JP5149988B2 - プラントの制御装置 - Google Patents

プラントの制御装置 Download PDF

Info

Publication number
JP5149988B2
JP5149988B2 JP2011505786A JP2011505786A JP5149988B2 JP 5149988 B2 JP5149988 B2 JP 5149988B2 JP 2011505786 A JP2011505786 A JP 2011505786A JP 2011505786 A JP2011505786 A JP 2011505786A JP 5149988 B2 JP5149988 B2 JP 5149988B2
Authority
JP
Japan
Prior art keywords
nox
estimated value
amount
exhaust
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011505786A
Other languages
English (en)
Other versions
JPWO2010109667A1 (ja
Inventor
裕司 安井
幸一 中島
ミハエル フィッシャー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Publication of JPWO2010109667A1 publication Critical patent/JPWO2010109667A1/ja
Application granted granted Critical
Publication of JP5149988B2 publication Critical patent/JP5149988B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1402Adaptive control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/006Controlling exhaust gas recirculation [EGR] using internal EGR
    • F02D41/0062Estimating, calculating or determining the internal EGR rate, amount or flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1458Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1463Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases downstream of exhaust gas treatment apparatus
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/041Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a variable is automatically adjusted to optimise the performance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/143Controller structures or design the control loop including a non-linear model or compensator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1405Neural network control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Automation & Control Theory (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Feedback Control In General (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Description

本発明は、プラントの制御装置に関する。特に、プラントの状態を示す所定の物理量の推定値を算出し、この推定値に基づいてプラントの制御量を制御するプラントの制御装置に関する。
内燃機関やその排気浄化システムなどのプラントにおいて、このプラントの状態を示す複数の物理量は、センサにより検出されている物理量(検出物理量)と、センサにより検出されていない物理量(非検出物理量)とに分けられる。ここで、非検出物理量には、原理的にセンサで直に検出できない物理量や、耐久性やコストなどの様々な理由からセンサを用いて直に検出しない物理量などが含まれる。このような非検出物理量に基づいてプラントを制御する必要が生じた場合、制御装置では、基本的には他の検出物理量に基づいて、その推定値を算出する。
非検出物理量の具体例の1つとして、例えば内燃機関の排気浄化システムでは、EGR量やEGR率などの排気還流装置に関わる物理量が挙げられる。特許文献1や特許文献2には、EGR量やEGR率の推定値の算出や、この推定値に基づいた制御に関する技術が示されている。
特許文献1には、各種バルブの開度と、吸入新気量と、機関回転数と、EGR率との関係が定められたマップにより、EGR率の推定値を算出する制御装置が示されている。この制御装置では、EGR率の推定値が目標EGR率に維持するようにディーゼルパティキュレートフィルタ(以下、「DPF(Diesel Particulate Filter)」という)を再生することにより、内燃機関から排出されるNOxの量の変動を抑制している。
特許文献2には、EGR弁の開度やエアフローメータで検出された吸入空気量などに基づいて、EGR量の推定値を算出する制御装置が示されている。この制御装置では、推定したEGR量に基づいて、燃料噴射時期やパイロット噴射量を補正することにより、内燃機関の過渡運転状態における燃焼騒音を低減したり、NOxの排出量を低減したりしている。
特開2008−106717号公報 特開2008−19782号公報
ところで、特許文献1及び特許文献2に示された技術や、その他従来から知られている技術などにおいて、EGR量やEGR率を推定する際には、予め設定されたマップや、物理モデルに基づいて予め設定された演算式が用いられる。しかしながら、このような予め設定されたマップや演算式を用いた場合、例えば、システムの経年劣化や固体ばらつきが生じると、推定値と実際の値との間に誤差が生じてしまい、結果として適切な制御が行えなくなってしまう。
本発明は上述した点を考慮してなされたものであり、推定値に基づいてプラントの制御量を制御するプラントの制御装置であって、プラントの固体ばらつきや経年劣化による推定値の誤差を抑制できるプラントの制御装置を提供することを目的とする。
上記目的を達成するため本発明は、プラント(2,2A,2B)の制御装置を提供する。前記プラントの制御装置は、前記プラントの状態を示す複数の物理量のうちの少なくとも1つである第1物理量の推定値(IEGRHAT,NOXHAT,REDHAT)を、複数の入力に基づき所定のアルゴリズムにより算出する第1推定値算出手段(711,811,911,915)と、前記第1物理量と相関のある第2物理量の推定値(ΦHAT)を、複数の入力に基づき所定のアルゴリズムにより算出する第2推定値算出手段(712,812,912)と、前記第2物理量を検出する検出手段(34)と、前記検出手段により検出された第2物理量の検出値(ΦACT)と前記第2推定値算出手段により算出された第2物理量の推定値(ΦHAT)との偏差(EHAT)が最小になるように、前記第1推定値算出手段及び前記第2推定値算出手段に入力される適応入力(UVNS)を算出する適応入力算出手段(713,813,913)と、を備える。前記プラントの制御装置は、前記第1物理量の推定値に基づいて、前記プラントの所定の制御量を制御する。
この構成によれば、第1推定値算出手段で所定のアルゴリズムに基づいて第1物理量の推定値を算出し、第2推定値算出手段で所定のアルゴリズムに基づいて第2物理量の推定値を算出する。ここで、第1推定値算出手段及び第2推定値算出手段には、第2物理量の推定値と検出手段の出力値との偏差が最小になるように算出された適応入力が入力される。さらにこの第1物理量の推定値に基づいて、プラントの所定の制御量を制御する。
ここで、例えば、プラントに固体ばらつきや経年劣化が生じることにより、第1物理量の推定値に誤差が発生したとする。この場合、第1物理量と相関のある第2物理量の推定値にも、誤差が発生すると考えられる。上記構成によれば、この第1物理量の推定値に発生する誤差は、第2物理量の推定値と検出手段の検出値との偏差として検出される。さらにこの偏差が最小になるように適応入力が算出され、第1推定値算出手段及び第2推定手段に入力される。これにより、第2物理量の推定値とともに第1物理量の推定値の誤差が抑制される。また、このような第1物理量の推定値に基づいてプラントの所定の制御量を制御することにより、プラントの制御量を適切な状態に制御することができる。
好ましくは、前記第1推定値算出手段のアルゴリズム及び前記第2推定値算出手段のアルゴリズムは、それぞれ、所定の関数(f(x)、g(x))に従って出力する複数のニューロンを結合して構成されたニューラルネットワークである。
この構成によれば、非線形な動特性の再現性に優れたニューラルネットワークにより第1物理量及び第2物理量の推定値を算出する。これにより、例えば、実際の第1物理量が非線形な挙動を示したとしても、これを精度良く推定することができる。
好ましくは、前記第1推定値算出手段への複数の入力(U)、及び、前記第2推定値算出手段への複数の入力(U)には、それぞれ、複数の異なる時刻の物理量に関するデータが含まれる。
この構成によれば、第1推定値算出手段及び第2推定値算出手段への入力に、複数の異なる時刻の物理量に関するデータを含めることで、推定値の動的挙動の再現性をより向上することができる。
好ましくは、前記適応入力算出手段は、前記第1推定値算出手段への複数の入力、及び、前記第2推定値算出手段への複数の入力のうちの少なくとも1つを参照パラメータとし、当該参照パラメータを基底とする空間に、互いに重複する複数の領域を定義するとともに、各領域にそれぞれ「0」でない値を持つ正規化された複数の重み関数(Wij)を設定する重み関数設定手段(715)と、前記重み関数の値と前記偏差との積が最小になるように、前記領域ごとに修正値(Uij)を算出する修正値算出手段(716)と、前記重み関数の値と前記修正値との積の全領域に亘る総和(ΣΣWijij)に基づいて適応入力を決定する決定手段(717)と、を備える。
この構成によれば、参照パラメータを基底とする空間に複数の領域を定義するとともに、各領域に重み関数を設定する。そして、重み関数と上記偏差との積が最小になるように、領域ごとに修正値を算出する。さらに、重み関数と上記修正値との積の全領域に亘る総和に基づいて適応入力を決定する。
ところで、プラントにおける経年劣化や固体ばらつきが、第1物理量の推定値の誤差に及ぼす影響は、プラントの状態に応じて異なったものになると考えられる。この構成によれば、プラントの状態を示す参照パラメータを基底とした空間内の領域ごとに修正値を算出することにより、プラントの状態ごとに異なる誤差への影響を考慮して適応入力を算出することができる。
好ましくは、前記プラントは、内燃機関(1)の排気系を流通する排気の一部を、前記内燃機関の吸気系に還流する排気還流装置(40,45)を備えた内燃機関の排気浄化システム(2)である。前記プラントの第1物理量は、前記排気還流装置により前記内燃機関に還流される排気に関するパラメータを含む。
この構成によれば、排気還流装置により内燃機関に還流される排気に関するパラメータを第1物理量とし、この第1物理量の推定値を上述の手順で算出する。排気還流装置により還流される排気に関するパラメータは、現存するセンサでは精度良く検出することができない。そこで、このパラメータの推定値を第1推定値算出手段で精度良く算出することにより、排気浄化システムを、その固体ばらつきや経年劣化に応じて適切な状態に制御することができる。
特に、排気還流装置により還流される排気に関するパラメータは、過渡時において非線形的な挙動を示す。このため、上述のようなニューラルネットワークに基づいて、上述のパラメータの推定値を算出することで、このような非線形的な挙動も再現することができる。
好ましくは、前記排気還流装置は、排気系を流通する排気の一部を吸気系に還流する排気還流通路(41,46)と、当該排気還流通路に設けられた排気還流制御弁(42,47)とを備える。前記制御装置は、前記還流される排気に関するパラメータの推定値(IEGRHAT)が所定の目標値(IEGRIDEAL_CMD)に一致するように、前記排気還流制御弁の操作量(LHP,LLP)を決定するコントローラ(7,72,73,74)をさらに備える。
この構成によれば、コントローラは、排気還流装置により還流される排気に関するパラメータの推定値が所定の目標値に一致するように、排気還流制御弁の操作量を決定する。これにより、排気浄化システムの固体ばらつきや経年劣化に合わせて排気還流制御弁の操作量を適切に決定することができる。したがって、排気浄化システムの固体ばらつきや経年劣化によるNOxの排出量の増加を抑制することができる。
好ましくは、前記プラントは、内燃機関の排気系に設けられ、還元剤の存在下で前記排気系を流通するNOxを還元する選択還元触媒(61)と、前記排気系のうち前記選択還元触媒の上流側に、還元剤又は還元剤の元となる添加剤を供給する還元剤供給手段(62)と、を備える内燃機関の排気浄化システム(2A)である。前記プラントの第1物理量は、前記選択還元触媒に流入する排気中のNOxに関するパラメータを含む。
この構成によれば、選択還元触媒に流入する排気中のNOxに関するパラメータを第1物理量として、この第1物理量の推定値を上述の手順で算出する。排気中のNOxを検出するセンサは、現存するものでは、検出分解能や応答性が低く、また出力ばらつきが大きい。このため、排気中のNOxに関するパラメータを、精度良く検出することができない。そこで、このような排気中のNOxに関するパラメータの推定値を第1推定値算出手段で精度良く算出することにより、排気浄化システムを、その固体ばらつきや経年劣化に応じて適切な状態に制御することができる。
好ましくは、前記プラントの制御装置は、前記排気中のNOxに関するパラメータの推定値(NOXHAT)に基づいて、前記還元剤供給手段による還元剤又は添加剤の供給量(GUREA)を決定するコントローラ(8、82,83,84,85)をさらに備える。
この構成によれば、コントローラは、排気中のNOxに関するパラメータの推定値に基づいて、還元剤又は添加剤の供給量を決定する。これにより、排気浄化システムの固体ばらつきや経年劣化に合わせて、選択還元触媒におけるNOx浄化率を高く維持することができる。
好ましくは、前記プラントは、内燃機関の排気系に設けられ、前記内燃機関で燃焼する混合気を理論空燃比よりもリーンにしたときに排気中のNOxを吸着又は吸蔵し、還元雰囲気下で前記吸着又は吸蔵したNOxを還元するNOx浄化触媒(65)と、前記NOx浄化触媒に流入する排気を還元雰囲気にする還元制御処理を実行する還元化手段(9)と、を備える内燃機関の排気浄化システム(2B)である。前記プラントの第1物理量は、前記NOx浄化触媒に流入する排気中のNOxに関するパラメータ、及び、前記NOx浄化触媒に流入する排気中の還元成分に関するパラメータを含む。
この構成によれば、NOx浄化触媒に流入する排気中のNOx及び還元成分に関するパラメータを第1物理量として、この第1物理量の推定値を上述の手順で算出する。このような排気中のNOxや還元成分は、上述のように現存するセンサでは精度良く検出することができない。そこで、このような排気中のNOxや還元成分に関するパラメータの推定値を第1推定値算出手段で精度良く算出することにより、排気浄化システムを、その固体ばらつきや経年劣化に応じて適切な状態に制御することができる。
好ましくは、前記プラントの制御装置は、前記NOxに関するパラメータ及び前記還元成分に関するパラメータの推定値(NOXHAT,REDHAT)に基づいて、前記還元制御処理の実行を指令するコントローラ(9,92,93)をさらに備える。
この構成によれば、コントローラは、排気中のNOx及び還元成分に関するパラメータの推定値に基づいて、還元制御処理の実行を指令する。これにより、排気浄化システムの固体ばらつきや経年劣化に合わせて、NOx浄化触媒におけるNOx浄化率を高く維持することができる。
好ましくは、前記第2物理量は、前記排気系を流通する排気の空燃比である。
この構成によれば、排気の空燃比を第2物理量として、この第2物理量の推定値を算出する。上述の排気還流装置により還流される排気に関するパラメータ、排気中のNOxに関するパラメータ、及び排気中の還元成分に関するパラメータは、何れも排気の空燃比と強い相関がある。このような排気の空燃比を第2物理量の推定値するとともに、この推定値と検出値との偏差が最小になるように適応入力を算出することにより、第1物理量の推定値の精度を向上することができる。
本発明の第1実施形態に係るエンジン及びその排気浄化システムと、その制御装置との構成を示す模式図である。 シリンダに吸入された吸気の成分を示す図である。 Inert−EGR量と、エンジンから排出されるNOx、HC、及びスートの量との関係を示す図である。 上記実施形態に係る排気浄化システムの制御装置の構成を示すブロック図である。 上記実施形態に係る適応バーチャルセンサシステムの構成を示すブロック図である。 上記実施形態に係るInert−EGR推定値算出部のニューラルネットワーク構造を示す図である。 上記実施形態に係るシグモイド関数を示す図である。 上記実施形態に係る非線形適応修正器の構成を示すブロック図である。 上記実施形態に係るエンジン回転数を定義域とした4つの第1重み関数を示す図である。 上記実施形態に係る燃料噴射量を定義域とした4つの第2重み関数を示す図である。 上記実施形態に係る2つの参照パラメータを定義域とした16個の重み関数を示す図である。 上記実施形態に係るInert−EGR量制御の手順を示すフローチャートである。 上記実施形態に係るシミュレーション結果を示す図である。 上記実施形態に係るシミュレーション結果を示す図である。 上記実施形態に係るシミュレーション結果を示す図である。 上記実施形態に係るシミュレーション結果を示す図である。 本発明の第2実施形態に係るエンジン及びその排気浄化システムの構成を示す模式図である。 上記実施形態に係る選択還元触媒におけるNOx浄化率と、NO2とNOxの比率との関係を示す図である。 上記実施形態に係る排気浄化システムの制御装置の構成を示すブロック図である。 上記実施形態に係る適応バーチャルセンサシステムの構成を示すブロック図である。 上記実施形態に係る最大ストレージ容量と選択還元触媒温度との関係を示す図である。 上記実施形態に係る選択還元触媒のストレージモデルの概念を示す模式図である。 上記実施形態に係るシミュレーション結果を示す図である。 上記実施形態に係るシミュレーション結果を示す図である。 上記実施形態に係るシミュレーション結果を示す図である。 上記実施形態に係るシミュレーション結果を示す図である。 本発明の第3実施形態に係るエンジン及びその排気浄化システムの構成を示す模式図である。 上記実施形態に係るNOx浄化触媒におけるNOxの吸着/吸蔵効率と、NOxの吸着/吸蔵量との関係を示す図である。 上記実施形態に係る排気浄化システムの制御装置の構成を示すブロック図である。 上記実施形態に係る適応バーチャルセンサシステムの構成を示すブロック図である。 上記実施形態に係るNOx浄化触媒における最大NOx吸着/吸蔵量とNOx浄化触媒温度との関係を示す図である。 上記実施形態に係るシミュレーション結果を示す図である。 上記実施形態に係るシミュレーション結果を示す図である。 上記実施形態に係るシミュレーション結果を示す図である。 上記実施形態に係るシミュレーション結果を示す図である。
符号の説明
1…エンジン(内燃機関)
2,2A,2B…排気浄化システム(プラント、排気浄化システム)
20…吸気管(吸気系)
21…吸気マニホールド(吸気系)
30…排気管(排気系)
31…排気マニホールド(排気系)
34…LAFセンサ(検出手段)
40…高圧EGR装置(排気還流装置)
41…高圧EGR管(排気還流通路)
42…高圧EGRバルブ(排気還流制御弁)
45…低圧EGR装置(排気還流装置)
46…低圧EGR管(排気還流通路)
47…低圧EGRバルブ(排気還流制御弁)
61…選択還元触媒
62…ユリア噴射装置(還元剤供給手段)
65…NOx浄化触媒
7…ECU
71…適応バーチャルセンサシステム
711…Inert−EGR推定値算出部(第1推定値算出手段)
712…LAFセンサ出力推定値算出部(第2推定値算出手段)
713…非線形適応修正器(適応入力算出手段)
715…重み関数設定部(重み関数設定手段)
716…局所適応入力算出部(修正値算出手段)
717…適応係数算出部(決定手段)
72…Inert−EGR量目標値算出部(コントローラ)
73…Inert−EGRコントローラ(コントローラ)
74…リフト量算出部(コントローラ)
8…ECU
81…適応バーチャルセンサシステム
811…NOx量推定値算出部(第1推定値算出手段)
812…LAFセンサ出力推定値算出部(第2推定値算出手段)
813…非線形適応修正器(適応入力算出手段)
82…フィードフォワード噴射量決定部(コントローラ)
83…ストレージ量目標値設定部(コントローラ)
84…フィードバック噴射量決定部(コントローラ)
85…加算器(コントローラ)
9…ECU
91…適応バーチャルセンサシステム
911…NOx量推定値算出部(第1推定値算出手段)
912…LAFセンサ出力推定値算出部(第2推定値算出手段)
913…非線形適応修正器(適応入力算出手段)
915…還元剤量推定値算出部(第1推定値算出手段)
92…NOx吸着/吸蔵量推定部(コントローラ)
93…リッチモードコントローラ(コントローラ)
発明を実施するための形態
[第1実施形態]
以下、本発明の第1実施形態を、図面を参照して説明する。
図1は、本実施形態に係る内燃機関(以下「エンジン」という)1及びその排気浄化システム2と、その制御装置との構成を示す模式図である。
エンジン1は、リーンバーン運転方式のガソリンエンジン又はディーゼルエンジンであり、図示しない車両に搭載されている。エンジン1には、各シリンダの燃焼室内に燃料を噴射する燃料噴射弁が設けられている。これら燃料噴射弁は、電子制御ユニット(以下「ECU」という)7により電気的に接続されており、燃料噴射弁の開弁時間及び閉弁時間は、ECU7により制御される。
排気浄化システム2は、エンジン1に接続され吸気が流通する吸気管20と、エンジン1の排気が流通する排気管30と、排気の一部を吸気に還流する高圧排気還流装置(以下、「高圧EGR装置」という)40及び低圧排気還流装置(以下、「低圧EGR装置」という)45と、排気を浄化する酸化触媒35及びDPF36と、エンジン1に吸気を圧送するプライマリターボチャージャ50及びセカンダリターボチャージャ55と、を含んで構成される。
吸気管20は、吸気マニホールド21の複数の分岐部を介してエンジン1の各気筒の吸気ポートに接続されている。排気管30は、排気マニホールド31の複数の分岐部を介してエンジン1の各気筒の排気ポートに接続されている。
吸気管20には、プライマリターボチャージャ50と、セカンダリターボチャージャ55と、インタークーラ59とが上流側からこの順で設けられている。
プライマリターボチャージャ50は、排気管30に設けられたタービン51と、吸気管20に設けられたコンプレッサ52と、を備える。タービン51は、排気管30を流通する排気の運動エネルギにより駆動される。コンプレッサ52は、タービン51の回転により駆動され、吸気を加圧する。さらに、プライマリターボチャージャ50は、開閉動作によりタービン51の回転速度を変更する図示しない可変ベーンを備える。
セカンダリターボチャージャ55は、排気管30のうちプライマリターボチャージャ50のタービン51よりも上流側に設けられたタービン56と、吸気管20のうちプライマリターボチャージャ50のコンプレッサ52よりも下流側に設けられたコンプレッサ57と、を備える。タービン56は、排気管30を流通する排気の運動エネルギにより駆動される。コンプレッサ57は、タービン56の回転により駆動され、吸気を加圧する。さらに、セカンダリターボチャージャ55は、開閉動作によりタービン56の回転速度を変更する図示しない可変ベーンを備える。また、吸気管20には、セカンダリターボチャージャ55のコンプレッサ57を迂回するバイパス管22が設けられている。バイパス管22には、このバイパス管22を開閉するバイパス弁23が設けられている。
インタークーラ59は、2つのターボチャージャ50,55により加圧された吸気を冷却する。
排気管30のうち、プライマリターボチャージャ50のタービン51の下流には、酸化触媒35とDPF36とが、上流側からこの順で設けられている。
酸化触媒35は、排気との反応により発生する熱で排気を昇温する。この酸化触媒35には、例えば、触媒として作用する白金(Pt)を、アルミナ(Al)担体に担持させたものに、HCの吸着作用に優れたゼオライトと、HCの水蒸気改質作用に優れたロジウム(Rh)を加えて構成されたものが用いられる。
DPF36は、排気がフィルタ壁の微細な孔を通過する際、排気中の炭素を主成分とする粒子状物質(以下、「PM(Particulate Matter)」という)を、フィルタ壁の表面及びフィルタ壁中の孔に堆積させることによって捕集する。フィルタ壁の構成材料としては、例えば、炭化珪素(SiC)などのセラミックスの多孔体が使用される。
高圧EGR装置40は、高圧EGR管41と、高圧EGRバルブ42と、高圧EGRクーラ43と、高圧EGRインテークシャッタ44Iと、高圧EGRエキゾーストシャッタ44Eと、を含んで構成される。
高圧EGR管41は、排気マニホールド31と吸気マニホールド21とを接続する。高圧EGRバルブ42は、高圧EGR管41に設けられ、この高圧EGR管41を介して還流される排気の流量を制御する。高圧EGRクーラ43は、高圧EGR管41を介して還流される排気を冷却する。高圧EGRインテークシャッタ44Iは、吸気管20のうちインタークーラ59の下流に設けられ、高圧EGRエキゾーストシャッタ44Eは、排気管30のうちタービン56の上流に設けられている。
高圧EGRバルブ42、高圧EGRインテークシャッタ44I、及び高圧EGRエキゾーストシャッタ44Eは、図示しないアクチュエータを介してECU7に接続されており、その開度(リフト量)はECU7により電磁的に制御される。
低圧EGR装置45は、低圧EGR管46と、低圧EGRバルブ47と、低圧EGRクーラ48と、低圧EGRインテークシャッタ49Iと、低圧EGRエキゾーストシャッタ49Eと、を含んで構成される。
低圧EGR管46は、排気管30のうちDPF36の下流側と吸気管20のうちコンプレッサ52の上流側とを接続する。低圧EGRバルブ47は、低圧EGR管46に設けられ、この低圧EGR管46を介して還流される排気の流量を制御する。低圧EGRクーラ48は、低圧EGR管46を介して還流される排気を冷却する。低圧EGRインテークシャッタ49Iは、吸気管20のうち低圧EGR管46の接続部よりも上流側に設けられ、低圧EGRエキゾーストシャッタ49Eは、排気管30のうち低圧EGR管46の接続部よりも下流側に設けられている。
低圧EGRバルブ47、低圧EGRインテークシャッタ49I、及び低圧EGRエキゾーストシャッタ49Eは、図示しないアクチュエータを介してECU7に接続されており、その開度(リフト量)はECU7により電磁的に制御される。
ECU7には、エンジン1のクランク軸の回転角度を検出するクランク角度位置センサ11、及びエンジン1により駆動される車両のアクセルペダルの踏み込み量を検出するアクセルセンサ12が接続されており、これらセンサの検出信号は、ECU7に供給される。ここで、エンジン1の回転数NEは、クランク角度位置センサ11の出力に基づいてECU7により算出される。エンジン1の負荷を示す燃料噴射量GFUELは、アクセルセンサ12の出力に基づいてECU7により算出される。
これらセンサ11,12に加えて、ECU7には、排気浄化システム2の各部分における物理量を検出する吸気圧力センサ24、第1排気圧力センサ32、第2排気圧力センサ33、LAFセンサ34、第1リフトセンサ13、及び第2リフトセンサ14が接続されている。
吸気圧力センサ24は、吸気管20のうちインタークーラ59と高圧EGRインテークシャッタ49Iとの間の吸気圧力P2を検出し、検出値に略比例した信号をECU7に送信する。第1排気圧力センサ32は、高圧EGR管41のうち高圧EGRクーラ43の上流側の排気圧力P3を検出し、検出値に略比例した信号をECU7に送信する。第2排気圧力センサ33は、排気管30のうちタービン51と酸化触媒35との間の排気圧力P4Lを検出し、検出値に略比例した信号をECU7に送信する。LAFセンサ34は、排気管30のうちタービン51と酸化触媒35との間の排気の空燃比ΦACTを検出し、検出値に略比例した信号をECU7に送信する。第1リフトセンサ13は、高圧EGRバルブ42のリフト量LHP_ACTを検出し、検出値に略比例した信号をECU7に送信する。第2リフトセンサ14は、低圧EGRバルブ47のリフト量LLP_ACTを検出し、検出値に略比例した信号をECU7に送信する。
ECU7は、各種センサからの入力信号波形を整形し、電圧レベルを所定のレベルに修正し、アナログ信号値をデジタル信号値に変換するなどの機能を有する入力回路と、中央演算処理ユニット(以下「CPU」という)とを備える。この他、ECU7は、CPUで実行される各種演算プログラム及び演算結果などを記憶する記憶回路と、高圧EGRバルブ42、低圧EGRバルブ47、ターボチャージャ50,55、及びエンジン1の燃料噴射弁などに制御信号を出力する出力回路と、を備える。
次に、以上のような排気浄化システム2を制御するECUを構成するにあたり、本願発明者が着目した課題について、図2及び図3を参照して説明する。
図2は、シリンダに吸入された吸気の成分を示す図である。
図2に示すように、吸気は、新たに吸入された分(新気成分)と、高圧EGR装置及び低圧EGR装置により排気から還流された分(EGR成分)とで構成される。ところで、ディーゼルエンジンやリーンバーンガソリンエンジンは、リーン燃焼を行うことにより、排気中には不活性ガスの他残留酸素が多く存在する。そこで、図2に示すように、EGR成分のうち、この不活性ガスの成分のみを指してInert−EGRという。また、この不活性ガスの量をInert−EGR量という。
図3は、以上のように定義されたInert−EGR量と、エンジンから排出される排気のNOx、HC、及びスートの濃度との関係を示す図である。図3に示すように、Inert−EGR量と排気のNOx濃度、HC濃度、及びスート濃度との間には強い相関がある。
より具体的には、Inert−EGR量を多くすると、混合気の比熱量が増加することにより燃焼温度が低下し、NOx濃度は減少する。また、このような燃焼温度の低下に伴い、HCやスートの濃度が増加する。また、さらにInert−EGR量を多くすると、燃焼温度の低下により未燃のHCが増加するため、スート濃度は減少する。そこで、これらNOx濃度、HC濃度、及びスート濃度を、できるだけ全て低減するためには、図3中、ハッチングで示す領域内に、Inert−EGR量を制御することが好ましい。
図1に示すような排気浄化システム2では、還流される排気の温度をEGRクーラ43,48で低下させることにより、不活性ガスの濃度を増加し、Inert−EGR量を増加することができる。また、例えば、タービン51,56を駆動することで熱エネルギーを失い温度が低下した排気を、低圧EGR管46を介して還流することによっても、Inert−EGR量を増加することができる。
ここで、排気のNOx濃度、HC濃度、及びスート濃度が最適になるように、図1の排気浄化システム2に対し、Inert−EGR量のフィードバック制御を行うことを検討する。この場合、各燃焼サイクルにおいてシリンダに吸入されるInert−EGR量を検出する必要があるが、シリンダ内のInert−EGR量を必要な精度で検出でき、かつ、実際のエンジンの運転状況下での使用に耐えうる耐久性を有するセンサは存在しない。このため、上述の吸気圧力P2、排気圧力P3,P3Lや、その他の排気浄化システム2の状態を示す物理量に基づいて推定する必要がある。
従来では、物理量を推定する場合、この物理量の振る舞いを再現する物理モデルを構築し、このモデルに基づく演算式が用いられる。しかしながら、Inert−EGR量を物理モデルに基づいて推定する場合、以下のような課題がある。
(1)先ず、実際のInert−EGR量は非線形で予測のしにくい挙動を示す。特に、過渡時における挙動は複雑であり、このような挙動を十分な精度で再現できる簡易な物理モデルを構築するのは容易ではない。
(2)また、このような物理モデルが構築できたとしても、排気浄化システム2の経年変化や固体ばらつきに対応することは困難である。したがって、例えば、EGRバルブやポート部、各インテークシャッタなどへのデポジットが生じた場合には、Inert−EGR量の推定値が実際の値からずれてしまい、結果として排気の浄化性能が低下するおそれがある。
以下では、以上のような2つの課題(1)及び(2)に鑑みてなされた、排気浄化システム2の制御装置の構成について説明する。
図4は、排気浄化システム2の制御装置の構成を示すブロック図である。なお、図4には、排気浄化システム2におけるInert−EGR量のフィードバック制御に係る構成のみを図示する。より具体的には、高圧EGRバルブのリフト量LHP及び低圧EGRバルブのリフト量LLPの決定に関する、ECUにより構成されるモジュールのみを図示する。
このモジュールは、適応バーチャルセンサシステム71と、Inert−EGR量目標値算出部72と、Inert−EGRコントローラ73と、リフト量算出部74とを含んで構成される。
適応バーチャルセンサシステム71は、複数のセンサ24,32,33,34,13,14の検出値P2,P3,P3L,ΦACT,LHP_ACT,LLP_ACT、並びに燃料噴射量GFUEL及びエンジン回転数NEに基づいてInert−EGR量の推定値IEGRHATを算出する。なお、この適応バーチャルセンサシステム71の詳細な構成については、後に図5〜図11を参照して説明する。
Inert−EGR量目標値算出部72は、複数のセンサ24,32,33,13,14の検出値P2,P3,P3L,LHP_ACT,LLP_ACT、並びに、エンジン回転数NE及び燃料噴射量GFUELに基づいて、Inert−EGR量の目標値IEGRIDEAL_CMDを算出する。ここで、Inert−EGR量の目標値IEGRIDEAL_CMDは、上述のように排気のNOx、HC、及びスートの濃度をともに低減するように予め設定されたマップに基づいて決定される。
リフト量算出部74は、Inert−EGR量の目標値、並びに、エンジン回転数NE及び燃料噴射量GFUELに対する高圧EGRバルブリフト量LHP及び低圧EGRバルブリフト量LLPが設定されたマップを備えており、このマップに基づいてバルブリフト量LHP,LLPを決定する。
Inert−EGRコントローラ73は、Inert−EGR量の推定値IEGRHATとInert−EGR量の目標値IEGRIDEAL_CMDとの偏差EIE(下記式(1)参照)が「0」となるように、リフト量算出部74の上述のマップに対する入力を修正する。より具体的には、以下に示すような応答指定型制御アルゴリズムに基づいて、Inert−EGR量の目標値IEGRIDEAL_CMDに対する修正目標値IEGRCMDを算出する。本実施形態では、以下に示すような応答指定型制御アルゴリズムに基づいて、修正目標値IEGRCMDを算出する。
Figure 0005149988
ここで、記号(k)は、離散化した時間を示す記号であり、所定の制御周期ごとに検出又は算出されたデータであることを示す。すなわち、記号(k)が今回の制御タイミングにおいて検出又は算出されたデータであるとした場合、記号(k−1)は前回の制御タイミングにおいて検出又は算出されたデータであることを示す。なお、以下の説明においては、記号(k)を適宜、省略する。
先ず、下記式(2)に示すように、切換関数設定パラメータPOLEIEと前回制御時の偏差EIE(k−1)との積と、今回制御時の偏差EIE(k)との和を算出し、これを切換関数σIE(k)として定義する。なお、切換関数設定パラメータPOLEIEは、所定の設定テーブルに基づいて、−1から0の間で設定されたものが用いられる。
Figure 0005149988
次に、切換関数σIE(k)に基づいて、到達則入力URCH_IE(k)、及び適応則入力UADP_IE(k)を算出する。より具体的には、到達則入力URCH_IE(k)は、偏差状態量を切換直線上に載せるための入力であり、下記式(3)に示すように、切換関数σIE(k)に所定の到達則制御ゲインKRCH_IEを乗算することで算出される。
Figure 0005149988
適応則入力UADP_IE(k)は、モデル化誤差や外乱の影響を抑制し、偏差状態量を切換直線に載せるための入力であり、下記式(4)に示すように、切換関数σIE(k)と所定の適応則ゲインKADP_IEを乗算したものと、前回制御時の適応則入力UADP_IE(k−1)との和により算出される。
Figure 0005149988
そして、下記式(5)に示すように、これらURCH(k)、及びUADP(k)の和を算出し、これを、補正係数KEGR(k)として定義する。
Figure 0005149988
さらに、下記式(6)に示すように、Inert−EGR量の目標値IEGRIDEAL_CMD(k)に、算出した補正係数KEGR(k)を乗算することにより、Inert−EGR量の修正目標値IEGRIDEAL_CMD(k)を算出する。
Figure 0005149988
以上のような構成により、Inert−EGR量の推定値IEGRHATが目標値IEGRIDEAL_CMDに一致するように、高圧EGRバルブリフト量LHP及び低圧EGRバルブリフト量LLPが決定される。
以下、図5〜図11を参照して、適応バーチャルセンサシステム71の構成について詳細に説明する。
図5は、適応バーチャルセンサシステム71の構成を示すブロック図である。
適応バーチャルセンサシステム71は、Inert−EGR量の推定値IEGRHATを算出するInert−EGR推定値算出部711と、LAFセンサ34の出力(排気空燃比)の推定値ΦHATを算出するLAFセンサ出力推定値算出部712と、適応入力UVNSを算出する非線形適応修正器713とを含んで構成される。
Inert−EGR推定値算出部711は、上述の課題(1)を解決するため、図5及び後述の図6に示すように、非線形な動特性の再現性に優れたニューラルネットワークを用いてInert−EGR量の推定値IEGRHATを算出する。
また、さらに、この適応バーチャルセンサシステム71では、上述の課題(2)を解決するため、すなわち排気浄化システムの劣化や固体ばらつきに対応するため、Inert−EGR量とは別の物理量であり、かつ、Inert−EGR量と相関のある物理量である排気空燃比の推定値ΦHATを、Inert−EGR推定値算出部711と同様のニューラルネットワーク構造を有するLAFセンサ出力推定値算出部712で算出する。
さらに、下記式(7)に示すように、算出した排気空燃比の推定値ΦHAT(k)とLAFセンサ34の検出値ΦACT(k)との間の推定誤差EHAT(k)を加算器714により算出する。
Figure 0005149988
さらに、非線形適応修正器713では、後に図8〜図11を参照して詳述するように、算出した推定誤差EHATが最小になるように、Inert−EGR推定値算出部711及びLAFセンサ出力推定値算出部712に対し共通に入力される適応入力UVNSを算出する。
この適応入力UVNSは、例えば、「0」〜「1」の間に設定されるものであり、後に詳述するように、Inert−EGR推定値算出部711及びLAFセンサ出力推定値算出部712において、排気浄化システムの劣化や固体ばらつきによる基準品からのずれを示す値として、それぞれのニューラルネットワークの学習時に設定される入力である。
すなわち、この適応バーチャルセンサシステム71では、直感的には、排気浄化システムの劣化や固体ばらつきにより生じるInert−EGR量の推定値の誤差を、Inert−EGR量と相関のある物理量の推定誤差EHATにより間接的に検出する。そして、この誤差が最小になるように、基準品からのずれを示す入力として予め用意しておいた適応入力UVNSを算出し、この適応入力UVNSをInert−EGR推定値算出部711及びLAFセンサ出力推定値算出部712に入力する。これにより、Inert−EGR推定値算出部711及びLAFセンサ出力推定値算出部712のニューラルネットワーク構造において、排気浄化システムの劣化や固体ばらつきに対する適応特性を実現することができる。
ここで、本実施形態の適応バーチャルセンサシステム71におけるInert−EGR量と、排気空燃比との関係について説明する。この適応バーチャルセンサシステム71では、出力として必要となるのはInert−EGR量の推定値IEGRHATである。これに対して、排気空燃比の推定値ΦHATは、上述の課題(2)を解決しInert−EGR量の推定値IEGRHATの真値との誤差を小さくするために、補助的に算出されるものである。
すなわち、排気浄化システムが劣化したり固体ばらつきが発生したりした場合には、Inert−EGR量に及ぼされる影響と、補助的に検出される物理量に及ぼされる影響とがほぼ等しいことが好ましい。
したがって、このような補助的に検出する物理量としては、上述のように推定する必要のある物理量と上述のような相関があること、並びに、センサにより常時検出できる物理量であることが好ましい。このような条件を満たす物理量であれば、補助的に検出する物理量は、排気空燃比に限られない。
以下では、Inert−EGR推定値算出部711、LAFセンサ出力推定値算出部712、及び非線形適応修正器713の構成について順に説明する。
[Inert−EGR推定値算出部]
図6は、Inert−EGR推定値算出部711のニューラルネットワーク構造を示す図である。
このニューラルネットワークは、所定の関数に従って出力する複数のニューロンを結合して構成され、m成分の入力ベクトルU(k)に応じて、値Y(k)を出力する。図6に示すように、このニューラルネットワークは、m個のニューロンW1j(j=1〜m)で構成された入力層と、m×(n−1)個のニューロンWij(i=2〜n,j=1〜m)で構成された中間層と、1個のニューロンYで構成された出力層との3つの層を含んで構成された階層型である。
入力層:W1j (j=1,2,…,m)
中間層:Wij (i=2,3,…,n,j=1,2,…,m)
出力層:Y
入力層のm個のニューロンW1j(j=1〜m)の動作について説明する。
入力層のニューロンW1jには、信号T1j(k)が入力される。この入力信号T1j(k)には、それぞれ、下記式(8)に示すように入力ベクトルU(k)のj番目の成分U(k)が用いられる。
Figure 0005149988
入力層のニューロンW1jは、中間層のm個のニューロンW2j(j=1〜m)に所定の重みで結合しており、これら結合したm個のニューロンW2jへ信号V1j(k)を出力する。すなわち、このニューロンW1jは、下記式(9),(10)に示すように、シグモイド関数f(x)に従って、入力信号T1j(k)に応じた信号V1j(k)をm個のニューロンW2jに出力する。
Figure 0005149988
Figure 0005149988
図7は、シグモイド関数f(x)を示す図である。この図7には、上記式(10)において、ε=0とし、β=0.5,1.0,2.0,3.0とした場合を示す。
シグモイド関数f(x)の値域は、[ε,ε+1]となっている。また、図7に示すように、シグモイド関数f(x)は、βを大きくするに従い、x=0を中心としたステップ関数に近づく。
上記式(10)において、係数βはシグモイド関数f(x)の傾きゲインを示し、係数εはシグモイド関数f(x)のオフセット値を示す。傾きゲインβは、後述のニューラルネットワークの学習により設定する。オフセット値εは、後述のニューラルネットワークの学習により設定するか、又は所定の値に設定しておく。
次に中間層の(n−1)×m個のニューロンWij(i=2〜n,j=1〜m)の動作について説明する。
中間層のニューロンWij(i=2〜n,j=1〜m)には、結合するニューロンから出力されたm個の信号Vi−1,j(j=1〜m)のそれぞれに所定の重みωi−1,j(j=1〜m)を乗じた信号の和が入力される。したがって、中間層のニューロンWijには、下記式(11)に示すような信号Tij(k)が入力される。
Figure 0005149988
中間層のニューロンのうち出力層に結合するm個を除いたニューロン、すなわち、(n−2)×m個のニューロンWij(i=2〜n−1,j=1〜m)は、中間層のm個のニューロンWi+1,j(j=1〜m)に重みωijで結合しており、これら結合したニューロンWi+1,jへ信号Vij(k)を出力する。すなわち、このニューロンWij(i=2〜n−1,j=1〜m)は、下記式(12)に示すように、シグモイド関数f(x)に従って、入力信号Tij(k)に応じた信号Vij(k)をm個のニューロンWi+1,jに出力する。
Figure 0005149988
また、中間層のm個のニューロンWnj(j=1〜m)は、出力層のニューロンYに重みωnjで結合しており、この出力層のニューロンYへ信号Vnj(k)を出力する。すなわち、これらニューロンWnj(j=1〜m)は、下記式(13)に示すように、シグモイド関数f(x)に従って、入力信号Tnj(k)に応じた信号Vnj(k)をニューロンYに出力する。
Figure 0005149988
次に出力層のニューロンYの動作について説明する。
出力層のニューロンYには、結合する中間層のニューロンから出力されたm個の信号Vn,j(j=1〜m)に所定の重みωn,j(j=1〜m)を乗じた信号の和が入力される。したがって、出力層のニューロンYには、下記式(14)に示すような信号T(k)が入力される。
Figure 0005149988
出力層のニューロンYは、下記式(15),(16)に示すように、シグモイド関数g(x)に従って、入力信号T(k)に応じた信号Y(k)を出力する。
Figure 0005149988
Figure 0005149988
シグモイド関数g(x)は、上述の図7に示す関数f(x)と、定性的には同じ振る舞いを示すが、値域が[δ,δ+α]である点でシグモイド関数f(x)と異なる。上記式(16)において、係数γはシグモイド関数g(x)の傾きゲインを示し、係数δはシグモイド関数g(x)のオフセット値を示す。また、係数αはニューラルネットワークの出力の取り得る自由度を設定するための出力ゲインを示す。傾きゲインγ及び出力ゲインαは、後述のニューラルネットワークの学習により設定する。オフセット値δは、後述のニューラルネットワークの学習により設定するか、又は所定の値に設定しておく。
次に、Inert−EGR量を推定するための、ニューラルネットワークの学習について説明する。
先ず、ニューラルネットワークに対する入力ベクトルU(k)の成分を、下記式(17)に示すように定義する。このように、入力ベクトルU(k)の成分には、Inert−EGR量を推定するために必要となる複数の物理量(燃料噴射量GFUEL、吸気圧力P2、排気圧力P3、排気圧力P3L、高圧EGRバルブリフト量の検出値LHP_ACT、低圧EGRバルブリフト量の検出値LLP_ACT、エンジン回転数NE)と、上述の適応入力UVNSとが含まれる。また、入力ベクトルの成分には、このように異なる種類の物理量に関するデータが含まれているとともに、異なる時刻の物理量に関するデータも含まれている。
Figure 0005149988
また、このような入力ベクトルU(k)に対するニューラルネットワークの出力Y(k)を、下記式(18)に示すように、Inert−EGR量の推定値IEGRHAT(k)として定義する。
Figure 0005149988
次に、Inert−EGR量を実際に検出できるセンサと、状態の異なる排気浄化システムを少なくとも2組準備する。1つは、例えば基準となる新品の排気浄化システム(以下、単に「基準品」という)であり、もう1つは、固体ばらつきや劣化などの理由により、基準品に対し大きく異なった特性を有する排気浄化システム(以下、単に「劣化品」という)である。そして、実際に準備した排気浄化システムを運転することにより、上記式(17)の入力ベクトルUの成分(GFUEL,P2,P3,P3L,LHP_ACT,LLP_ACT,NE)と、上述のセンサにより検出されたInert−EGR量の検出値との関係を記録する。なお、この入力ベクトルの成分とInert−EGR量の検出値との関係を示すデータは、準備した状態の異なる排気浄化システムごとに取得する。
次に、取得したデータに基づいてニューラルネットワークの学習を行う。すなわち、入力ベクトルUの成分(GFUEL,P2,P3,P3L,LHP_ACT,LLP_ACT,NE)とInert−EGR量の検出値との関係が、ニューラルネットワークにより再現されるようにニューロンの関数f(x),g(x)の各種ゲイン(α,β,γ,δ,ε)、並びに、各ニューロンの結合の強さを示す重みωij(i=1〜n,j=1〜m)を設定する。なお、ニューラルネットワークの学習のアルゴリズムには、既知の方法が用いられる。具体的には、例えば、逆誤差伝播法などの学習アルゴリズムの他、遺伝的アルゴリズムなどの最適化アルゴリズムが挙げられる。
ここで、上述のような学習を行う際における適応入力UVNSの設定について説明する。例えば、データを取得するための排気浄化システムとして、基準品と劣化品との2つを準備した場合について説明する。先ず、基準品のデータに基づいて学習を行う際には、適応入力UVNSを「1」と設定する。また、劣化品のデータに基づいて学習を行う際には、適応入力UVNSを「0」と設定する。
基準品:適応入力UVNS←1
劣化品:適応入力UVNS←0
以上のように設定された適応入力UVNSを含む入力ベクトルUを用いてニューラルネットワークの学習を行うことにより、適応入力UVNSを「0」〜「1」の間で連続的に変化させた場合に、Inert−EGR量の推定値IEGRHAT及びLAFセンサの出力の推定値ΦHATを基準品から劣化品へ連続的に変化させることができる。
以上のようにして適応入力UVNSを設定した上でニューラルネットワークの学習を行うことにより、排気浄化システムの劣化や固体ばらつきに対する適応特性が実現された適応バーチャルセンサシステムを構築することができる。
また、例えば、基準品と劣化品との間の中間的な特性を有する排気浄化システムを準備した場合には、適応入力UVNSを「1」と「0」との間の値、例えば「0.3」や「0.6」等の値に設定した上で、ニューラルネットワークの学習を行う。これにより、排気浄化システムの劣化や固体ばらつきに対する適応特性を、より現実的に実現することができる。
[LAFセンサ出力推定値算出部]
図5に戻って、LAFセンサ出力推定値算出部712の構成について説明する。
LAFセンサ出力推定値算出部712は、Inert−EGR推定値算出部711と同様に、ニューラルネットワークによりLAFセンサ34の出力の推定値ΦHATを算出する。なお、LAFセンサ出力推定値算出部712のニューラルネットワーク構造は、図6及び図7を参照して詳述したInert−EGR推定値算出部711のニューラルネットワーク構造とほぼ同じであり、その詳細な説明を省略する。
また、入力ベクトルUの成分も、上記式(17)と同様に定義する。すなわち、入力ベクトルUの成分には、排気空燃比を推定するために必要となる複数の物理量(燃料噴射量GFUEL、吸気圧力P2、排気圧力P3、排気圧力P3L、高圧EGRバルブリフト量の検出値LHP_ACT、低圧EGRバルブリフト量の検出値LLP_ACT、エンジン回転数NE)と、適応入力UVNSとが含まれる。なお、本実施形態では、LAFセンサ出力推定値算出部のニューラルネットワークに対する入力ベクトルUとしてInert−EGR推定値算出部と同じ入力ベクトルUを用いたが、これに限るものではない。これら入力ベクトルの成分には互いに異なる物理量を含むようにしてもよいが、適応入力UVNSは共通のものを用いる。
さらに、下記式(19)に示すように、ニューラルネットワークの出力Y(k)をLAFセンサの出力の推定値ΦHAT(k)として定義する。
Figure 0005149988
また、ニューラルネットワークに対する学習も、Inert−EGR推定値算出部711のニューラルネットワークと同様の手順により行う。したがって、その詳細な説明を省略する。
これにより、上述のInert−EGR推定値算出部711と同様に、排気浄化システムの劣化や固体ばらつきに対する適応特性が実現された適応バーチャルセンサシステムを構成することができる。
[非線形適応修正器]
次に、図8〜図11を参照して、非線形適応修正器713の構成について説明する。
図8は、非線形適応修正器713の構成を示すブロック図である。
非線形適応修正器713は、重み関数設定部715と、局所適応入力算出部716と、適応係数算出部717と、を備える。非線形適応修正器713は、このような構成により推定誤差EHATが最小となるように適応入力UVNSを算出する。
より具体的には、この非線形適応修正器713では、2つの参照パラメータ(エンジン回転数NE及び燃料噴射量GFUEL)を基底とする空間を定義するとともに、この空間を複数の領域に分ける。さらに、領域ごとに後述の局所適応入力Uij(i=1〜4,j=1〜4)を算出し、これら局所適応入力Uijを後述の重み関数Wij(i=1〜4,j=1〜4)で重み結合することにより、適応入力UVNSを算出する。
ところで、排気浄化システムにおける経年劣化や固体ばらつきが、Inert−EGR量や排気空燃比の推定値の誤差に及ぼす影響は、エンジンの運転条件、すなわち参照パラメータの値ごとに異なったものになると考えられる。この非線形適応修正器713では、参照パラメータを基底とする空間内の領域ごとに局所適応入力Uijを算出することにより、参照パラメータの値ごとに異なる上述の誤差への影響を考慮して適応入力UVNSを算出することができる。
図9は、エンジン回転数NEを定義域とした4つの第1重み関数WN(i=1〜4)を示す図である。図9に示すように、4つの第1重み関数WNは、それぞれ、定義域に互いに重複した4つの領域を定義し、これら領域において「0」でない値を持つように設定される。
より具体的には、定義域は、[N,N]と、第2領域[N,N]と、第3領域[N,N]と、第4領域[N,N]とに分けられる。ここで、図9に示すように、N<N<N<N<N<Nとする。したがって、第1領域と第2領域は区間[N,N]で重複し、第2領域と第3領域は区間[N,N]で重複し、第3領域と第4領域は区間[N,N]で重複する。
関数WNは、第1領域[N,N]において「0」でない値を持つように設定される。より具体的には、関数WNは、区間[N,N]において「1」に設定され、区間[N,N]において「1」から「0」に減少するように設定される。
関数WNは、第2領域[N,N]において「0」でない値を持つように設定される。より具体的には、関数WNは、区間[N,N]において「1」から「0」に上昇するように設定され、区間[N,N]において「1」から「0」に減少するように設定される。したがって、関数WNと関数WNは、区間[N,N]の中心で交差する。
関数WNは、第3領域[N,N]において「0」でない値を持つように設定される。より具体的には、関数WNは、区間[N,N]において「1」から「0」に上昇するように設定され、区間[N,N]において「1」から「0」に減少するように設定される。したがって、関数WNと関数WNは、区間[N,N]の中心で交差する。
関数WNは、第4領域[N,N]において「0」でない値を持つように設定される。より具体的には、関数WNは、区間[N,N]において「1」から「0」に上昇するように設定され、区間[N,N]において「1」に設定される。したがって、関数WNと関数WNは、区間[N,N]の中心で交差する。
また、図9には、Inert−EGR量のエンジン回転数NEに対する定性的な振る舞いを破線で示す。この図に示すように、低い回転数におけるInert−EGR量は、高い回転数におけるInert−EGR量よりも多くなる傾向がある。そこで、このようなInert−EGR量の非線形性に合わせて、本実施形態では、区間[N,N]は、区間[N,N]よりも狭くなるように設定する。
また、以上のように構成された第1重み関数WNは、下記式(20)に示すように、その総和関数がエンジン回転数NEによらず「1」となるように正規化される。
Figure 0005149988
図10は、燃料噴射量GFUELを定義域とした4つの第2重み関数WG(j=1〜4)を示す図である。
図10に示すように、4つの第2重み関数WGは、それぞれ、定義域に互いに重複した4つの領域を定義し、これら領域において「0」でない値を持つように設定される。
より具体的には、定義域は、[G,G]と、第2領域[G,G]と、第3領域[G,G]と、第4領域[G,G]とに分けられる。ここで、図10に示すように、G<G<G<G<G<Gとする。したがって、第1領域と第2領域は区間[G,G]で重複し、第2領域と第3領域は区間[G,G]で重複し、第3領域と第4領域は区間[G,G]で重複する。
関数WGは、第1領域[G,G]において「0」でない値を持つように設定される。より具体的には、関数WGは、区間[G,G]において「1」に設定され、区間[G,G]において「1」から「0」に減少するように設定される。
関数WGは、第2領域[G,G]において「0」でない値を持つように設定される。より具体的には、関数WGは、区間[G,G]において「1」から「0」に上昇するように設定され、区間[G,G]において「1」から「0」に減少するように設定される。したがって、関数WGと関数WGは、区間[G,G]の中心で交差する。
関数WGは、第3領域[G,G]において「0」でない値を持つように設定される。より具体的には、関数WGは、区間[G,G]において「1」から「0」に上昇するように設定され、区間[G,G]において「1」から「0」に減少するように設定される。したがって、関数WGと関数WGは、区間[G,G]の中心で交差する。
関数WGは、第4領域[G,G]において「0」でない値を持つように設定される。より具体的には、関数WGは、区間[G,G]において「1」から「0」に上昇するように設定され、区間[G,G]において「1」に設定される。したがって、関数WGと関数WGは、区間[G,G]の中心で交差する。
また、図10には、エンジンのNOx排出量の燃料噴射量GFUELに対する定性的な振る舞いを破線で示す。この図に示すように、NOx排出量は、燃料噴射量が所定量を超えると急激に増加する傾向がある。そこで、このようなNOx排出量の非線形性に合わせて、本実施形態では、区間[G,G]は、区間[G,G]よりも狭くなるように設定する。
また、以上のように構成された第2重み関数WNは、下記式(21)に示すように、その総和関数が燃料噴射量GFUELによらず「1」となるように正規化される。
Figure 0005149988
図11は、2つの参照パラメータ(NE,GFUEL)を定義域とした16個の重み関数Wij(i=1〜4,j=1〜4)を示す図である。図11において、横軸はエンジン回転数NEを示し、縦軸は燃料噴射量GFUELを示す。図11に示すように、2つの参照パラメータ(NE,GFUEL)の定義域には、互いに重複する16個の領域が定義される。
16個の重み関数Wijは、下記式(22)に示すように、第1重み関数WNの各成分と第2重み関数WGの各成分との積により定義される。これにより、16個の領域においてそれぞれ「0」でない値を持つ重み関数Wijが定義される。なお、図11には、4つの重み関数W11,W22,W33,W44のみを図示する。
Figure 0005149988
また、上記式(20)及び(21)と同様に、重み関数Wijの総和関数は、下記式(23)に示すように、2つの参照パラメータ(NE,GFUEL)によらず「1」となるように正規化される。
Figure 0005149988
図8に戻って、重み関数設定部715は、複数の第1重み関数WNが設定された第1重み関数算出部7151と、複数の第2重み関数WGが設定された第2重み関数算出部7152と、これら第1重み関数WN及び第2重み関数WGに基づいて重み関数Wijを算出する乗算器7153と、推定誤差EHATに対し領域ごとに重み付けする乗算器7154と、を含んで構成される。
第1重み関数算出部7151は、図9に示すような制御マップを検索することにより、エンジン回転数NE(k)に応じた第1重み関数の値WN(k)を算出する。
第2重み関数算出部7152は、図10に示すような制御マップを検索することにより、燃料噴射量GFUEL(k)に応じた第2重み関数の値WG(k)を算出する。
乗算器7153は、下記式(24)に示すように、第1重み関数算出部7151により算出された第1重み関数の値WN(k)と第2重み関数の値WG(k)との各成分を乗算することにより、重み関数の値Wij(k)を算出する。
Figure 0005149988
乗算器7154は、下記式(25)に示すように、算出された重み関数の値Wij(k)の各成分を推定誤差EHAT(k)に乗算することにより、領域ごとに重み付けされた誤差信号WEVNSij(k)を算出する。
Figure 0005149988
局所適応入力算出部716は、領域ごとに重み付けされた誤差信号WEVNSijが「0」になるように、局所適応入力Uij(i=1〜4,j=1〜4)を領域ごとに算出する。
本実施形態では、誤差信号WEVNSijの収束速度を設定できる応答指定型制御アルゴリズムにより、局所適応入力Uijを算出する。この応答指定型制御アルゴリズムとは、偏差の収束挙動を規定した関数に基づいて、偏差の収束速度と収束挙動の両方を指定できる制御アルゴリズムのことをいう。
局所適応入力算出部716は、この応答指定型制御アルゴリズムが実行可能に構成された複数のスライディングモードコントローラを備える。以下では、これらスライディングモードコントローラの動作について説明する。
先ず、下記式(26)に示すように、切換関数設定パラメータPOLEと前回制御時の誤差信号WEVNSij(k−1)との積と、WEVNSij(k)との和を算出し、これを切換関数σV_ij(k)として定義する。なお、切換関数設定パラメータPOLEは、所定の設定テーブルに基づいて、−1から0の間で設定されたものが用いられる。
Figure 0005149988
次に、切換関数σV_ij(k)に基づいて、到達則入力URCH_V_ij(k)、及び適応則入力UADP_V_ij(k)を算出し、さらに下記式(27)に示すように、これらURCH(k)、及びUADP(k)の和を算出し、これを局所適応入力Uij(k)として定義する。
Figure 0005149988
到達則入力URCH_V_ij(k)は、偏差状態量を切換直線上に載せるための入力であり、下記式(28)に示すように、切換関数σV_ij(k)に所定の到達則制御ゲインKRCH_Vを乗算することで算出される。
Figure 0005149988
適応則入力UADP_V_ij(k)は、モデル化誤差や外乱の影響を抑制し、偏差状態量を切換直線に載せるための入力であり、下記式(29)に示すように、切換関数σV_ij(k)と所定の適応則ゲインKADP_Vを乗算したものと、前回制御時の適応則入力UADP_V_ij(k−1)との和により算出される。
Figure 0005149988
適応係数算出部717は、領域ごとに算出された局所適応入力Uijを重み関数Wijによる重み結合したものに、「1」を加算することにより、適応入力UVNSを算出する。すなわち、適応係数算出部717は、下記式(30)に示すように、局所適応入力Uij(k)と重み関数の値Wijとの積の全領域(i=1〜4,j=1〜4)に亘る総和に、「1」を加算することにより、適応入力UVNS(k)を算出する。
Figure 0005149988
ここで、上記式(30)において、「1」を加算した理由は、上述のように適応入力UVNS=1を基準品の状態とした上で、適応則入力UADP_V_ijの初期値を「0」とし、かつ、適応入力UVNSの初期値を「1」とするためである。なお、適応則入力UADP_V_ijの初期値を「1」とした場合には、上記式(30)において「1」を加算する必要は無い。また、適応入力UVNSの初期値を、劣化品を示す「0」にする場合にも、上記式(30)において「1」を加算する必要は無い。
また、上述のように重み関数Wijは、各領域においてのみ「0」でない値を持つ関数WN及びWGの積に基づいて算出されるものであるため、重み関数の値が「0」になる領域も存在する。したがって、上記式(30)において、全領域(i=1〜4,j=1〜4)に亘る総和を演算する際には、このような重み関数の値Wij(k)が「0」になる領域に関する演算を除外してもよい。これにより、演算負荷を軽減することができる。
次に、Inert−EGR量制御の具体的な手順について、図12を参照して説明する。
図12は、ECUにより実行されるInert−EGR量制御の手順を示すフローチャートである。この処理は、所定の制御周期(例えば、50msec)ごとに実行される。
ステップS1では、EGR弁故障フラグFEGRNGが「1」であるか否かを判別する。このEGR弁故障フラグFEGRNGは、図示しない判定処理において高圧EGR弁又は低圧EGR弁が故障したと判定されたときに「1」に設定され、それ以外のときには「0」に設定される。この判別がYESの場合には、ステップS11に移り、Inert−EGR量の目標値IEGRCMDを強制的に「0」にした後に、ステップS12に移る。この判別がNOの場合には、ステップS2に移る。
ステップS2では、LAFセンサ故障フラグFLAFNGが「1」であるか否かを判別する。このLAFセンサ故障フラグFLAFNGは、図示しない判定処理においてLAFセンサが故障したと判定されたときに「1」に設定され、それ以外のときには「0」に設定される。この判別がYESの場合には、ステップS11に移る。この判別がNOの場合には、ステップS3に移る。
ステップS3では、圧力センサ故障フラグFCNSNGが「1」であるか否かを判別する。この圧力センサ故障フラグFCNSNGは、図示しない判定処理において圧力センサの何れかが故障したと判定されたときに「1」に設定され、それ以外のときには「0」に設定される。この判別がYESの場合には、ステップS11に移る。この判別がNOの場合には、ステップS3に移る。
ステップS4では、適応バーチャルセンサシステムにより、Inert−EGR量の推定値IEGRHATを算出する(上記式(8)〜(18)参照)。
ステップS5では、LAFセンサ活性フラグFLAFACTが「1」であるか否かを判別する。このLAFセンサ活性フラグFLAFACTは、図示しない判定処理においてLAFセンサが活性状態に達したと判定されたときに「1」に設定され、それ以外のときには「0」に設定される。この判別がYESの場合にはステップS6に移り、推定誤差EHATを算出する(上記式(7)参照)。また、この判別がNOの場合にはステップS7に移り、推定誤差EHATを強制的に「0」にする。
ステップS8では、適応入力UVNSを算出する(上記式(20)〜(30)参照)。
ステップS9では、Inert−EGR量目標値算出部72により、Inert−EGR量の目標値IEGRIDEAL_CMDを算出する。
ステップS10では、目標値IEGRIDEAL_CMDに対する修正目標値IEGRCMDを算出し(上記式(1)〜(6)参照)、ステップS12では、修正目標値IEGRCMDに基づいて高圧EGRバルブリフト量LHP及び低圧EGRバルブリフト量LLPを算出し、この処理を終了する。
次に、以上のように構成された本実施形態のInert−EGR量制御のシミュレーション結果について、図13〜図16を参照して詳述する。
図13は、排気浄化システムの高圧EGR弁及び低圧EGR弁を基準品とし、かつ、適応入力UVNSを「1」に固定した場合におけるシミュレーション結果を示す図である。
この場合、各EGR弁を基準品としたため、適応入力UVNSを強制的に「1」に固定しても、Inert−EGR量の推定値IEGRHATは実Inert−EGR量IEGRACTに一致する。このため、実Inert−EGR量IEGRACTを目標値IEGRIDEAL_CMDに精度良く制御することができる。したがって、エンジンから排出されるNOx量は、可能な限り抑制される。
図14は、排気浄化システムの高圧EGR弁及び低圧EGR弁を基準品とし、かつ、適応入力UVNSを、非線形適応修正器により算出させた場合におけるシミュレーション結果を示す図である。
この場合、各EGR弁を基準品としたため、適応入力UVNSを非線形適応器により算出させても、初期値の「1」のまま変動しない。したがって、上述の図13に示す結果とほぼ同様となり、Inert−EGR量の推定値IEGRHATは実Inert−EGR量IEGRACTに一致する。また、実Inert−EGR量IEGRACTを目標値IEGRIDEAL_CMDに精度良く制御することができる。したがって、エンジンから排出されるNOx量は、可能な限り抑制される。
図15は、排気浄化システムの高圧EGR弁及び低圧EGR弁を時刻Aにおいて基準品から劣化品へ仮想的に変化させ、かつ、適応入力UVNSを「1」に固定した場合におけるシミュレーション結果を示す図である。
この場合、時刻A以降、Inert−EGR量の推定値IEGRHATと実Inert−EGR量IEGRACTとの間で誤差が発生する。また、LAFセンサの出力ΦACTと推定値ΦHATとの間にも誤差が発生する。しかしながら、適応入力UVNSを「1」に固定したため、Inert−EGR量の推定値IEGRHATには誤差が生じたままである。このため、Inert−EGR量の目標値IEGRIDEAL_CMDは、Inert−EGRコントローラにより修正されることはない。この結果、エンジンから排出されるNOx量は増加する。なお、このNOx量の排出量の増加は、エンジンの高負荷側において特に顕著である。
図16は、排気浄化システムの高圧EGR弁及び低圧EGR弁を時刻Aにおいて基準品から劣化品へ仮想的に変化させ、かつ、適応入力UVNSを非線形適応修正器により算出させた場合におけるシミュレーション結果を示す図である。
この場合、時刻A以降、Inert−EGR量の推定値IEGRHATと実Inert−EGR量IEGRACTとの間で誤差が発生する。また、LAFセンサの出力ΦACTと推定値ΦHATとの間にも誤差が発生する。これに伴い、非線形適応修正器は、発生した誤差を最小にするように適応入力UVNSを「1」から小さな値へ修正する。また、この適応入力UVNSの修正により、Inert−EGR量の推定値IEGRHATとLAFセンサの出力の推定値ΦHATに発生した誤差が次第に小さくなる。
Inert−EGRコントローラは、実Inert−EGR量IEGRACTの変化を、推定値量IEGRHATを介して検出し、実Inert−EGR量IEGRACTが目標Inert−EGR量IEGRIDEAL_CMDに収束するように補正係数KEGRを修正する。これにより、各EGR弁が劣化し、Inert−EGR導入量が低下した場合であっても、これを修正し、適正なInert−EGR量に維持できるため、排出されるNOx量の増加を抑制することができる。
以上により、本実施形態の適応バーチャルセンサシステムが、排気浄化システムの劣化に対して優れたロバスト性を発揮し、精度良くInert−EGR量の推定値IEGRHATを算出できることが確認された。また、この適応バーチャルセンサシステムが、排気浄化システムの固体ばらつきに対しても優れたロバスト性を発揮できることは明らかである。
本実施形態では、例えば、LAFセンサ34により検出手段が構成され、ECU7により、第1推定値算出手段、第2推定値算出手段、適応入力算出手段、重み関数設定手段、修正値算出手段、決定手段、及びコントローラが構成される。
具体的には、例えば、Inert−EGR推定値算出部711により第1推定値算出手段が構成され、LAFセンサ出力推定値算出部712により第2推定値算出手段が構成され、非線形適応修正器713により適応入力算出手段が構成され、重み関数設定部715により重み関数設定手段が構成され、局所適応入力算出部716により修正値算出手段が構成され、適応係数算出部717により決定手段が構成される。また、例えば、Inert−EGR量目標値算出部72、Inert−EGRコントローラ73、及びリフト量算出部74により、コントローラが構成される。
[第2実施形態]
次に、本発明の第2実施形態を、図面を参照して説明する。
以下の第2実施形態の説明にあたって、第1実施形態と同一構成要件については同一符号を付し、その説明を省略化又は簡略化する。
図17は、本実施形態に係るエンジン1及びその排気浄化システム2Aの構成を示す模式図である。
図17に示すように、本実施形態は、選択還元触媒61及びユリア噴射装置62を備える点と、ECU8の構成とが、第1実施形態と異なる。
排気浄化システム2Aは、排気管30のうち酸化触媒35の下流側に設けられ、この排気管30を流通する排気中の窒素酸化物(以下、「NOx」という)を、還元剤としてのアンモニアの存在下で浄化する選択還元触媒61と、排気管30のうち選択還元触媒61の上流側に、還元剤の元となる尿素水を供給するユリア噴射装置62と、を備える。
ユリア噴射装置62は、ユリアタンク621と、ユリア噴射弁623とを備える。
ユリアタンク621は、尿素水を貯蔵する。ユリア噴射弁623は、ECU8に接続されており、ECU8からの制御信号により動作し、この制御信号に応じた量の尿素水を排気管30内の酸化触媒35と選択還元触媒61との間に噴射する。すなわち、ユリア噴射制御が実行される。
酸化触媒35は、排気管30のうち選択還元触媒61及びユリア噴射弁623よりも上流側に設けられ、排気中のNOをNO2に変換し、これにより、選択還元触媒61におけるNOxの還元を促進する。
選択還元触媒61は、アンモニア等の還元剤が存在する雰囲気下で、排気中のNOxを選択的に還元する。具体的には、ユリア噴射装置62により尿素水を噴射すると、この尿素水は、排気の熱により熱分解又は加水分解されて還元剤としてのアンモニアが生成される。生成されたアンモニアは、選択還元触媒61に供給され、これらアンモニアにより、排気中のNOxは選択的に還元される。
ところで、この選択還元触媒61は、尿素水から生成したアンモニアで排気中のNOxを還元する機能を有するとともに、生成したアンモニアを所定の量だけ貯蔵する機能も有する。以下では、選択還元触媒61において貯蔵されたアンモニア量をストレージ量とし、選択還元触媒61において貯蔵できるアンモニア量を最大ストレージ容量とする。
このようにして貯蔵されたアンモニアは、排気中のNOxの還元にも適宜消費される。このため、ストレージ量が大きくなるに従い、選択還元触媒61におけるNOx還元率は高くなる。また、エンジンから排出されたNOxの量に対し尿素水の供給量が少ない場合等には、貯蔵されたアンモニアが、この尿素水の不足分を補うようにしてNOxの還元に消費される。
ここで、選択還元触媒61において、最大ストレージ容量を超えてアンモニアが生成された場合、生成されたアンモニアは、選択還元触媒61の下流側へ排出される。このようにしてアンモニアが選択還元触媒61に貯蔵されず、その下流側へ排出されることを、以下では「アンモニアスリップ」という。
後に詳述するように、選択還元触媒61のストレージ量が所定の目標値に維持されるようにユリア噴射制御を行うことにより、選択還元触媒61におけるNOx浄化率を高く維持しながら、アンモニアスリップの発生も極力抑制することができる。
ECU8には、クランク角度位置センサ11、アクセルセンサ12、吸気圧力センサ24、第1排気圧力センサ32、第2排気圧力センサ33、LAFセンサ34、第1リフトセンサ13、及び第2リフトセンサ14の他、酸化触媒温度センサ37、及び選択還元触媒温度センサ38が接続されている。
酸化触媒温度センサ37は、酸化触媒35の温度TDOCを検出し、検出値に略比例した信号をECU8に送信する。選択還元触媒温度センサ38は、選択還元触媒61の温度TSCRを検出し、検出値に略比例した信号をECU8に送信する。
次に、以上のような排気浄化システム2Aを制御するECUを構成するにあたり、本願発明者が着目した課題について説明する。
このような排気浄化システムを制御する場合、従来では、ユリア噴射装置と選択還元触媒との間に排気中のNOx量を検出するNOxセンサを設け、このNOxセンサの検出値に基づいてユリア噴射量を決定することが知られている。しかしながら、このようにNOxセンサを用いた場合には、以下のような課題がある。
(3)先ず、現存するNOxセンサは、高精度でユリア噴射制御を行うにはNOxの観測分解能が十分ではなく、また固体ばらつきが大きい。このため、ユリア噴射量が不足してNOx浄化率が低下したり、逆にユリア噴射量が過多になってしまい過剰なアンモニアスリップが発生したりする虞がある。
(4)また、現存するNOxセンサは、高精度でユリア噴射制御を行うには応答性能が十分では無い。このため、特に過渡時において大きなセンシング遅れが生じてしまい、結果としてユリア噴射量が不足しNOx浄化率が低下する虞がある。
(5)また、現存するNOxセンサは、センサ素子の割れを防止するために、急速昇温することができない。このため、エンジンの始動後、NOxセンサが活性に達するまで、数百秒程度かかってしまう場合がある。したがって、この間は、NOxセンサの出力を利用できないため、NOx浄化率が低下したりアンモニアスリップが発生したりする虞がある。
(6)図18は、選択還元触媒におけるNOx浄化率と、NO2とNOxの比率(NO2/NOx=RNO2)との関係を示す図である。
図18に示すように、選択還元触媒におけるNOx浄化率は、NO2とNOxの比率によって大きく異なる。特に、選択還元触媒の温度が低くなるに従い、NO2とNOxの比率に対するNOx浄化率の変動は大きくなる。
選択還元触媒にはこのような特性があるにもかかわらず、現存するNOxセンサではNO2とNOxの比率を検出することは出来ない。したがって、このようなNOxセンサの出力に基づいてユリア噴射量を決定した場合、噴射した尿素水が選択還元触媒におけるNOx浄化率の向上に寄与しない余剰分がNO2とNOxの比率に応じて発生してしまい、アンモニアスリップが発生するおそれがある。
以上のように、ユリア噴射制御を行うためにNOxセンサを設けることの利点は多くない。また、NOxセンサの出力を用いずに、予め設定したマップを用いてユリア噴射量を決定することも考えられるが、この場合も、高い精度でユリア噴射量を決定することは困難であり、また、エンジンや排気浄化システムの劣化や固体ばらつきに対応することも困難である。
以下では、以上のような課題に鑑みてなされた、排気浄化システム2Aの制御装置の構成について説明する。以下、詳細に説明するように、本実施形態では、第1実施形態の排気浄化システムにおけるInert−EGR量の推定値と同様にして、排気中のNOx量の推定値を算出する適応バーチャルセンサシステムを構築する。すなわち、本実施形態では、ニューラルネットワークを用いて排気中のNOx量を推定し、さらにこのNOx量の推定値に基づいてユリア噴射制御を行う。
図19は、排気浄化システム2Aの制御装置の構成を示すブロック図である。なお、図19には、排気浄化システム2Aにおけるユリア噴射制御に係る構成のみを図示する。より具体的には、ユリア噴射装置のユリア噴射量GUREAの決定に関する、ECUにより構成されるモジュールのみを図示する。
このモジュールは、適応バーチャルセンサシステム81と、フィードフォワード噴射量決定部82と、ストレージ量目標値設定部83と、フィードバック噴射量決定部84と、を含んで構成される。
このモジュールにおいて、ユリア噴射量GUREA(k)は、下記式(31)に示すように、加算器85によりフィードフォワード噴射量GUREA_FF(k)とフィードバック噴射量GUREA_ST(k)との和を算出することにより決定される。
Figure 0005149988
以下、詳細に説明するように、フィードフォワード噴射量GUREA_FF(k)は、適応バーチャルセンサシステム81により算出された排気中のNOx量の推定値NOXHATに基づいて、フィードフォワード噴射量決定部82により決定される。
また、フィードバック噴射量GUREA_ST(k)は、ストレージ量目標値設定部83により設定された目標値STUREA_CMD(k)にストレージ量を維持するように、フィードバック噴射量決定部84により決定される。
適応バーチャルセンサシステム81は、複数のセンサ24,32,33,34,13,14,37,38の検出値P2,P3,P3L,ΦACT,LHP_ACT,LLP_ACT,TDOC,TSCRに基づいて、酸化触媒と選択還元触媒との間の排気のNOx量の推定値NOXHATを算出する。
図20は、適応バーチャルセンサシステム81の構成を示すブロック図である。
適応バーチャルセンサシステム81は、NOx量の推定値NOXHATを算出するNOx量推定値算出部811と、LAFセンサ34の出力(排気空燃比)の推定値ΦHATを算出するLAFセンサ出力推定値算出部812と、適応入力UVNSを算出する非線形適応修正器813とを含んで構成される。
この適応バーチャルセンサシステム81では、上述の課題(3)〜(5)を解決するため、上述の第1実施形態におけるInert−EGR量の推定と同様にしてNOx量の推定値NOXHATを算出する。
すなわち、本実施形態の適応バーチャルセンサシステム81では、ニューラルネットワークが構築されたNOx量推定値算出部811により、NOx量の推定値NOXHATを算出する。さらに、NOx量とは別の物理量であり、かつ、NOx量と相関のある物理量である排気空燃比の推定値ΦHATを、NOx量推定値算出部811と同様のニューラルネットワーク構造を有するLAFセンサ出力推定値算出部812で算出する。なお、これらNOx量推定値算出部811及びLAFセンサ出力推定値算出部812のニューラルネットワーク構造は、それぞれ、第1実施形態のInert−EGR推定値算出部711及びLAFセンサ出力推定値算出部712のニューラルネットワーク構造とほぼ同様の構成であるので、その詳細な説明を省略する。
さらに、下記式(32)に示すように、算出した排気空燃比の推定値ΦHAT(k)とLAFセンサ34の検出値ΦACT(k)との間の推定誤差EHAT(k)を加算器814により算出する。
Figure 0005149988
さらに、非線形適応修正器813では、算出した推定誤差EHATが最小になるように、NOx量推定値算出部811及びLAFセンサ出力推定値算出部812に対し共通に入力される適応入力UVNSを算出する。なお、この非線形適応修正器813は、第1実施形態の非線形適応修正器713とほぼ同様の構成であるので、その詳細な説明を省略する。
次に、NOx量を推定するための、ニューラルネットワークの学習について説明する。
先ず、ニューラルネットワークに対する入力ベクトルU(k)の成分を、下記式(33)に示すように定義する。このように、入力ベクトルU(k)の成分には、NOx量を推定するために必要となる複数の物理量(酸化触媒温度TDOC、選択還元触媒温度TSCR、燃料噴射量GFUEL、吸気圧力P2、排気圧力P3、排気圧力P3L、高圧EGRバルブリフト量の検出値LHP_ACT、低圧EGRバルブリフト量の検出値LLP_ACT、エンジン回転数NE)と、適応入力UVNSとが含まれる。また、入力ベクトルの成分には、このように異なる種類の物理量に関するデータが含まれているとともに、異なる時刻の物理量に関するデータも含まれている。また、酸化触媒の下流側のNOx量は、酸化触媒の酸化能力にも大きく依存するため、入力ベクトルUの成分には、酸化触媒温度TDOCが含まれる。
Figure 0005149988
なお、入力ベクトルUの成分には、例えば、エンジンの冷却水の温度を含めてもよい。これにより、エンジンの暖機過程におけるNOx量の推定精度を向上することができる。
また、このような入力ベクトルU(k)に対するニューラルネットワークの出力Y(k)を、下記式(34)に示すように、NOx量の推定値NOXHAT(k)として定義する。
Figure 0005149988
ニューラルネットワークの学習は、以上のようにして入力ベクトルU(k)と出力Y(k)とを設定した上で、上述の第1実施形態と同様の手順に従って行う。すなわち、排気浄化システムの基準品と劣化品との少なくとも2つを準備し、入力ベクトルUの成分と、酸化触媒と選択還元触媒との間の排気のNOx量との関係を示すデータを、準備した排気浄化システムごとに取得する。そして、この取得したデータに基づいて、ニューラルネットワークの学習を行う。
ここで、ニューラルネットワークの学習に用いる上述のデータの教師データについて説明する。
教師データ、すなわち、ニューラルネットワークの出力NOXHATにより再現されるデータには、下記式(35)に示すように、酸化触媒と選択還元触媒との間のNOxの量を検出するNOxセンサの出力NOX(k)に補正係数KMOD_NO2(k)を乗算した修正NOx量NOXMOD(k)のデータを用いる。
Figure 0005149988
ここで、補正係数KMOD_NO2(k)は、下記式(36)及び(37)に示すように、上述の図18に示すマップに基づいて決定された選択還元触媒におけるNOx浄化率ITA_NOX(k)を、最大浄化率ITA_NOX_MAXで割ったものである。なお、NOxに対するNO2の比率RNO2(k)は、フーリエ変換赤外分光光度計(FTIR)などにより測定された値が用いられる。
Figure 0005149988
Figure 0005149988
すなわち、上述の修正NOx量NOXMODは、酸化触媒と選択還元触媒との間の排気のうち、選択還元触媒において浄化可能なNOx量に相当する。本実施形態では、このような修正NOx量が記録された教師データを用いてニューラルネットワークの学習を行い、その出力NOXHATを設定する。このようなNOxに対するNO2の比率による影響が予め反映された出力NOXHATに基づいてユリア噴射量を決定することにより、余分な尿素水の噴射を抑制し、アンモニアスリップの発生を抑制しながら、選択還元触媒におけるNOx浄化率を高く維持することができる。したがって、上述の課題(6)を解決することができる。
また、LAFセンサ出力推定値算出部812のニューラルネットワークに対する学習も、上述のNOx量推定値算出部811のニューラルネットワークと同様の手順により行う。
フィードフォワード噴射量決定部82は、下記式(38)に示すように、適応バーチャルセンサシステム81により算出されたNOx量の推定値NOXHAT(k)に、変換係数KCONV_NOX_UREAを乗算することにより、フィードフォワード噴射量GUREA_FF(k)を決定する。下記式(38)において、変換係数KCONV_NOX_UREAは、NOx量からユリア噴射量に変換する変換係数である。より具体的には、変換係数KCONV_NOX_UREAは、所定の量のNOxを還元するために必要なユリア噴射量である。
Figure 0005149988
ここで、上述のように、適応バーチャルセンサシステム81により算出されたNOx量の推定値NOXHATには、NOxに対するNO2の比率や選択還元触媒温度TSCRに応じて変化するNOx浄化率の影響が反映されている。したがって、上記式(38)に示すように、推定値に係数を乗算するだけで、過分の無い適切なフィードフォワード噴射量GUREA_FFを決定することができる。
ストレージ量目標値設定部83は、選択還元触媒温度の検出値TSCR(k)に基づいて、ストレージ量の目標値STUREA_CMD(k)を設定する。
図21は、最大ストレージ容量STUREA_MAXと選択還元触媒温度TSCRとの関係を示す図であり、検出値TSCR(k)に基づいて、ストレージ量の目標値STUREA_CMD(k)を設定するためのマップを示す図である。
この図に示すように、選択還元触媒温度TSCRが上昇するに従い最大ストレージ容量STUREA_MAXは減少する。そこで、ストレージ量の目標値STUREA_CMDは、アンモニアスリップが発生しないように、最大ストレージ容量STUREA_MAXよりもやや小さな値に設定される。
図19に戻って、ストレージ量目標値設定部83では、図21に示すようなマップに基づいて、検出値TSCR(k)に応じた目標値STUREA_CMD(k)を設定する。
フィードバック噴射量決定部84は、選択還元触媒の所定のストレージモデルに基づいてストレージ量STUREAを推定しつつ、このストレージ量の推定値STUREAが設定された目標値STUREA_CMDに一致するように、フィードバック噴射量GUREA_STを決定する。
図22は、選択還元触媒のストレージモデルの概念を示す模式図である。
このアンモニアストレージモデルは、選択還元触媒に流入する排気のNOx量に対するユリア噴射量に応じて、選択還元触媒におけるアンモニアのストレージ量の変化を推定するモデルである。具体的には、選択還元触媒におけるストレージ量の変化の状態を、所定のNOx量に対してユリア噴射量が適切な状態(図22の(a)参照)と、ユリア噴射量が過剰な状態(図22の(b)参照)と、ユリア噴射量が不足した状態(図22の(c)参照)との、3つの状態に分類する。
図22の(a)に示すように、選択還元触媒に流入するNOxに対して、ユリア噴射量が適切な状態である場合、すなわち、排気中のNOxを最も効率良く還元できるアンモニアの量と、供給した尿素水から生成されるアンモニアの量とが略一致した場合には、ストレージ量の変化はない。
図22の(b)に示すように、選択還元触媒に流入するNOxに対して、ユリア噴射量が過剰な状態である場合、すなわち、供給した尿素水から生成されたアンモニアの量が、排気中のNOxを最も効率良く還元できる量より多い場合には、この余剰分のアンモニアが選択還元触媒に貯蔵される。したがって、このような供給過剰(Over−dosing)状態では、ストレージ量は増加する。
図22の(c)に示すように、選択還元触媒に流入するNOxに対して、ユリア噴射量が不足した状態である場合、すなわち、供給した尿素水から生成されたアンモニアの量が、排気中のNOxを最も効率良く還元できる量より少ない場合には、この不足分は貯蔵されたアンモニアから補われる。したがって、このような供給不足(Under−dosing)状態では、ストレージ量は減少する。
フィードバック噴射量決定部84では、以上のようなストレージモデルに基づいてストレージ量の推定値STUREAを算出する。より具体的には、下記式(39)〜(42)に基づいて算出する。
先ず、選択還元触媒に流入したNOxを還元するために必要な量のユリア噴射量GUREA_IDEAL(k)は、下記式(39)に示すように、NOx量の推定値NOXHATに基づいて算出される。
Figure 0005149988
ストレージ量を増減する要因となるユリア噴射量の余剰分DUREA(k)は、下記式(40)に示すように、実際のユリア噴射量GUREA(k)から還元に必要なユリア噴射量GUREA_IDEAL(k)を減算することにより算出される。
Figure 0005149988
したがって、ストレージ量の推定値STUREA(k)は、最大ストレージ容量STUREA_MAX(k)を上限値として、下記式(41)及び(42)に示すように、ユリア噴射量の余剰分DUREA(k)に基づいて算出される。
Figure 0005149988
Figure 0005149988
ここで、最大ストレージ容量STUREA_MAX(k)は、選択還元触媒温度TSCR(k)に応じて、上述の図21に示すようなマップを検索することにより設定される。
フィードバック噴射量決定部84は、以上のように算出されたストレージ量の推定値STUREA(k)が目標値STUREA_CMD(k)に一致するように、下記式(43)〜(46)に以下に示すような拡大系I−P制御によりフィードバック噴射量GUREA_ST(k)を決定する。
先ず、下記式(43)に示すように、ストレージ量の推定値STUREA(k)と目標値STUREA_CMD(k)との偏差EST(k)を算出する。
Figure 0005149988
次に、偏差EST(k)に積分ゲインKISTを乗算したものを、下記式(44)に示すように、積分項GUREA_ST_I(k)として定義する。
Figure 0005149988
一方、ストレージ量の推定値の微分値STUREA(k)−STUREA(k−1)を算出し、この微分値に比例ゲインKPSTを乗算したものを、下記式(45)に示すように、比例項GUREA_ST_P(k)として定義する。
Figure 0005149988
次に、下記式(46)に示すように、比例項GUREA_ST_P(k)と積分項GUREA_ST_I(k)の和を算出し、これをフィードバック噴射量GUREA_ST(k)として決定する。
Figure 0005149988
次に、以上のように構成された本実施形態のユリア噴射制御のシミュレーション結果について、図23〜図26を参照して詳述する。
図23は、排気浄化システムを基準品とし、かつ、適応入力UVNSを「1」に固定した場合におけるシミュレーション結果を示す図である。
この場合、排気浄化システムを基準品としたため、適応入力UVNSを強制的に「1」に固定しても、NOx量の推定値NOXHATは実NOx量NOXACTに一致する。このため、ストレージ量の推定値STUREAは、目標値STUREA_CMDに維持される。この際、実際のストレージ量も目標値STUREA_CMDに維持されているので、選択還元触媒におけるNOx浄化率を高く維持することができる。したがって、選択還元触媒の下流側のNOx量は、可能な限り抑制される。
図24は、排気浄化システムを基準品とし、かつ、適応入力UVNSを非線形適応器により算出させた場合におけるシミュレーション結果を示す図である。
この場合、排気浄化システムを基準品としたため、適応入力UVNSを非線形適応器により算出させても、初期値の「1」のまま変動しない。したがって、上述の図23に示す結果とほぼ同様となり、NOx量の推定値NOXHATは実NOx量NOXACTに一致する。また、ストレージ量の推定値STUREAは、目標値STUREA_CMDに維持される。この際、実際のストレージ量も目標値STUREA_CMDに維持されているので、選択還元触媒におけるNOx浄化率を高く維持することができる。したがって、選択還元触媒の下流側のNOx量は、可能な限り抑制される。
図25は、排気浄化システムを時刻Aにおいて基準品から劣化品へ仮想的に変化させ、かつ、適応入力UVNSを「1」に固定した場合におけるシミュレーション結果を示す図である。
この場合、時刻A以降、NOx量の推定値NOXHATと実NOx量NOXACTとの間で誤差が発生する。また、LAFセンサの出力ΦACTと推定値ΦHATとの間にも誤差が発生する。しかしながら、適応入力UVNSを「1」に固定したため、NOx量の推定値NOXHATには誤差が生じたままである。このため、フィードフォワード噴射量GUREA_FFは、実NOx量NOXACTに対して不足した状態となり、また、フィードバック噴射量GUREA_STは、ストレージ量を目標値STUREA_CMDに維持するように適切に決定されなくなる。このため、選択還元触媒におけるストレージ量が急激に減少してしまい、その後、回復することもない。結果として、選択還元触媒におけるNOx浄化率が低下してしまい、選択還元触媒の下流側のNOx量が増加してしまう。
図26は、排気浄化システムを時刻Aにおいて基準品から劣化品へ仮想的に変化させ、かつ、適応入力UVNSを非線形適応修正器により算出させた場合におけるシミュレーション結果を示す図である。
この場合、時刻A以降、NOx量の推定値NOXHATと実NOx量NOXACTとの間で誤差が発生する。また、LAFセンサの出力ΦACTと推定値ΦHATとの間にも誤差が発生する。これに伴い、非線形適応修正器は、発生した誤差を最小にするように適応入力UVNSを「1」から修正する。また、この適応入力UVNSの修正により、NOx量の推定値NOXHATとLAFセンサの出力の推定値ΦHATに発生した誤差が次第に小さくなる。このため、フィードフォワード噴射量GUREA_FFは、実NOx量NOXACTに対して適切に決定され、選択還元触媒の下流側のNOx量の増加が抑制される。また、フィードバック噴射量GUREA_STもストレージ量を目標値STUREA_CMDに維持するように決定される。これにより、ストレージ量は、時刻Aにおいて、一旦は急激に減少するものの、ストレージ量の目標値STUREA_CMDに向けて次第に回復し始める。
以上より、本実施形態の適応バーチャルセンサシステムが、排気浄化システムの劣化に対して優れたロバスト性を発揮し、精度良くNOx量の推定値NOXHATを算出できることが確認された。また、この適応バーチャルセンサシステムが、排気浄化システムの固体ばらつきに対しても優れたロバスト性を発揮できることは明らかである。
本実施形態では、例えば、LAFセンサ34により検出手段が構成され、ECU8により、第1推定値算出手段、第2推定値算出手段、適応入力算出手段、及びコントローラが構成される。
具体的には、例えば、NOx量推定値算出部811により第1推定値算出手段が構成され、LAFセンサ出力推定値算出部812により第2推定値算出手段が構成され、非線形適応修正器813により適応入力算出手段が構成される。また、例えば、フィードフォワード噴射量決定部82、ストレージ量目標値設定部83、フィードバック噴射量決定部84、及び加算器85により、コントローラが構成される。
[第3実施形態]
次に、本発明の第3実施形態を、図面を参照して説明する。
以下の第3実施形態の説明にあたって、第1実施形態と同一構成要件については同一符号を付し、その説明を省略化又は簡略化する。
図27は、本実施形態に係るエンジン1及びその排気浄化システム2Bの構成を示す模式図である。
図27に示すように、本実施形態は、NOx浄化触媒65を備える点と、ECU9の構成とが、第1実施形態と異なる。
排気浄化システム2Bは、排気管30のうち酸化触媒35の下流側に設けられ、この排気管30を流通する排気中のNOxを浄化するNOx浄化触媒65を備える。
NOx浄化触媒65は、エンジン1で燃焼する混合気を理論空燃比よりもリーンにしたときに排気中のNOxを吸着又は吸蔵し、還元雰囲気下で吸着又は吸蔵したNOxを還元する。
ここで、還元雰囲気下とは、エンジン1で燃焼する混合気を理論空燃比よりもリッチにしたときにおける排気の雰囲気下(リッチ燃焼雰囲気下)、又は、還元剤が存在する排気の雰囲気下(還元剤雰囲気下)をいう。また、この還元剤雰囲気は、例えば、エンジン1で燃焼する混合気を理論空燃比よりもリーンにしたまま、排気工程や膨張行程において燃料を噴射(ポスト噴射)したり、排気管30内に燃料を直接噴射したりすることで生成することができる。
以下では、上述のような方法により、NOx浄化触媒65に流入する排気を還元雰囲気にすることで排気中のNOxを浄化する処理を、還元制御処理という。
このNOx浄化触媒65としては、例えば、アルミナ(Al)、セリア(CeO)、及びセリウムと希土類の複合酸化物(以下、「セリア系複合酸化物」という)の担体に担持された、触媒として作用する白金(Pt)と、NOx吸着能力を有するセリアもしくはセリア系複合酸化物と、触媒に生成されたアンモニアアンモニア(NH)を、アンモニウムイオン(NH )として保持する機能を有するゼオライトとを備えるものが用いられる。
ECU9には、クランク角度位置センサ11、アクセルセンサ12、吸気圧力センサ24、第1排気圧力センサ32、第2排気圧力センサ33、LAFセンサ34、第1リフトセンサ13、及び第2リフトセンサ14の他、冷却水温度センサ15、及びNOx浄化触媒温度センサ39が接続されている。
冷却水温度センサ15は、エンジン1の冷却水の温度Tを検出し、検出値に略比例した信号をECU9に送信する。NOx浄化触媒温度センサ39は、NOx浄化触媒65の温度TLNCを検出し、検出値に略比例した信号をECU9に送信する。
このような排気浄化システム2Bを制御するECUを構成するにあたり、本願発明者が着目した課題について説明する。
図28は、NOx浄化触媒におけるNOxの吸着/吸蔵効率と、NOxの吸着/吸蔵量との関係を示す図である。
図28に示すように、NOxの吸着/吸蔵効率は、NOxの吸着/吸蔵量が所定の量に達するまではほぼ一定であるが、所定の量を超えると急激に減少する。このため、高いNOx吸着/吸蔵効率を維持し続けるためには、NOxの吸着/吸蔵量が過大にならないように適切なタイミングで還元制御処理を行うことが好ましい。
この場合、NOx浄化触媒におけるNOxの吸着/吸蔵量を推定する必要がある。従来では、NOx浄化触媒の上流側に排気中のNOx量を検出するNOxセンサを設け、このNOxセンサの検出値に基づいてNOxの吸着/吸蔵量を推定することが行われている。しかしながら、このようにNOxセンサを用いた場合には、以下のような課題がある。
(7)先ず、現存するNOxセンサは、高精度でNOx吸着/吸蔵量を推定するにはNOxの観測分解能が十分ではなく、また固体ばらつきが大きい。このため、NOx吸着/吸蔵量の推定値が実際の値からずれてしまい、還元制御処理を実行するタイミングが適切でなくなる場合がある。したがって、NOx浄化触媒からNOxが飽和し、NOx浄化触媒の下流側へ排出されるNOxの量が増加する虞がある。
(8)また、現存するNOxセンサは、高精度でNOx吸着/吸蔵量を推定するには応答性能が十分では無い。このため、特に過渡時において大きなセンシング遅れが生じてしまい、結果として、NOx吸着/吸蔵量の推定値が実際の値からずれてしまい、還元制御処理を実行するタイミングが適切でなくなる場合がある。したがって、NOx浄化触媒が飽和状態となり、NOx浄化触媒の下流側へ排出されるNOx量が増加する虞がある。
(9)また、現存するNOxセンサは、センサ素子の割れを防止するために、急速昇温することができない。このため、エンジンの始動後、NOxセンサが活性に達するまで、数百秒程度かかってしまう場合がある。したがって、この間は、NOxセンサの出力を利用できないため、NOx吸着/吸蔵量を推定することができない。
(10)上述の第2実施形態では、還元剤、すなわち尿素水をユリア噴射装置により排気に直接噴射していたため、排気中の還元剤量を推定することは比較的容易である。これに対して本実施形態では、燃料を還元剤として用いるため、排気中の還元剤量は、燃焼室や排気管での燃焼、すなわちエンジンの運転条件により複雑に変化する。このため、従来の方法では還元剤量を推定することは困難である。
以下では、以上のような課題に鑑みてなされた、排気浄化システム2Bの制御装置の構成について説明する。以下、詳細に説明するように、本実施形態では、第1実施形態の排気浄化システムにおけるInert−EGR量の推定値と同様にして、排気中のNOx量の推定値と、排気中の還元剤量の推定値とを算出する適応バーチャルセンサシステムを構築する。すなわち、本実施形態では、ニューラルネットワークを用いて排気中のNOx量及び還元剤量を推定し、さらにこれらNOx量及び還元剤量の推定値に基づいて還元制御処理を実行する。
図29は、排気浄化システム2Bの制御装置の構成を示すブロック図である。なお、図29には、排気浄化システム2Bにおける還元制御処理の実行に係る構成のみを図示する。より具体的には、リッチモードフラグFRICHMODEの決定に関する、ECUにより構成されるモジュールのみを図示する。
リッチモードフラグFRICHMODEは、上述の還元制御処理を実行する時期であることを示すフラグである。すなわち、リッチモードフラグFRICHMODEを「1」にすることにより、還元制御処理の実行が指令される。この指令に基づいて、図示しないモジュールにより還元制御処理が実行される。また、このリッチモードフラグFRICHMODEを「0」に戻すことにより、還元制御処理の停止が指令される。この指令に基づいて、上述の還元制御処理が停止される。
このモジュールは、適応バーチャルセンサシステム91と、NOx吸着/吸蔵量推定部92と、リッチモードコントローラ93と、を含んで構成される。
適応バーチャルセンサシステム91は、複数のセンサ24,32,33,34,13,14,15の検出値P2,P3,P3L,ΦACT,LHP_ACT,LLP_ACT,T並びにリッチモードフラグFRICHMODEに基づいて、NOx浄化触媒に流入する排気のNOx量の推定値NOXHAT及びNOx浄化触媒に流入する排気の還元剤量の推定値REDHATを算出する。
図30は、適応バーチャルセンサシステム91の構成を示すブロック図である。
適応バーチャルセンサシステム91は、NOx量の推定値NOXHATを算出するNOx量推定値算出部911と、還元剤量の推定値REDHATを算出する還元剤量推定値算出部915と、LAFセンサ34の出力(排気空燃比)の推定値ΦHATを算出するLAFセンサ出力推定値算出部912と、適応入力UVNSを算出する非線形適応修正器913とを含んで構成される。
この適応バーチャルセンサシステム91では、上述の課題(7)〜(10)を解決するため、上述の第1実施形態におけるInert−EGR量の推定と同様にして、NOx量の推定値NOXHAT及び還元剤量の推定値REDHATを算出する。
すなわち、本実施形態の適応バーチャルセンサシステム91では、ニューラルネットワークが構築されたNOx量推定値算出部911及び還元剤量推定値算出部915により、NOx量の推定値NOXHAT及び還元剤量の推定値REDHATを算出する。さらに、これらNOx量及び還元剤量とは別の物理量であり、かつ、NOx量及び還元剤量と相関のある物理量である排気空燃比の推定値ΦHATを、NOx量推定値算出部911及び還元剤量推定値算出部915と同様のニューラルネットワーク構造を有するLAFセンサ出力推定値算出部912で算出する。なお、これらNOx量推定値算出部811、還元剤量推定値算出部915、及びLAFセンサ出力推定値算出部912のニューラルネットワーク構造は、それぞれ、第1実施形態のInert−EGR推定値算出部711及びLAFセンサ出力推定値算出部712のニューラルネットワーク構造とほぼ同様の構成であるので、その詳細な説明を省略する。
さらに、下記式(47)に示すように、算出した排気空燃比の推定値ΦHAT(k)とLAFセンサ34の検出値ΦACT(k)との間の推定誤差EHAT(k)を加算器914により算出する。
Figure 0005149988
さらに、非線形適応修正器913では、算出した推定誤差EHATが最小になるように、NOx量推定値算出部911、還元剤量推定値算出部915、及びLAFセンサ出力推定値算出部912に対し共通に入力される適応入力UVNSを算出する。なお、この非線形適応修正器913は、第1実施形態の非線形適応修正器713とほぼ同様の構成であるので、その詳細な説明を省略する。
次に、NOx量及び還元剤量を推定するための、ニューラルネットワークの学習について説明する。
先ず、ニューラルネットワークに対する入力ベクトルU(k)の成分を、下記式(48)に示すように定義する。このように、入力ベクトルU(k)の成分には、NOx量及び還元剤量を推定するために必要となる複数の物理量(冷却水温度T、リッチモードフラグFRICHMODE、燃料噴射量GFUEL、吸気圧力P2、排気圧力P3、排気圧力P3L、高圧EGRバルブリフト量の検出値LHP_ACT、低圧EGRバルブリフト量の検出値LLP_ACT、エンジン回転数NE)と、適応入力UVNSとが含まれる。また、入力ベクトルの成分には、このように異なる種類の物理量に関するデータが含まれているとともに、異なる時刻の物理量に関するデータも含まれている。
Figure 0005149988
また、このような入力ベクトルU(k)に対するニューラルネットワークの出力Y(k)を、下記式(49)及び(50)に示すように、NOx量の推定値NOXHAT(k)及び還元剤量の推定値REDHAT(k)として定義する。
Figure 0005149988
Figure 0005149988
ニューラルネットワークの学習は、以上のようにして入力ベクトルU(k)と出力Y(k)とを設定した上で、上述の第1実施形態と同様の手順に従って行う。すなわち、排気浄化システムの基準品と劣化品との少なくとも2つを準備し、入力ベクトルUの成分と、排気中のNOx量及び排気中の還元剤量との関係を示すデータを、準備した排気浄化システムごとに取得する。さらに取得したデータに基づいて、ニューラルネットワークの学習を行う。
ここで特に、エンジンの冷却水温度Tを変化させた場合のデータも取得しておく。このようなデータに基づいてニューラルネットワークの学習を行うことにより、エンジン始動後の暖機過程での排気中のNOx量の推定精度を向上し、上述の課題(9)を解決することができる。
また、LAFセンサ出力推定値算出部912のニューラルネットワークに対する学習も、上述のNOx量推定値算出部911及び還元剤量推定値算出部915のニューラルネットワークと同様の手順により行う。
NOx吸着/吸蔵量推定部92は、適応バーチャルセンサシステム91により算出されたNOx量の推定値NOXHAT及び還元剤量の推定値REDHATに基づいて、NOx浄化触媒におけるNOxの吸着/吸蔵量の推定値STNOX_HATを算出する。
このNOx吸着/吸蔵量推定部92では、下記式(51)及び(52)に示すような演算を所定の演算周期ごとに行うことにより、NOx吸着/吸蔵量の推定値STNOX_HAT(k)を算出する。なお、下記式(51)において、STNOX_MAX(k)は、NOx浄化触媒における最大NOx吸着/吸蔵量を示す。
Figure 0005149988
Figure 0005149988
図31は、NOx浄化触媒における最大NOx吸着/吸蔵量STNOX_MAXとNOx浄化触媒温度TLNCとの関係を示す図である。
この図に示すように、最大NOx吸着/吸蔵量STNOX_MAXは、NOx浄化触媒温度TLNCに応じて変化する。上記式(51)において、最大NOx吸着/吸蔵量STNOX_MAX(k)は、NOx浄化触媒温度TLNC(k)に基づいて、この図に示すようなマップを検索することにより算出される。
また、上記式(52)において、右辺第2項は、排気中のNOxを吸着/吸蔵したことによる増量分を示し、右辺第3項は、NOxを還元したことによる減量分を示す。
すなわち、右辺第2項のITA_NOX(k)は、NOx浄化触媒のNOx吸着/吸蔵効率の推定値を示す。このNOx吸着/吸蔵効率の推定値ITA_NOX(k)は、例えば、NOx浄化触媒温度TLNC(k)及びNOx吸着/吸蔵量の推定値STNOX_HAT(k)に基づいて、上述の図28に示すようなマップを検索することにより算出される。
また、右辺第3項の係数KREDは、還元剤量からNOx量へ変換する変換係数である。より具体的には、所定の量の還元剤で還元化能なNOxの量を示す。
リッチモードコントローラ93は、2つの閾値STRICH_ON(k)及びSTRICH_OFF(k)と、NOx吸着/吸蔵量の推定値STNOX_HAT(k)との比較に基づいて、リッチモードフラグFRICHMODE(k)を設定する。
より具体的には、リッチモードコントローラ93は、NOx吸着/吸蔵量の推定値STNOX_HAT(k)がSTRICH_ON(k)を超えた場合に、リッチモードフラグFRICHMODE(k)を「0」から「1」にする。また、リッチモードコントローラ93は、NOx吸着/吸蔵量の推定値STNOX_HAT(k)がSTRICH_OFF(k)を下回った場合に、リッチモードフラグFRICHMODE(k)を「1」から「0」に戻す。
また、これら閾値STRICH_ON(k)及びSTRICH_OFF(k)は、それぞれ、下記式(53)及び(54)に示すように、図31に示すマップを検索して設定された最大NOx吸着/吸蔵量STNOX_MAX(k)に係数KRON及びKROFFを乗算することで算出される。ここで、係数KRONは例えば0.80に設定され、係数KROFFは例えば0.15に設定される。
Figure 0005149988
Figure 0005149988
次に、以上のように構成された本実施形態の還元制御処理のシミュレーション結果について、図32〜図35を参照して詳述する。
図32は、排気浄化システムを基準品とし、かつ、適応入力UVNSを「1」に固定した場合におけるシミュレーション結果を示す図である。
この場合、排気浄化システムを基準品としたため、適応入力UVNSを強制的に「1」に固定しても、NOx量の推定値NOXHATは実NOx量NOXACTに一致する。このため、NOx吸着/吸蔵量の推定値STNOX_HATは、実際のNOx吸着/吸蔵量STNOX_ACTに一致する。このため、還元制御処理を実行するタイミングは適切に維持される。したがって、NOx浄化触媒の下流側のNOx量は、可能な限り抑制される。
図33は、排気浄化システムを基準品とし、かつ、適応入力UVNSを非線形適応器により算出させた場合におけるシミュレーション結果を示す図である。
この場合、排気浄化システムを基準品としたため、適応入力UVNSを非線形適応器により算出させても、初期値の「1」のまま変動しない。したがって、上述の図32に示す結果とほぼ同様となり、NOx量の推定値NOXHATは実NOx量NOXACTに一致する。また、NOx吸着/吸蔵量の推定値STNOX_HATは、実際のNOx吸着/吸蔵量STNOX_ACTに一致する。このため、還元制御処理を実行するタイミングは適切に維持される。したがって、NOx浄化触媒の下流側のNOx量は、可能な限り抑制される。
図34は、排気浄化システムを時刻Aにおいて基準品から劣化品へ仮想的に変化させ、かつ、適応入力UVNSを「1」に固定した場合におけるシミュレーション結果を示す図である。
この場合、時刻A以降、NOx量の推定値NOXHATと実NOx量NOXACTとの間で誤差が発生する。また、LAFセンサの出力ΦACTと推定値ΦHATとの間にも誤差が発生する。しかしながら、適応入力UVNSを「1」に固定したため、NOx量の推定値NOXHATには誤差が生じたままである。このため、NOx吸着/吸蔵量の推定値STNOX_HATと、実際のNOx吸着/吸蔵量STNOX_ACTとの間の誤差は次第に大きくなる。このため、還元制御処理を実行するタイミングが適切なタイミングからずれ始める。すなわち、実際のNOx吸着/吸蔵量STNOX_ACTが閾値STRICH_ONを上回っているにもかかわらず、還元制御処理が実行されなくなってしまう。このため、NOx浄化触媒が飽和状態になってしまい、結果として、NOx浄化触媒の下流側のNOx量が増加してしまう。
図35は、排気浄化システムを時刻Aにおいて基準品から劣化品へ仮想的に変化させ、かつ、適応入力UVNSを非線形適応修正器により算出させた場合におけるシミュレーション結果を示す図である。
この場合、時刻A以降、NOx量の推定値NOXHATと実NOx量NOXACTとの間で誤差が発生する。また、LAFセンサの出力ΦACTと推定値ΦHATとの間にも誤差が発生する。これに伴い、非線形適応修正器は、発生した誤差を最小にするとように適応入力UVNSを「1」から修正する。また、この適応入力UVNSの修正により、NOx量の推定値NOXHATとLAFセンサの出力の推定値ΦHATに発生した誤差が次第に小さくなる。このため、NOx吸着/吸蔵量の推定値STNOX_HATが実際のNOx吸着/吸蔵量から大きくずれるのを抑制することができる。したがって、NOx浄化触媒が飽和状態になるのを防止できる、また、これにより、NOx浄化触媒の下流側のNOx量の増加を抑制することができる。
以上より、本実施形態の適応バーチャルセンサシステムが、排気浄化システムの劣化に対して優れたロバスト性を発揮し、精度良くNOx量の推定値NOXHATを算出できることが確認された。また、この適応バーチャルセンサシステムが、排気浄化システムの固体ばらつきに対しても優れたロバスト性を発揮できることは明らかである。
本実施形態では、例えば、LAFセンサ34により検出手段が構成され、ECU9により、第1推定値算出手段、第2推定値算出手段、適応入力算出手段、及びコントローラが構成される。
具体的には、例えば、NOx量推定値算出部911及び還元剤量推定値算出部915により第1推定値算出手段が構成され、LAFセンサ出力推定値算出部912により第2推定値算出手段が構成され、非線形適応修正器913により適応入力算出手段が構成される。また、例えば、NOx吸着/吸蔵量推定部92、及びリッチモードコントローラ93により、コントローラが構成される。
なお本発明は上述した実施形態に限るものではなく、種々の変形が可能である。
例えば、上記実施形態では、ニューラルネットワークとして、図6に示すような階層型のパーセプトロンを用いたが、これに限らない。ニューラルネットワーク構造としては、この他、網目状のボルツマンマシン、出力の過去値を入力として用いるリカレント型ニューラルネットワーク、入力に各データの時系列データを用いるカオス型ニューラルネットワーク、多くの階層やニューロンを用いずに高精度の推定が可能な自己組織化マップ(SOM)、並びに、RBFニューラルネットワークを用いてもよい。
上記実施形態では、非線形適応修正器により、推定誤差及び参照パラメータに応じた適応入力を算出した(上述の図8〜図11参照)が、これに限らない。例えば、スライディングモード制御、バックステッピング制御、PID制御、及び最適制御アルゴリズムなどの既知のフィードバックアルゴリズムを用いて適応入力を算出することも効果的である。
上記実施形態の非線形適応修正器では、2つの参照パラメータ(エンジン回転数、燃料噴射量)を基底とした2次元の空間に重み関数を定義し、この重み関数を用いて適応入力UVNSを算出したが、これに限らない。すなわち、重み関数を定義する空間の次元数、及び、参照パラメータとして用いる物理量の種類は、上記実施形態に示した例に限らない。空間の次元数は、例えば、1次元又は3次元以上であってもよい。また、参照パラメータとして用いる物理量には、例えば、吸気圧力P2、排気圧力P3,P3L、及びEGRバルブリフト量LLP,LHPなどを用いてもよい。
上記実施形態の非線形適応修正器では、スライディングモード制御アルゴリズムを用いて領域ごとの局所適応入力Uijを算出した(上記式(26)〜(30)参照)が、これに限らない。例えば、バックステッピング制御、PID制御、及び最適制御アルゴリズムなどの既知のフィードバックアルゴリズムを用いて領域ごとの局所適応入力Uijを算出してもよい。
上記第1実施形態では、Inert−EGR量を推定したが、これに限らない。全体のEGR量のうち不活性分を示すInert−EGR量だけでなく、全体のEGR量もセンサを用いて検出することが難しい物理量である。このため、EGR量を適応バーチャルセンサシステムにより推定し、この推定に基づいて各EGR弁の操作量を決定することも効果的である。
上記第2実施形態の適応バーチャルセンサシステムでは、排気のNOxに対するNO2の比率に応じて選択還元触媒におけるNOx浄化率が変化することを考慮して、選択還元触媒に流入する排気のうち選択還元触媒で浄化可能なNOx量の推定値をNOXHATとして算出したが、これに限らない。すなわち、NOxに対するNO2の比率による影響を、ニューラルネットワークの出力の段階で考慮したが、これに限らない。
例えば、排気中のNOx量の推定値を算出するニューラルネットワークと、同じ排気中のNO2量の推定値を算出するニューラルネットワークとの2つを準備し、これらの出力に基づいて、ユリア噴射量GUREAを決定する段階において、NOxに対するNO2の比率による影響を考慮してもよい。
上記第2実施形態では、アンモニアを還元剤とし、かつ、この還元剤の元となる添加剤として尿素水を供給する尿素添加式の排気浄化システムに、本発明を適用した例を示したが、これに限るものではない。
例えば、尿素水を供給しこの尿素水からアンモニアを生成せずに、直接アンモニアを供給してもよい。また、アンモニアの元となる添加剤としては、尿素水に限らず他の添加剤を用いてもよい。また、NOxを還元するための還元剤はアンモニアに限るものではない。本発明は、NOxを還元するための還元剤として、アンモニアの代わりに、例えば炭化水素を用いた排気浄化システムに適用することもできる。

Claims (11)

  1. プラントの制御装置であって、
    前記プラントの状態を示す複数の物理量のうちの少なくとも1つである第1物理量の推定値を、複数の入力に基づき所定のアルゴリズムにより算出する第1推定値算出手段と、
    前記第1物理量と相関のある第2物理量の推定値を、複数の入力に基づき所定のアルゴリズムにより算出する第2推定値算出手段と、
    前記第2物理量を検出する検出手段と、
    前記検出手段により検出された第2物理量の検出値と前記第2推定値算出手段により算出された第2物理量の推定値との偏差が最小になるように、前記第1推定値算出手段及び前記第2推定値算出手段に入力される適応入力を算出する適応入力算出手段と、を備え、
    前記第1物理量の推定値に基づいて、前記プラントの所定の制御量を制御することを特徴とするプラントの制御装置。
  2. 前記第1推定値算出手段のアルゴリズム及び前記第2推定値算出手段のアルゴリズムは、それぞれ、所定の関数に従って出力する複数のニューロンを結合して構成されたニューラルネットワークであることを特徴とする請求項1に記載のプラントの制御装置。
  3. 前記第1推定値算出手段への複数の入力、及び、前記第2推定値算出手段への複数の入力には、それぞれ、複数の異なる時刻の物理量に関するデータが含まれることを特徴とする請求項2に記載のプラントの制御装置。
  4. 前記適応入力算出手段は、
    前記第1推定値算出手段への複数の入力、及び、前記第2推定値算出手段への複数の入力のうちの少なくとも1つを参照パラメータとし、当該参照パラメータを基底とする空間に、互いに重複する複数の領域を定義するとともに、各領域にそれぞれ「0」でない値を持つ正規化された複数の重み関数を設定する重み関数設定手段と、
    前記重み関数の値と前記偏差との積が最小になるように、前記領域ごとに修正値(Uij)を算出する修正値算出手段と、
    前記重み関数の値と前記修正値との積の全領域に亘る総和に基づいて適応入力を決定する決定手段と、を備えることを特徴とする請求項1から3の何れかに記載のプラントの制御装置。
  5. 前記プラントは、
    内燃機関の排気系を流通する排気の一部を、前記内燃機関の吸気系に還流する排気還流装置を備えた内燃機関の排気浄化システムであり、
    前記プラントの第1物理量は、前記排気還流装置により前記内燃機関に還流される排気に関するパラメータを含むことを特徴とする請求項1から4の何れかに記載のプラントの制御装置。
  6. 前記排気還流装置は、排気系を流通する排気の一部を吸気系に還流する排気還流通路と、当該排気還流通路に設けられた排気還流制御弁とを備え、
    前記制御装置は、前記還流される排気に関するパラメータの推定値が所定の目標値に一致するように、前記排気還流制御弁の操作量を決定するコントローラをさらに備えることを特徴とする請求項5に記載のプラントの制御装置。
  7. 前記プラントは、
    内燃機関の排気系に設けられ、還元剤の存在下で前記排気系を流通するNOxを還元する選択還元触媒と、
    前記排気系のうち前記選択還元触媒の上流側に、還元剤又は還元剤の元となる添加剤を供給する還元剤供給手段と、を備える内燃機関の排気浄化システムであり、
    前記プラントの第1物理量は、前記選択還元触媒に流入する排気中のNOxに関するパラメータを含むことを特徴とする請求項1から4の何れかに記載のプラントの制御装置。
  8. 前記排気中のNOxに関するパラメータの推定値に基づいて、前記還元剤供給手段による還元剤又は添加剤の供給量を決定するコントローラをさらに備えることを特徴とする請求項7に記載のプラントの制御装置。
  9. 前記プラントは、
    内燃機関の排気系に設けられ、前記内燃機関で燃焼する混合気を理論空燃比よりもリーンにしたときに排気中のNOxを吸着又は吸蔵し、還元雰囲気下で前記吸着又は吸蔵したNOxを還元するNOx浄化触媒と、
    前記NOx浄化触媒に流入する排気を還元雰囲気にする還元制御処理を実行する還元化手段と、を備える内燃機関の排気浄化システムであり、
    前記プラントの第1物理量は、前記NOx浄化触媒に流入する排気中のNOxに関するパラメータ、及び、前記NOx浄化触媒に流入する排気中の還元成分に関するパラメータを含むことを特徴とする請求項1から4の何れかに記載の制御装置。
  10. 前記NOxに関するパラメータ及び前記還元成分に関するパラメータの推定値に基づいて、前記還元制御処理の実行を指令するコントローラをさらに備えることを特徴とする請求項9に記載の制御装置。
  11. 前記第2物理量は、前記排気系を流通する排気の空燃比であることを特徴とする請求項5から10の何れかに記載のプラントの制御装置。
JP2011505786A 2009-03-27 2009-03-27 プラントの制御装置 Expired - Fee Related JP5149988B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/056366 WO2010109667A1 (ja) 2009-03-27 2009-03-27 プラントの制御装置

Publications (2)

Publication Number Publication Date
JPWO2010109667A1 JPWO2010109667A1 (ja) 2012-09-27
JP5149988B2 true JP5149988B2 (ja) 2013-02-20

Family

ID=42780376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011505786A Expired - Fee Related JP5149988B2 (ja) 2009-03-27 2009-03-27 プラントの制御装置

Country Status (4)

Country Link
US (1) US8965664B2 (ja)
EP (1) EP2413205B1 (ja)
JP (1) JP5149988B2 (ja)
WO (1) WO2010109667A1 (ja)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010050413A1 (de) * 2010-11-04 2012-05-10 Daimler Ag Kraftfahrzeug-Brennkraftmaschine mit Abgasrückführung
JP5426520B2 (ja) * 2010-11-24 2014-02-26 本田技研工業株式会社 内燃機関の制御装置
WO2012153403A1 (ja) * 2011-05-11 2012-11-15 トヨタ自動車株式会社 内燃機関の制御装置
KR101856243B1 (ko) * 2012-07-03 2018-05-09 현대자동차주식회사 연소음이 포함된 엔진의 소음 제어 방법
US9062615B2 (en) * 2012-08-15 2015-06-23 General Electric Company Methods and system for control of a two-stage turbocharger
WO2014156209A1 (ja) * 2013-03-27 2014-10-02 トヨタ自動車株式会社 内燃機関の制御装置
US9279375B2 (en) * 2013-06-05 2016-03-08 Ford Global Technologies, Llc System and method for controlling an engine that includes low pressure EGR
US10077744B2 (en) * 2013-12-20 2018-09-18 Toyota Jidosha Kabushiki Kaisha Exhaust gas control apparatus for internal combustion engine
JP6326910B2 (ja) * 2014-03-28 2018-05-23 マツダ株式会社 ターボ過給器付きエンジンの制御装置
FR3027948B1 (fr) * 2014-10-31 2020-10-16 Snecma Anneau d'helice en materiau composite pour une turbomachine
JP6350397B2 (ja) * 2015-06-09 2018-07-04 トヨタ自動車株式会社 内燃機関の制御装置
JP6531516B2 (ja) * 2015-06-24 2019-06-19 いすゞ自動車株式会社 内燃機関の吸排気システム
JP6528558B2 (ja) * 2015-06-24 2019-06-12 いすゞ自動車株式会社 内燃機関の吸排気システム
CN106762181B (zh) * 2016-11-28 2019-11-01 哈尔滨工程大学 一种基于神经网络的瞬态egr控制方法
IT201700092925A1 (it) * 2017-08-10 2019-02-10 St Microelectronics Srl Procedimento per la gestione dei gas di scarico in motori a combustione interna, sistema, motore, veicolo e prodotto informatico corrispondenti
JP6477951B1 (ja) 2018-04-05 2019-03-06 トヨタ自動車株式会社 車載電子制御ユニット
JP6501018B1 (ja) * 2018-04-20 2019-04-17 トヨタ自動車株式会社 未燃燃料量の機械学習装置
JP6702389B2 (ja) * 2018-10-09 2020-06-03 トヨタ自動車株式会社 車両用駆動装置の制御装置、車載電子制御ユニット、学習済みモデル、機械学習システム、車両用駆動装置の制御方法、電子制御ユニットの製造方法及び出力パラメータ算出装置
FR3090036A1 (fr) * 2018-12-17 2020-06-19 Psa Automobiles Sa Procede de correction d’une estimation des oxydes d’azote dans une ligne d’echappement
CN109668588A (zh) * 2019-02-27 2019-04-23 天津大学 基于虚拟传感器的风冷式制冷机组传感器故障诊断方法
JP6750708B1 (ja) * 2019-06-03 2020-09-02 トヨタ自動車株式会社 排気ガス再循環システムの異常検出装置
JP7231144B2 (ja) * 2019-07-17 2023-03-01 株式会社トランストロン エンジン制御装置及びそれが有するニューラルネットワークプログラム
TWI749925B (zh) * 2020-12-01 2021-12-11 英業達股份有限公司 製造設備製造參數調整控制系統及其方法
CN113406886B (zh) * 2021-06-22 2022-07-08 广州大学 单连杆机械臂的模糊自适应控制方法、系统及存储介质
CN114815584B (zh) * 2022-04-11 2022-12-27 哈尔滨工程大学 一种以天然气喷射器入口压力波动为输入的循环喷气量前馈pid闭环控制方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09501782A (ja) * 1993-08-05 1997-02-18 パヴィリオン・テクノロジーズ・インコーポレイテッド センサ評価を持つ仮想連続的排気ガス監視装置
JPH10312497A (ja) * 1997-05-13 1998-11-24 Toshiba Corp 交通状況予測装置
JPH11351049A (ja) * 1998-06-10 1999-12-21 Matsushita Electric Ind Co Ltd パラメータ推定制御装置
JP2001304027A (ja) * 2000-04-26 2001-10-31 Mitsubishi Heavy Ind Ltd ディーゼルエンジンの燃料噴射制御装置
JP2002049409A (ja) * 2000-06-08 2002-02-15 Fisher Rosemount Syst Inc プロセス制御システムにおける適応推定モデル
JP2003328732A (ja) * 2002-05-15 2003-11-19 Caterpillar Inc 仮想センサを使用するNOx排出制御システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10010745A1 (de) 2000-03-04 2002-03-28 Volkswagen Ag Verfahren zur Überwachung eines Katalysatorsystems einer Brennkraftmaschine eines Kraftfahrzeugs
JP4285459B2 (ja) * 2005-08-22 2009-06-24 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP4635974B2 (ja) 2006-07-12 2011-02-23 トヨタ自動車株式会社 ディーゼル機関の制御装置
JP2008106717A (ja) 2006-10-27 2008-05-08 Toyota Motor Corp 内燃機関の排気浄化システム
WO2010004611A1 (ja) * 2008-07-07 2010-01-14 本田技研工業株式会社 制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09501782A (ja) * 1993-08-05 1997-02-18 パヴィリオン・テクノロジーズ・インコーポレイテッド センサ評価を持つ仮想連続的排気ガス監視装置
JPH10312497A (ja) * 1997-05-13 1998-11-24 Toshiba Corp 交通状況予測装置
JPH11351049A (ja) * 1998-06-10 1999-12-21 Matsushita Electric Ind Co Ltd パラメータ推定制御装置
JP2001304027A (ja) * 2000-04-26 2001-10-31 Mitsubishi Heavy Ind Ltd ディーゼルエンジンの燃料噴射制御装置
JP2002049409A (ja) * 2000-06-08 2002-02-15 Fisher Rosemount Syst Inc プロセス制御システムにおける適応推定モデル
JP2003328732A (ja) * 2002-05-15 2003-11-19 Caterpillar Inc 仮想センサを使用するNOx排出制御システム

Also Published As

Publication number Publication date
US20120014838A1 (en) 2012-01-19
EP2413205B1 (en) 2014-04-09
WO2010109667A1 (ja) 2010-09-30
US8965664B2 (en) 2015-02-24
JPWO2010109667A1 (ja) 2012-09-27
EP2413205A4 (en) 2012-08-29
EP2413205A1 (en) 2012-02-01

Similar Documents

Publication Publication Date Title
JP5149988B2 (ja) プラントの制御装置
JP4501877B2 (ja) 内燃機関の制御装置
JP4961336B2 (ja) エンジンの排気浄化装置
JP6582409B2 (ja) 排気浄化システム
WO2016148250A1 (ja) 排気浄化システム
JP2016133050A (ja) 排気浄化システム
JP2012052510A (ja) 内燃機関の排気浄化システム
US8117829B2 (en) Exhaust emission control device and method for internal combustion engine, and engine control unit
JP6455246B2 (ja) 排気浄化システム
JP6476930B2 (ja) 排気浄化システム
JP5536562B2 (ja) プラントの制御装置
JP6515576B2 (ja) 排気浄化システム
JP6477088B2 (ja) NOx吸蔵量推定装置
JP6547347B2 (ja) 排気浄化システム
JP6455237B2 (ja) 排気浄化システム
JP6424618B2 (ja) 排気浄化システム
JP6547348B2 (ja) 排気浄化システム
JP6589372B2 (ja) 排気浄化装置
WO2017047702A1 (ja) 排気浄化システム
JP6515577B2 (ja) 排気浄化システム
JP2016200110A (ja) 排気浄化システム
JP2005083350A (ja) 内燃機関の触媒床温推定装置、及び内燃機関の制御装置
JP2005076504A (ja) 内燃機関の触媒制御方法及び触媒制御装置
JP2012036764A (ja) 排気浄化装置
WO2016117517A1 (ja) 排気浄化システム及びNOx浄化能力回復方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121130

R150 Certificate of patent or registration of utility model

Ref document number: 5149988

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees