WO2012153403A1 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
WO2012153403A1
WO2012153403A1 PCT/JP2011/060858 JP2011060858W WO2012153403A1 WO 2012153403 A1 WO2012153403 A1 WO 2012153403A1 JP 2011060858 W JP2011060858 W JP 2011060858W WO 2012153403 A1 WO2012153403 A1 WO 2012153403A1
Authority
WO
WIPO (PCT)
Prior art keywords
amount
air
fuel
supply
fuel injection
Prior art date
Application number
PCT/JP2011/060858
Other languages
English (en)
French (fr)
Inventor
真典 嶋田
真介 青柳
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US13/390,394 priority Critical patent/US9194322B2/en
Priority to CN201180016526.3A priority patent/CN102884299B/zh
Priority to PCT/JP2011/060858 priority patent/WO2012153403A1/ja
Priority to EP11824288.2A priority patent/EP2708724B1/en
Priority to JP2011538753A priority patent/JP5083583B1/ja
Publication of WO2012153403A1 publication Critical patent/WO2012153403A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1458Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1461Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1461Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine
    • F02D41/1462Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2474Characteristics of sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/224Diagnosis of the fuel system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1452Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being a COx content or concentration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1452Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being a COx content or concentration
    • F02D41/1453Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being a COx content or concentration the characteristics being a CO content or concentration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1459Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being a hydrocarbon content or concentration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/182Circuit arrangements for generating control signals by measuring intake air flow for the control of a fuel injection device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a control device for an internal combustion engine.
  • Patent Document 1 discloses an internal combustion engine including a fuel injection valve, an air flow meter, an air-fuel ratio sensor, and an electronic control device.
  • the fuel injection valve is disposed in the main body of the internal combustion engine, and injects fuel into the combustion chamber upon receiving a command to inject fuel from the electronic control unit.
  • the air flow meter is disposed in the intake passage of the internal combustion engine, and outputs an output value corresponding to the amount of air passing therethrough to the electronic control unit.
  • the electronic control unit calculates the amount of air passing through the air flow meter based on this output value. Air that has passed through the air flow meter is sucked into the combustion chamber.
  • the air flow meter detects the amount of air taken into the combustion chamber (hereinafter, this amount is referred to as “intake air amount”).
  • the air-fuel ratio sensor is disposed in the exhaust passage of the internal combustion engine, and outputs an output value corresponding to the oxygen concentration in the exhaust gas arriving there to the electronic control unit.
  • the electronic control unit calculates the air-fuel ratio of the air-fuel mixture formed in the combustion chamber based on this output value. Therefore, the air-fuel ratio sensor can be said to detect the air-fuel ratio of the air-fuel mixture formed in the combustion chamber (hereinafter, this air-fuel ratio is simply referred to as “air-fuel ratio of the air-fuel mixture”).
  • the actual fuel injection amount that is, the amount of fuel actually injected from the fuel injection valve
  • the command fuel injection amount that is, the amount of fuel instructed to be injected from the electronic control unit to the fuel injection valve.
  • An error may occur between
  • the electronic control unit performs control based on the assumption that there is no error between the actual fuel injection amount and the command fuel injection amount. And the expected performance of the internal combustion engine may not be obtained.
  • the electronic control unit performs control assuming that there is no error between the actual intake air amount and the detected intake air amount. If this is the case, the expected performance of the internal combustion engine may not be obtained.
  • the air-fuel ratio of the air-fuel mixture is calculated using the command fuel injection amount and the detected intake air amount (hereinafter, the calculated air-fuel ratio is referred to as “estimated air-fuel ratio”).
  • An error of the estimated air-fuel ratio with respect to the detected air-fuel ratio (that is, the air-fuel ratio detected by the air-fuel ratio sensor) is calculated.
  • This error is estimated to be caused by a fuel injection amount error (that is, an error between the actual fuel injection amount and the command fuel injection amount) and an intake air amount error (that is, an actual intake air amount).
  • an air-fuel ratio error estimated to be caused by an error between the detected intake air amount and the detected intake air amount is estimated using the command fuel injection amount and the detected intake air amount.
  • the command fuel injection amount is corrected so as to compensate for the air-fuel ratio error estimated to be caused by the fuel injection amount error thus distributed, and the intake air amount error thus distributed is caused.
  • the detected intake air amount is corrected so as to compensate for the estimated air-fuel ratio error.
  • the fuel injection is performed out of the air-fuel ratio error (that is, the estimated air-fuel ratio error with respect to the detected air-fuel ratio) after the command fuel injection amount is changed and the internal combustion engine is operated.
  • the ratio of the air-fuel ratio error caused by the quantity error and the ratio of the air-fuel ratio error caused by the intake air quantity error are obtained in advance, and these percentages are stored in the electronic control unit in the form of a function fuel injection quantity function map. .
  • the ratio of the air-fuel ratio error caused by the fuel injection amount error and the ratio of the air-fuel ratio error caused by the intake air amount error are acquired from the map according to the command fuel injection amount.
  • the air-fuel ratio error calculated during engine operation is estimated based on the obtained ratio, and the air-fuel ratio error estimated to be caused by the fuel injection amount error and the intake air amount error is estimated.
  • the command fuel injection amount and the detected intake air amount are corrected so as to compensate for the air-fuel ratio error.
  • an internal combustion engine (more specifically, a ratio for dividing the air-fuel ratio error into the air-fuel ratio error caused by the fuel injection amount and the air-fuel ratio error caused by the intake air amount error becomes a reference). Specifically, it is obtained using a reference fuel injection valve, an air flow meter, an air-fuel ratio sensor, and the like. Therefore, when considering the manufacturing error of the internal combustion engine (more specifically, the manufacturing error of the fuel injection valve, the air flow meter, the air-fuel ratio sensor, etc.), the ratio obtained using the reference internal combustion engine is the individual internal combustion engine. It may not be appropriate for the institution.
  • the ratio obtained using the reference internal combustion engine is individually May not be suitable for some internal combustion engines.
  • the correction of the command fuel injection amount is excessive or small with respect to the error of the command fuel injection amount with respect to the actual fuel injection amount, and the error of the detected intake air amount with respect to the actual intake air amount.
  • the correction of the detected intake air amount is excessive or too small.
  • an object of the present invention is to correct the fuel supply command value with respect to the error of the command fuel supply amount with respect to the actual fuel injection amount without excess or deficiency and to detect the detected supply air amount with respect to the error of the detected supply air amount with respect to the actual supply air amount Is to correct without overs and shorts.
  • the invention of the present application includes a fuel supply means for supplying fuel to the combustion chamber, a target fuel supply amount setting means for setting the amount of fuel to be supplied to the combustion chamber by the fuel supply means as a target fuel supply amount, and the target Based on the target fuel supply amount, a fuel supply command value for supplying the fuel of the target fuel supply amount set by the fuel supply amount setting unit from the fuel supply unit to the combustion chamber is calculated.
  • Air-fuel ratio calculating means for calculating the air-fuel ratio of the air-fuel mixture formed in the combustion chamber from the fuel supply amount grasped from the fuel supply command value and the amount of air detected by the supply air amount detection means
  • combustion Exhaust component concentration detection means for detecting the concentration of a specific component in exhaust gas discharged from the fuel, a fuel injection amount grasped from the fuel supply command value, and an air amount detected by the supply air amount detection means
  • the present invention relates to a control device for an internal combustion engine comprising exhaust component concentration calculation means for calculating a concentration of a specific component in exhaust gas discharged from a combustion chamber.
  • the fuel supply means may be any means as long as it supplies fuel to the combustion chamber.
  • fuel injection for supplying fuel to the combustion chamber by directly injecting fuel into the combustion chamber of the internal combustion engine. It may be a valve or a fuel injection valve that supplies fuel to the combustion chamber by injecting fuel into the intake port of the internal combustion engine.
  • the exhaust component concentration detecting means includes means for detecting the amount of the specific component in the exhaust gas discharged from the combustion chamber.
  • the amount of air detected by the air amount detection means is corrected.
  • the command fuel supply amount (that is, the fuel supply amount grasped from the fuel supply command value) with respect to the actual fuel supply amount (that is, the amount of fuel actually supplied to the combustion chamber by the fuel supply means)
  • the fuel supply command value or the fuel supply amount obtained from the error is corrected without excess or deficiency
  • the detected supply for the actual supply air amount (that is, the amount of air actually supplied to the combustion chamber by the air supply means) is corrected.
  • the detected intake air amount is corrected without excess or deficiency with respect to an error in the air amount (that is, the amount of air detected by the supply air amount detection means). The reason for this will be described below.
  • the command fuel supply amount and the detected supply air amount are considered in the calculation of the air-fuel ratio by the air-fuel ratio calculation means. Therefore, the air-fuel ratio detected by the air-fuel ratio detection means (hereinafter this air-fuel ratio is also referred to as “detected air-fuel ratio”) and the air-fuel ratio calculated by the air-fuel ratio calculation means (hereinafter this air-fuel ratio is also referred to as “calculated air-fuel ratio”).
  • the command fuel supply amount and the detected supply air amount are also taken into account in the deviation between On the other hand, the command fuel supply amount and the detected supply air amount are also taken into account in the calculation of the concentration of the specific component by the exhaust component concentration calculation means.
  • the concentration of the specific component detected by the exhaust component concentration detection means (hereinafter referred to as “detection characteristic component concentration”) and the concentration of the specific component calculated by the exhaust component concentration calculation means (hereinafter referred to as “calculation of this concentration”).
  • concentration characteristic component concentration concentration of the specific component detected by the exhaust component concentration detection means
  • concentration of the specific component calculated by the exhaust component concentration calculation means (hereinafter referred to as “calculation of this concentration”).
  • the command fuel supply amount and the detected supply air amount are also considered in the deviation between the specific component concentration and the specific component concentration.
  • the command fuel supply amount and the detected supply air amount are considered in the error between the detected air-fuel ratio and the calculated air-fuel ratio as well as in the deviation between the detected specific component concentration and the calculated specific component concentration. It is.
  • the command fuel supply amount reflects the error when there is an error between it and the actual fuel supply amount, and the detected supply air amount has an error between it and the actual supply air amount. The error is reflected in the case where it is present. Then, by correcting the command fuel supply amount (that is, the fuel supply command value) and the detected supply air amount so that these errors are reduced, the error of the command fuel supply amount with respect to the actual fuel supply amount and the detection with respect to the actual supply air amount are detected. The error in the supply air amount is reduced.
  • two parameters having different properties that is, a command fuel supply amount and a detected supply air amount
  • the detected air-fuel ratio and the calculated air-fuel ratio are regulated as regulations that regulate correction of these two parameters
  • Two regulations having different properties are adopted, that is, a regulation for reducing an error between and a detection specific component concentration, and a regulation for reducing an error between a detected specific component concentration and a calculated specific component concentration. That is, in the present invention, two regulations are adopted for correcting two parameters.
  • the fuel supply command value with respect to the error of the command fuel supply amount with respect to the actual fuel supply amount is corrected without excess and deficiency
  • the detected supply air amount is corrected without excess and deficiency with respect to the error of the detected supply air amount with respect to the actual supply air amount.
  • the specific component may be any component as long as its concentration changes depending on the amount of fuel supplied to the combustion chamber and the amount of air supplied to the combustion chamber, for example, unburned hydrocarbon ( Unburned HC) or carbon monoxide (CO) may be used.
  • Unburned hydrocarbon Unburned HC
  • CO carbon monoxide
  • NOx generation amount the amount of nitrogen oxides (NOx) generated by the combustion of fuel in the combustion chamber (hereinafter this amount is referred to as “NOx generation amount”) is greatly affected by the fuel supply amount and the supply air amount. That is, the sensitivity of the NOx generation amount with respect to the change in the error of the command fuel supply amount with respect to the actual fuel supply amount and the sensitivity of the NOx generation amount with respect to the change in the error of the detected supply air amount with respect to the actual supply air amount are high.
  • the fuel supply command value is more reliably corrected and detected.
  • the specific component is preferably nitrogen oxide contained in the exhaust gas.
  • a correction value that eliminates an error relating to the amount of fuel supplied by the fuel supply means is referred to as a fuel supply amount correction value, and an error relating to the amount of air detected by the supply air amount detection means is eliminated.
  • the correction value to be performed is referred to as a supply air amount correction value
  • the fuel supply amount correction value and the supply air amount correction value are used to calculate the air / fuel ratio detected by the air / fuel ratio detection means and the air / fuel ratio calculation means.
  • the fuel supply amount correction value and the supply air amount correction value are calculated by solving simultaneous equations composed of these two equations, and the fuel supply command value or The fuel supply amount grasped from the fuel supply command value is corrected by the calculated fuel supply amount correction value, and the amount of air detected by the supply air amount detecting means is corrected by the calculated supply air amount correction value.
  • the deviation between the air-fuel ratio detected by the air-fuel ratio detecting means by the correction and the air-fuel ratio calculated by the air-fuel ratio calculating means, the concentration of the specific component detected by the exhaust component concentration detecting means, and the The deviation from the concentration of the specific component calculated by the exhaust component concentration calculating means may be reduced.
  • a range in which a correction amount for the fuel supply command value can be taken when no failure has occurred in the fuel supply means is set as a fuel supply command value correction allowable range, and a correction amount for the fuel supply command value
  • the fuel supply command value correction is not within the allowable range, it may be diagnosed that the fuel supply means has failed.
  • the fuel supply command value is corrected without excess or deficiency with respect to an error in the command fuel supply amount with respect to the actual fuel supply amount. Therefore, the correction amount for the fuel supply command value accurately represents an error in the command fuel supply amount with respect to the actual fuel supply amount. Therefore, if the failure of the fuel supply means is diagnosed based on the correction amount for the fuel supply command value, the failure of the fuel supply means can be diagnosed more accurately.
  • a range in which a correction amount for the detected supply air amount can be taken when the supply air amount detection unit has not failed is set as a detection supply air amount correction allowable range, and the fuel supply command value When the correction amount is not within the detected supply air amount correction allowable range, it may be diagnosed that a failure has occurred in the supply air amount detection means.
  • the detected supply air amount is corrected without excess or deficiency with respect to the error of the detected supply air amount with respect to the actual supply air amount. Therefore, the correction amount for the detected supply air amount accurately represents an error in the detected supply air amount with respect to the actual supply air amount. Therefore, if the failure of the supply air amount detection means is diagnosed based on the correction amount for the detected supply air amount, the failure of the supply air amount detection means can be diagnosed more accurately.
  • (A) is the figure which showed the map used in order to acquire the target fuel injection amount TGF based on the accelerator pedal opening degree Dac
  • (B) is the target based on the fuel injection amount GF and the engine speed N. It is the figure which showed the map used in order to acquire a throttle valve opening degree. It is the figure which showed an example of the routine which performs calculation and learning of the fuel injection amount correction value and intake air amount correction value of this invention. It is the figure which showed an example of the routine which performs the failure diagnosis of the fuel injection valve of this invention, and an airflow meter.
  • FIG. 1 shows an internal combustion engine to which the control device of the present invention is applied.
  • An internal combustion engine 10 shown in FIG. 1 includes a main body (hereinafter referred to as “engine main body”) 20 of an internal combustion engine, fuel injection valves 21 respectively disposed corresponding to four combustion chambers of the engine main body, A fuel pump 22 for supplying fuel to the fuel injection valve 21 via a fuel supply pipe 23 is provided.
  • the internal combustion engine 10 further includes an intake system 30 that supplies air to the combustion chamber from the outside, and an exhaust system 40 that exhausts exhaust gas discharged from the combustion chamber to the outside.
  • the internal combustion engine 10 is a compression self-ignition internal combustion engine (so-called diesel engine).
  • the intake system 30 includes an intake branch pipe 31 and an intake pipe 32.
  • the intake system 30 may be referred to as an “intake passage”.
  • One end portion (that is, a branch portion) of the intake branch pipe 31 is connected to an intake port (not shown) formed in the engine body 20 corresponding to each combustion chamber.
  • the other end of the intake branch pipe 31 is connected to the intake pipe 32.
  • a throttle valve 33 that controls the amount of air flowing through the intake pipe is disposed in the intake pipe 32.
  • an intercooler 34 for cooling the air flowing through the intake pipe is disposed in the intake pipe 32.
  • an air cleaner 36 is disposed at an end facing the outside of the intake pipe 32.
  • the exhaust system 40 includes an exhaust branch pipe 41 and an exhaust pipe 42.
  • the exhaust system 40 may be referred to as an “exhaust passage”.
  • One end portion (that is, a branch portion) of the exhaust branch pipe 41 is connected to an exhaust port (not shown) formed in the engine body 20 corresponding to each combustion chamber.
  • the other end of the exhaust branch pipe 41 is connected to the exhaust pipe 42.
  • a catalytic converter 43 having an exhaust purification catalyst 43A for purifying a specific component in the exhaust gas is disposed.
  • an oxygen concentration sensor that outputs an output value corresponding to the oxygen concentration in the exhaust gas discharged from the combustion chamber (hereinafter referred to as “upstream side of the oxygen concentration sensor”) is output to the exhaust pipe 42 upstream of the exhaust purification catalyst 43A.
  • 76U (referred to as“ oxygen concentration sensor ”) is attached.
  • an oxygen concentration sensor that outputs an output value corresponding to the oxygen concentration in the exhaust gas flowing out from the exhaust purification catalyst 43A is supplied to the exhaust pipe 42 downstream of the exhaust purification catalyst 43A (hereinafter, this oxygen concentration sensor is referred to as “downstream”).
  • 76D (referred to as“ side oxygen concentration sensor ”) is attached.
  • a sensor that outputs an output value corresponding to the concentration of NOx (nitrogen oxide) in the exhaust gas exhausted from the combustion chamber is provided in the exhaust pipe 42 upstream of the exhaust purification catalyst 43A (hereinafter referred to as “sensor”). 77 ”(referred to as“ NOx sensor ”) is attached.
  • intake air amount the flow rate of air flowing through the intake pipe (therefore, the flow rate of air sucked into the combustion chamber, hereinafter referred to as “intake air amount”).
  • intake air amount the flow rate of air flowing through the intake pipe
  • intake air amount the flow rate of air sucked into the combustion chamber
  • An air flow meter 71 for outputting the output value is attached.
  • the intake branch pipe 31 is attached with a pressure sensor (hereinafter referred to as “intake pressure sensor”) 72 that outputs an output value corresponding to the pressure of the gas in the intake branch pipe (that is, intake pressure).
  • intake pressure sensor a pressure sensor that outputs an output value corresponding to the pressure of the gas in the intake branch pipe (that is, intake pressure).
  • crank position sensor 74 that outputs an output value corresponding to the rotational phase of the crankshaft is attached to the engine body 20.
  • the internal combustion engine 10 includes an electronic control device 60.
  • the electronic control device 60 includes a microprocessor (CPU) 61, a read only memory (ROM) 62, a random access memory (RAM) 63, a backup RAM (Back up RAM) 64, and an interface 65.
  • the fuel injection valve 21, the fuel pump 22, and the throttle valve 33 are connected to the interface 65, and a control signal for controlling these operations is given from the electronic control device 60 through the interface 65.
  • the interface 65 includes an air flow meter 71, an intake pressure sensor 72, a crank position sensor 74, and an opening degree of the accelerator pedal AP (that is, the depression amount of the accelerator pedal AP.
  • the accelerator pedal opening sensor 75, the upstream oxygen concentration sensor 76U, the downstream oxygen concentration sensor 76D, and the NOx sensor 77 are also connected and output from the air flow meter 71.
  • the output value output from the downstream oxygen concentration sensor 76D, and the NOx concentration Output value outputted from the sub 77 is input to the interface 65.
  • the electronic control unit 60 calculates the intake air amount based on the output value of the air flow meter 71, calculates the intake pressure based on the output value of the intake pressure sensor 72, and determines the engine based on the output value of the crank position sensor 74.
  • the number of revolutions (that is, the number of revolutions of the internal combustion engine) is calculated, the accelerator pedal opening is calculated based on the output value of the accelerator pedal opening sensor 75, and from the combustion chamber based on the output value of the upstream oxygen concentration sensor 76U.
  • the air-fuel ratio of the exhaust gas that is exhausted and before flowing into the exhaust purification catalyst 43A (that is, the air-fuel ratio of the air-fuel mixture formed in the combustion chamber) is calculated, and the output value of the downstream oxygen concentration sensor 76D Based on this, the air-fuel ratio of the exhaust gas flowing out from the exhaust purification catalyst 43A is calculated. Since the upstream oxygen concentration sensor 76U can be said to detect the air-fuel ratio of the air-fuel mixture formed in the combustion chamber, in the following description, the upstream oxygen concentration sensor is simply referred to as “air-fuel ratio sensor”. And
  • engine operation is “operation of the internal combustion engine”
  • fuel injection amount is “amount of fuel injected from the fuel injection valve”
  • actual fuel injection amount is “fuel The amount of fuel actually injected from the injection valve ”.
  • an appropriate fuel injection amount is obtained in advance by experiments or the like in accordance with the accelerator pedal opening, and these fuel injection amounts are determined as shown in FIG.
  • the target fuel injection amount TGF is stored in the electronic control unit in the form of a Dac function map.
  • the target fuel injection amount TGF is acquired from the map of FIG. 2A according to the accelerator pedal opening degree Dac.
  • a valve opening time of the fuel injection valve necessary for injecting the fuel of the acquired target fuel injection amount TGF into the fuel injection valve (hereinafter, this valve opening time is referred to as “target valve opening time”) is calculated.
  • a command value for opening the fuel injection valve for the calculated valve opening time hereinafter, this command value is referred to as “fuel injection command value” is given to the fuel injection valve.
  • an appropriate throttle valve opening (that is, the throttle valve opening) corresponding to the fuel injection amount and the engine speed is determined in advance through experiments or the like.
  • the obtained throttle valve opening is electronically controlled in the form of a map of a function of the fuel injection amount GF and the engine speed N as the target throttle valve opening TDth as shown in FIG. It is stored in the device 60.
  • the target throttle valve opening TDth is acquired from the map of FIG. 2B based on the fuel injection amount GF and the engine speed N.
  • the opening of the throttle valve is controlled so that the throttle valve is opened by the acquired target throttle valve opening TDth.
  • the target throttle valve opening TDth increases as the fuel injection amount GF increases, and the target throttle valve opening TDth increases as the engine speed N increases.
  • the target fuel injection amount TGF (that is, from the map of FIG. 2A) is used as the fuel injection amount GF used for acquiring the target throttle valve opening TDth from the map of FIG.
  • the acquired target fuel injection amount TGF is employed.
  • this fuel injection valve when a fuel injection valve having standard characteristics (hereinafter, this fuel injection valve is referred to as a “reference fuel injection valve”), a target fuel injection amount of fuel is used as the reference fuel.
  • a function that can calculate the fuel injection command value that can be injected from the injection valve is obtained in advance by experiments or the like, and the fuel injection command value is calculated by applying the target fuel injection amount to this function during engine operation. Is done. Therefore, as long as the characteristics of the fuel injection valve match the characteristics of the reference fuel injection valve, if the fuel injection command value calculated by the above function is given to the fuel injection valve, the fuel of the target fuel injection amount is discharged from the fuel injection valve.
  • the actual fuel injection amount matches the target fuel injection amount.
  • the characteristics of the fuel injector do not match the characteristics of the reference fuel injector due to manufacturing errors of the fuel injector, or the characteristics of the fuel injector due to deterioration of the fuel injector over time, etc. Is no longer equal to the reference fuel injection valve, even if the fuel injection command value calculated by the above function is given to the fuel injection valve, the target fuel injection amount of fuel is not injected from the fuel injection valve. That is, the actual fuel injection amount does not match the target fuel injection amount.
  • a fuel injection amount correction value (details will be described later) representing a deviation of the actual fuel injection amount with respect to the target fuel injection amount is calculated and calculated by the above function.
  • the fuel injection command value is corrected by multiplying the fuel injection command value by the reciprocal of the calculated fuel injection amount correction value, and the corrected fuel injection command value is used as the final fuel injection command value.
  • the actual fuel injection amount matches the target fuel injection amount, or at least the actual fuel injection amount approaches the target fuel injection amount.
  • the fuel injection command value corrected according to the present invention is not only used to bring the actual fuel supply amount close to the target fuel injection amount, but also executes a control in which the internal combustion engine uses the fuel injection amount as one parameter. In such a case, the fuel injection amount may be used for grasping.
  • an air flow meter output value is converted into an actual intake air amount when an air flow meter having standard characteristics (hereinafter referred to as “reference air flow meter”) is used as a reference.
  • a function to be obtained is obtained in advance by experiments or the like, and the intake air amount is calculated as the detected intake air amount by applying the output value of the air flow meter to this function during engine operation. Therefore, as long as the characteristics of the air flow meter match the characteristics of the reference air flow meter, the detected intake air amount calculated by the above function matches the actual intake air amount.
  • the characteristics of the air flow meter do not match the characteristics of the reference air flow meter due to manufacturing errors of the air flow meter, or the characteristics of the air flow meter change to the reference air flow meter due to deterioration of the air flow meter over time, etc. If they do not match, the detected intake air amount calculated by the above function does not match the actual intake air amount.
  • an intake air amount correction value (details will be described later) representing a deviation of the detected intake air amount with respect to the actual intake air amount is calculated and calculated by the above function.
  • the detected intake air amount is corrected by multiplying the calculated detected intake air amount by the calculated intake air amount correction value, and this corrected detected intake air amount is set as the final detected intake air amount.
  • the detected intake air amount matches the actual intake air amount, or at least the detected intake air amount approaches the actual intake air amount.
  • the detected intake air amount corrected according to the present invention is used, for example, when the internal combustion engine performs control using the detected intake air amount as one parameter.
  • the instantaneous value XFI of the fuel injection amount correction value and the instantaneous value XAI of the intake air amount correction value are calculated by solving simultaneous equations consisting of the following equations 1 and 2 during engine operation. Is done.
  • Equation 1 “AFd” is “detected air-fuel ratio (that is, the air-fuel ratio of the air-fuel mixture detected by the air-fuel ratio sensor)”, and “AFe” is “estimated air-fuel ratio”.
  • NOXd is “detected NOx concentration”
  • Fnox is “a model or function for calculating the NOx concentration in the exhaust gas from the fuel injection amount and the intake air amount”.
  • GFe is “command fuel injection amount (that is, fuel injection amount grasped from fuel injection command value calculated based on current target fuel injection amount”)
  • GAd is “detected intake air amount”.
  • AFd AFe ⁇ XAI / XFI (1)
  • NOXd Fnox (GFe ⁇ XFI, GAd ⁇ XAI) (2)
  • Equation 3 the estimated air-fuel ratio AFe used in Equation 1 is calculated according to the following Equation 3.
  • GAd is “detected intake air amount”
  • GFe is “command fuel injection amount (that is, fuel injection grasped from the fuel injection command value calculated based on the current target fuel injection amount). Amount) ".
  • Equation 4 “XFG” is “a learned value of the fuel injection amount correction value acquired according to the current engine operating state”, and “XFI” is “the instantaneous value of the fuel injection amount correction value calculated this time” It is.
  • XAG is “a learned value of the fuel injection amount correction value acquired according to the current engine operating state”, and “XAI” is “the instantaneous value of the intake air amount correction value calculated this time” Is.
  • the newly calculated fuel injection amount correction value is used as the learning value of the fuel injection amount correction value corresponding to the current engine operating state. Is remembered. That is, the learning value of the fuel injection amount correction value corresponding to the current engine operating state is updated.
  • the newly calculated intake air amount correction value is used as the learned value of the intake air amount correction value corresponding to the current engine operating state. Is remembered. That is, the learning value of the intake air amount correction value corresponding to the current engine operating state is updated.
  • the actual fuel injection amount matches the target fuel injection amount by correcting the fuel injection command value with the fuel injection amount correction value calculated as described above (or the actual fuel injection amount is the target fuel injection amount).
  • the detected intake air amount matches the actual intake air amount (or the detected intake air amount is The reason for approaching the intake air amount will be described.
  • the actual intake air amount is represented by “GAa” and the detected intake air amount is represented by “GAd”, the actual intake air amount is obtained by dividing the actual intake air amount by the detected intake air amount as represented by the following equation (6).
  • the obtained value XA is defined as an intake air amount detection error (that is, an error in the detected intake air amount with respect to the actual intake air amount).
  • the actual fuel injection amount is represented by “GFa”, and the command fuel injection amount (that is, the fuel injection amount grasped from the fuel injection command value calculated based on the current target fuel injection amount) is represented by “GFe”.
  • the value XF obtained by dividing the actual fuel injection amount by the target fuel injection amount as expressed by the following equation 7 is set to a fuel injection amount error (that is, the actual fuel injection amount with respect to the target fuel injection amount). Error).
  • the detected intake air amount is represented by “GAd” and the command fuel injection amount is represented by “GFe”
  • the detected intake air amount is obtained by dividing the detected intake air amount by the command fuel injection amount as shown in the following equation (8).
  • the resulting value AFe is defined to be the estimated air / fuel ratio.
  • the value NOXe calculated according to the following equation 9 is defined as “estimated NOx concentration”.
  • XA GAa / GAd (6)
  • XF GFa / GFe (7)
  • AFe GAd / GFe (8)
  • NOXe Fnox (GFe, GAd) (9)
  • the intake air amount detection error XA, the fuel injection amount error XF, the estimated air-fuel ratio AFe, and the estimated NOx concentration NOXe are defined as described above, there is a following equation between the actual air-fuel ratio AFa and the estimated air-fuel ratio AFe: 10 is established, and the relationship of the following equation 11 is established between the detected NOx concentration (that is, the actual NOx concentration) NOXd and the estimated NOx concentration NOXe.
  • AFa AFe ⁇ XA / XF (10)
  • NOXa Fnox (GFe ⁇ XF, GAd ⁇ XA) (11)
  • the fuel injection amount error XF and the intake air amount detection error XA can be calculated by solving the simultaneous equations consisting of Equations 10 and 11. Since Equation 10 corresponds to Equation 1 and Equation 11 corresponds to Equation 2, solving the simultaneous equations consisting of Equation 10 and Equation 11 (that is, simultaneous equations consisting of Equation 1 and Equation 2)
  • the fuel injection amount error XF obtained by the above equation is a correction value that matches the actual fuel injection amount with the target fuel injection amount (that is, the fuel injection amount correction value), and is a simultaneous equation consisting of Equation 10 and Equation 11 (that is, Equation
  • the intake air amount detection error XA obtained by solving the simultaneous equations (1) and (2) is a correction value that matches the detected intake air amount with the actual intake air amount (that is, the intake air amount correction value). become.
  • the fuel injection command value is corrected without excess or deficiency with respect to the fuel injection amount error of the fuel injection valve, and the detected intake air amount with respect to the detected intake air amount error with the air flow meter is not excessive or deficient. It is corrected. The reason for this will be described below.
  • the above equation 1 is an equation that holds for the detected air-fuel ratio and the estimated air-fuel ratio
  • the above equation 2 is an equation that holds for the detected NOx concentration and the estimated NOx concentration. Therefore, these equations are equations of different nature.
  • the estimated air-fuel ratio in the above equation 1 is calculated from the command fuel injection amount and the detected intake air amount
  • the estimated NOx concentration in the above equation 2 is also calculated from the command fuel injection amount and the detected intake air amount.
  • the command fuel injection amount and the detected intake air amount are parameters having different properties. As described above, in the above-described embodiment, two equations having different properties are used to calculate correction values for correcting two parameters having different properties.
  • the equations 1 and 2 regulate the fuel injection amount correction value and the intake air amount correction value, in the above-described embodiment, correction values for correcting two parameters having different properties from each other. It can be said that two regulations having different properties are adopted in the calculation of the above. Therefore, the fuel injection command value and the detected intake air amount are corrected based on the fuel injection amount correction value and the intake air amount correction value calculated according to the above-described embodiment, so that the fuel is compensated for the fuel injection amount error of the fuel injection valve.
  • the injection command value is corrected without excess or deficiency
  • the detected intake air amount is corrected without excess or deficiency with respect to the detected intake air amount error of the air flow meter.
  • the output torque of the internal combustion engine will greatly fluctuate.
  • the embodiment described above according to the embodiment described above, not only the fuel injection amount but also the intake air amount is corrected. Therefore, the output torque of the internal combustion engine is prevented from greatly fluctuating.
  • the fuel injection amount correction value and the intake air amount correction value calculated by solving the simultaneous equations consisting of the above formulas 1 and 2 are the deviations between the detected air-fuel ratio and the estimated air-fuel ratio.
  • the deviation between the detected NOx concentration and the estimated NOx concentration can be said to be correction values that simultaneously set “0” or at least reduce the deviation.
  • step 100 the engine speed N, the target fuel injection amount TGF, the detected intake air amount GAd, the command fuel injection amount GFe, the detected air-fuel ratio AFd, and the detected NOx concentration NOXd are acquired. Is done.
  • step 101 the learning value XFG of the fuel injection amount correction value and the learning of the intake air amount correction value corresponding to the engine operating state defined by the engine speed N and the target fuel injection amount TGF obtained at step 100 are learned.
  • a value XAG is obtained.
  • step 102 the estimated air-fuel ratio AFe is calculated by applying the detected intake air amount GAd and the command fuel injection amount GFe acquired at step 100 to the above equation 3.
  • step 103 the estimated air-fuel ratio AFe calculated in step 102 is applied to the above equation 1, and the detected intake air amount GAd and the command fuel injection amount GFe acquired in step 100 are applied to the above equation 2. Simultaneous equations are created.
  • step 104 the instantaneous value XFI of the fuel injection amount correction value and the instantaneous value XAI of the intake air amount correction value are calculated by solving the simultaneous equations created in step 103.
  • step 105 the fuel injection amount is calculated by applying the learned value XFG of the fuel injection amount correction value acquired at step 101 and the instantaneous value XFI of the fuel injection amount correction value calculated at step 104 to the above equation 4.
  • step 106 the engine operating state in which the fuel injection amount correction value XF and the intake air amount correction value XA calculated at step 105 are defined by the engine speed N and the target fuel injection amount TGF acquired at step 100.
  • a range that can be taken as a learned value of the fuel injection amount correction value when a failure has not occurred in the fuel injection valve is set in advance, and the learned value of the fuel injection amount correction value is set in advance. If the fuel injection valve is not within the specified range, it may be diagnosed that a failure has occurred in the fuel injection valve.
  • failure of the fuel injection valve can be diagnosed more accurately. That is, the learned value of the fuel injection amount correction value accurately represents the fuel injection amount error of the fuel injection valve. Therefore, the failure diagnosis of the fuel injection valve is performed using the learning value of the fuel injection amount correction value, which is a parameter that accurately represents the fuel injection amount error of the fuel injection valve. A more accurate diagnosis can be made.
  • the learning value of the fuel injection amount correction value reflects a decrease in exhaust emission characteristics. Therefore, since the failure diagnosis of the fuel injection valve is performed using the learned value of the fuel injection amount correction value, which is a parameter reflecting such a decrease in exhaust emission characteristics, the fuel injection is performed even when the exhaust emission characteristics are deteriorated. It can be said that the failure of the valve can be accurately diagnosed, and by extension, the failure of the fuel injection valve can be reliably diagnosed before the degree of failure of the fuel injection valve becomes large.
  • a range that can be taken as a learning value for the intake air amount correction value when a failure has not occurred in the air flow meter is set in advance, and the learning value for the intake air amount correction value is set in advance. If the air flow meter is not within the specified range, it may be diagnosed that a failure has occurred in the air flow meter. According to this, the failure of the air flow meter can be diagnosed more accurately. That is, the learning value of the intake air amount correction value accurately represents the detected intake air amount error of the air flow meter. Therefore, the failure diagnosis of the air flow meter is performed by using the learning value of the intake air amount correction value, which is a parameter that accurately represents the detected intake air amount error of the air flow meter.
  • the learning value of the intake air amount correction value reflects a decrease in exhaust emission characteristics. Therefore, since the failure diagnosis of the air flow meter is performed using the learned value of the intake air amount correction value, which is a parameter reflecting such a decrease in the exhaust emission characteristic, the air flow meter of the air flow meter is reduced even when the exhaust emission characteristic is deteriorated. It can be said that the failure can be accurately diagnosed, and by extension, the failure of the air flow meter can be surely diagnosed before the degree of failure of the air flow meter becomes large.
  • step 200 the most recently learned learning value XFG of the fuel injection amount correction value and the learning value XAG of the intake air amount correction value are acquired.
  • step 201 it is determined whether or not the learned value XFG of the fuel injection amount correction value acquired at step 200 is within a range determined by the lower limit value XFGmin and the upper limit value XFGmax (XFGmin ⁇ XFG ⁇ XFGmax). Is done.
  • the routine proceeds to step 202 as it is.
  • step 203 displays that the fuel injection valve has failed, and then proceeds to step 202.
  • step 202 whether or not the learning value XAG of the intake air amount correction value acquired in step 200 is within a range determined by the lower limit value XAGmin and the upper limit value XAGmax (XAGmin ⁇ XAG ⁇ XAGmax). Is determined.
  • step 204 the routine proceeds to step 204 to display that the air flow meter has failed, and thereafter the routine ends.
  • an upper limit value and a lower limit value related to the fuel injection amount correction value may be provided, and the fuel injection amount correction value may be limited to these upper limit value and lower limit value, or an upper limit value related to the intake air amount correction value.
  • a lower limit value may be provided, and the intake air amount correction value may be limited to the upper limit value and the lower limit value.
  • an upper limit value and a lower limit value relating to the fuel injection amount correction value an upper limit calculated based on an error that may occur due to deterioration of the fuel injection valve, machine difference, or both, as the upper limit value and the lower limit value. Values and lower limits can be used.
  • the lower limit can be adopted.
  • the correction of the fuel injection command value based on the fuel injection amount correction value and the correction of the detected intake air amount based on the intake air amount correction value have no or little influence on exhaust emissions such as NOx. It is clear that this is not the case, or the fuel injection amount error of the fuel injection valve is not caused by a steady deviation of the fuel injection valve characteristic from the reference characteristic, but in one cycle or a plurality of When it is clear that there is a variation between a plurality of fuel injections in the cycle, or the error of the estimated air-fuel ratio with respect to the detected air-fuel ratio is the air-fuel ratio detection error of the air-fuel ratio sensor or the NOx concentration detection error of the NOx sensor Or if it is clear that this is due to a NOx concentration estimation error in the NOx concentration estimation model, Learning amount correction value and the intake air amount correction value may be prohibited.
  • an engine operation state suitable for calculating the fuel injection amount correction value and the intake air amount correction value is set in advance, and when the engine operation state is the preset engine operation state, the fuel is The injection amount correction value and the intake air amount correction value are calculated, and the fuel injection amount correction value and the intake air amount correction value are not calculated when the engine operation state is not in the preset engine operation state. Good. According to this, calculation of an inappropriate fuel injection amount correction value and intake air amount correction value can be avoided, and exhaust emission characteristics can be stabilized.
  • the engine operating state suitable for calculating the fuel injection amount correction value and the intake air amount correction value is, for example, that the temperature of the air-fuel ratio sensor has reached its activation temperature, and the temperature of the NOx sensor has reached its activation temperature. That the air-fuel ratio of the air-fuel ratio sensor (for example, the pressure of the exhaust gas around the air-fuel ratio sensor or the oxygen concentration in the exhaust gas around the air-fuel ratio sensor) is detected by the air-fuel ratio sensor.
  • the state within the possible range, the state of the atmosphere around the NOx sensor (for example, the pressure of the exhaust gas around the NOx sensor, or the oxygen concentration in the exhaust gas around the NOx sensor) is the NOx concentration by the NOx sensor.
  • the engine speed, intake pressure, or intake air amount is within a range that allows detection, whether the air-fuel ratio can be detected by the air-fuel ratio sensor, or The engine speed, intake pressure, or intake air amount within the allowable range from the viewpoint of the accuracy of air-fuel ratio detection by the ratio sensor, engine speed, intake pressure, or intake air amount Is whether the NOx concentration can be detected by the NOx sensor, or the engine speed, the intake pressure, or the intake air amount within the allowable range from the viewpoint of the accuracy of the NOx concentration detection by the NOx sensor,
  • the engine operating state satisfies one or more of the conditions that the operating state is an engine operating state in which Expressions 1 and 2 are satisfied.
  • the fuel injection amount correction value and the intake air amount correction value are calculated using the NOx concentration in the exhaust gas.
  • the present invention is also applicable to the case where the fuel injection amount correction value and the intake air amount correction value are calculated using the NOx amount in the exhaust gas.
  • the fuel injection amount correction value and the intake air amount correction value are calculated using the NOx concentration in the exhaust gas.
  • the present invention uses the concentration of unburned hydrocarbon (HC) or the concentration of carbon monoxide (CO) in the exhaust gas instead of the NOx concentration in the exhaust gas, and the fuel injection amount correction value and the intake air amount correction value. It is applicable also when calculating. That is, the present invention is broadly applicable to the case where the fuel injection amount correction value and the intake air amount correction value are calculated using the concentration of the specific component in the exhaust gas. The present invention is broadly applicable to the case where the fuel injection amount correction value and the intake air amount correction value are calculated using the amount of the specific component in the exhaust gas. Note that the concentration of the specific component here varies depending on the fuel injection amount and the intake air amount.
  • the fuel injection valve injects fuel into the combustion chamber when it receives a command to inject fuel from the electronic control unit. Therefore, it can be said that the fuel injection valve is a fuel supply means for supplying fuel to the combustion chamber.
  • the air flow meter outputs an output value corresponding to the amount of air supplied to the combustion chamber to the electronic control unit. Then, the electronic control unit calculates the amount of air supplied to the combustion chamber based on this output value. Therefore, it can be said that the air flow meter is a supply air amount detection means.
  • the air-fuel ratio sensor outputs an output value corresponding to the oxygen concentration in the exhaust gas arriving there to the electronic control unit. Then, the electronic control unit calculates the air-fuel ratio of the air-fuel mixture formed in the combustion chamber based on this output value.
  • the air-fuel ratio sensor is an air-fuel ratio detection means.
  • the NOx sensor outputs an output value corresponding to the NOx concentration in the exhaust gas arriving there to the electronic control unit. Then, the electronic control unit calculates the NOx concentration in the exhaust gas based on this output value. Therefore, it can be said that the NOx sensor is a NOx concentration detecting means. If NOx is regarded as a specific component in the exhaust gas, the NOx sensor can be said to be an exhaust component concentration detecting means for detecting the concentration of the specific component in the exhaust gas.
  • the electronic control unit sets the amount of fuel to be injected into the combustion chamber by the fuel injection valve as the target fuel injection amount. Therefore, it can be said that the electronic control device has a function as target fuel injection amount setting means. Further, the electronic control unit calculates a fuel injection command value for injecting fuel of the target fuel injection amount from the fuel injection valve into the combustion chamber based on the target fuel injection amount, and gives the fuel injection command value to the fuel injection valve. . Therefore, it can be said that the electronic control device has a function as a fuel injection command value providing means. The electronic control unit calculates the air-fuel ratio of the air-fuel mixture formed in the combustion chamber from the fuel injection amount and the intake air amount. Therefore, it can be said that the electronic control device has a function as air-fuel ratio calculation means.
  • the electronic control unit calculates the NOx concentration in the exhaust gas discharged from the combustion chamber from the fuel injection amount and the intake air amount. Therefore, it can be said that the electronic control device has a function as NOx concentration calculation means. If NOx is regarded as a specific component in the exhaust gas, the electronic control unit calculates the concentration of the specific component in the exhaust gas discharged from the combustion chamber from the fuel injection amount and the intake air amount. It can be said that it has the function as.
  • the above-described embodiment is an embodiment in which the present invention is applied to a compression self-ignition internal combustion engine.
  • the present invention is also applicable to a spark ignition type internal combustion engine.

Abstract

 本発明は燃料供給手段(21)と目標燃料供給量設定手段と燃料噴射指令値提供手段と供給空気量検出手段(71)と空燃比検出手段(76U)と空燃比算出手段と排気成分濃度検出手段(77)と排気成分濃度算出手段とを具備する内燃機関の制御装置に関する。本発明では空燃比検出手段によって検出される空燃比と空燃比算出手段によって算出される空燃比との間の偏差と排気成分濃度検出手段によって検出される特定成分の濃度と排気成分濃度算出手段によって算出される特定成分の濃度との間の偏差とが小さくなるように燃料供給指令値またはそれから把握される燃料供給量が補正されるとともに供給空気量検出手段によって検出される空気の量が補正される。

Description

内燃機関の制御装置
 本発明は内燃機関の制御装置に関する。
 燃料噴射弁とエアフローメータと空燃比センサと電子制御装置とを備えた内燃機関が特許文献1に記載されている。燃料噴射弁は内燃機関の本体に配置されており、電子制御装置から燃料を噴射すべき旨の指令を受けると燃料を燃焼室内に噴射する。エアフローメータは内燃機関の吸気通路に配置されており、そこを通過する空気の量に対応する出力値を電子制御装置に出力する。電子制御装置はこの出力値に基づいてエアフローメータを通過する空気の量を算出する。なお、エアフローメータを通過した空気は燃焼室に吸入される。したがって、エアフローメータは燃焼室に吸入される空気の量(以下この量を「吸入空気量」という)を検出するものとも言える。空燃比センサは内燃機関の排気通路に配置されており、そこに到来する排気ガス中の酸素濃度に対応する出力値を電子制御装置に出力する。電子制御装置はこの出力値に基づいて燃焼室に形成される混合気の空燃比を算出する。したがって、空燃比センサは燃焼室に形成される混合気の空燃比(以下この空燃比を単に「混合気の空燃比」という)を検出するものであると言える。
 ところで、実燃料噴射量(すなわち、燃料噴射弁から実際に噴射される燃料の量)と指令燃料噴射量(すなわち、電子制御装置から燃料噴射弁に対して噴射するよう指示される燃料の量)との間に誤差が生じる場合がある。また、実吸入空気量(すなわち、燃焼室に実際に吸入される空気の量)と検出吸入空気量(すなわち、エアフローメータによって検出される空気の量)との間にも誤差が生じる場合がある。実燃料噴射量と指令燃料噴射量との間に誤差が生じている場合において電子制御装置が実燃料噴射量と指令燃料噴射量との間に誤差がないことを前提にした制御を行っていると内燃機関の所期の性能が得られない可能性がある。また、実吸入空気量と検出吸入空気量との間に誤差が生じている場合において電子制御装置が実吸入空気量と検出吸入空気量との間に誤差がないことを前提にした制御を行っていると内燃機関の所期の性能が得られない可能性がある。
 そこで、特許文献1に記載の内燃機関では、指令燃料噴射量と検出吸入空気量とを用いて混合気の空燃比を算出し(以下この算出された空燃比を「推定空燃比」という)、検出空燃比(すなわち、空燃比センサによって検出される空燃比)に対する推定空燃比の誤差を算出する。そして、この誤差を燃料噴射量誤差(すなわち、実燃料噴射量と指令燃料噴射量との間の誤差)に起因するものと推定される空燃比誤差と吸入空気量誤差(すなわち、実吸入空気量と検出吸入空気量との間の誤差)に起因するものと推定される空燃比誤差とに振り分ける。そして、斯くして振り分けられた燃料噴射量誤差に起因するものと推定される空燃比誤差を補償するように指令燃料噴射量を補正するとともに、斯くして振り分けられた吸入空気量誤差に起因するものと推定される空燃比誤差を補償するように検出吸入空気量を補正するようにしている。
特開2007-262946号公報 特開平6-299886号公報
 ところで、特許文献1に記載の内燃機関では、指令燃料噴射量を様々に変化させて内燃機関を運転させたうえで空燃比誤差(すなわち、検出空燃比に対する推定空燃比の誤差)のうち燃料噴射量誤差に起因する空燃比誤差の割合と吸入空気量誤差に起因する空燃比誤差の割合とを予め求め、これら割合を指令燃料噴射量の関数のマップの形で電子制御装置に記憶させておく。そして、機関運転中に指令燃料噴射量に応じて燃料噴射量誤差に起因する空燃比誤差の割合と吸入空気量誤差に起因する空燃比誤差の割合とをマップから取得する。そして、機関運転中に算出される空燃比誤差をこれら取得された割合を用いて燃料噴射量誤差に起因するものと推定される空燃比誤差と吸入空気量誤差に起因するものと推定される空燃比誤差とに振り分け、それぞれ振り分けられた空燃比誤差を補償するように指令燃料噴射量および検出吸入空気量を補正している。
 ところが、特許文献1に記載の手法では、空燃比誤差を燃料噴射量に起因する空燃比誤差と吸入空気量誤差に起因する空燃比誤差とに振り分けるための割合が基準となる内燃機関(より具体的には、基準となる燃料噴射弁、エアフローメータ、空燃比センサなど)を用いて求められたものである。したがって、内燃機関の製造誤差(より具体的には、燃料噴射弁、エアフローメータ、空燃比センサなどの製造誤差)を考慮したとき、基準となる内燃機関を用いて求められた割合が個々の内燃機関に対して適切なものではない場合がある。また、個々の内燃機関の経時劣化(より具体的には、燃料噴射弁、エアフローメータ、空燃比センサなどの経時劣化)が生じたとき、基準となる内燃機関を用いて求められた割合が個々の内燃機関に対して適切なものではなくなる場合がある。
 そして、これらの場合、実燃料噴射量に対する指令燃料噴射量の誤差に対して指令燃料噴射量の補正が過剰であったり或いは過小であったりするし、実吸入空気量に対する検出吸入空気量の誤差に対して検出吸入空気量の補正が過剰であったり或いは過小であったりする。
 そこで、本発明の目的は実燃料噴射量に対する指令燃料供給量の誤差に対して燃料供給指令値を過不足なく補正するとともに実供給空気量に対する検出供給空気量の誤差に対して検出供給空気量を過不足なく補正することにある。
 本願の発明は、燃焼室に燃料を供給する燃料供給手段と、該燃料供給手段によって燃焼室に供給されるべき燃料の量を目標燃料供給量として設定する目標燃料供給量設定手段と、該目標燃料供給量設定手段によって設定される目標燃料供給量の燃料を前記燃料供給手段から燃焼室に供給させるための燃料供給指令値を目標燃料供給量に基づいて算出して該燃料供給指令値を前記燃料供給手段に与える燃料噴射指令値提供手段と、燃焼室に供給される空気の量を検出する供給空気量検出手段と、燃焼室に形成される混合気の空燃比を検出する空燃比検出手段と、前記燃料供給指令値から把握される燃料供給量と前記供給空気量検出手段によって検出される空気の量とから燃焼室に形成される混合気の空燃比を算出する空燃比算出手段と、燃焼室から排出される排気ガス中の特定成分の濃度を検出する排気成分濃度検出手段と、前記燃料供給指令値から把握される燃料噴射量と前記供給空気量検出手段によって検出される空気の量とから燃焼室から排出される排気ガス中の特定成分の濃度を算出する排気成分濃度算出手段と、を具備する内燃機関の制御装置に関する。
 なお、本発明において、燃料供給手段は燃焼室に燃料を供給する手段であれば如何なる手段でもよく、例えば、内燃機関の燃焼室内に燃料を直接噴射することによって燃料を燃焼室に供給する燃料噴射弁でもよいし、内燃機関の吸気ポートに燃料を噴射することによって燃料を燃焼室に供給する燃料噴射弁でもよい。また、本発明において、排気成分濃度検出手段は燃焼室から排出される排気ガス中の特定成分の量を検出する手段を含む。
 そして、本発明では、前記空燃比検出手段によって検出される空燃比と前記空燃比算出手段によって算出される空燃比との間の偏差と前記排気成分濃度検出手段によって検出される特定成分の濃度と前記排気成分濃度算出手段によって算出される特定成分の濃度との間の偏差とが小さくなるように前記燃料供給指令値または該燃料供給指令値から把握される燃料供給量が補正されるとともに前記供給空気量検出手段によって検出される空気の量が補正される。
 本発明によれば、実燃料供給量(すなわち、燃料供給手段によって燃焼室に実際に供給される燃料の量)に対する指令燃料供給量(すなわち、燃料供給指令値から把握される燃料供給量)の誤差に対して燃料供給指令値またはそれから把握される燃料供給量が過不足なく補正されるとともに実供給空気量(すなわち、空気供給手段によって燃焼室に実際に供給される空気の量)に対する検出供給空気量(すなわち、供給空気量検出手段によって検出される空気の量)の誤差に対して検出吸入空気量が過不足なく補正される。以下この理由について説明する。
 本発明では、空燃比算出手段による空燃比の算出には指令燃料供給量と検出供給空気量とが考慮されている。したがって、空燃比検出手段によって検出される空燃比(以下この空燃比を「検出空燃比」ともいう)と空燃比算出手段によって算出される空燃比(以下この空燃比を「算出空燃比」ともいう)との間の偏差にも指令燃料供給量と検出供給空気量とが考慮されていることになる。一方、排気成分濃度算出手段による特定成分の濃度の算出にも指令燃料供給量と検出供給空気量とが考慮されている。したがって、排気成分濃度検出手段によって検出される特定成分の濃度(以下この濃度を「検出特性成分濃度」ともいう)と排気成分濃度算出手段によって算出される特定成分の濃度(以下この濃度を「算出特定成分濃度」ともいう)との間の偏差にも指令燃料供給量と検出供給空気量とが考慮されていることになる。
 つまり、本発明では、検出空燃比と算出空燃比との間の誤差にも検出特定成分濃度と算出特定成分濃度との間の偏差にも指令燃料供給量と検出供給空気量とが考慮されているのである。そして、指令燃料供給量はそれと実燃料供給量との間に誤差が生じている場合にその誤差を反映するものであり、検出供給空気量はそれと実供給空気量との間に誤差が生じている場合にその誤差を反映するものである。そして、これら誤差が小さくなるように指令燃料供給量(すなわち、燃料供給指令値)と検出供給空気量とを補正することによって実燃料供給量に対する指令燃料供給量の誤差および実供給空気量に対する検出供給空気量の誤差が小さくなる。
 このとき、本発明では、指令燃料供給量と検出供給空気量という互いに性質の異なる2つのパラメータが補正の対象とされており、これら2つのパラメータの補正を律する規制として検出空燃比と算出空燃比との間の誤差を小さくするという規制と検出特定成分濃度と算出特定成分濃度との間の誤差を小さくするという規制という互いに性質の異なる2つの規制が採用されている。つまり、本発明では、2つのパラメータの補正に2つの規制が採用されているのである。したがって、本発明に従って燃料供給指令値(または、それから把握される燃料供給量)および検出供給空気量の補正が行われることによって実燃料供給量に対する指令燃料供給量の誤差に対して燃料供給指令値(または、それから把握される燃料供給量)が過不足なく補正されるとともに実供給空気量に対する検出供給空気量の誤差に対して検出供給空気量が過不足なく補正されるのである。
 また、前記特定成分は燃焼室に供給される燃料の量と燃焼室に供給される空気の量とに応じてその濃度が変化する成分であれば如何なる成分でもよく、例えば、未燃炭化水素(未燃HC)でもよいし、一酸化炭素(CO)でもよい。しかしながら、燃焼室における燃料の燃焼によって生成される窒素酸化物(NOx)の量(以下この量を「NOx生成量」という)は燃料供給量および供給空気量の影響を大きく受ける。つまり、実燃料供給量に対する指令燃料供給量の誤差の変化に対するNOx生成量の感度および実供給空気量に対する検出供給空気量の誤差の変化に対するNOx生成量の感度が高い。したがって、検出排気成分濃度と算出排気成分濃度との間の誤差を燃料供給指令値および検出供給空気量の補正に用いる上記発明においては、燃料供給指令値をより確実に過不足なく補正するとともに検出供給空気量をより確実に過不足なく補正するという観点からは、前記特定成分が排気ガス中に含まれる窒素酸化物であると好ましい。
 また、上記発明において、前記燃料供給手段によって供給される燃料の量に関する誤差を解消する補正値を燃料供給量補正値と称し、前記供給空気量検出手段によって検出される空気の量に関する誤差を解消する補正値を供給空気量補正値と称したとき、これら燃料供給量補正値および供給空気量補正値を用いて前記空燃比検出手段によって検出される空燃比と前記空燃比算出手段によって算出される空燃比との間に成立する等式と前記排気成分濃度検出手段によって検出される特定成分の濃度と前記排気成分濃度算出手段によって算出される特定成分の濃度との間に成立する等式とが構成され、これら2つの等式からなる連立方程式を解くことによって燃料供給量補正値および供給空気量補正値が算出され、前記燃料供給指令値または該燃料供給指令値から把握される燃料供給量が前記算出された燃料供給量補正値によって補正されるとともに前記供給空気量検出手段によって検出される空気の量が前記算出された供給空気量補正値によって補正されることによって前記空燃比検出手段によって検出される空燃比と前記空燃比算出手段によって算出される空燃比との間の偏差と前記排気成分濃度検出手段によって検出される特定成分の濃度と前記排気成分濃度算出手段によって算出される特定成分の濃度との間の偏差とが小さくされてもよい。
 また、上記発明において、前記燃料供給手段に故障が生じていない場合に前記燃料供給指令値に対する補正量が取り得る範囲が燃料供給指令値補正許容範囲として設定され、前記燃料供給指令値に対する補正量が該燃料供給指令値補正許容範囲内にないときに前記燃料供給手段に故障が生じていると診断されるようにしてもよい。
 上述したように、上記発明によれば、実燃料供給量に対する指令燃料供給量の誤差に対して燃料供給指令値が過不足なく補正される。したがって、燃料供給指令値に対する補正量は実燃料供給量に対する指令燃料供給量の誤差を正確に表していることになる。したがって、燃料供給指令値に対する補正量に基づいて燃料供給手段の故障を診断すれば、燃料供給手段の故障をより正確に診断することができる。
 また、上記発明において、前記供給空気量検出手段に故障が生じていない場合に前記検出供給空気量に対する補正量が取り得る範囲が検出供給空気量補正許容範囲として設定され、前記燃料供給指令値に対する補正量が該検出供給空気量補正許容範囲内にないときに前記供給空気量検出手段に故障が生じていると診断されるようにしてもよい。
 上述したように、上記発明によれば、実供給空気量に対する検出供給空気量の誤差に対して検出供給空気量が過不足なく補正される。したがって、検出供給空気量に対する補正量は実供給空気量に対する検出供給空気量の誤差を正確に表していることになる。したがって、検出供給空気量に対する補正量に基づいて供給空気量検出手段の故障を診断すれば、供給空気量検出手段の故障をより正確に診断することができる。
本発明の制御装置が適用される内燃機関を示した図である。 (A)はアクセルペダル開度Dacに基づいて目標燃料噴射量TGFを取得するために用いられるマップを示した図であり、(B)は燃料噴射量GFと機関回転数Nとに基づいて目標スロットル弁開度を取得するために用いられるマップを示した図である。 本発明の燃料噴射量補正値および吸入空気量補正値の算出および学習を実行するルーチンの一例を示した図である。 本発明の燃料噴射弁およびエアフローメータの故障診断を実行するルーチンの一例を示した図である。
 以下、図面を参照して本発明の内燃機関の制御装置の実施形態について説明する。本発明の制御装置が適用された内燃機関が図1に示されている。図1に示されている内燃機関10は、内燃機関の本体(以下「機関本体」という)20と、該機関本体の4つの燃焼室にそれぞれ対応して配置された燃料噴射弁21と、該燃料噴射弁21に燃料供給管23を介して燃料を供給する燃料ポンプ22とを具備する。また、内燃機関10は、外部から燃焼室に空気を供給する吸気系30と、燃焼室から排出される排気ガスを外部に排出する排気系40とを具備する。また、内燃機関10は、圧縮自着火式の内燃機関(いわゆるディーゼルエンジン)である。
 吸気系30は、吸気枝管31と吸気管32とを有する。なお、以下の説明において、吸気系30を「吸気通路」と称することもある。吸気枝管31の一方の端部(すなわち、枝部)は、各燃焼室に対応して機関本体20内に形成された吸気ポート(図示せず)に接続されている。一方、吸気枝管31の他方の端部は、吸気管32に接続されている。吸気管32内には、該吸気管内を流れる空気の量を制御するスロットル弁33が配置されている。さらに、吸気管32には、該吸気管内を流れる空気を冷却するインタークーラ34が配置されている。さらに、吸気管32の外部を臨む端部には、エアクリーナ36が配置されている。
 一方、排気系40は、排気枝管41と排気管42とを有する。なお、以下の説明において、排気系40を「排気通路」と称することもある。排気枝管41の一方の端部(すなわち、枝部)は、各燃焼室に対応して機関本体20内に形成された排気ポート(図示せず)に接続されている。一方、排気枝管41の他方の端部は、排気管42に接続されている。排気管42には、排気ガス中の特定成分を浄化する排気浄化触媒43Aを内蔵した触媒コンバータ43が配置されている。
 また、排気浄化触媒43Aよりも上流側の排気管42には、燃焼室から排出された排気ガス中の酸素濃度に応じた出力値を出力する酸素濃度センサ(以下この酸素濃度センサを「上流側酸素濃度センサ」という)76Uが取り付けられている。一方、排気浄化触媒43Aよりも下流側の排気管42には、排気浄化触媒43Aから流出する排気ガス中の酸素濃度に応じた出力値を出力する酸素濃度センサ(以下この酸素濃度センサを「下流側酸素濃度センサ」という)76Dが取り付けられている。
 また、排気浄化触媒43Aよりも上流側の排気管42には、燃焼室から排出された排気ガス中のNOx(窒素酸化物)の濃度に応じた出力値を出力するセンサ(以下このセンサを「NOxセンサ」という)77が取り付けられている。
 また、エアクリーナ36よりも下流の吸気管32には、該吸気管内を流れる空気の流量(したがって、燃焼室に吸入される空気の流量であり、以下この流量を「吸入空気量」という)に応じた出力値を出力するエアフローメータ71が取り付けられている。また、吸気枝管31には、該吸気枝管内のガスの圧力(すなわち、吸気圧)に応じた出力値を出力する圧力センサ(以下「吸気圧センサ」という)72が取り付けられている。また、機関本体20には、クランクシャフトの回転位相に応じた出力値を出力するクランクポジションセンサ74が取り付けられている。
 また、内燃機関10は、電子制御装置60を具備する。電子制御装置60は、マイクロプロセッサ(CPU)61と、リードオンリメモリ(ROM)62と、ランダムアクセスメモリ(RAM)63と、バックアップRAM(Back up RAM)64と、インターフェース65とを有する。インターフェース65には、燃料噴射弁21、燃料ポンプ22、および、スロットル弁33が接続されており、これらの動作を制御する制御信号がインターフェース65を介して電子制御装置60から与えられる。また、インターフェース65には、エアフローメータ71、吸気圧センサ72、クランクポジションセンサ74、および、アクセルペダルAPの開度(すなわち、アクセルペダルAPの踏込量であって、以下これを「アクセルペダル開度」という)に応じた出力値を出力するアクセルペダル開度センサ75、上流側酸素濃度センサ76U、下流側酸素濃度センサ76D、および、NOxセンサ77も接続されており、エアフローメータ71から出力される出力値、吸気圧センサ72から出力される出力値、クランクポジションセンサ74から出力される出力値、アクセルペダル開度センサ75から出力される出力値、上流側酸素濃度センサ76Uから出力される出力値、下流側酸素濃度センサ76Dから出力される出力値、および、NOxセンサ77から出力される出力値がインターフェース65に入力される。
 なお、電子制御装置60はエアフローメータ71の出力値に基づいて吸入空気量を算出し、吸気圧センサ72の出力値に基づいて吸気圧を算出し、クランクポジションセンサ74の出力値に基づいて機関回転数(すなわち、内燃機関の回転数)を算出し、アクセルペダル開度センサ75の出力値に基づいてアクセルペダル開度を算出し、上流側酸素濃度センサ76Uの出力値に基づいて燃焼室から排出される排気ガスであって排気浄化触媒43Aに流入する前の排気ガスの空燃比(つまり、燃焼室内に形成される混合気の空燃比)を算出し、下流側酸素濃度センサ76Dの出力値に基づいて排気浄化触媒43Aから流出する排気ガスの空燃比を算出する。なお、上流側酸素濃度センサ76Uは燃焼室内に形成される混合気の空燃比を検出するものであると言えることから、以下の説明では上流側酸素濃度センサを単に「空燃比センサ」と称することとする。
 次に、本発明の様々な制御の実施形態について説明する。なお、以下の説明において「機関運転」は「内燃機関の運転」であり、「燃料噴射量」は「燃料噴射弁から噴射される燃料の量」であり、「実燃料噴射量」は「燃料噴射弁から実際に噴射される燃料の量」である。
 まず、本発明の燃料噴射弁の制御の1つの実施形態について説明する。本発明の1つの実施形態では、アクセルペダル開度に応じて適切な燃料噴射量が実験等によって予め求められ、これら燃料噴射量が図2(A)に示されているようにアクセルペダル開度Dacの関数のマップの形で目標燃料噴射量TGFとして電子制御装置に記憶されている。そして、機関運転中、アクセルペダル開度Dacに応じて図2(A)のマップから目標燃料噴射量TGFが取得される。そして、取得された目標燃料噴射量TGFの燃料を燃料噴射弁に噴射させるために必要な燃料噴射弁の開弁時間(以下この開弁時間を「目標開弁時間」という)が算出される。そして、算出された開弁時間だけ燃料噴射弁を開弁させるための指令値(以下この指令値を「燃料噴射指令値」という)が燃料噴射弁に与えられる。
 次に、スロットル弁の制御に関する本発明の実施形態について説明する。本発明の1つの実施形態では、図1に示されている内燃機関において燃料噴射量と機関回転数とに応じた適切なスロットル弁開度(すなわち、スロットル弁の開度)が予め実験等によって求められ、これら求められたスロットル弁開度が図2(B)に示されているように目標スロットル弁開度TDthとして燃料噴射量GFと機関回転数Nとの関数のマップの形で電子制御装置60に記憶されている。そして、機関運転中、燃料噴射量GFと機関回転数Nとに基づいて図2(B)のマップから目標スロットル弁開度TDthが取得される。そして、この取得された目標スロットル弁開度TDthだけスロットル弁が開弁するようにスロットル弁の開度が制御される。なお、図2(B)のマップでは、燃料噴射量GFが多いほど目標スロットル弁開度TDthが大きくなり、機関回転数Nが大きいほど目標スロットル弁開度TDthが大きくなっている。また、この実施形態では、図2(B)のマップから目標スロットル弁開度TDthを取得するために利用される燃料噴射量GFとして目標燃料噴射量TGF(すなわち、図2(A)のマップから取得される目標燃料噴射量TGF)が採用される。
 次に、本発明の燃料噴射指令値の補正の1つの実施形態について説明する。本発明の1つの実施形態では、標準的な特性を備えた燃料噴射弁(以下この燃料噴射弁を「基準燃料噴射弁」という)を基準としたときに目標燃料噴射量の燃料を当該基準燃料噴射弁から噴射させることができる燃料噴射指令値を算出することができる関数を予め実験等によって求めておき、機関運転中、目標燃料噴射量をこの関数に適用することによって燃料噴射指令値が算出される。したがって、燃料噴射弁の特性が基準燃料噴射弁の特性に一致する限りにおいては、上記関数によって算出される燃料噴射指令値を燃料噴射弁に与えれば、目標燃料噴射量の燃料が燃料噴射弁から噴射されることになる。つまり、実燃料噴射量が目標燃料噴射量に一致することになる。しかしながら、燃料噴射弁の製造誤差などに起因して燃料噴射弁の特性が基準燃料噴射弁の特性に一致していない場合、あるいは、燃料噴射弁の経時劣化などに起因して燃料噴射弁の特性が基準燃料噴射弁に一致しなくなった場合、上記関数によって算出される燃料噴射指令値を燃料噴射弁に与えたとしても、目標燃料噴射量の燃料が燃料噴射弁から噴射されないことになる。つまり、実燃料噴射量が目標燃料噴射量に一致しないことになる。
 そこで、本発明の1つの実施形態では、機関運転中、目標燃料噴射量に対する実燃料噴射量のずれを表す燃料噴射量補正値(この詳細については後述する)が算出され、上記関数によって算出される燃料噴射指令値にこの算出された燃料噴射量補正値の逆数を乗算することによって燃料噴射指令値が補正され、この補正された燃料噴射指令値が最終的な燃料噴射指令値として燃料噴射弁に与えられる。これにより、実燃料噴射量が目標燃料噴射量に一致するように、あるいは、少なくとも、実燃料噴射量が目標燃料噴射量に近づくようにしている。
 なお、本発明に従って補正された燃料噴射指令値は実燃料供給量を目標燃料噴射量に近づけるために利用されるだけでなく、内燃機関が燃料噴射量を1つのパラメータとして利用する制御を実行するようになっている場合において燃料噴射量を把握するために利用されてもよい。
 次に、本発明の検出吸入空気量の補正の1つの実施形態について説明する。本発明の1つの実施形態では、標準的な特性を備えたエアフローメータ(以下このエアフローメータを「基準エアフローメータ」という)を基準としたときにエアフローメータの出力値を実際の吸入空気量に換算する関数を予め実験等によって求めておき、機関運転中、エアフローメータの出力値をこの関数に適用することによって吸入空気量が検出吸入空気量として算出される。したがって、エアフローメータの特性が基準エアフローメータの特性に一致する限りにおいては、上記関数によって算出される検出吸入空気量は実際の吸入空気量に一致することになる。しかしながら、エアフローメータの製造誤差などに起因してエアフローメータの特性が基準エアフローメータの特性に一致していない場合、あるいは、エアフローメータの経時劣化などに起因してエアフローメータの特性が基準エアフローメータに一致しなくなった場合、上記関数によって算出される検出吸入空気量が実際の吸入空気量に一致しないことになる。
 そこで、本発明の1つの実施形態では、機関運転中、実際の吸入空気量に対する検出吸入空気量のずれを表す吸入空気量補正値(この詳細については後述する)が算出され、上記関数によって算出される検出吸入空気量にこの算出された吸入空気量補正値を乗算することによって検出吸入空気量が補正され、この補正された検出吸入空気量が最終的な検出吸入空気量とされる。これにより、検出吸入空気量が実際の吸入空気量に一致するように、あるいは、少なくとも、検出吸入空気量が実際の吸入空気量に近づくようにしている。
 なお、本発明に従って補正された検出吸入空気量は、例えば、内燃機関が検出吸入空気量を1つのパラメータとして利用する制御を実行するようになっている場合において利用される。
 次に、本発明の燃料噴射量補正値および吸入空気量補正値の算出の1つの実施形態について説明する。本発明の1つの実施形態では、機関運転中、次式1と次式2とからなる連立方程式を解くことによって燃料噴射量補正値の瞬時値XFIおよび吸入空気量補正値の瞬時値XAIが算出される。式1において「AFd」は「検出空燃比(つまり、空燃比センサによって検出される混合気の空燃比)」であり、「AFe」は「推定空燃比」である。また、式2において「NOXd」は「検出NOx濃度」であり、「Fnox」は「燃料噴射量と吸入空気量とから排気ガス中のNOx濃度を算出するためのモデルまたは関数」であり、「GFe」は「指令燃料噴射量(つまり、今回の目標燃料噴射量に基づいて算出された燃料噴射指令値から把握される燃料噴射量」であり、「GAd」は「検出吸入空気量」である。
 AFd=AFe×XAI/XFI   …(1)
 NOXd=Fnox(GFe×XFI,GAd×XAI)   …(2)
 なお、式1で用いられる推定空燃比AFeは次式3に従って算出される。式3において「GAd」は「検出吸入空気量」であり、「GFe」は「指令燃料噴射量(つまり、今回の目標燃料噴射量に基づいて算出された燃料噴射指令値から把握される燃料噴射量)」である。
 AFe=GAd/GFe   …(3)
 そして、次式4に従って燃料噴射量補正値XFが算出されるとともに次式5に従って吸入空気量補正値XAが算出される。なお、式4において「XFG」は「現在の機関運転状態に応じて取得される燃料噴射量補正値の学習値」であり、「XFI」は「今回算出された燃料噴射量補正値の瞬時値」である。また、式5において「XAG」は「現在の機関運転状態に応じて取得される燃料噴射量補正値の学習値」であり、「XAI」は「今回算出された吸入空気量補正値の瞬時値」である。
 XF=XFG+XFI   …(4)
 XA=XAG+XAI   …(5)
 なお、斯くして燃料噴射量補正値が新たに算出されると、今回新たに算出された燃料噴射量補正値が現在の機関運転状態に対応する燃料噴射量補正値の学習値として電子制御装置に記憶される。つまり、現在の機関運転状態に対応する燃料噴射量補正値の学習値が更新される。また、斯くして吸入空気量補正値が新たに算出されると、今回新たに算出された吸入空気量補正値が現在の機関運転状態に対応する吸入空気量補正値の学習値として電子制御装置に記憶される。つまり、現在の機関運転状態に対応する吸入空気量補正値の学習値が更新される。
 次に、上述したように算出される燃料噴射量補正値によって燃料噴射指令値を補正することによって実際の燃料噴射量が目標燃料噴射量に一致する(あるいは、実際の燃料噴射量が目標燃料噴射量に近づく)とともに上述したように算出される吸入空気量補正値によって検出吸入空気量を補正することによって検出吸入空気量が実際の吸入空気量に一致する(あるいは、検出吸入空気量が実際の吸入空気量に近づく)理由について説明する。
 実際の吸入空気量を「GAa」で表し、検出吸入空気量を「GAd」で表したとき、次式6で表されているように実際の吸入空気量を検出吸入空気量で除算して得られる値XAを吸入空気量検出誤差(すなわち、実際の吸入空気量に対する検出吸入空気量の誤差)であると定義する。また、実際の燃料噴射量を「GFa」で表し、指令燃料噴射量(つまり、今回の目標燃料噴射量に基づいて算出される燃料噴射指令値から把握される燃料噴射量)を「GFe」で表したとき、次式7で表されているように実際の燃料噴射量を目標燃料噴射量で除算して得られる値XFを燃料噴射量誤差(すなわち、目標燃料噴射量に対する実際の燃料噴射量の誤差)であると定義する。また、検出吸入空気量を「GAd」で表し、指令燃料噴射量を「GFe」で表したとき、次式8に示されているように検出吸入空気量を指令燃料噴射量で除算して得られる値AFeを推定空燃比であると定義する。また、指令燃料噴射量を「GFe」で表し、検出吸入空気量を「GAd」で表したとき、次式9に従って算出される値NOXeを「推定NOx濃度」と定義する。
 XA=GAa/GAd   …(6)
 XF=GFa/GFe   …(7)
 AFe=GAd/GFe   …(8)
 NOXe=Fnox(GFe,GAd)   …(9)
 吸入空気量検出誤差XA、燃料噴射量誤差XF、推定空燃比AFe、および、推定NOx濃度NOXeを上述したように定義した場合、実際の空燃比AFaと推定空燃比AFeとの間には次式10の関係が成立し、検出NOx濃度(つまり、実際のNOx濃度)NOXdと推定NOx濃度NOXeとの間には次式11の関係が成立する。
 AFa=AFe×XA/XF   …(10)
 NOXa=Fnox(GFe×XF,GAd×XA)   …(11)
 したがって、式10と式11とからなる連立方程式を解くことによって燃料噴射量誤差XFおよび吸入空気量検出誤差XAを算出することができる。そして、式10は式1に対応し、式11は式2に対応するのであるから、式10と式11とからなる連立方程式(つまり、式1と式2とからなる連立方程式)を解くことによって得られる燃料噴射量誤差XFが実際の燃料噴射量を目標燃料噴射量に一致させる補正値(つまり、燃料噴射量補正値)であり、式10と式11とからなる連立方程式(つまり、式1と式2とからなる連立方程式)を解くことによって得られる吸入空気量検出誤差XAが検出吸入空気量を実際の吸入空気量に一致させる補正値(つまり、吸入空気量補正値)であることになる。
 上述した実施形態によれば、燃料噴射弁の燃料噴射量誤差に対して燃料噴射指令値が過不足なく補正されるとともにエアフローメータの検出吸入空気量誤差に対して検出吸入空気量が過不足なく補正される。以下この理由について説明する。
 上式1は検出空燃比と推定空燃比とに関して成立する等式であり、上式2は検出NOx濃度と推定NOx濃度とに関して成立する等式である。したがって、これら等式は互いに性質の異なる等式である。また、上式1の推定空燃比は指令燃料噴射量と検出吸入空気量とから算出され、上式2の推定NOx濃度も指令燃料噴射量と検出吸入空気量とから算出される。そして、これら指令燃料噴射量と検出吸入空気量とは互いに性質の異なるパラメータである。このように、上述した実施形態では、互いに性質の異なる2つのパラメータを補正する補正値の算出に互いに性質の異なる2つの等式が採用される。つまり、上式1および上式2の等式が燃料噴射量補正値および吸入空気量補正値を規制するものであるから、上述した実施形態では、互いに性質の異なる2つのパラメータを補正する補正値の算出に互いに性質の異なる2つの規制が採用されていると言える。したがって、上述した実施形態に従って算出される燃料噴射量補正値および吸入空気量補正値による燃料噴射指令値および検出吸入空気量の補正が行われることによって燃料噴射弁の燃料噴射量誤差に対して燃料噴射指令値が過不足なく補正されるとともにエアフローメータの検出吸入空気量誤差に対して検出吸入空気量が過不足なく補正されるのである。
 また、燃料噴射量だけが補正されると内燃機関の出力トルクが大きく変動してしまう。しかしながら、上述した実施形態によれば、上述した実施形態によれば、燃料噴射量だけでなく吸入空気量も補正される。したがって、内燃機関の出力トルクが大きく変動してしまうことが抑制される。
 なお、上述した実施形態において上式1と上式2とからなる連立方程式を解くことによって算出される燃料噴射量補正値および吸入空気量補正値は検出空燃比と推定空燃比との間の偏差と検出NOx濃度と推定NOx濃度との間の偏差とを同時に「0」にするか或いは少なくとも小さくする補正値であると言える。
 次に、本発明の燃料噴射量補正値および吸入空気量補正値の算出および学習を実行するルーチンの一例について説明する。このルーチンの一例は図3に示されている。なお、このルーチンは所定時間が経過するたびに実行されるルーチンである。
 図3のルーチンが開始されると、ステップ100において、機関回転数N、目標燃料噴射量TGF、検出吸入空気量GAd、指令燃料噴射量GFe、検出空燃比AFd、および、検出NOx濃度NOXdが取得される。次いで、ステップ101において、ステップ100で取得された機関回転数Nと目標燃料噴射量TGFとによって規定される機関運転状態に対応する燃料噴射量補正値の学習値XFGおよび吸入空気量補正値の学習値XAGが取得される。次いで、ステップ102において、ステップ100で取得された検出吸入空気量GAdおよび指令燃料噴射量GFeを上式3に適用することによって推定空燃比AFeが算出される。次いで、ステップ103において、ステップ102で算出された推定空燃比AFeを上式1に適用するとともにステップ100で取得された検出吸入空気量GAdおよび指令燃料噴射量GFeを上式2に適用することによって連立方程式が作成される。次いで、ステップ104において、ステップ103で作成された連立方程式を解くことによって燃料噴射量補正値の瞬時値XFIおよび吸入空気量補正値の瞬時値XAIが算出される。次いで、ステップ105において、ステップ101で取得された燃料噴射量補正値の学習値XFGとステップ104で算出された燃料噴射量補正値の瞬時値XFIとを上式4に適用することによって燃料噴射量補正値XFが算出されるとともに、ステップ101で取得された吸入空気量補正値の学習値XAGとステップ104で算出された吸入空気量補正値の瞬時値XAIとを上式5に適用することによって吸入空気量補正値XAが算出される。次いで、ステップ106において、ステップ105で算出された燃料噴射量補正値XFおよび吸入空気量補正値XAがステップ100で取得された機関回転数Nと目標燃料噴射量TGFとによって規定される機関運転状態に対応する燃料噴射量補正値の学習値XFGおよび吸入空気量補正値の学習値XAGとして電子制御装置に記憶され(つまり、燃料噴射量補正値XFおよび吸入空気量補正値XAが学習され)、ルーチンが終了する。
 ところで、上述した実施形態において、燃料噴射弁に故障が生じていない場合に燃料噴射量補正値の学習値として取り得る範囲を予め設定しておき、燃料噴射量補正値の学習値がこの予め設定された範囲内にないときに燃料噴射弁に故障が生じていると診断するようにしてもよい。ここで、これによれば、燃料噴射弁の故障をより正確に診断することができる。すなわち、燃料噴射量補正値の学習値は燃料噴射弁の燃料噴射量誤差を正確に表している。したがって、こうした燃料噴射弁の燃料噴射量誤差を正確に表しているパラメータである燃料噴射量補正値の学習値を利用して燃料噴射弁の故障診断を行うのであるから、燃料噴射弁の故障をより正確に診断することができるのである。また、燃料噴射量補正値の学習値には排気エミッション特性の低下が反映される。したがって、こうした排気エミッション特性の低下が反映されたパラメータである燃料噴射量補正値の学習値を利用して燃料噴射弁の故障診断を行うのであるから、排気エミッション特性が低下した状態においても燃料噴射弁の故障を正確に診断することができ、ひいては、燃料噴射弁の故障の程度が大きくなる前に燃料噴射弁の故障を確実に診断することができるとも言える。
 また、上述した実施形態において、エアフローメータに故障が生じていない場合に吸入空気量補正値の学習値として取り得る範囲を予め設定しておき、吸入空気量補正値の学習値がこの予め設定された範囲内にないときにエアフローメータに故障が生じていると診断するようにしてもよい。これによれば、エアフローメータの故障をより正確に診断することができる。すなわち、吸入空気量補正値の学習値はエアフローメータの検出吸入空気量誤差を正確に表している。したがって、こうしたエアフローメータの検出吸入空気量誤差を正確に表しているパラメータである吸入空気量補正値の学習値を利用してエアフローメータの故障診断を行うのであるから、エアフローメータの故障をより正確に診断することができるのである。また、吸入空気量補正値の学習値には排気エミッション特性の低下が反映される。したがって、こうした排気エミッション特性の低下が反映されたパラメータである吸入空気量補正値の学習値を利用してエアフローメータの故障診断を行うのであるから、排気エミッション特性が低下した状態においてもエアフローメータの故障を正確に診断することができ、ひいては、エアフローメータの故障の程度が大きくなる前にエアフローメータの故障を確実に診断することができるとも言える。
 次に、本発明の燃料噴射弁およびエアフローメータの故障診断を実行するルーチンの一例について説明する。このルーチンの一例が図4に示されている。なお、このルーチンは所定時間が経過するたびに実行されるルーチンである。
 図4のルーチンが開始されると、始めに、ステップ200において、最も新しく学習された燃料噴射量補正値の学習値XFGおよび吸入空気量補正値の学習値XAGが取得される。次いで、ステップ201において、ステップ200で取得された燃料噴射量補正値の学習値XFGが下限値XFGminと上限値XFGmaxとによって確定される範囲内にある(XFGmin≦XFG≦XFGmax)か否かが判別される。ここで、XFGmin≦XFG≦XFGmaxであると判別されたときには、ルーチンはそのままステップ202に進む。一方、XFGmin≦XFG≦XFGmaxではないと判別されたときには、ルーチンはステップ203に進み、燃料噴射弁に故障が生じている旨を表示し、その後、ステップ202に進む。ルーチンがステップ202に進むと、ステップ200で取得された吸入空気量補正値の学習値XAGが下限値XAGminと上限値XAGmaxとによって確定される範囲内にある(XAGmin≦XAG≦XAGmax)か否かが判別される。ここで、XAGmin≦XAG≦XAGmaxであると判別されたときには、ルーチンはそのまま終了する。一方、XAGmin≦XAG≦XAGmaxではないと判別されたときには、ルーチンはステップ204に進み、エアフローメータに故障が生じている旨を表示し、その後、ルーチンが終了する。
 また、上述した実施形態において、燃料噴射量補正値に関する上限値および下限値を設け、燃料噴射量補正値をこれら上限値および下限値に制限してもよいし、吸入空気量補正値に関する上限値および下限値を設け、吸入空気量補正値をこれら上限値および下限値に制限してもよい。これによれば、燃料噴射弁の燃料噴射量誤差およびエアフローメータの吸入空気量検出誤差以外の構成要素の誤差(例えば、空燃比センサの空燃比検出誤差またはNOxセンサのNOx濃度検出誤差)に起因する空燃比誤差を燃料噴射量補正値または吸入空気量補正値に反映させてしまうことを回避することができ、学習値を安定させることができる。また、燃料噴射量補正値に関する上限値および下限値を設ける場合、これら上限値および下限値として燃料噴射弁の劣化または機差またはこれら両方に起因して発生しうる誤差に基づいて算出される上限値および下限値を採用可能である。また、吸入空気量補正値に関する上限値および下限値を設ける場合、これら上限値および下限値としてエアフローメータの劣化または機差またはこれら両方に起因して発生しうる誤差に基づいて算出される上限値および下限値を採用可能である。
 また、上述した実施形態において、燃料噴射量補正値による燃料噴射指令値の補正および吸入空気量補正値による検出吸入空気量の補正がNOxなどの排気エミッションに何ら影響を及ぼしていない或いはほとんど影響を及ぼしていないことが明らかである場合、あるいは、燃料噴射弁の燃料噴射量誤差が基準となる特性からの燃料噴射弁の特性の定常的なずれに起因するものではなく、1サイクル中の或いは複数のサイクル中の複数の燃料噴射間におけるバラツキであることが明らかである場合、あるいは、検出空燃比に対する推定空燃比の誤差が空燃比センサの空燃比検出誤差、または、NOxセンサのNOx濃度検出誤差、または、NOx濃度推定モデルのNOx濃度推定誤差に起因するものであることが明らかである場合、燃料噴射量補正値および吸入空気量補正値の学習を禁止するようにしてもよい。これによれば、燃料噴射量補正値による燃料噴射指令値の過剰な補正を抑制することができるとともに吸入空気量補正値による検出吸入空気量の過剰な補正を抑制することができ、したがって、燃料噴射量補正値および吸入空気量補正値の補正対象である燃料噴射指令値および検出吸入空気量を用いた制御を安定させることができ、したがって、排気エミッション特性を安定させることができる。
 また、上述した実施形態において、燃料噴射量補正値および吸入空気量補正値の算出に適した機関運転状態を予め設定しておき、機関運転状態がこの予め設定された機関運転状態にあるときには燃料噴射量補正値および吸入空気量補正値の算出を行い、機関運転状態がこの予め設定された機関運転状態にないときには燃料噴射量補正値および吸入空気量補正値の算出を行わないようにしてもよい。これによれば、不適切な燃料噴射量補正値および吸入空気量補正値の算出を回避することができ、排気エミッション特性を安定させることができる。
 なお、燃料噴射量補正値および吸入空気量補正値の算出に適した機関運転状態とは、例えば、空燃比センサの温度がその活性温度に達していること、NOxセンサの温度がその活性温度に達していること、空燃比センサ周りの雰囲気の状態(例えば、空燃比センサ周りの排気ガスの圧力、または、空燃比センサ周りの排気ガス中の酸素濃度)が空燃比センサによる空燃比の検出を可能とする範囲内の状態であること、NOxセンサ周りの雰囲気の状態(例えば、NOxセンサ周りの排気ガスの圧力、または、NOxセンサ周りの排気ガス中の酸素濃度)がNOxセンサによるNOx濃度の検出を可能とする範囲内の状態であること、機関回転数、または、吸気圧、または、吸入空気量が空燃比センサによる空燃比の検出の可否、または、空燃比センサによる空燃比の検出の精度の観点から許容される範囲内の機関回転数、または、吸気圧、または、吸入空気量であること、機関回転数、または、吸気圧、または、吸入空気量がNOxセンサによるNOx濃度の検出の可否、または、NOxセンサによるNOx濃度の検出の精度の観点から許容される範囲内の機関回転数、または、吸気圧、または、吸入空気量であること、機関運転状態が式1および式2が成立する機関運転状態にあることといった条件の1つまたはそれ以上を満たす機関運転状態である。
 また、上述した実施形態は排気ガス中のNOx濃度を用いて燃料噴射量補正値および吸入空気量補正値を算出する実施形態である。しかしながら、本発明は排気ガス中のNOx量を用いて燃料噴射量補正値および吸入空気量補正値を算出する場合にも適用可能である。
 また、上述した実施形態は排気ガス中のNOx濃度を用いて燃料噴射量補正値および吸入空気量補正値を算出する実施形態である。しかしながら、本発明は排気ガス中のNOx濃度に代えて排気ガス中の未燃炭化水素(HC)の濃度または一酸化炭素(CO)の濃度を用いて燃料噴射量補正値および吸入空気量補正値を算出する場合にも適用可能である。つまり、本発明は広くは排気ガス中の特定成分の濃度を用いて燃料噴射量補正値および吸入空気量補正値を算出する場合に適用可能である。また、本発明は広くは排気ガス中の特定成分の量を用いて燃料噴射量補正値および吸入空気量補正値を算出する場合に適用可能である。なお、ここでの特定成分はその濃度が燃料噴射量と吸入空気量とに応じて変化するものである。
 なお、燃料噴射弁は電子制御装置から燃料を噴射すべき指令を受けると燃料を燃焼室内に噴射する。したがって、燃料噴射弁は燃焼室に燃料を供給する燃料供給手段であると言える。また、エアフローメータは燃焼室に供給される空気の量に対応する出力値を電子制御装置に出力する。そして、電子制御装置はこの出力値に基づいて燃焼室に供給される空気の量を算出する。したがって、エアフローメータは供給空気量検出手段であると言える。また、空燃比センサはそこに到来する排気ガス中の酸素濃度に対応する出力値を電子制御装置に出力する。そして、電子制御装置はこの出力値に基づいて燃焼室に形成される混合気の空燃比を算出する。したがって、空燃比センサは空燃比検出手段であると言える。NOxセンサはそこに到来する排気ガス中のNOx濃度に対応する出力値を電子制御装置に出力する。そして、電子制御装置はこの出力値に基づいて排気ガス中のNOx濃度を算出する。したがって、NOxセンサはNOx濃度検出手段であると言える。また、NOxを排気ガス中の特定成分であると捉えれば、NOxセンサは排気ガス中の特定成分の濃度を検出する排気成分濃度検出手段であるとも言える。
 また、電子制御装置は燃料噴射弁によって燃焼室に噴射されるべき燃料の量を目標燃料噴射量として設定する。したがって、電子制御装置は目標燃料噴射量設定手段としての機能を備えていると言える。また、電子制御装置は目標燃料噴射量の燃料を燃料噴射弁から燃焼室に噴射させるための燃料噴射指令値を目標燃料噴射量に基づいて算出して該燃料噴射指令値を燃料噴射弁に与える。したがって、電子制御装置は燃料噴射指令値提供手段としての機能を備えていると言える。また、電子制御装置は燃料噴射量と吸入空気量とから燃焼室に形成される混合気の空燃比を算出する。したがって、電子制御装置は空燃比算出手段としての機能を備えていると言える。また、電子制御装置は燃料噴射量と吸入空気量とから燃焼室から排出される排気ガス中のNOx濃度を算出する。したがって、電子制御装置はNOx濃度算出手段としての機能を備えていると言える。また、NOxを排気ガス中の特定成分であると捉えれば、電子制御装置は燃料噴射量と吸入空気量とから燃焼室から排出される排気ガス中の特定成分の濃度を算出する排気成分算出手段としての機能を備えているとも言える。
 また、上述した実施形態は圧縮自着火式の内燃機関に本発明を適用した実施形態である。しかしながら、本発明は火花点火式の内燃機関にも適用可能である。

Claims (5)

  1.  燃焼室に燃料を供給する燃料供給手段と、該燃料供給手段によって燃焼室に供給されるべき燃料の量を目標燃料供給量として設定する目標燃料供給量設定手段と、該目標燃料供給量設定手段によって設定される目標燃料供給量の燃料を前記燃料供給手段から燃焼室に供給させるための燃料供給指令値を目標燃料供給量に基づいて算出して該燃料供給指令値を前記燃料供給手段に与える燃料噴射指令値提供手段と、燃焼室に供給される空気の量を検出する供給空気量検出手段と、燃焼室に形成される混合気の空燃比を検出する空燃比検出手段と、前記燃料供給指令値から把握される燃料供給量と前記供給空気量検出手段によって検出される空気の量とから燃焼室に形成される混合気の空燃比を算出する空燃比算出手段と、燃焼室から排出される排気ガス中の特定成分の濃度を検出する排気成分濃度検出手段と、前記燃料供給指令値から把握される燃料噴射量と前記供給空気量検出手段によって検出される空気の量とから燃焼室から排出される排気ガス中の特定成分の濃度を算出する排気成分濃度算出手段と、を具備する内燃機関の制御装置において、
     前記空燃比検出手段によって検出される空燃比と前記空燃比算出手段によって算出される空燃比との間の偏差と前記排気成分濃度検出手段によって検出される特定成分の濃度と前記排気成分濃度算出手段によって算出される特定成分の濃度との間の偏差とが小さくなるように前記燃料供給指令値または該燃料供給指令値から把握される燃料供給量が補正されるとともに前記供給空気量検出手段によって検出される空気の量が補正される内燃機関の制御装置。
  2.  前記特定成分が排気ガス中に含まれる窒素酸化物である請求項1に記載の内燃機関の制御装置。
  3.  前記燃料供給手段によって供給される燃料の量に関する誤差を解消する補正値を燃料供給量補正値と称し、前記供給空気量検出手段によって検出される空気の量に関する誤差を解消する補正値を供給空気量補正値と称したとき、これら燃料供給量補正値および供給空気量補正値を用いて前記空燃比検出手段によって検出される空燃比と前記空燃比算出手段によって算出される空燃比との間に成立する等式と前記排気成分濃度検出手段によって検出される特定成分の濃度と前記排気成分濃度算出手段によって算出される特定成分の濃度との間に成立する等式とが構成され、これら2つの等式からなる連立方程式を解くことによって燃料供給量補正値および供給空気量補正値が算出され、前記燃料供給指令値または該燃料供給指令値から把握される燃料供給量が前記算出された燃料供給量補正値によって補正されるとともに前記供給空気量検出手段によって検出される空気の量が前記算出された供給空気量補正値によって補正されることによって前記空燃比検出手段によって検出される空燃比と前記空燃比算出手段によって算出される空燃比との間の偏差と前記排気成分濃度検出手段によって検出される特定成分の濃度と前記排気成分濃度算出手段によって算出される特定成分の濃度との間の偏差とが小さくされる請求項1または2に記載の内燃機関の制御装置。
  4.  前記燃料供給手段に故障が生じていない場合に前記燃料供給指令値に対する補正量が取り得る範囲が燃料供給指令値補正許容範囲として設定され、前記燃料供給指令値に対する補正量が該燃料供給指令値補正許容範囲内にないときに前記燃料供給手段に故障が生じていると診断される請求項1~3のいずれか1つに記載の内燃機関の制御装置。
  5.  前記供給空気量検出手段に故障が生じていない場合に前記検出供給空気量に対する補正量が取り得る範囲が検出供給空気量補正許容範囲として設定され、前記燃料供給指令値に対する補正量が該検出供給空気量補正許容範囲内にないときに前記供給空気量検出手段に故障が生じていると診断される請求項1~4のいずれか1つに記載の内燃機関の制御装置。
PCT/JP2011/060858 2011-05-11 2011-05-11 内燃機関の制御装置 WO2012153403A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/390,394 US9194322B2 (en) 2011-05-11 2011-05-11 Control device of an engine
CN201180016526.3A CN102884299B (zh) 2011-05-11 2011-05-11 内燃机的控制装置
PCT/JP2011/060858 WO2012153403A1 (ja) 2011-05-11 2011-05-11 内燃機関の制御装置
EP11824288.2A EP2708724B1 (en) 2011-05-11 2011-05-11 Control device for internal combustion engine
JP2011538753A JP5083583B1 (ja) 2011-05-11 2011-05-11 内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/060858 WO2012153403A1 (ja) 2011-05-11 2011-05-11 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
WO2012153403A1 true WO2012153403A1 (ja) 2012-11-15

Family

ID=47138905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060858 WO2012153403A1 (ja) 2011-05-11 2011-05-11 内燃機関の制御装置

Country Status (5)

Country Link
US (1) US9194322B2 (ja)
EP (1) EP2708724B1 (ja)
JP (1) JP5083583B1 (ja)
CN (1) CN102884299B (ja)
WO (1) WO2012153403A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8869604B2 (en) * 2010-09-08 2014-10-28 Toyota Jidosha Kabushiki Kaisha Flow rate detection device
WO2012157037A1 (ja) * 2011-05-13 2012-11-22 トヨタ自動車株式会社 内燃機関の制御装置
JP6317219B2 (ja) * 2013-11-29 2018-04-25 トヨタ自動車株式会社 燃料性状推定装置
DE102014211896A1 (de) * 2014-06-20 2015-12-24 Robert Bosch Gmbh Verfahren zur Überwachung einer Fahrzeugsteuerung
AT516320B1 (de) * 2014-10-06 2016-07-15 Ge Jenbacher Gmbh & Co Og Verfahren zum Betreiben einer Selbstzündungs-Brennkraftmaschine
TWI593875B (zh) * 2016-01-21 2017-08-01 Rong-Bin Liao Engine control
US10480474B2 (en) * 2017-04-06 2019-11-19 Ge Global Sourcing Llc Method and system for determining remaining useful life for an injector of a reciprocating engine
CN109113883B (zh) * 2017-06-22 2020-07-07 联合汽车电子有限公司 内燃机的空燃比控制方法及装置
CN111927640B (zh) * 2020-08-19 2022-09-23 潍柴动力股份有限公司 发动机故障检测方法、装置、设备及计算机可读存储介质
CN114673603B (zh) * 2022-04-12 2023-04-14 中国第一汽车股份有限公司 发动机控制系统安全监控方法、装置、计算机设备和介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06299886A (ja) 1993-04-05 1994-10-25 Ford Motor Co フィードバック制御システム及び制御方法
JP2007262946A (ja) 2006-03-28 2007-10-11 Toyota Motor Corp 内燃機関の燃料供給制御装置
WO2010090035A1 (ja) * 2009-02-06 2010-08-12 本田技研工業株式会社 内燃機関の排気浄化装置及び排気浄化方法
WO2010109667A1 (ja) * 2009-03-27 2010-09-30 本田技研工業株式会社 プラントの制御装置
JP2011027059A (ja) * 2009-07-28 2011-02-10 Hitachi Automotive Systems Ltd エンジンの制御装置

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718366B2 (ja) * 1986-11-08 1995-03-06 トヨタ自動車株式会社 内燃機関の空燃比制御装置
JPH0758054B2 (ja) * 1989-06-19 1995-06-21 株式会社ユニシアジェックス 内燃機関の燃料供給制御装置における学習補正装置及び自己診断装置
JPH03134240A (ja) * 1989-10-18 1991-06-07 Japan Electron Control Syst Co Ltd 内燃機関の空燃比フィードバック制御装置
US5115639A (en) * 1991-06-28 1992-05-26 Ford Motor Company Dual EGO sensor closed loop fuel control
JPH06129285A (ja) * 1992-10-20 1994-05-10 Honda Motor Co Ltd 内燃機関の空燃比制御装置
US5426934A (en) * 1993-02-10 1995-06-27 Hitachi America, Ltd. Engine and emission monitoring and control system utilizing gas sensors
US5738070A (en) * 1996-12-11 1998-04-14 Caterpillar Inc. Method and apparatus for operation of a speed-governed lean burn engine to improve load response
US6705081B2 (en) * 1997-07-15 2004-03-16 New Power Concepts Llc System and method for sensor control of the fuel-air ratio in a burner
JP2000110647A (ja) 1998-09-30 2000-04-18 Mazda Motor Corp エンジンの制御装置
JP3804402B2 (ja) * 2000-05-19 2006-08-02 トヨタ自動車株式会社 車両の駆動力制御装置及び駆動力制御方法
JP4196535B2 (ja) * 2000-11-02 2008-12-17 トヨタ自動車株式会社 車両用制御装置および記録媒体
JP3991619B2 (ja) * 2000-12-26 2007-10-17 日産自動車株式会社 内燃機関の空燃比制御装置
JP4490000B2 (ja) * 2001-06-19 2010-06-23 本田技研工業株式会社 内燃機関の空燃比制御装置
CA2441686C (en) * 2003-09-23 2004-12-21 Westport Research Inc. Method for controlling combustion in an internal combustion engine and predicting performance and emissions
JP4552741B2 (ja) 2005-04-19 2010-09-29 日産自動車株式会社 エンジンの空燃比制御方法及びエンジンの空燃比制御装置
US7389773B2 (en) * 2005-08-18 2008-06-24 Honeywell International Inc. Emissions sensors for fuel control in engines
US7913675B2 (en) * 2005-10-06 2011-03-29 Caterpillar Inc. Gaseous fuel engine charge density control system
JP4929966B2 (ja) 2006-09-15 2012-05-09 株式会社デンソー 燃料噴射制御装置
US7680586B2 (en) * 2006-12-20 2010-03-16 Cummins Inc. Mass air flow sensor signal compensation system
JP4221026B2 (ja) * 2006-12-25 2009-02-12 三菱電機株式会社 内燃機関の空燃比制御装置
JP2008215112A (ja) * 2007-02-28 2008-09-18 Mitsubishi Heavy Ind Ltd ディーゼルエンジンシステム及びその制御方法
DE102008000916B4 (de) * 2007-04-02 2021-12-16 Denso Corporation Verbrennungssteuerungsvorrichtung für direkt einspritzende Kompressionszündungskraftmaschine
US7496443B2 (en) * 2007-05-30 2009-02-24 Ford Global Technologies, Llc Emissions control
JP4479764B2 (ja) * 2007-08-31 2010-06-09 株式会社デンソー 燃料噴射制御装置およびそれを用いた燃料噴射システム
JP4782759B2 (ja) * 2007-10-24 2011-09-28 株式会社デンソー 内燃機関制御装置および内燃機関制御システム
JP2009115012A (ja) * 2007-11-08 2009-05-28 Denso Corp 内燃機関の空燃比制御装置
JP4672048B2 (ja) * 2008-06-09 2011-04-20 三菱電機株式会社 内燃機関制御装置
US8627858B2 (en) * 2009-03-12 2014-01-14 Ford Global Technologies, Llc Methods and systems for selectively fuelling a vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06299886A (ja) 1993-04-05 1994-10-25 Ford Motor Co フィードバック制御システム及び制御方法
JP2007262946A (ja) 2006-03-28 2007-10-11 Toyota Motor Corp 内燃機関の燃料供給制御装置
WO2010090035A1 (ja) * 2009-02-06 2010-08-12 本田技研工業株式会社 内燃機関の排気浄化装置及び排気浄化方法
WO2010109667A1 (ja) * 2009-03-27 2010-09-30 本田技研工業株式会社 プラントの制御装置
JP2011027059A (ja) * 2009-07-28 2011-02-10 Hitachi Automotive Systems Ltd エンジンの制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2708724A4

Also Published As

Publication number Publication date
JP5083583B1 (ja) 2012-11-28
JPWO2012153403A1 (ja) 2014-07-28
US9194322B2 (en) 2015-11-24
CN102884299A (zh) 2013-01-16
EP2708724A1 (en) 2014-03-19
CN102884299B (zh) 2015-07-22
US20140058646A1 (en) 2014-02-27
EP2708724B1 (en) 2017-04-19
EP2708724A4 (en) 2015-02-11

Similar Documents

Publication Publication Date Title
JP5083583B1 (ja) 内燃機関の制御装置
JP4251073B2 (ja) 内燃機関の制御装置
JP5093406B1 (ja) 内燃機関の制御装置
JP2858288B2 (ja) 内燃機関の空燃比制御装置における自己診断装置
US7725247B2 (en) Abnormality diagnostic device and abnormality diagnostic method for air-fuel ratio sensor
US7751966B2 (en) Abnormality diagnostic device and abnormality diagnostic method for air-fuel ratio sensor
US20120277979A1 (en) Air/fuel ratio variation abnormality detection apparatus, and abnormality detection method
JP2011027059A (ja) エンジンの制御装置
US10138831B2 (en) Controller and control method for internal combustion engine
US20130226437A1 (en) Air-fuel ratio variation abnormality detecting device and air-fuel ratio variation abnormality detecting method
CN114508430A (zh) 用于控制用于内燃机的氢气的喷入量的控制设备
JP5267600B2 (ja) 多気筒内燃機関の制御装置
US7874143B2 (en) Air-fuel ratio control apparatus of internal combustion engine and control method thereof
US9404431B2 (en) Method and device for operating an internal combustion engine
JP5273224B2 (ja) 内燃機関の空燃比制御装置
JP2010048125A (ja) 内燃機関のセンサ故障判定装置
JP2014181650A (ja) 多気筒型内燃機関の異常検出装置
JP5695878B2 (ja) 内燃機関の燃焼制御装置及び方法
JP3991292B2 (ja) 内燃機関の排気浄化装置及び排気浄化方法
JP5260770B2 (ja) エンジンの制御装置
JP2013241867A (ja) 内燃機関の制御装置
JP2010112353A (ja) 内燃機関の空燃比制御装置
JP2005030407A (ja) 内燃機関の排気浄化装置及び排気浄化方法
WO2014083626A1 (ja) 内燃機関の制御装置
CN115875148A (zh) 发动机的空燃比控制装置及控制方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180016526.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2011538753

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13390394

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2011824288

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011824288

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11824288

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE