si:0.1〜4.5mass%、Zn:0.1〜20mass%、Cu:0.1〜10mass%を含有するアルミニウム合金であり、大気中、非酸化性雰囲気中または真空中で接合することを特徴とする請求項1に記載のアルミニウム合金クラッド材の製造方法。
  10. 前記中間層の前記アルミニウム合金が、さらにSi:0.05〜1.0mass%、Cu:0.05〜0.5mass%、Fe:0.05〜1.0mass%、Zn:0.05〜3.0mass%、Mn:0.1〜1.8mass%、Ti:0.01〜0.3mass%、Zr:0.01〜0.3mass%から選択される1種又は2種以上を更に含有することを特徴とする請求項2〜9のいずれか1項に記載のアルミニウム合金クラッド材の製造方法。
  11. 前記接合の熱処理を露点0℃以下の雰囲気で行うことを特徴とする請求項1〜10のいずれか1項に記載のアルミニウム合金クラッド材の製造方法。
JP2012544979A 2011-11-02 2011-11-02 アルミニウム合金クラッド材の製造方法 Expired - Fee Related JP5284542B1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/075348 WO2013065160A1 (ja) 2011-11-02 2011-11-02 アルミニウム合金クラッド材の製造方法

Publications (2)

Publication Number Publication Date
JP5284542B1 true JP5284542B1 (ja) 2013-09-11
JPWO2013065160A1 JPWO2013065160A1 (ja) 2015-04-02

Family

ID=48191551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012544979A Expired - Fee Related JP5284542B1 (ja) 2011-11-02 2011-11-02 アルミニウム合金クラッド材の製造方法

Country Status (4)

Country Link
US (1) US9802273B2 (ja)
JP (1) JP5284542B1 (ja)
CN (1) CN104093519A (ja)
WO (1) WO2013065160A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013081124A1 (ja) * 2011-11-30 2015-04-27 株式会社Uacj アルミニウム合金材の接合方法
KR20170044105A (ko) * 2014-08-26 2017-04-24 미쓰비시 마테리알 가부시키가이샤 접합체, 히트 싱크가 부착된 파워 모듈용 기판, 히트 싱크, 접합체의 제조 방법, 히트 싱크가 부착된 파워 모듈용 기판의 제조 방법, 및 히트 싱크의 제조 방법

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105745343B (zh) * 2014-01-07 2019-05-03 株式会社Uacj 铝合金包层材料及其制造方法、以及使用该铝合金包层材料的热交换器及其制造方法
WO2015104761A1 (ja) * 2014-01-10 2015-07-16 株式会社Uacj アルミニウム合金クラッド材及びその製造方法、ならびに、当該アルミニウム合金クラッド材を用いた熱交換器及びその製造方法
WO2015141193A1 (ja) * 2014-03-19 2015-09-24 株式会社Uacj アルミニウム合金クラッド材及びその製造方法、ならびに、当該アルミニウム合金クラッド材を用いた熱交換器及びその製造方法
CN111716028B (zh) * 2019-03-22 2022-04-26 西南铝业(集团)有限责任公司 一种铝合金复合板的焊合工艺
WO2020255891A1 (ja) 2019-06-17 2020-12-24 株式会社神戸製鋼所 アルミニウム材の接合方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59229294A (ja) * 1983-03-28 1984-12-22 ロツクウエル・インタ−ナシヨナル・コ−ポレ−シヨン 拡散接合の方法
JPS617081A (ja) * 1985-02-04 1986-01-13 Hitachi Ltd 共晶反応を利用した接合方法
JPH03243288A (ja) * 1990-02-21 1991-10-30 Kobe Steel Ltd Al基複合材料とAl材料との接合方法
JP2002361487A (ja) * 2001-06-08 2002-12-18 Sky Alum Co Ltd アルミニウムろう付け用フラックス封入部材およびブレージングシート
JP2003048077A (ja) * 2001-07-31 2003-02-18 Kobe Steel Ltd AlまたはAl合金部材の接合法
JP2006239745A (ja) * 2005-03-03 2006-09-14 Honda Motor Co Ltd アルミニウム系部材の接合方法
JP2009226454A (ja) * 2008-03-24 2009-10-08 Niigata Univ 金属部材の接合方法及びその装置
JP2010094683A (ja) * 2008-10-14 2010-04-30 Panasonic Corp アルミニウム合金の拡散接合法
JP2010184284A (ja) * 2009-02-13 2010-08-26 Nissan Motor Co Ltd アルミニウム系材料の接合方法及び接合構造

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2602413A (en) * 1948-08-13 1952-07-08 Aluminum Co Of America Aluminous brazing product and method of brazing
US3891400A (en) * 1973-02-08 1975-06-24 Kaiser Aluminium Chem Corp Aluminum vacuum brazing sheet
JPS60191679A (ja) * 1984-03-13 1985-09-30 Hitachi Ltd 耐熱超合金の拡散接合方法
JPS60206597A (ja) * 1984-03-30 1985-10-18 Sumitomo Precision Prod Co Ltd アルミニウム合金ろう
JPH03243228A (ja) 1990-02-22 1991-10-30 Nippon Stainless Steel Co Ltd 意匠金属板の製造方法
JP2842668B2 (ja) 1990-06-01 1999-01-06 住友軽金属工業株式会社 A1熱交換器用高強度高耐食性a1合金クラッド材
JPH0441649A (ja) 1990-06-08 1992-02-12 Kobe Steel Ltd 耐scc性に優れた高強度高成形性アルミニウム合金
US5100048A (en) * 1991-01-25 1992-03-31 Alcan International Limited Method of brazing aluminum
CN1031696C (zh) 1991-07-20 1996-05-01 中南工业大学 高阻尼铝合金层压复合板
JPH06228690A (ja) 1993-02-03 1994-08-16 Nippon Steel Corp 成形加工性に優れた高強度アルミニウム合金合わせ板
JPH06235039A (ja) 1993-02-05 1994-08-23 Shinko Arukoa Yuso Kizai Kk 硬質材を被覆したアルミニウム合金板
US5422191A (en) * 1994-02-14 1995-06-06 Kaiser Aluminum & Chemical Corporation Aluminum-lithium filler alloy for brazing
JPH08318381A (ja) 1995-05-26 1996-12-03 Isao Ito 金属材料の接合方法
CN1106242C (zh) * 2000-04-28 2003-04-23 哈尔滨工业大学 铝基复合材料的液相扩散焊连接新工艺
NO20012206D0 (no) * 2001-05-03 2001-05-03 Norsk Hydro As Aluminiumsplate
JP3780380B2 (ja) 2001-10-23 2006-05-31 古河スカイ株式会社 アルミニウム合金ブレ−ジングシ−ト、それを用いたろう付け方法、およびろう付け製品
KR101395655B1 (ko) 2002-04-18 2014-05-16 알코아 인코포레이티드 높은 성형성 및 내식성의 납땜 시트
US7226669B2 (en) * 2003-08-29 2007-06-05 Aleris Aluminum Koblenz Gmbh High strength aluminium alloy brazing sheet, brazed assembly and method for producing same
CN1254345C (zh) * 2003-12-08 2006-05-03 哈尔滨工业大学 铝基复合材料液相冲击扩散焊接新工艺
CN1274458C (zh) 2004-04-27 2006-09-13 山东鲁能节能设备开发有限公司 液相扩散焊铝基中间层合金
JP4448758B2 (ja) 2004-11-02 2010-04-14 株式会社デンソー ろう付け性、耐食性および熱間圧延性に優れた熱交換器用アルミニウム合金クラッド材
JP3869846B2 (ja) 2005-03-25 2007-01-17 神鋼アルコア輸送機材株式会社 アルミニウム合金板および熱交換器
CN100448589C (zh) * 2005-05-18 2009-01-07 江苏大学 一种颗粒增强铝基复合材料的半固态连接方法及其装置
US7749613B2 (en) 2006-04-21 2010-07-06 Alcoa Inc. Multilayer braze-able sheet
EP1852250A1 (en) 2006-05-02 2007-11-07 Aleris Aluminum Duffel BVBA Clad sheet product
EP1852251A1 (en) 2006-05-02 2007-11-07 Aleris Aluminum Duffel BVBA Aluminium composite sheet material
JP4996909B2 (ja) 2006-10-27 2012-08-08 古河スカイ株式会社 アルミニウム合金ブレージングシートおよびその製造方法
JP2008264825A (ja) * 2007-04-19 2008-11-06 Kobe Steel Ltd アルミニウムクラッド材の製造方法
JP4477668B2 (ja) * 2007-12-25 2010-06-09 株式会社神戸製鋼所 アルミニウム合金製ブレージングシート
JP5432632B2 (ja) 2009-03-24 2014-03-05 株式会社神戸製鋼所 成形性に優れたアルミニウム合金板
CN101545062A (zh) 2009-05-08 2009-09-30 南通恒秀铝热传输材料有限公司 一种蒸发器管板用铝合金复合带材及其制造方法
JP5441209B2 (ja) 2009-08-24 2014-03-12 三菱アルミニウム株式会社 耐食性および耐久性に優れるアルミニウム合金製熱交換器
JP5756300B2 (ja) 2010-02-12 2015-07-29 株式会社神戸製鋼所 成形性に優れたアルミニウム合金板
CN101927588B (zh) 2010-08-26 2011-12-28 南通恒秀铝热传输材料有限公司 汽车热交换器用复合钎焊铝合金材料

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59229294A (ja) * 1983-03-28 1984-12-22 ロツクウエル・インタ−ナシヨナル・コ−ポレ−シヨン 拡散接合の方法
JPS617081A (ja) * 1985-02-04 1986-01-13 Hitachi Ltd 共晶反応を利用した接合方法
JPH03243288A (ja) * 1990-02-21 1991-10-30 Kobe Steel Ltd Al基複合材料とAl材料との接合方法
JP2002361487A (ja) * 2001-06-08 2002-12-18 Sky Alum Co Ltd アルミニウムろう付け用フラックス封入部材およびブレージングシート
JP2003048077A (ja) * 2001-07-31 2003-02-18 Kobe Steel Ltd AlまたはAl合金部材の接合法
JP2006239745A (ja) * 2005-03-03 2006-09-14 Honda Motor Co Ltd アルミニウム系部材の接合方法
JP2009226454A (ja) * 2008-03-24 2009-10-08 Niigata Univ 金属部材の接合方法及びその装置
JP2010094683A (ja) * 2008-10-14 2010-04-30 Panasonic Corp アルミニウム合金の拡散接合法
JP2010184284A (ja) * 2009-02-13 2010-08-26 Nissan Motor Co Ltd アルミニウム系材料の接合方法及び接合構造

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013081124A1 (ja) * 2011-11-30 2015-04-27 株式会社Uacj アルミニウム合金材の接合方法
KR20170044105A (ko) * 2014-08-26 2017-04-24 미쓰비시 마테리알 가부시키가이샤 접합체, 히트 싱크가 부착된 파워 모듈용 기판, 히트 싱크, 접합체의 제조 방법, 히트 싱크가 부착된 파워 모듈용 기판의 제조 방법, 및 히트 싱크의 제조 방법
KR102272865B1 (ko) * 2014-08-26 2021-07-02 미쓰비시 마테리알 가부시키가이샤 접합체, 히트 싱크가 부착된 파워 모듈용 기판, 히트 싱크, 접합체의 제조 방법, 히트 싱크가 부착된 파워 모듈용 기판의 제조 방법, 및 히트 싱크의 제조 방법

Also Published As

Publication number Publication date
US9802273B2 (en) 2017-10-31
JPWO2013065160A1 (ja) 2015-04-02
US20140367454A1 (en) 2014-12-18
CN104093519A (zh) 2014-10-08
WO2013065160A1 (ja) 2013-05-10

Similar Documents

Publication Publication Date Title
JP5284542B1 (ja) アルミニウム合金クラッド材の製造方法
CN108602317B (zh) 铝多层钎焊板制品和无钎剂钎焊方法
JP5021097B2 (ja) アルミニウム合金材の接合方法
JP6263574B2 (ja) ブレージングシート及びその製造方法並びにアルミニウム構造体のろう付方法
JP6909744B2 (ja) フラックスフリーろう付用アルミニウム合金ブレージングシート
WO2013157455A1 (ja) アルミニウムクラッド材の製造方法およびアルミニウムクラッド材
WO2020071289A1 (ja) ブレージングシート及びその製造方法
WO2016080434A1 (ja) 熱交換器用アルミニウム合金クラッド材
JP5629130B2 (ja) 金属材料の接合方法
JP2013220434A (ja) アルミニウムブレージングシートの製造方法およびアルミニウムブレージングシート
JP7210259B2 (ja) アルミニウム接合体、その製造方法及びアルミニウム接合体に用いられるブレージングシート
JP6426883B2 (ja) 耐食性に優れた接合体の製造方法
JP2013086103A (ja) アルミニウム合金ブレージングシート
JP2013094837A (ja) アルミニウム合金ブレージングシート
JP6033542B2 (ja) 接合体及びその製造方法
JP6023078B2 (ja) アルミニウム合金材の接合方法
JP2013086104A (ja) アルミニウム合金ブレージングシート
JP6745578B2 (ja) 面接合用ろう材シート
JP5901251B2 (ja) 構造体の製造方法
WO2022050029A1 (ja) アルミニウム合金押出チューブ及び熱交換器
JP2017052004A (ja) 接合体及びその製造方法
WO2014128880A1 (ja) アルミニウム合金ブレージングシートとその製造方法、およびアルミニウム製熱交換器のろう付け方法
JP2013116483A (ja) アルミニウム合金材と異種金属材との接合方法
KR20220044796A (ko) 무플럭스 브레이징을 위한 개선된 알루미늄 합금 브레이징 시트
JP2002155331A (ja) アルミニウム合金合わせ板の製造方法

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20121016

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121012

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20121130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130529

R150 Certificate of patent or registration of utility model

Ref document number: 5284542

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees