JP5165821B2 - 誘導結合型プラズマ発生システム用の複数コイル・アンテナ - Google Patents

誘導結合型プラズマ発生システム用の複数コイル・アンテナ Download PDF

Info

Publication number
JP5165821B2
JP5165821B2 JP2000557486A JP2000557486A JP5165821B2 JP 5165821 B2 JP5165821 B2 JP 5165821B2 JP 2000557486 A JP2000557486 A JP 2000557486A JP 2000557486 A JP2000557486 A JP 2000557486A JP 5165821 B2 JP5165821 B2 JP 5165821B2
Authority
JP
Japan
Prior art keywords
coil
antenna
plasma
current
antenna segment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000557486A
Other languages
English (en)
Other versions
JP2002519861A5 (ja
JP2002519861A (ja
Inventor
ジアン, ジェイ. チェン,
ロバート, ジー. ヴィルトロップ,
トーマス, イー. ウィッカー,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lam Research Corp
Original Assignee
Lam Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lam Research Corp filed Critical Lam Research Corp
Publication of JP2002519861A publication Critical patent/JP2002519861A/ja
Publication of JP2002519861A5 publication Critical patent/JP2002519861A5/ja
Application granted granted Critical
Publication of JP5165821B2 publication Critical patent/JP5165821B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma

Description

【0001】
<発明の分野>
本発明は、半導体基板などの材料を処理するためのプラズマ反応器に関する。より詳細には、本発明は、プラズマ反応器内の誘導結合均一性を改善するためのシステムに関する。
<発明の背景>
プラズマの発生は様々な半導体製造プロセス、例えばプラズマ・エッチング及び堆積において有用である。プラズマは一般に、個々の電子ガス分子衝突による運動エネルギーの伝達によって個々のガス分子をイオン化させる自由電子の電界イオン化および生成によって低圧ガスから生成される。電子は通常、電界、一般には高周波電界の中で加速される。
【0002】
RF電界中の電子を加速するための多数の技法が提案されている。例えば、米国特許第4948458号には、処理すべき半導体ウエハの平面的なに平行に位置する平面的なアンテナ・コイルを使用して、チャンバ内の高周波電界中で電子を励起するプラズマ発生デバイスが開示されている。図1に、アンテナ・システム105、誘電体ウィンドウ120、ガス分配プレート130、処理すべきウエハ140、真空チャンバ150、静電チャック160、および下側電極170を含んでいるプラズマ発生デバイス100を概略的に示す。
【0003】
動作に際しては、高周波発生源(図示せず)を使用して、一般に高周波整合回路(図示せず)を介して、アンテナ・システム105に高周波電流を供給する。高周波電流は、一般にアンテナ・システム105を介して共振し、真空チャンバ150内で方位角電界を誘導する。同時に、ガス分配プレート130を介してプロセス・ガスを真空チャンバ150中に導入すると、誘導された電界によりプロセス・ガスがイオン化してチャンバ150内にプラズマが生成される。次いでプラズマは、(静電チャック160によって所定の位置に保持された)ウエハ140に当たり、ウエハ140を必要に応じて処理する(例えば、エッチングする)。一般に、アンテナ・コイルに加えられる周波数とは異なる周波数である別の高周波数を下側電極170に加えて、イオン衝撃用の負のDCバイアス電圧を得る。
【0004】
図2Aおよび図2Bに、米国特許第4948458号に示されているアンテナ・システムを構成する2つの渦巻き状の平面的なコイル110a、110bを示す。図2Aに示すように、第1の平面的なコイル110aは、平面的なスパイラルに形成された一つの導電エレメントとして構成され、高周波回路への接続のために高周波タップ205、215に接続されている。図2Bでは、別の平面的なコイル110bは、相互接続225を介して直列に接続された複数の接続リング220として構成され、各端部が高周波タップ205、215に接続されている。
【0005】
当技術分野においてよく知られているように、そのような渦巻き状のコイルによって得られる円状電流パターンはドーナツ形プラズマを作り出し、これによりウエハ140におけるエッチング速度に半径方向の不均一性が生じることがある。言い換えれば、平面的なコイル・アンテナ110によって誘導的に発生する電界は、一般に、(半径方向成分Er=0および方位角成分Eθ≠0を有する)方位角電界であるが、中心部では0である(Er=0およびEθ≠0)。したがって、コイル・アンテナ110は、中心部においてより低い密度を有するドーナツ形プラズマを生成するので、ドーナツの中心部において適切な均一性を得るためには、プラズマ拡散(すなわち、中心部への電子およびイオンの拡散)を利用しなければならない。ただし、用途によっては、プラズマ拡散によって得られる均一性は不十分である。
【0006】
さらに、そのような渦巻き状のコイル・アンテナは方位角不均一プラズマをつくる傾向がある。これは、平面的なアンテナ・コイルを構成するために使用される結合線路の比較的長い長さが、コイルが一般に動作する高周波数においてかなりの電気的長さを有することに起因する。電圧波および電流波は入力端部から端子端部まで順方向に進行し、端子端部において再び反射されることになる。順方向波および反射波の重ね合わせの結果、コイルに定在波が生じる(すなわち、電圧および電流がコイルの長さに沿って周期的に変化する)。コイルを端子端部において接地した場合、端子端部における電流は最大値になり、端子端部における電圧は0になる。入力に向かってコイルに沿って進むと、電圧は増大し、電流は減少し、ついには電気的長さが90度のところで、電圧は最大値になり、電流は最小値になる。そのようなある程度の変化があると、極めて不均一なプラズマが生じる。したがって、平面的なコイルは一般にキャパシタンスで終端され、それによりコイル中の電流はコイルの両端部において同じになり、コイルの中央部の近くで最大値まで増大する。そうするとプラズマ均一性を改善することができるが、電流がコイルの長さに沿って方位角方向に変化するので、方位角不均一性はまだ存在する。例えば、図2Aの点Pは電流最大値である。点Pのいずれかの側で、電流は低下する。したがって、プラズマに結合する電力はPの下でより大きくなり、対応するプラズマはより密になる。反対に、点P’におけるプラズマ密度は比較的低くなる。
【0007】
終端コンデンサ値は変化させることができるが、そうするとコイルに沿った電圧の位置が変化するだけであることに留意されたい。さらに、コイル長さに沿って同じ極性の電圧を得るためにコイルをインダクタンスで終端させることができるが、コイルの中心位置のどこかに電流ゼロが存在することになり(電流はゼロのいずれかの側で反対方向に流れる)、生じたプラズマ密度は容認できないほど低くかつ不均一になることがある。Patrick他の米国特許第5401350号は上述の欠点を克服しようと試みるものである。そこには、プラズマ均一性を改善するための複数平面的なコイル構成が記載されている。個々のコイルへのRF電力は独立して制御され、電力および位相の独立した調整に対処する別個の電力源および別個の整合回路網が必要となる。
【0008】
プラズマ結合システム内で誘導結合均一性を制御するための改善された方法および装置が必要であることは明らかである。
<発明の概要>
本発明は、アンテナ・システム内の誘導結合均一性を改善するためのシステムを提供することによって、従来技術の上記で特定した欠点を克服するものである。アンテナ・コイルの配置および電流分布を制御することによって、プラズマ均一性を改善することができる。
【0009】
例示的な実施形態によれば、2つまたはそれ以上の渦巻き状のコイルがプラズマ・チャンバの誘電体ウィンドウ上に配置される。各コイルは平面的なコイルか、または平面的なコイルと垂直方向に積み重なったらせん状のコイルの両方の組合せのいずれかである。各コイルの入力端部は入力側可変コンデンサに取り付けられ、出力端部は出力側可変コンデンサを介して接地に終端される。出力側コンデンサは、電流が極値(すなわち、最大値または最小値)であるかどうか、または電圧が極値であるかどうかを決定し、入力側コンデンサは、各コイルの全インピーダンスを変化させることができ、これらの複数のコイルの電流の大きさの比を変化させることができる。各コイルにおける電流の大きさおよび最大電流の場所を調整することによって、プラズマ密度、すなわち、プラズマ均一性を制御することができる。
【0010】
以下、本発明の上述した内容、その他の特徴、および、利点について、添付図面に示す例示的な実施形態を参照して詳細に説明する。説明する実施形態は一例であり、また、理解を助けるものであり、多数の同等の実施形態が実現されることはいうまでもない。
<発明の詳細な説明>
図1に、本発明のアンテナ・システムを組み込むことができるプラズマ発生デバイス100を示す。プラズマ発生デバイス100は、誘電体ウィンドウ120、ガス分配プレート130、ウェハ140、真空チャンバ150、静電チャック160、下側電極170およびアンテナ・システム105を含んでいる。アンテナ・システム105は、RF整合回路網(図示せず)とRF発生器(図示せず)に接続された一組のコイル110を含んでいる。
【0011】
本発明の例示的な実施形態によれば、このアンテナ・システムは、Transformer−Coupled Plasma(TCPTM、ラム リサーチ コーポレーションの登録商標)アンテナ・システムである。図3に、本発明の第1の実施形態によるTCPTMアンテナ・システム300を示す。この実施形態では、TCPTMアンテナ・システム300は2つの単巻コイルを含んでいる。コイル1は中心部の近くに置かれることが好ましく、コイル2は反応器の上部開口の外縁部に向かってより遠くに置かれることが好ましい。高周波(RF)電流が2つの調整コンデンサC1およびC2を介してコイル1および2の一方の端部に同時に供給される。当技術分野においてよく知られているように、RF入力はRF発生源310によって発生され、RF整合回路網320を介してコンデンサC1およびC2に供給される。調整コンデンサC1およびC2は、それぞれ調整すべきコイル1および2の電流I1およびI2の大きさに対処する。コイル1およびコイル2の反対側の端部は結合され、インピーダンスZTを介して接地に終端される。
【0012】
平面的な単巻コイルによって誘導的に発生した電界は方位角電界(半径方向成分E=0および方位角成分Eθ≠0)であるが、中心部では0である(E=0およびEθ≠0)。誘電体ウィンドウ表面の近くでは、プラズマ中の誘導電界および誘導電流(J=σE)はほぼ駆動コイルの鏡像である。平面的なコイル・アンテナは、駆動コイルの半径の2分の1に近い半径をもつドーナツ形プラズマを生成する。2つのコイルを離して置くことによって、これは、2つのコイルの平均半径の2分の1にほぼ等しい半径を有するより漸進的なプラズマ・ドーナツを効果的に発生する。内側コイルからプラズマへの電力結合は内側領域内に局所化され、外側コイルからの電力結合は外側領域内に局所化される。その結果、プラズマ拡散(すなわち、電子およびイオンの拡散)は中心部および他の場所におけるプラズマ密度をより均一にする傾向がある。
【0013】
上記のように、2つの単巻コイルに関連する回路(すなわち、コンデンサC1およびC2およびインピーダンスZT)は、コイル1とコイル2における電流の大きさ、すなわちそれぞれI1とI2の比を調整することができる。電流の大きさを調整することによって、反応器の中心部と縁部の間のプラズマ均一性を調整することができる。当業者なら理解できるように、C1およびC2は固定コンデンサでも可変コンデンサでもよい。
【0014】
入力側調整コンデンサC1およびC2は各コイルの入力誘導リアクタンスを部分的に消去する。C1およびC2の値を適切に選択すれば、各脚の入力リアクタンスは同じになり、その結果、共通の発生源から供給されたときのコイル1およびコイル2への入力電流が等しくなる。これらの開始値からC1をより高く、C2をより低く調整すると、コイル1の電流は減少し、コイル2の電流は増大する。方向を逆にすると、反対方向における電流は不平衡になる。調整プロセス中、一方の脚は増大したリアクタンスを有し、他方の脚は減少したリアクタンスを有するので、複合回路の入力インピーダンスは名目上同じままである。
【0015】
コイル1とコイル2の反対側の端部はインピーダンスZTで終端することができる。ZTは、従来のTCPTMシステムの場合と同様に共通のコンデンサである。ZTは、接地に終端された別個のコンデンサとすることもできる。各コイルが異なる電気的長さを有する場合、各コイルの入力インピーダンスも異なる。電流最大値が名目上各コイル長さの中心部に現れるように、別個の終端コンデンサを選択することができる。
【0016】
2つのコイルが対称的に平衡しているとき、各コイルに流れる電流は名目上同じになる。C1およびC2の値を変化させると、コイル1およびコイル2への不平衡な電流の流れが得られることが当業者なら理解できよう。入力リアクタンスX1およびX2が誘導性であると仮定すると、C2は、例えば、X1>X2という平衡状態から離れて増大すると、I1>I2である。この場合、内側コイル(コイル1)中の電流は、反応器の中心部により強い誘導結合を生じる外側コイルよりも大きくなる。その結果、比較的高いプラズマ密度がコイル1の下の中心領域内に生じる。別の場合では、外側コイル(コイル2)中の電流を内側コイル中の電流よりも大きくなるように調整し、それにより反応器壁の近くのような、内側コイルを覆っている領域におけるよりも低いプラズマ密度を補償することができる。
【0017】
上述の2つの単巻コイルの使用法を説明のために簡単に示す。上記の一般原則は複巻コイル、複巻システムに同等に適用可能であることが当業者なら理解できよう。さらに、本発明は(図3に示される)二次元コイルの構成に限定されるものではなく、代わりに三次元コイル構成として実現することもできる。例えば、コイルは、ドーム形誘電体ウィンドウに一致するように構成するか、あるいは円筒形誘電体ウィンドウの周りにらせん状に構成することができる。上記の一般原則は、複数の巻きの複数のコイルを有するドーム形、らせん状、または他の三次元の構成を同様に適用可能であることが当業者なら理解できよう。
【0018】
図4に、本発明の第2の実施形態によるTCPTMアンテナ・システム400を示す。図4には、2つの調整コンデンサC1〜C4が取付けられた2つの複巻コイル(コイル1およびコイル2)が示されている。図から明らかなように、コイル1は中心部に配置されおり、コイル2は反応器の上部開口の外縁部に向かってより遠くに配置されていることが好ましい。RF入力は、調整コンデンサC1およびC2を介してコイル1および2の第1の端部に同時に供給される。コイル1および2の反対側の端部はそれぞれ調整コンデンサC3およびC4を介して終端される。図3を参照して上述した二重のコイル単巻システムの場合と同様に、2つのコイルはより漸進的なドーナツ形プラズマを効果的に発生する。電流I1およびI2は同じ方向に流れるので、コイルからプラズマへの電力結合は領域全体に広がり、単一の平坦化されたドーナツ形プラズマを生成する。電流が不平衡である場合、ドーナツ形電界は中心部または外側においてより強くなる。
【0019】
コイルに沿ってより対称的な電流分布を得るために、各コイルごとに2つのコンデンサが設けられる。例えば、電流最大値(ならびに純抵抗性インピーダンス点)がコイル1の中心部に現れるように、C1をC3と一緒に調整することができる。コイルの中心部からC1に向かって移動すると、リアクタンスは誘導性になり、コイルの中心部からC3に向かって移動すると、リアクタンスは容量性になり、それにより電流は中心部において最大になり、名目上正弦波の形で中心部から離れて減少する。
【0020】
さらに、C3とC4の調整により上述の方位角不均一プラズマを補償することができる。例えば、図4のコイル1の点P1において最大電流が得られるように、C3を調整することができる。その結果、プラズマへの電力結合はP1の下でより大きくなり、対応するプラズマ密度はより高くなる。これは方位角不均一性を生じる傾向がある。ただし、C4を調整すれば、P1に対向する半径方向軸に沿ったコイル2中の場所P2において最大電流を得ることができる。したがって、P2におけるコイル2のより大きい電力結合がコイル1による影響を相殺し、その結果、より方位角的に均一なプラズマが生じる。C3とC4の調整の別法として、コイル1およびコイル2中の電流最大値がそれぞれP1およびP2のところに現れるように、コイル1の方位角位置をコイル2の方位角位置に対して物理的に回転させることができる。
【0021】
本発明の例示的な実施形態によれば、調整コンデンサC1およびC2は、1回の制御により反対方向に回転するように構成することができる。このようにすると、入力において単一の従来の整合回路網を妨害することなしに、単一の発生器からの1回の制御により電流の不平衡を、ひいてプラズマ不均一性を最適化することができる。同様に、C3とC4を反対方向に調整しても、C1とC2を調整するのと同じ効果が得られる。
【0022】
コイル中の巻数が変化するにつれて、コイルとプラズマの間の相互結合は、変圧器の一次コイル(すなわち駆動コイル)と二次コイル(すなわちプラズマ)の間の相互結合と同様の形で変化する(Albert J.Lammの、"Observations of Standing Waves on an Inductive Plasma Coil Modeled as a Uniform Transmission Line",J. Vac. Sci. Tech A, 15巻 No.5 1997年9月/10月 2615頁を参照されたい。)。巻数の増大/減少はプラズマの密度に影響を及ぼす。例えば、巻数が増大すると相互結合係数が減少し、それによりプラズマ密度が低くなる。一方、コイル長さが短縮された場合、コイル長さにわたって統合された全体的なプラズマの発生が減少する。したがって、各コイルの巻数および全長を最適化して、これら2つのファクタをつりあわせることが可能であることが当業者なら理解できよう。
【0023】
入力側調整コンデンサC1およびC2の値を変化させる影響を説明するために、以下の3つの状況、すなわち、C1の値がC2の値よりも大きい最初の状況、C1とC2の値が等しくなるように調整される第2の状況、およびC1の値がC2の値よりも小さい最後の状況について考えてみる。
【0024】
TCPTMコイル・アンテナの複素伝搬定数(k=α+jβ)は、コイル・アンテナの入力および出力における電圧および電流波形測定値から推測することができる(Lammを参照されたい。)。説明のために、α、βおよび実効特性インピーダンスZ0は3つの状況を通して同じであると仮定する。表Iに各コイルのα、β、Z0、電気的長さ、およびC1〜C4の値を示す。
【0025】
【表1】
Figure 0005165821
【0026】
表Iにおいて、Zinは各コイルの入力インピーダンスを表す。2つのコイルの全入力インピーダンスは2.1+j10.5Ωであり、これは各コイルのZinの約2分の1である。表IIに、1000Wの入力RF電力および表Iに記載されているパラメータが与えられたときのi番目のコイルのIi、Ii’、ViおよびVi’の大きさおよび位相角を掲載する。表IIにおいて、Iiは、i(i=1、2)番目のコイルの(図4のRF入力により近い)入力端部における電流を表し、Ii’は、i番目のコイルの(図4のC3およびC4により近い)出力端部における電流を表し、ViおよびVi’はそれぞれi番目のコイルの入力端部および出力端部における電圧を表す。
【0027】
【表2】
Figure 0005165821
【0028】
表IIから明らかなように、RF電流および電圧は2つのコイルの間で不平衡であるが、各コイル内では平衡である。内側コイルの全インピーダンスは外側コイルの全インピーダンスよりも大きいので、内側コイル(コイル1)の電流と電圧はどちらも外側コイル(コイル2)の電流と電圧よりも34%小さい。各コイルはコイルの中心部の周りに対称的に平衡しており、したがって各コイルの入力電流および電圧の値は大きさが出力値にほとんど等しい。各コイルの中心部から離れると、インピーダンスは、コイルの入力端部に向かって誘導性に支配されるようになり、出力端部に向かって容量性に支配されるようになる。これは、入力電圧と出力電圧の間の位相角の変化から明らかである。
【0029】
(C1=C2となるように)C1とC2の値を変化させることが電流I1とI2に及ぼす影響を以下の表IIIおよびIVに示す。
【0030】
【表3】
Figure 0005165821
【0031】
2つのコイルの全入力インピーダンスは2.0+j11.4Ωであり、これは各コイルのZinの約2分の1である。表IVに、1000Wの入力RF電力および表IIIに記載されているパラメータが与えられたときのi番目のコイルのIi、Ii’、ViおよびVi’の大きさおよび位相角を掲載する。
【0032】
【表4】
Figure 0005165821
【0033】
1=C2およびC3=C4であり、コイル1はコイル2と同等であるので、RF電流および電圧は2つのコイル間ならびに各コイル内で平衡している。
【0034】
最後の状況は、C1の値がC2の値よりも小さくなるようにC1とC2の値を変化させることの影響を示す。
【0035】
【表5】
Figure 0005165821
【0036】
2つのコイルの全入力インピーダンスは2.1+j10.5Ωであり、これは各コイルのZinの約2分の1である。表VIに、1000Wの入力RF電力および表IIIに記載されているパラメータが与えられたときのi番目のコイルのIi、Ii’、ViおよびVi’の大きさおよび位相角を掲載する。
【0037】
【表6】
Figure 0005165821
【0038】
この場合、内側コイル(コイル1)のRF電流と電圧はどちらも外側コイル(コイル2)の電流と電圧よりも51%大きい。
【0039】
1とC2を変化させるだけで、他方のコイルの電流および電圧に対してコイルの電流ならびに電圧を実質上調整することができることが、上記の状況から明らかである。
【0040】
図5に本発明の第3の実施形態を示す。図5では、2つの複巻コイルおよび4つの調整コンデンサC1〜C4の他に、らせん状のコイルが設けられている。この実施形態によれば、内側コイル(コイル1)は2つの部分からなる。部分Iは、図4に関して上述した平面的な複巻コイルを表す。部分IIは、平面的な複巻コイルに対して垂直に置かれ、平面的なコイル(コイル1およびコイル2の部分I)の軸と同一の軸を有するらせん状のコイルを表す。
【0041】
この実施形態では、内側コイルの電気的長さは、コイル1およびコイル2がそれらの電気的長さに関してより平衡するように延長されている。2つの電気的長さが互いに近接しているとき、各コイルへの電流をより大きい程度まで調整するとともに、より一定の複素入力インピーダンスを維持することができる。本発明によるらせん状のコイルは中心部におけるプラズマへの誘導結合を助ける。らせん状のコイルによって発生される電界も方位角電界であり、中心部において0であるが、この方位角電界の平均半径はらせん状のコイルの直径の程度である。したがって、中心部におけるプラズマをより密にして、よりよい全体的な均一性を得ることができる。
【0042】
らせん状のコイルの中央部にあるシリンダは誘電体材料でできており、中実にすることにより単に巻線を機械的に支持するが、あるいはその軸に沿って中空にすることもできる。後者の場合、中空シリンダは上端部が真空密封され、また、シリンダの中空領域がチャンバに直接接続されるように底端部が開いている。そのような場合、プロセス・ガスは真空チャンバにだけでなく、中空シリンダにも導入される。シリンダはプラズマ反応器の誘電体ウィンドウの一部と考えることもできる。中空シリンダ中のプラズマ密度は、比較的強い誘導電界および中空陰極効果のためにチャンバ中よりも高くなることがある。中空シリンダ中で生成されるプラズマはチャンバの中心部に拡散する。さらに、一般に10m−トル未満の低圧状況において放電を容易に当てることができるように、比較的高い電圧が終端コンデンサC3によって調整され得る。
【0043】
図6に本発明の第4の実施形態を示す。この実施形態によれば、各コイル(コイル1およびコイル2)は2つの部分からなる。部分1は平面的な複巻コイルの形態であり、部分2はらせん状のコイルの形態であって平面的な複巻コイル(すなわち、部分1)に対して直角に置かれ、部分1の軸と同一の軸を有する。
【0044】
入力高周波はコイル1およびコイル2の平面的な複巻コイルからアンテナ・システム600に入り、また電流が両方のコイル中を同じ方向に流れるように、らせん状のコイルから出る。コイル1およびコイル2の同等の電気的長さを得るために、コイル2のらせん状のコイル(部分2)は平面的な複巻コイル(コイル2の部分1)の最も内側の巻線と同じ半径を有し、コイル1のらせん状のコイル(部分2)は平面的な複巻コイル(コイル1の部分1)の最も外側の巻線と同じ半径を有する。コイル1およびコイル2のらせん状のコイルの巻数は、コイル1およびコイル2の電気的全長がほぼ等しくなるように選択される。コイル1および2のリング間の小さな開口が整列していないことは図6から明らかである。開口が整列している構成とすることは可能であるが、そのような構成にすると、開口の場所におけるプラズマへの電力結合が小さくなることが当業者なら理解できよう。
【0045】
入力調整コンデンサ(C1およびC2)および出力調整コンデンサ(C3およびC4)は図3〜図5に関して上述したものと同様の形でコイル中の電流分布の調整を可能にする。本実施形態は一方のコイル中の電流を独立して調整できること点で有利である。図3〜図5に示した上述の実施形態では、各コイルへの電流は主として、入力インピーダンスを変化させる入力調整コンデンサによって調整される。一方のコイルの入力インピーダンスが変化するにつれて、コイルが電気的に並列に接続されているので、全入力インピーダンスが変化する。これにより一方のコイル中の電流が変化するだけでなく、他方のコイル中の電流も変化することになる。言い換えれば、2つのコイルの電流調整は独立ではない。したがって、全入力インピーダンスのそのような変化を補償するために整合回路網を再同調させなければならない。これは、整合回路網の同調範囲が有限でありかつ制限されているので、すべての用途において実行可能であるとは限らない。
【0046】
図6において、平面的な複巻コイル(部分1)中の場所か、またはらせん状のコイル(部分2)中の場所に対して出力コンデンサを調整することによって、各コイルの電流最大値の場所を調整することができる。電流最大値が平面的な複巻コイル中のどこかにあるときには、平面的なコイルがプラズマにより近いので、プラズマへの高周波の電力結合は比較的大きい。同様に、電流最大値がらせん状のコイル中のある場所にある場合、らせん状のコイルがプラズマからより離れており、平面的な複巻コイル中で電流が低下するので、プラズマへの電力結合は弱くなる。したがって、出力コンデンサのみの調整では、最大電流の場所とプラズマへの電力結合の大きさが同時に変化することになる。出力コンデンサが調整されるのと同時に、コイルの比較的不変の入力インピーダンスを維持するために、入力コンデンサは反対方向に調整されることになる。このようにして入力および出力コンデンサを調整することにより、電流の大きさは実質上変化しないが、コイル中の電流定在波パターンがシフトし、これによりプラズマへの電力結合が効果的に変化することが当業者なら理解できよう。その結果、プラズマ均一性を制御可能に維持できるようになる。
【0047】
図7に本発明の第5の実施形態による二重コイル結合システムを示す。図7の二重のコイル結合システムは平行なアンテナ・エレメントを使用する。2つのコイル(コイル1およびコイル2)は対称的であり、コイルの各ループは半円と平行とのアンテナ・エレメントからなる。RFは各コイル(平行軸により近い)の平行エレメントの中央に同時に供給され、コイルの他の端部は結合され、コンデンサCTを介して接地に終端される。
【0048】
渦巻き状の平面的なコイルとは対照的に、平面的なアンテナ結合方式は常に比較的大きい電界を中心部において生成し、したがってプラズマ均一性を本質的に改善する(J.J. Chen他、"Prallel-Antenna Transformer-Coupled Plasma Generation System" 米国特許出願第09/052144号、出願日1998年3月31日を参照されたい)。従来のTCPTMコイルと同様に、各コイルによって生成されたプラズマはドーナツ形であり、コイル1ではo1の周り、コイル2ではo2の周りを中心とすることができる。単一のTCPTMと比較して、各プラズマ・ドーナツの半径はかなり短く、それにより従来のTCPTMシステムと比較して、プラズマがドーナツの中心部に拡散しやすくなる。この結合システムの利点は、各コイルの電気的長さがほぼ2分の1になるので、各コイルに沿ったRF電流および電圧の変化がより小さくなることである。
【0049】
以上、本発明の原理、好ましい実施形態および動作モードについて説明した。ただし、本発明は上述した特定の実施形態に限定されるものではない。すなわち、上述した実施形態は限定的なものではなく例示的なものであり、当業者であれば、請求の範囲に記載された本発明の範囲から逸脱することなく、それらの実施形態に変更を加えることができることはいうまでもない。
【図面の簡単な説明】
【図1】 処理チャンバ中に高周波エネルギーを結合するために使用される誘電体ウィンドウの上部にアンテナ・システムが置かれているプラズマ反応器を示す図である。
【図2A】 従来の渦巻き状の平面的なコイル・アンテナを示す図である。
【図2B】 別の従来の渦巻き状の平面的なコイル・アンテナを示す図である。
【図3】 本発明の第1の実施形態による二重の平面的な単巻コイルの構成例を示す図である。
【図4】 本発明の第2の実施形態による二重の平面的な複巻コイルの構成例を示す図である。
【図5】 本発明の第3の実施形態による、内側にらせん状のコイルをもつ二重の平面的な複巻コイルの構成例を示す図である。
【図6】 本発明の第4の実施形態による、内側及び外側の両方にらせん状のコイルを有する二重の平面的な複巻コイルの例示的な構成を示す図である。
【図7】 本発明の第5の実施形態による、平行アンテナ・エレメントをもつ二重の平面的な複巻コイルの構成例を示す図である。

Claims (24)

  1. 誘導結合型プラズマを発生させるための装置であって、
    チャンバ中への電磁界経路を形成するウィンドウと該チャンバ中にプロセス・ガスを導入するように構成されたプロセス・ガス供給源とを有するプラズマ反応チャンバと、
    前記チャンバのウィンドウに近接して配設された少なくとも第1および第2のアンテナ・セグメントを含む高周波アンテナと、
    前記アンテナ・セグメントに結合され、前記アンテナ・セグメント中の高周波電流を共振させるように構成された高周波発生源と、
    前記高周波発生源と前記第1のアンテナ・セグメントの一端との間に接続された第1の入力コンデンサと、
    前記高周波発生源と前記第2のアンテナ・セグメントの一端との間に接続された第2の入力コンデンサと、
    を備え、
    前記第1および第2のアンテナ・セグメントのそれぞれの他端が相互に結合されインピーダンスを介して接地されており、
    前記高周波電流によって誘導された電磁界は、前記ウィンドウを通過し、プロセス・ガスを励起およびイオン化し、それによりチャンバ内にプラズマを発生させ、かつ、前記第1のアンテナ・セグメントが、前記第2のアンテナ・セグメントを取り囲んでいることを特徴とする装置。
  2. 発生するプラズマの密度が、前記少なくとも第1および第2のアンテナ・セグメントがまたがる領域内で実質的に均一であることを特徴とする請求項1に記載の装置。
  3. 前記少なくとも第1および第2のアンテナ・セグメントが、それぞれ、高周波電力を前記チャンバ中の異なる領域に結合し、これにより、前記チャンバ中に全体的に均一なプラズマを発生させることを特徴とする請求項1に記載の装置。
  4. 前記少なくとも第1および第2のアンテナ・セグメントが、単巻コイルからなることを特徴とする請求項1に記載の装置。
  5. 前記第1のアンテナ・セグメントが単巻コイルからなり、前記第2のアンテナ・セグメントが複巻コイルからなることを特徴とする請求項1に記載の装置。
  6. 前記少なくとも第1および第2のアンテナ・セグメントが、複巻コイルからなることを特徴とする請求項1に記載の装置。
  7. 前記第1および第2の入力コンデンサは、同じ電流又は異なる電流が得られるように、前記少なくとも第1および第2のアンテナ・セグメントの電流を調整することを特徴とする請求項1に記載の装置。
  8. 前記第1および第2の入力コンデンサの組合せが各々の前記アンテナ・セグメントにおける電流を増大させるときは、前記アンテナ・セグメントに隣接するプラズマ領域への高周波電力結合が増大し、前記第1および第2の入力コンデンサの組合せが各々の前記アンテナ・セグメントにおける電流を減少させるときは、前記プラズマ領域への電力結合が減少することを特徴とする請求項7に記載の装置。
  9. 前記第1および第2の入力コンデンサは単一制御により動作することを特徴とする請求項7に記載の装置。
  10. 前記少なくとも第1および第2のアンテナ・セグメントが単一の高周波電力源によって電力供給され、単一の整合回路網によって調整されることを特徴とする請求項1に記載の装置。
  11. 前記第1および第2のアンテナ・セグメントは、同一平面内にある二次元構成、非平面的な三次元構成、またはその組合せで構成されていることを特徴とする請求項1に記載の装置。
  12. 前記第1および第2のアンテナ・セグメントが同心状に構成されており、一方の前記アンテナ・セグメントが他方の前記アンテナ・セグメントよりも小さい直径を有することを特徴とする請求項1に記載の装置。
  13. 前記三次元構成が、ドーム状又はらせん状であることを特徴とする請求項11に記載の装置。
  14. 各々の前記アンテナ・セグメントの形状が、ほぼ円形であることを特徴とする請求項1に記載の装置。
  15. 前記少なくとも第1および第2のアンテナ・セグメントが、前記チャンバのウィンドウの外表面に近接して配置されていることを特徴とする請求項1に記載の装置。
  16. 前記第1および第2のアンテナ・セグメントの電流が前記セグメントの周りに同じ方位角方向に流れることを特徴とする請求項1に記載の装置。
  17. 前記第1の複巻アンテナ・セグメントが平面的な複巻コイルとして構成されており、前記第2の複巻アンテナ・セグメントが第1および第2の部分を有することを特徴とする請求項6に記載の装置。
  18. 前記第2の複巻アンテナ・セグメントの前記第1の部分が平面的な複巻コイルとして構成されており、前記第2の複巻アンテナ・セグメントの前記第2の部分がらせん状のコイルとして構成されていることを特徴とする請求項17に記載の装置。
  19. 前記ウィンドウは、前記らせん状のコイル内に中空の誘電体シリンダを含み、該中空の誘電体シリンダの中空領域が前記プロセス・チャンバに直接接続されていることを特徴とする請求項18に記載の装置。
  20. 前記らせん状のコイルと前記中空の誘電体シリンダは、プラズマが、前記チャンバ内で、より低い圧力で当たるように構成されており、これにより前記プロセス・チャンバの中心部におけるプラズマ密度が高くなることを特徴とする請求項19に記載の装置。
  21. 前記第1の複巻アンテナ・セグメントが、第1の平面的な部分と第2の非平面的な部分とを有し、前記第2の複巻アンテナ・セグメントが第1の平面的な部分と第2の非平面的な部分とを有することを特徴とする請求項6に記載の装置。
  22. 前記第1の複巻アンテナ・セグメントの前記第2の部分が、らせん状のコイルとして構成されていることを特徴とする請求項21に記載の装置。
  23. 前記第2の複巻アンテナ・セグメントの前記第2の部分が、らせん状のコイルとして構成されていることを特徴とする請求項21に記載の装置。
  24. 前記第1の複巻アンテナ・セグメントの全長が前記第2の複巻アンテナ・セグメントの全長と同等であることを特徴とする請求項6に記載の装置。
JP2000557486A 1998-06-30 1999-06-18 誘導結合型プラズマ発生システム用の複数コイル・アンテナ Expired - Fee Related JP5165821B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/106,852 1998-06-30
US09/106,852 US6164241A (en) 1998-06-30 1998-06-30 Multiple coil antenna for inductively-coupled plasma generation systems
PCT/US1999/012808 WO2000000993A1 (en) 1998-06-30 1999-06-18 Multiple coil antenna for inductively-coupled plasma generation systems

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2009181946A Division JP4750879B2 (ja) 1998-06-30 2009-08-04 プラズマ発生装置
JP2011024421A Division JP5881954B2 (ja) 1998-06-30 2011-02-07 プラズマ発生装置

Publications (3)

Publication Number Publication Date
JP2002519861A JP2002519861A (ja) 2002-07-02
JP2002519861A5 JP2002519861A5 (ja) 2006-08-17
JP5165821B2 true JP5165821B2 (ja) 2013-03-21

Family

ID=22313609

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2000557486A Expired - Fee Related JP5165821B2 (ja) 1998-06-30 1999-06-18 誘導結合型プラズマ発生システム用の複数コイル・アンテナ
JP2009181946A Expired - Lifetime JP4750879B2 (ja) 1998-06-30 2009-08-04 プラズマ発生装置
JP2011024421A Expired - Fee Related JP5881954B2 (ja) 1998-06-30 2011-02-07 プラズマ発生装置

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2009181946A Expired - Lifetime JP4750879B2 (ja) 1998-06-30 2009-08-04 プラズマ発生装置
JP2011024421A Expired - Fee Related JP5881954B2 (ja) 1998-06-30 2011-02-07 プラズマ発生装置

Country Status (8)

Country Link
US (2) US6164241A (ja)
EP (1) EP1092229B1 (ja)
JP (3) JP5165821B2 (ja)
KR (1) KR100645469B1 (ja)
AU (1) AU4954499A (ja)
DE (1) DE69939321D1 (ja)
TW (1) TW510149B (ja)
WO (1) WO2000000993A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101852310B1 (ko) 2014-11-05 2018-04-25 도쿄엘렉트론가부시키가이샤 플라즈마 처리 장치 및 플라즈마 처리 방법
KR20190057231A (ko) * 2019-05-16 2019-05-28 주식회사 유진테크 Icp 안테나 및 이를 포함하는 기판 처리 장치

Families Citing this family (187)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW389894B (en) * 1997-06-19 2000-05-11 Optrom Kk Device for exchanging information with storage medium having electronic circuit and the electronic circuit, and system including the same
US6815633B1 (en) 1997-06-26 2004-11-09 Applied Science & Technology, Inc. Inductively-coupled toroidal plasma source
US7569790B2 (en) 1997-06-26 2009-08-04 Mks Instruments, Inc. Method and apparatus for processing metal bearing gases
US8779322B2 (en) 1997-06-26 2014-07-15 Mks Instruments Inc. Method and apparatus for processing metal bearing gases
US6924455B1 (en) 1997-06-26 2005-08-02 Applied Science & Technology, Inc. Integrated plasma chamber and inductively-coupled toroidal plasma source
DE19900179C1 (de) * 1999-01-07 2000-02-24 Bosch Gmbh Robert Plasmaätzanlage
US6447635B1 (en) * 1999-08-24 2002-09-10 Bethel Material Research Plasma processing system and system using wide area planar antenna
KR100338057B1 (ko) * 1999-08-26 2002-05-24 황 철 주 유도 결합형 플라즈마 발생용 안테나 장치
US6320320B1 (en) * 1999-11-15 2001-11-20 Lam Research Corporation Method and apparatus for producing uniform process rates
US6413359B1 (en) * 2000-04-04 2002-07-02 K2 Keller Consulting Plasma reactor with high selectivity and reduced damage
US6401652B1 (en) * 2000-05-04 2002-06-11 Applied Materials, Inc. Plasma reactor inductive coil antenna with flat surface facing the plasma
DE10024883A1 (de) * 2000-05-19 2001-11-29 Bosch Gmbh Robert Plasmaätzanlage
KR20010112958A (ko) * 2000-06-15 2001-12-24 황 철 주 고밀도 플라즈마 반응기
JP2002008996A (ja) * 2000-06-23 2002-01-11 Mitsubishi Heavy Ind Ltd 給電アンテナ及び給電方法
US6531029B1 (en) * 2000-06-30 2003-03-11 Lam Research Corporation Vacuum plasma processor apparatus and method
US6685798B1 (en) * 2000-07-06 2004-02-03 Applied Materials, Inc Plasma reactor having a symmetrical parallel conductor coil antenna
US6414648B1 (en) * 2000-07-06 2002-07-02 Applied Materials, Inc. Plasma reactor having a symmetric parallel conductor coil antenna
US6409933B1 (en) * 2000-07-06 2002-06-25 Applied Materials, Inc. Plasma reactor having a symmetric parallel conductor coil antenna
US6462481B1 (en) 2000-07-06 2002-10-08 Applied Materials Inc. Plasma reactor having a symmetric parallel conductor coil antenna
US6694915B1 (en) 2000-07-06 2004-02-24 Applied Materials, Inc Plasma reactor having a symmetrical parallel conductor coil antenna
US7223676B2 (en) 2002-06-05 2007-05-29 Applied Materials, Inc. Very low temperature CVD process with independently variable conformality, stress and composition of the CVD layer
US6939434B2 (en) 2000-08-11 2005-09-06 Applied Materials, Inc. Externally excited torroidal plasma source with magnetic control of ion distribution
US6893907B2 (en) 2002-06-05 2005-05-17 Applied Materials, Inc. Fabrication of silicon-on-insulator structure using plasma immersion ion implantation
US7294563B2 (en) 2000-08-10 2007-11-13 Applied Materials, Inc. Semiconductor on insulator vertical transistor fabrication and doping process
US7166524B2 (en) 2000-08-11 2007-01-23 Applied Materials, Inc. Method for ion implanting insulator material to reduce dielectric constant
US7183177B2 (en) 2000-08-11 2007-02-27 Applied Materials, Inc. Silicon-on-insulator wafer transfer method using surface activation plasma immersion ion implantation for wafer-to-wafer adhesion enhancement
US7430984B2 (en) 2000-08-11 2008-10-07 Applied Materials, Inc. Method to drive spatially separate resonant structure with spatially distinct plasma secondaries using a single generator and switching elements
US7320734B2 (en) 2000-08-11 2008-01-22 Applied Materials, Inc. Plasma immersion ion implantation system including a plasma source having low dissociation and low minimum plasma voltage
US7137354B2 (en) 2000-08-11 2006-11-21 Applied Materials, Inc. Plasma immersion ion implantation apparatus including a plasma source having low dissociation and low minimum plasma voltage
US7303982B2 (en) 2000-08-11 2007-12-04 Applied Materials, Inc. Plasma immersion ion implantation process using an inductively coupled plasma source having low dissociation and low minimum plasma voltage
US7465478B2 (en) 2000-08-11 2008-12-16 Applied Materials, Inc. Plasma immersion ion implantation process
US7037813B2 (en) 2000-08-11 2006-05-02 Applied Materials, Inc. Plasma immersion ion implantation process using a capacitively coupled plasma source having low dissociation and low minimum plasma voltage
US7094670B2 (en) 2000-08-11 2006-08-22 Applied Materials, Inc. Plasma immersion ion implantation process
US7288491B2 (en) 2000-08-11 2007-10-30 Applied Materials, Inc. Plasma immersion ion implantation process
KR100444189B1 (ko) 2001-03-19 2004-08-18 주성엔지니어링(주) 유도결합 플라즈마 소스의 임피던스 정합 회로
US6527912B2 (en) * 2001-03-30 2003-03-04 Lam Research Corporation Stacked RF excitation coil for inductive plasma processor
US7096819B2 (en) * 2001-03-30 2006-08-29 Lam Research Corporation Inductive plasma processor having coil with plural windings and method of controlling plasma density
US6583572B2 (en) * 2001-03-30 2003-06-24 Lam Research Corporation Inductive plasma processor including current sensor for plasma excitation coil
KR100404723B1 (ko) * 2001-04-26 2003-11-07 주식회사 플라즈마트 낮은 종횡비를 갖는 유도결합형 플라즈마 발생장치
RU2196395C1 (ru) * 2001-05-30 2003-01-10 Александров Андрей Федорович Плазменный реактор и устройство для генерации плазмы (варианты)
KR100476902B1 (ko) * 2001-07-20 2005-03-17 주식회사 셈테크놀러지 균일 분포 플라즈마를 형성하는 대면적 플라즈마안테나(lapa)및 이를 포함하는 플라즈마 발생장치
KR200253559Y1 (ko) * 2001-07-30 2001-11-22 주식회사 플라즈마트 회전방향으로 균일한 플라즈마 밀도를 발생시키는유도결합형 플라즈마 발생장치의 안테나구조
KR100464808B1 (ko) * 2001-08-28 2005-01-05 최대규 다중 유도 결합 플라즈마 인덕터
US7571697B2 (en) * 2001-09-14 2009-08-11 Lam Research Corporation Plasma processor coil
KR100478106B1 (ko) * 2001-12-10 2005-03-24 (주)울텍 고밀도 플라즈마 발생 장치
AU2003217075A1 (en) * 2002-04-13 2003-11-03 Maurice Clifford Hately Crossed-field radio antenna
KR100488362B1 (ko) * 2002-05-20 2005-05-11 주식회사 플라즈마트 저주파형 유도결합 플라즈마 발생장치
JP3820188B2 (ja) * 2002-06-19 2006-09-13 三菱重工業株式会社 プラズマ処理装置及びプラズマ処理方法
CN1298198C (zh) * 2002-07-26 2007-01-31 株式会社普来马特 低纵横比电感耦合等离子发生器
KR100488360B1 (ko) * 2002-07-29 2005-05-11 주식회사 플라즈마트 평판표시장치의 표면처리를 위한 유도결합형 플라즈마발생장치의 안테나구조
KR100486712B1 (ko) * 2002-09-04 2005-05-03 삼성전자주식회사 복층 코일 안테나를 구비한 유도결합 플라즈마 발생장치
KR100486724B1 (ko) * 2002-10-15 2005-05-03 삼성전자주식회사 사행 코일 안테나를 구비한 유도결합 플라즈마 발생장치
US6773558B2 (en) * 2002-10-15 2004-08-10 Archimedes Technology Group, Inc. Fluorine generator
TW201041455A (en) * 2002-12-16 2010-11-16 Japan Science & Tech Agency Plasma generation device, plasma control method, and substrate manufacturing method
KR100964398B1 (ko) * 2003-01-03 2010-06-17 삼성전자주식회사 유도결합형 안테나 및 이를 채용한 플라즈마 처리장치
EP1480250A1 (en) * 2003-05-22 2004-11-24 HELYSSEN S.à.r.l. A high density plasma reactor and RF-antenna therefor
EP1637624B1 (en) * 2003-06-02 2012-05-30 Shincron Co., Ltd. Thin film forming apparatus
KR100513163B1 (ko) * 2003-06-18 2005-09-08 삼성전자주식회사 Icp 안테나 및 이를 사용하는 플라즈마 발생장치
US7573000B2 (en) * 2003-07-11 2009-08-11 Lincoln Global, Inc. Power source for plasma device
DE602004010266T2 (de) * 2003-07-11 2008-11-06 Nxp B.V. Induktives system
KR100551138B1 (ko) * 2003-09-09 2006-02-10 어댑티브프라즈마테크놀로지 주식회사 균일한 플라즈마 발생을 위한 적응형 플라즈마 소스
US20050205211A1 (en) * 2004-03-22 2005-09-22 Vikram Singh Plasma immersion ion implantion apparatus and method
US7695590B2 (en) 2004-03-26 2010-04-13 Applied Materials, Inc. Chemical vapor deposition plasma reactor having plural ion shower grids
KR100530596B1 (ko) * 2004-03-30 2005-11-23 어댑티브프라즈마테크놀로지 주식회사 웨이퍼 상에 높은 공정 균일도를 얻기 위한 플라즈마 소스코일을 채용하는 플라즈마 장비
US20080223521A1 (en) * 2004-03-30 2008-09-18 Nam Hun Kim Plasma Source Coil and Plasma Chamber Using the Same
US7767561B2 (en) 2004-07-20 2010-08-03 Applied Materials, Inc. Plasma immersion ion implantation reactor having an ion shower grid
US8058156B2 (en) 2004-07-20 2011-11-15 Applied Materials, Inc. Plasma immersion ion implantation reactor having multiple ion shower grids
WO2006031010A1 (en) * 2004-09-14 2006-03-23 Adaptive Plasma Technology Corp. Adaptively plasma source and method of processing semiconductor wafer using the same
KR100716720B1 (ko) * 2004-10-13 2007-05-09 에이피티씨 주식회사 비원형의 플라즈마 소스코일
US7666464B2 (en) 2004-10-23 2010-02-23 Applied Materials, Inc. RF measurement feedback control and diagnostics for a plasma immersion ion implantation reactor
US20060105114A1 (en) * 2004-11-16 2006-05-18 White John M Multi-layer high quality gate dielectric for low-temperature poly-silicon TFTs
JP2006221852A (ja) * 2005-02-08 2006-08-24 Canon Anelva Corp 誘導結合型プラズマ発生装置
US7428915B2 (en) 2005-04-26 2008-09-30 Applied Materials, Inc. O-ringless tandem throttle valve for a plasma reactor chamber
US7474273B1 (en) 2005-04-27 2009-01-06 Imaging Systems Technology Gas plasma antenna
US7422775B2 (en) 2005-05-17 2008-09-09 Applied Materials, Inc. Process for low temperature plasma deposition of an optical absorption layer and high speed optical annealing
US7109098B1 (en) 2005-05-17 2006-09-19 Applied Materials, Inc. Semiconductor junction formation process including low temperature plasma deposition of an optical absorption layer and high speed optical annealing
US7312162B2 (en) 2005-05-17 2007-12-25 Applied Materials, Inc. Low temperature plasma deposition process for carbon layer deposition
US7323401B2 (en) 2005-08-08 2008-01-29 Applied Materials, Inc. Semiconductor substrate process using a low temperature deposited carbon-containing hard mask
KR100719804B1 (ko) * 2005-08-08 2007-05-18 주식회사 아이피에스 다중 안테나 구조
US7312148B2 (en) 2005-08-08 2007-12-25 Applied Materials, Inc. Copper barrier reflow process employing high speed optical annealing
US7429532B2 (en) 2005-08-08 2008-09-30 Applied Materials, Inc. Semiconductor substrate process using an optically writable carbon-containing mask
US7335611B2 (en) 2005-08-08 2008-02-26 Applied Materials, Inc. Copper conductor annealing process employing high speed optical annealing with a low temperature-deposited optical absorber layer
KR101094919B1 (ko) * 2005-09-27 2011-12-16 삼성전자주식회사 플라즈마 가속기
US20070080141A1 (en) * 2005-10-07 2007-04-12 Applied Materials, Inc. Low-voltage inductively coupled source for plasma processing
TWI287318B (en) 2005-12-07 2007-09-21 Ind Tech Res Inst Radio frequency identification (RFID) antenna and fabricating method thereof
US7719471B1 (en) 2006-04-27 2010-05-18 Imaging Systems Technology Plasma-tube antenna
JP2007311182A (ja) * 2006-05-18 2007-11-29 Tokyo Electron Ltd 誘導結合プラズマ処理装置およびプラズマ処理方法
KR100808862B1 (ko) * 2006-07-24 2008-03-03 삼성전자주식회사 기판처리장치
CN101136279B (zh) * 2006-08-28 2010-05-12 北京北方微电子基地设备工艺研究中心有限责任公司 电感耦合线圈及电感耦合等离子体装置
US20080118663A1 (en) * 2006-10-12 2008-05-22 Applied Materials, Inc. Contamination reducing liner for inductively coupled chamber
US20080156264A1 (en) 2006-12-27 2008-07-03 Novellus Systems, Inc. Plasma Generator Apparatus
US8956500B2 (en) 2007-04-24 2015-02-17 Applied Materials, Inc. Methods to eliminate “M-shape” etch rate profile in inductively coupled plasma reactor
US7999747B1 (en) 2007-05-15 2011-08-16 Imaging Systems Technology Gas plasma microdischarge antenna
JP2009147556A (ja) * 2007-12-12 2009-07-02 Sony Corp アンテナ、通信装置及びアンテナ製造方法
US9591738B2 (en) * 2008-04-03 2017-03-07 Novellus Systems, Inc. Plasma generator systems and methods of forming plasma
EP2299789A4 (en) * 2008-05-22 2013-11-06 Emd Corp PLASMA GENERATING APPARATUS AND PLASMA PROCESSING APPARATUS
CN101640091B (zh) * 2008-07-28 2011-06-15 北京北方微电子基地设备工艺研究中心有限责任公司 电感耦合线圈及采用该电感耦合线圈的等离子体处理装置
US8916022B1 (en) 2008-09-12 2014-12-23 Novellus Systems, Inc. Plasma generator systems and methods of forming plasma
JP5399151B2 (ja) * 2008-10-27 2014-01-29 東京エレクトロン株式会社 誘導結合プラズマ処理装置、プラズマ処理方法及び記憶媒体
US8319436B2 (en) 2009-02-02 2012-11-27 Advanced Energy Industries, Inc. Passive power distribution for multiple electrode inductive plasma source
JP5231308B2 (ja) * 2009-03-31 2013-07-10 東京エレクトロン株式会社 プラズマ処理装置
CN101887836B (zh) * 2009-05-14 2013-10-30 北京北方微电子基地设备工艺研究中心有限责任公司 一种调整电流分配的方法、装置及等离子体处理设备
JP5851681B2 (ja) * 2009-10-27 2016-02-03 東京エレクトロン株式会社 プラズマ処理装置
US9313872B2 (en) * 2009-10-27 2016-04-12 Tokyo Electron Limited Plasma processing apparatus and plasma processing method
JP5592098B2 (ja) 2009-10-27 2014-09-17 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
KR101757922B1 (ko) * 2009-10-27 2017-07-14 도쿄엘렉트론가부시키가이샤 플라즈마 처리 장치
EP2502255B1 (de) * 2009-11-20 2014-04-23 Oerlikon Trading AG, Trübbach Teilspulensystem zur simulation von kreisspulen für vakuumvorrichtungen
KR20120004040A (ko) * 2010-07-06 2012-01-12 삼성전자주식회사 플라즈마 발생장치
JP5916044B2 (ja) * 2010-09-28 2016-05-11 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
JP5851682B2 (ja) * 2010-09-28 2016-02-03 東京エレクトロン株式会社 プラズマ処理装置
US8920599B2 (en) * 2010-10-19 2014-12-30 Applied Materials, Inc. High efficiency gas dissociation in inductively coupled plasma reactor with improved uniformity
JP5800532B2 (ja) * 2011-03-03 2015-10-28 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
JP5800547B2 (ja) 2011-03-29 2015-10-28 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
JP5781349B2 (ja) 2011-03-30 2015-09-24 東京エレクトロン株式会社 プラズマ処理装置
US9966236B2 (en) * 2011-06-15 2018-05-08 Lam Research Corporation Powered grid for plasma chamber
US9791525B2 (en) * 2011-08-01 2017-10-17 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Methods of preparing and operating an MRI multi-channel coil
WO2013046495A1 (ja) * 2011-09-30 2013-04-04 パナソニック株式会社 大気圧プラズマ発生装置及び大気圧プラズマ発生方法
CN102395243A (zh) * 2011-10-19 2012-03-28 中微半导体设备(上海)有限公司 改进等离子均匀性和效率的电感耦合等离子装置
JP5878771B2 (ja) * 2012-02-07 2016-03-08 東京エレクトロン株式会社 誘導結合プラズマ処理方法および誘導結合プラズマ処理装置
RU2503079C1 (ru) * 2012-04-24 2013-12-27 Евгений Владимирович Берлин Генератор плазмы (варианты)
US9111722B2 (en) 2012-04-24 2015-08-18 Applied Materials, Inc. Three-coil inductively coupled plasma source with individually controlled coil currents from a single RF power generator
US9082591B2 (en) * 2012-04-24 2015-07-14 Applied Materials, Inc. Three-coil inductively coupled plasma source with individually controlled coil currents from a single RF power generator
KR20140089458A (ko) * 2013-01-04 2014-07-15 피에스케이 주식회사 플라즈마 챔버 및 기판 처리 장치
CN105122419B (zh) * 2013-03-15 2017-08-01 星火工业有限公司 用于在等离子体离子源腔室中产生等离子体离子源的装置和方法
US10132884B2 (en) * 2013-11-15 2018-11-20 New York University Circular dipole and surface coil loop structures and methods for using the same
KR101522891B1 (ko) 2014-04-29 2015-05-27 세메스 주식회사 플라즈마 발생 유닛 및 그를 포함하는 기판 처리 장치
US9659751B2 (en) 2014-07-25 2017-05-23 Applied Materials, Inc. System and method for selective coil excitation in inductively coupled plasma processing reactors
KR101570171B1 (ko) * 2014-07-25 2015-11-20 세메스 주식회사 플라즈마 발생 유닛 및 그를 포함하는 기판 처리 장치
CN105590823B (zh) * 2014-10-22 2019-07-05 上海凯世通半导体股份有限公司 Rf离子源装置
JP6582391B2 (ja) * 2014-11-05 2019-10-02 東京エレクトロン株式会社 プラズマ処理装置
WO2016114232A1 (ja) 2015-01-16 2016-07-21 株式会社アルバック プラズマ処理装置
DE102015003379A1 (de) * 2015-03-17 2016-09-22 Manz Ag Plasmaerzeugungsvorrichtung mit einer Induktionsspule
JP6602887B2 (ja) 2015-03-19 2019-11-06 マットソン テクノロジー インコーポレイテッド プラズマ処理チャンバ内のエッチングプロセスのアジマス方向の均質性の制御
US9577349B2 (en) * 2015-06-29 2017-02-21 Near Field Magnetics, Inc. Near-field magnetic communication antenna
JP6053881B2 (ja) * 2015-07-15 2016-12-27 東京エレクトロン株式会社 プラズマ処理装置
US10187966B2 (en) * 2015-07-24 2019-01-22 Applied Materials, Inc. Method and apparatus for gas abatement
WO2017104454A1 (ja) * 2015-12-14 2017-06-22 株式会社村田製作所 高周波モジュールおよび送信モジュール
US10431425B2 (en) * 2016-02-23 2019-10-01 Tokyo Electron Limited Poly-phased inductively coupled plasma source
CN107134400B (zh) * 2016-02-26 2019-02-22 中微半导体设备(上海)有限公司 一种控制方法、射频功率分配器以及icp设备
CN107134625A (zh) * 2016-02-26 2017-09-05 中微半导体设备(上海)有限公司 一种控制方法、射频功率分配器以及icp设备
CN107134401A (zh) * 2016-02-26 2017-09-05 中微半导体设备(上海)有限公司 一种控制方法、射频功率分配器以及icp设备
JP6675260B2 (ja) * 2016-04-27 2020-04-01 東京エレクトロン株式会社 変圧器、プラズマ処理装置、及び、プラズマ処理方法
CN107333378B (zh) * 2016-04-29 2019-05-03 中微半导体设备(上海)股份有限公司 一种电感耦合等离子处理装置及其控制方法
KR101798384B1 (ko) * 2016-05-03 2017-11-17 (주)브이앤아이솔루션 유도결합 플라즈마 처리장치의 rf 안테나 구조
US10998124B2 (en) * 2016-05-06 2021-05-04 Vishay Dale Electronics, Llc Nested flat wound coils forming windings for transformers and inductors
US10541114B2 (en) * 2016-11-03 2020-01-21 En2Core Technology, Inc. Inductive coil structure and inductively coupled plasma generation system
US10896806B2 (en) * 2016-11-03 2021-01-19 En2Core Technology, Inc. Inductive coil structure and inductively coupled plasma generation system
KR101826883B1 (ko) * 2016-11-03 2018-02-08 인투코어테크놀로지 주식회사 유도 코일 구조체 및 유도 결합 플라즈마 발생 장치
US10903046B2 (en) * 2016-11-03 2021-01-26 En2Core Technology, Inc. Inductive coil structure and inductively coupled plasma generation system
JP6899507B2 (ja) * 2017-02-16 2021-07-07 中部電力株式会社 誘導加熱装置及び塗装乾燥方法
KR102015381B1 (ko) 2017-03-29 2019-08-29 세메스 주식회사 플라즈마 발생 유닛 및 이를 포함하는 기판 처리 장치
US11424104B2 (en) 2017-04-24 2022-08-23 Applied Materials, Inc. Plasma reactor with electrode filaments extending from ceiling
US11355321B2 (en) 2017-06-22 2022-06-07 Applied Materials, Inc. Plasma reactor with electrode assembly for moving substrate
US10510515B2 (en) 2017-06-22 2019-12-17 Applied Materials, Inc. Processing tool with electrically switched electrode assembly
US11114284B2 (en) * 2017-06-22 2021-09-07 Applied Materials, Inc. Plasma reactor with electrode array in ceiling
US11651939B2 (en) 2017-07-07 2023-05-16 Advanced Energy Industries, Inc. Inter-period control system for plasma power delivery system and method of operating same
US11615943B2 (en) 2017-07-07 2023-03-28 Advanced Energy Industries, Inc. Inter-period control for passive power distribution of multiple electrode inductive plasma source
KR101986744B1 (ko) * 2017-09-27 2019-06-07 주식회사 유진테크 플라즈마 처리 장치 및 방법
US11521828B2 (en) 2017-10-09 2022-12-06 Applied Materials, Inc. Inductively coupled plasma source
KR101972783B1 (ko) * 2017-10-13 2019-08-16 주식회사 유진테크 Icp 안테나 및 이를 포함하는 플라즈마 처리 장치
US11437221B2 (en) 2017-11-17 2022-09-06 Advanced Energy Industries, Inc. Spatial monitoring and control of plasma processing environments
EP3711081A4 (en) 2017-11-17 2021-09-29 AES Global Holdings, Pte. Ltd. SPATIAL AND TIME CONTROL OF IONIC POLARIZATION VOLTAGE FOR PLASMA TREATMENT
CN111699542B (zh) 2017-11-29 2023-05-16 康姆艾德技术美国分公司 用于阻抗匹配网络控制的重新调谐
KR101914902B1 (ko) * 2018-02-14 2019-01-14 성균관대학교산학협력단 플라즈마 발생장치 및 이를 포함하는 기판 처리 장치
JP7001958B2 (ja) * 2018-03-06 2022-01-20 日新電機株式会社 プラズマ処理装置
US10636360B2 (en) 2018-07-10 2020-04-28 A.U. Vista, Inc. Wireless display panel with multi-channel data transmission and display device using the same
JP7190566B2 (ja) * 2018-10-30 2022-12-15 北京北方華創微電子装備有限公司 誘導コイル・アッセンブリおよび反応チャンバ
US11527385B2 (en) 2021-04-29 2022-12-13 COMET Technologies USA, Inc. Systems and methods for calibrating capacitors of matching networks
US11114279B2 (en) 2019-06-28 2021-09-07 COMET Technologies USA, Inc. Arc suppression device for plasma processing equipment
US11596309B2 (en) 2019-07-09 2023-03-07 COMET Technologies USA, Inc. Hybrid matching network topology
US11107661B2 (en) 2019-07-09 2021-08-31 COMET Technologies USA, Inc. Hybrid matching network topology
US20210020405A1 (en) * 2019-07-18 2021-01-21 Tokyo Electron Limited Equipment and methods for plasma processing
TWI714366B (zh) * 2019-11-26 2020-12-21 聚昌科技股份有限公司 線圈垂直位置可動態調整之蝕刻機結構
US11521832B2 (en) 2020-01-10 2022-12-06 COMET Technologies USA, Inc. Uniformity control for radio frequency plasma processing systems
US11830708B2 (en) 2020-01-10 2023-11-28 COMET Technologies USA, Inc. Inductive broad-band sensors for electromagnetic waves
US11670488B2 (en) 2020-01-10 2023-06-06 COMET Technologies USA, Inc. Fast arc detecting match network
US11887820B2 (en) 2020-01-10 2024-01-30 COMET Technologies USA, Inc. Sector shunts for plasma-based wafer processing systems
US11961711B2 (en) 2020-01-20 2024-04-16 COMET Technologies USA, Inc. Radio frequency match network and generator
US11605527B2 (en) 2020-01-20 2023-03-14 COMET Technologies USA, Inc. Pulsing control match network
US11373844B2 (en) 2020-09-28 2022-06-28 COMET Technologies USA, Inc. Systems and methods for repetitive tuning of matching networks
KR20220107521A (ko) * 2021-01-25 2022-08-02 (주) 엔피홀딩스 반응기, 이를 포함하는 공정 처리 장치 및 반응기 제조 방법
US11923175B2 (en) 2021-07-28 2024-03-05 COMET Technologies USA, Inc. Systems and methods for variable gain tuning of matching networks
KR20230037315A (ko) * 2021-09-09 2023-03-16 삼성전자주식회사 지지 부재에 배치된 안테나 구조체를 포함하는 전자 장치
US11670487B1 (en) 2022-01-26 2023-06-06 Advanced Energy Industries, Inc. Bias supply control and data processing
US11942309B2 (en) 2022-01-26 2024-03-26 Advanced Energy Industries, Inc. Bias supply with resonant switching
US11657980B1 (en) 2022-05-09 2023-05-23 COMET Technologies USA, Inc. Dielectric fluid variable capacitor
US11978613B2 (en) 2022-09-01 2024-05-07 Advanced Energy Industries, Inc. Transition control in a bias supply

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4948458A (en) * 1989-08-14 1990-08-14 Lam Research Corporation Method and apparatus for producing magnetically-coupled planar plasma
JPH04362091A (ja) * 1991-06-05 1992-12-15 Mitsubishi Heavy Ind Ltd プラズマ化学気相成長装置
US6063233A (en) * 1991-06-27 2000-05-16 Applied Materials, Inc. Thermal control apparatus for inductively coupled RF plasma reactor having an overhead solenoidal antenna
US6077384A (en) * 1994-08-11 2000-06-20 Applied Materials, Inc. Plasma reactor having an inductive antenna coupling power through a parallel plate electrode
US5392018A (en) * 1991-06-27 1995-02-21 Applied Materials, Inc. Electronically tuned matching networks using adjustable inductance elements and resonant tank circuits
US5280154A (en) * 1992-01-30 1994-01-18 International Business Machines Corporation Radio frequency induction plasma processing system utilizing a uniform field coil
US5231334A (en) * 1992-04-15 1993-07-27 Texas Instruments Incorporated Plasma source and method of manufacturing
US5241245A (en) * 1992-05-06 1993-08-31 International Business Machines Corporation Optimized helical resonator for plasma processing
US5277751A (en) * 1992-06-18 1994-01-11 Ogle John S Method and apparatus for producing low pressure planar plasma using a coil with its axis parallel to the surface of a coupling window
JPH06177058A (ja) * 1992-12-10 1994-06-24 Kokusai Electric Co Ltd プラズマ発生装置
JP3254069B2 (ja) * 1993-01-12 2002-02-04 東京エレクトロン株式会社 プラズマ装置
US5433812A (en) * 1993-01-19 1995-07-18 International Business Machines Corporation Apparatus for enhanced inductive coupling to plasmas with reduced sputter contamination
US5401350A (en) * 1993-03-08 1995-03-28 Lsi Logic Corporation Coil configurations for improved uniformity in inductively coupled plasma systems
US5529657A (en) * 1993-10-04 1996-06-25 Tokyo Electron Limited Plasma processing apparatus
GB9321489D0 (en) * 1993-10-19 1993-12-08 Central Research Lab Ltd Plasma processing
JP3150027B2 (ja) * 1993-12-17 2001-03-26 東京エレクトロン株式会社 プラズマ発生装置及びこのプラズマ発生装置を用いたプラズマ処理装置
US5525159A (en) * 1993-12-17 1996-06-11 Tokyo Electron Limited Plasma process apparatus
US5522934A (en) * 1994-04-26 1996-06-04 Tokyo Electron Limited Plasma processing apparatus using vertical gas inlets one on top of another
US5587038A (en) * 1994-06-16 1996-12-24 Princeton University Apparatus and process for producing high density axially extending plasmas
US5580385A (en) * 1994-06-30 1996-12-03 Texas Instruments, Incorporated Structure and method for incorporating an inductively coupled plasma source in a plasma processing chamber
JPH0850998A (ja) * 1994-08-04 1996-02-20 Kokusai Electric Co Ltd プラズマ処理装置
JPH0878191A (ja) * 1994-09-06 1996-03-22 Kobe Steel Ltd プラズマ処理方法及びその装置
JP3105403B2 (ja) * 1994-09-14 2000-10-30 松下電器産業株式会社 プラズマ処理装置
JP2770753B2 (ja) * 1994-09-16 1998-07-02 日本電気株式会社 プラズマ処理装置およびプラズマ処理方法
US5919382A (en) * 1994-10-31 1999-07-06 Applied Materials, Inc. Automatic frequency tuning of an RF power source of an inductively coupled plasma reactor
JP3318638B2 (ja) * 1994-11-17 2002-08-26 ソニー株式会社 プラズマエッチング・cvd装置
US5589737A (en) * 1994-12-06 1996-12-31 Lam Research Corporation Plasma processor for large workpieces
JP3104117B2 (ja) * 1995-01-13 2000-10-30 松下電器産業株式会社 プラズマ処理装置およびその方法
US5888413A (en) * 1995-06-06 1999-03-30 Matsushita Electric Industrial Co., Ltd. Plasma processing method and apparatus
KR100290813B1 (ko) * 1995-08-17 2001-06-01 히가시 데쓰로 플라스마 처리장치
US6054013A (en) * 1996-02-02 2000-04-25 Applied Materials, Inc. Parallel plate electrode plasma reactor having an inductive antenna and adjustable radial distribution of plasma ion density
JP3208079B2 (ja) * 1996-02-27 2001-09-10 松下電器産業株式会社 高周波電力印加装置及びプラズマ処理装置
US6353206B1 (en) * 1996-05-30 2002-03-05 Applied Materials, Inc. Plasma system with a balanced source
CA2207154A1 (en) * 1996-06-10 1997-12-10 Lam Research Corporation Inductively coupled source for deriving substantially uniform plasma flux
US5800619A (en) * 1996-06-10 1998-09-01 Lam Research Corporation Vacuum plasma processor having coil with minimum magnetic field in its center
US5846883A (en) * 1996-07-10 1998-12-08 Cvc, Inc. Method for multi-zone high-density inductively-coupled plasma generation
JPH10172792A (ja) * 1996-12-05 1998-06-26 Tokyo Electron Ltd プラズマ処理装置
US6028395A (en) * 1997-09-16 2000-02-22 Lam Research Corporation Vacuum plasma processor having coil with added conducting segments to its peripheral part

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101852310B1 (ko) 2014-11-05 2018-04-25 도쿄엘렉트론가부시키가이샤 플라즈마 처리 장치 및 플라즈마 처리 방법
KR20190057231A (ko) * 2019-05-16 2019-05-28 주식회사 유진테크 Icp 안테나 및 이를 포함하는 기판 처리 장치
KR102081686B1 (ko) * 2019-05-16 2020-02-26 주식회사 유진테크 플라즈마를 이용한 기판 처리 방법

Also Published As

Publication number Publication date
EP1092229B1 (en) 2008-08-13
KR100645469B1 (ko) 2006-11-13
JP2011146721A (ja) 2011-07-28
TW510149B (en) 2002-11-11
JP4750879B2 (ja) 2011-08-17
KR20010053288A (ko) 2001-06-25
DE69939321D1 (de) 2008-09-25
US6164241A (en) 2000-12-26
JP5881954B2 (ja) 2016-03-09
JP2002519861A (ja) 2002-07-02
EP1092229A1 (en) 2001-04-18
JP2010003699A (ja) 2010-01-07
AU4954499A (en) 2000-01-17
US6463875B1 (en) 2002-10-15
WO2000000993A1 (en) 2000-01-06

Similar Documents

Publication Publication Date Title
JP5165821B2 (ja) 誘導結合型プラズマ発生システム用の複数コイル・アンテナ
US6685798B1 (en) Plasma reactor having a symmetrical parallel conductor coil antenna
US6414648B1 (en) Plasma reactor having a symmetric parallel conductor coil antenna
US6462481B1 (en) Plasma reactor having a symmetric parallel conductor coil antenna
US6694915B1 (en) Plasma reactor having a symmetrical parallel conductor coil antenna
US5874704A (en) Low inductance large area coil for an inductively coupled plasma source
JP5907652B2 (ja) プラズマ処理装置
US5753044A (en) RF plasma reactor with hybrid conductor and multi-radius dome ceiling
TWI376731B (en) Independent control of ion density, ion energy distribution and ion dissociation in a plasma reactor
US6409933B1 (en) Plasma reactor having a symmetric parallel conductor coil antenna
JP4646272B2 (ja) プラズマ加工装置
TWI448212B (zh) 電漿處理之設備與方法
JP4540758B2 (ja) 真空プラズマ加工機
US7871490B2 (en) Inductively coupled plasma generation system with a parallel antenna array having evenly distributed power input and ground nodes and improved field distribution
KR20010042269A (ko) 트랜스포머 결합 평형 안테나를 가진 플라즈마 발생장치
JP4541557B2 (ja) プラズマエッチング装置
KR20120032449A (ko) 플라즈마 처리 장치
TW201234933A (en) Plasma processing apparatus (I)
US7464662B2 (en) Compact, distributed inductive element for large scale inductively-coupled plasma sources
US20040079485A1 (en) Inductively coupled plasma generating apparatus incorporating serpentine coil antenna
JP2004509429A (ja) 対称的な並列導体のコイルアンテナを有するプラズマリアクタ
EP1988565A2 (en) Methods to eliminate m-shape etch rate profile in inductively coupled plasma reactor
JP6530859B2 (ja) プラズマ処理装置
US20040182319A1 (en) Inductively coupled plasma generation system with a parallel antenna array having evenly distributed power input and ground nodes
TW202407747A (zh) 空間性可調諧感應耦合電漿天線

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060619

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090413

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090708

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100908

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110207

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110222

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110520

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120904

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5165821

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees