JP6501018B1 - 未燃燃料量の機械学習装置 - Google Patents
未燃燃料量の機械学習装置 Download PDFInfo
- Publication number
- JP6501018B1 JP6501018B1 JP2018081365A JP2018081365A JP6501018B1 JP 6501018 B1 JP6501018 B1 JP 6501018B1 JP 2018081365 A JP2018081365 A JP 2018081365A JP 2018081365 A JP2018081365 A JP 2018081365A JP 6501018 B1 JP6501018 B1 JP 6501018B1
- Authority
- JP
- Japan
- Prior art keywords
- amount
- unburned fuel
- parameter
- value
- correlation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 326
- 238000010801 machine learning Methods 0.000 title claims abstract description 41
- 238000002485 combustion reaction Methods 0.000 claims abstract description 63
- 238000005314 correlation function Methods 0.000 claims abstract description 41
- 230000002596 correlated effect Effects 0.000 claims abstract description 3
- 238000002347 injection Methods 0.000 claims description 174
- 239000007924 injection Substances 0.000 claims description 174
- 238000000034 method Methods 0.000 claims description 47
- 230000008859 change Effects 0.000 claims description 10
- 239000006185 dispersion Substances 0.000 claims description 8
- 208000024891 symptom Diseases 0.000 claims 1
- 238000013528 artificial neural network Methods 0.000 abstract description 105
- 230000006870 function Effects 0.000 description 49
- 230000008569 process Effects 0.000 description 29
- 238000012886 linear function Methods 0.000 description 27
- 230000001186 cumulative effect Effects 0.000 description 17
- 238000010586 diagram Methods 0.000 description 17
- 239000003054 catalyst Substances 0.000 description 14
- 230000008929 regeneration Effects 0.000 description 14
- 238000011069 regeneration method Methods 0.000 description 14
- 230000000875 corresponding effect Effects 0.000 description 12
- 230000003197 catalytic effect Effects 0.000 description 11
- 238000004891 communication Methods 0.000 description 10
- 238000007254 oxidation reaction Methods 0.000 description 10
- 238000003860 storage Methods 0.000 description 8
- 230000003647 oxidation Effects 0.000 description 7
- 238000013459 approach Methods 0.000 description 6
- 239000002826 coolant Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 230000004913 activation Effects 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 4
- 238000011478 gradient descent method Methods 0.000 description 4
- 230000001276 controlling effect Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012549 training Methods 0.000 description 3
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 210000002569 neuron Anatomy 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 230000002457 bidirectional effect Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000002828 fuel tank Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000007637 random forest analysis Methods 0.000 description 1
- 238000012706 support-vector machine Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07C—TIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
- G07C5/00—Registering or indicating the working of vehicles
- G07C5/08—Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
- G07C5/0808—Diagnosing performance data
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D41/1405—Neural network control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/1459—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being a hydrocarbon content or concentration
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/048—Activation functions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B77/00—Component parts, details or accessories, not otherwise provided for
- F02B77/08—Safety, indicating, or supervising devices
- F02B77/085—Safety, indicating, or supervising devices with sensors measuring combustion processes, e.g. knocking, pressure, ionization, combustion flame
- F02B77/086—Sensor arrangements in the exhaust, e.g. for temperature, misfire, air/fuel ratio, oxygen sensors
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07C—TIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
- G07C5/00—Registering or indicating the working of vehicles
- G07C5/008—Registering or indicating the working of vehicles communicating information to a remotely located station
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Computing Systems (AREA)
- Software Systems (AREA)
- Computational Linguistics (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mathematical Physics (AREA)
- Data Mining & Analysis (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Exhaust Gas After Treatment (AREA)
- Processes For Solid Components From Exhaust (AREA)
Abstract
Description
<ニューラルネットワークの概要>
<ニューラルネットワークによる関数の表現>
<ニューラルネットワークにおける学習>
<本発明による実施例>
一方、x1(i)のときのyをy(i)とし、x1(i)の平均値をx1(i)e とし、y (i)の平均値をy (i)e とすると、最小2乗法の公式から、上記(9)式における傾きa1および切片b1は、次式で表される。
一方、xs(i)のときのyをy(i)とし、xs(i)の平均値をxs(i)e とし、y (i)の平均値をy (i)e とすると、最小2乗法の公式から、上記(12)式における傾きasおよび切片bsは、次式で表される。
なお、本機械学習は回帰問題として連続値となる出力を扱っているが、出力が有限個の離散カテゴリとなる分類問題(多クラス分類)として考えることもできる。具体的には出力として複数のクラスを用意し、その各クラスと未燃燃料量を対応させてやればよい。
また、機械学習のうち教師あり学習にはニューラルネットワークだけでなく、ランダムフォレスト、サポートベクターマシン、k近傍法等の種々の方法がある。これらモデルはあくまで特徴ベクトルによって張られる特徴空間において境界線を張り、決定境界を効率よく求めるアルゴリズムという点で共通する。すなわちニューラルネットワークで推定が可能であるならば、他の教師あり学習のモデルでも機械学習可能である。
また、機械学習として教師あり学習を用いる代わりに、半教師あり学習を用いることもできる。
2 燃焼室
3 点火栓
4 燃料噴射弁
14 触媒コンバータ
15 酸化触媒
16 パティキュレートフィルタ
24 燃料添加弁
25 吸気圧センサ
26 吸気温センサ
27 排気圧センサ
29 水温センサ
30 燃料圧センサ
31 HC濃度センサ
40 電子制御ユニット
Claims (4)
- 内燃機関の運転に関係する各パラメータに対し、パラメータと未燃燃料量との間の相関関係を示す相関関数を求め、該相関関数が、最小2乗法を用いて算出された、パラメータ値と未燃燃料量との間の関係を示す一次関数からなり、未燃燃料量の平均値と該一次関数から未燃燃料量の分散が算出され、該分散に基づき、未燃燃料量に対する相関度合いの強さを示すパラメータの寄与率が算出され、該寄与率が予め設定された下限値以上のパラメータが、内燃機関の運転に関係するパラメータの中から、機関から排出される未燃燃料量と相関度合いの強いパラメータとして選定され、真の未燃燃料量のばらつきによる分散の変化度が、該下限値とされ、選定された該パラメータに基づき、未燃燃料量を推定するための機械学習が行われることを特徴とする、教師データを用いて機械学習を行う未燃燃料量の機械学習装置。
- 内燃機関の運転に関係する各パラメータに対し、パラメータと未燃燃料量との間の相関関係を示す相関関数を求め、該相関関数が、最小2乗法を用いて算出された、パラメータ値と未燃燃料量との間の関係を示す一次関数からなり、未燃燃料量の平均値と該一次関数から未燃燃料量の分散が算出され、該分散に基づき、未燃燃料量に対する相関度合いの強さを示すパラメータの寄与率が算出され、パラメータの寄与率の高い方から順に該寄与率を累積することによって得られる累積寄与率が予め設定された上限値に達したときに、該累積寄与率に貢献しているパラメータが、内燃機関の運転に関係するパラメータの中から、機関から排出される未燃燃料量と相関度合いの強いパラメータとして選定され、選定された該パラメータに基づき、未燃燃料量を推定するための機械学習が行われることを特徴とする、教師データを用いて機械学習を行う未燃燃料量の機械学習装置。
- 内燃機関の運転に関係するパラメータの中から、機関から排出される未燃燃料量と相関度合いの強いパラメータを選定し、選定されたパラメータが、アフター噴射量、EGR率およびメイン噴射量からなり、選定された該パラメータに基づき、未燃燃料量を推定するための機械学習が行われることを特徴とする、教師データを用いて機械学習を行う未燃燃料量の機械学習装置。
- 内燃機関の運転に関係するパラメータの中から、機関から排出される未燃燃料量と相関度合いの強いパラメータを選定し、選定されたパラメータが、機関回転数、メイン噴射量、アフター噴射量、アフター噴射時期およびEGR率からなり、選定された該パラメータに基づき、未燃燃料量を推定するための機械学習が行われることを特徴とする、教師データを用いて機械学習を行う未燃燃料量の機械学習装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018081365A JP6501018B1 (ja) | 2018-04-20 | 2018-04-20 | 未燃燃料量の機械学習装置 |
US16/007,446 US10991174B2 (en) | 2018-04-20 | 2018-06-13 | Machine learning device of amount of unburned fuel, machine learning method, learned model, electronic control unit, method of production of electronic control unit, and machine learning system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018081365A JP6501018B1 (ja) | 2018-04-20 | 2018-04-20 | 未燃燃料量の機械学習装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6501018B1 true JP6501018B1 (ja) | 2019-04-17 |
JP2019190306A JP2019190306A (ja) | 2019-10-31 |
Family
ID=66166729
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018081365A Active JP6501018B1 (ja) | 2018-04-20 | 2018-04-20 | 未燃燃料量の機械学習装置 |
Country Status (2)
Country | Link |
---|---|
US (1) | US10991174B2 (ja) |
JP (1) | JP6501018B1 (ja) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11156178B2 (en) * | 2017-09-12 | 2021-10-26 | Ford Global Technologies, Llc | Diesel engine particulate filter regeneration system and methods |
JP2019116881A (ja) * | 2017-12-27 | 2019-07-18 | トヨタ自動車株式会社 | 内燃機関の制御装置 |
JP6702380B2 (ja) * | 2018-09-14 | 2020-06-03 | トヨタ自動車株式会社 | 内燃機関の制御装置 |
JP7079445B2 (ja) * | 2018-09-25 | 2022-06-02 | 本田技研工業株式会社 | モデルパラメータ学習装置、制御装置及びモデルパラメータ学習方法 |
JP7143895B2 (ja) * | 2018-09-27 | 2022-09-29 | 日本電気株式会社 | 情報処理装置、情報処理方法、およびプログラム |
DE102019124259A1 (de) * | 2019-09-10 | 2021-03-11 | Bayerische Motoren Werke Aktiengesellschaft | Ermitteln eines Sensorfehlers eines Sensors in einem Abgasstrang eines Kraftfahrzeugs |
US11459962B2 (en) * | 2020-03-02 | 2022-10-04 | Sparkcognitton, Inc. | Electronic valve control |
JP2021156258A (ja) * | 2020-03-30 | 2021-10-07 | 株式会社豊田中央研究所 | モデル構築装置、モデル構築方法、エンジン制御パラメータ決定方法、及びエンジン |
DE102020116488B3 (de) * | 2020-06-23 | 2021-03-25 | Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr | Verfahren zum Betreiben einer Brennkraftmaschine, Steuergerät und Brennkraftmaschine |
JP7388343B2 (ja) * | 2020-12-18 | 2023-11-29 | トヨタ自動車株式会社 | ターボチャージャのオイルコーキング堆積量の推定装置 |
CN115762653B (zh) * | 2022-11-11 | 2023-08-11 | 哈尔滨工程大学 | 基于进化算法和深度学习的燃料燃烧机理优化方法 |
Family Cites Families (67)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2792633B2 (ja) * | 1990-02-09 | 1998-09-03 | 株式会社日立製作所 | 制御装置 |
SE509805C2 (sv) * | 1994-08-11 | 1999-03-08 | Mecel Ab | Metod och system för reglering av förbränningsmotorer |
DE69635429T2 (de) * | 1995-01-27 | 2006-08-03 | Matsushita Electric Industrial Co., Ltd., Kadoma | Luft/Kraftstoff-Verhältnis-Steuersystem |
US6098012A (en) * | 1995-02-13 | 2000-08-01 | Daimlerchrysler Corporation | Neural network based transient fuel control method |
JP3510021B2 (ja) * | 1995-09-29 | 2004-03-22 | 松下電器産業株式会社 | 内燃機関の空燃比制御装置 |
US5745653A (en) * | 1996-02-05 | 1998-04-28 | Ford Global Technologies, Inc. | Generic neural network training and processing system |
US5781700A (en) * | 1996-02-05 | 1998-07-14 | Ford Global Technologies, Inc. | Trained Neural network air/fuel control system |
DE69729981T2 (de) * | 1996-05-28 | 2004-12-16 | Honda Giken Kogyo K.K. | Gerät zur Steuerung des Luft/Kraftstoffverhältnisses, das ein neuronales Netzwerk benutzt |
US6278986B1 (en) * | 1996-06-27 | 2001-08-21 | Yahama Hatsudoki Kabushiki Kaisha | Integrated controlling system |
US6032139A (en) * | 1996-09-27 | 2000-02-29 | Yamaha Hatsudoki Kabushiki Kaisha | Electronic controller using genetic evolution techniques suitable for controlling a motor |
JP3825845B2 (ja) * | 1996-09-27 | 2006-09-27 | ヤマハ発動機株式会社 | 進化的制御方式 |
JPH10122017A (ja) * | 1996-10-14 | 1998-05-12 | Yamaha Motor Co Ltd | エンジン制御方式 |
US5915359A (en) * | 1996-12-13 | 1999-06-29 | Ford Global Technologies, Inc. | Method and system for determining and controlling A/F ratio during cold start engine operation |
US5690072A (en) * | 1996-12-13 | 1997-11-25 | Ford Global Technologies, Inc. | Method and system for determining and controlling a/f ratio in lean engines |
DE19706750A1 (de) * | 1997-02-20 | 1998-08-27 | Schroeder Dierk Prof Dr Ing Dr | Verfahren zur Gemischsteuerung bei einem Verbrennungsmotor sowie Vorrichtung zu dessen Durchführung |
US6330553B1 (en) * | 1997-04-09 | 2001-12-11 | Yamaha Hatsudoki Kabushiki Kaisha | Autonomic system for updating fuzzy neural network and control system using the fuzzy neural network |
US6236908B1 (en) * | 1997-05-07 | 2001-05-22 | Ford Global Technologies, Inc. | Virtual vehicle sensors based on neural networks trained using data generated by simulation models |
US5806013A (en) * | 1997-08-29 | 1998-09-08 | Echlin, Inc. | Control of engine fuel delivery using an artificial neural network in parallel with a feed-forward controller |
JPH1185719A (ja) * | 1997-09-03 | 1999-03-30 | Matsushita Electric Ind Co Ltd | パラメータ推定装置 |
US6405122B1 (en) * | 1997-10-14 | 2002-06-11 | Yamaha Hatsudoki Kabushiki Kaisha | Method and apparatus for estimating data for engine control |
DE69929920D1 (de) * | 1998-04-09 | 2006-04-27 | Yamaha Motor Co Ltd | Krafstoffeinspritzsteuereinheit für ein Brennkraftmaschine |
EP0959414A1 (en) * | 1998-05-20 | 1999-11-24 | Yamaha Hatsudoki Kabushiki Kaisha | Optimization method for a fuzzy neural network |
US6678640B2 (en) * | 1998-06-10 | 2004-01-13 | Matsushita Electric Industrial Co., Ltd. | Method and apparatus for parameter estimation, parameter estimation control and learning control |
US6415272B1 (en) * | 1998-10-22 | 2002-07-02 | Yamaha Hatsudoki Kabushiki Kaisha | System for intelligent control based on soft computing |
JP3959980B2 (ja) * | 2001-04-26 | 2007-08-15 | 三菱ふそうトラック・バス株式会社 | 実験計画法に基づくデータ解析方法および装置並びに実験計画法に基づくデータ解析プログラムおよび同プログラムを記録したコンピュータ読み取り可能な記録媒体 |
US6687597B2 (en) * | 2002-03-28 | 2004-02-03 | Saskatchewan Research Council | Neural control system and method for alternatively fueled engines |
US6882929B2 (en) | 2002-05-15 | 2005-04-19 | Caterpillar Inc | NOx emission-control system using a virtual sensor |
US6805099B2 (en) * | 2002-10-31 | 2004-10-19 | Delphi Technologies, Inc. | Wavelet-based artificial neural net combustion sensing |
JP2004239233A (ja) * | 2003-02-10 | 2004-08-26 | Toyota Motor Corp | 内燃機関の気筒別空燃比の推定および気筒排気割合の推定 |
US7181334B2 (en) * | 2003-05-14 | 2007-02-20 | General Motors Corporation | Method and apparatus to diagnose intake airflow |
DE10328015A1 (de) * | 2003-06-23 | 2005-01-13 | Volkswagen Ag | Virtuelle Lambdasonde für ein Kraftfahrzeug |
DE602004004221T2 (de) | 2003-09-19 | 2007-05-03 | Nissan Motor Co., Ltd., Yokohama | Regenerationssteuerung eines Filters |
JP4432693B2 (ja) * | 2003-09-19 | 2010-03-17 | 日産自動車株式会社 | エンジンの排気浄化装置本発明はエンジンの排気浄化装置に関し、詳しくはエンジン排気中の微粒子状物質を捕集するフィルタの再生処理技術の改良に関する。 |
FR2867232B1 (fr) * | 2004-03-05 | 2006-05-05 | Inst Francais Du Petrole | Methode d'estimation de la richesse en carburant dans un cylindre d'un moteur a combustion |
US7299123B2 (en) * | 2005-03-04 | 2007-11-20 | Stmicroelectronics S.R.L. | Method and device for estimating the inlet air flow in a combustion chamber of a cylinder of an internal combustion engine |
EP2275946A1 (en) * | 2005-03-04 | 2011-01-19 | STMicroelectronics S.r.l. | Probabilistic neural network and relative training method |
US7565333B2 (en) * | 2005-04-08 | 2009-07-21 | Caterpillar Inc. | Control system and method |
US7499842B2 (en) * | 2005-11-18 | 2009-03-03 | Caterpillar Inc. | Process model based virtual sensor and method |
US7505949B2 (en) * | 2006-01-31 | 2009-03-17 | Caterpillar Inc. | Process model error correction method and system |
US20070233326A1 (en) * | 2006-03-31 | 2007-10-04 | Caterpillar Inc. | Engine self-tuning methods and systems |
JP4673787B2 (ja) * | 2006-05-10 | 2011-04-20 | 本田技研工業株式会社 | 内燃機関の空燃比制御装置 |
JP4591423B2 (ja) | 2006-08-09 | 2010-12-01 | 株式会社デンソー | エンジンの燃料未燃分推定装置、排気浄化装置の温度推定装置 |
US8478506B2 (en) * | 2006-09-29 | 2013-07-02 | Caterpillar Inc. | Virtual sensor based engine control system and method |
JP4645585B2 (ja) | 2006-12-12 | 2011-03-09 | 株式会社デンソー | エンジントルク制御装置 |
WO2008131789A1 (de) * | 2007-04-26 | 2008-11-06 | Fev Motorentechnik Gmbh | Regelungssystem zur regelung der abgasrückführrate mittels virtuellem nox-sensors mit adaption über einen nox sensor |
US7787969B2 (en) * | 2007-06-15 | 2010-08-31 | Caterpillar Inc | Virtual sensor system and method |
US7899652B2 (en) * | 2007-08-31 | 2011-03-01 | Toyota Motor Engineering & Manufacturing North America, Inc. | Linear programming support vector regression with wavelet kernel |
US7542879B2 (en) * | 2007-08-31 | 2009-06-02 | Caterpillar Inc. | Virtual sensor based control system and method |
US7593804B2 (en) * | 2007-10-31 | 2009-09-22 | Caterpillar Inc. | Fixed-point virtual sensor control system and method |
US8224468B2 (en) * | 2007-11-02 | 2012-07-17 | Caterpillar Inc. | Calibration certificate for virtual sensor network (VSN) |
DE602008001659D1 (de) * | 2008-01-29 | 2010-08-12 | Honda Motor Co Ltd | Steuersystem für einen Verbrennungsmotor |
US20090300422A1 (en) * | 2008-05-30 | 2009-12-03 | Caterpillar Inc. | Analysis method and system using virtual sensors |
US7917333B2 (en) * | 2008-08-20 | 2011-03-29 | Caterpillar Inc. | Virtual sensor network (VSN) based control system and method |
US8965664B2 (en) * | 2009-03-27 | 2015-02-24 | Honda Motor Co., Ltd. | Controller for plant |
DE102009032064B3 (de) * | 2009-07-07 | 2010-08-26 | Continental Automotive Gmbh | Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine |
US8676476B2 (en) * | 2009-12-04 | 2014-03-18 | GM Global Technology Operations LLC | Method for real-time, self-learning identification of fuel injectors during engine operation |
US8880321B2 (en) * | 2011-03-07 | 2014-11-04 | Toyota Motor Engineering & Manufacturing North America, Inc. | Adaptive air charge estimation based on support vector regression |
US8793004B2 (en) * | 2011-06-15 | 2014-07-29 | Caterpillar Inc. | Virtual sensor system and method for generating output parameters |
US9650934B2 (en) * | 2011-11-04 | 2017-05-16 | Honeywell spol.s.r.o. | Engine and aftertreatment optimization system |
US8738271B2 (en) * | 2011-12-16 | 2014-05-27 | Toyota Motor Engineering & Manufacturing North America, Inc. | Asymmetric wavelet kernel in support vector learning |
US8977373B2 (en) * | 2011-12-28 | 2015-03-10 | Caterpillar Inc. | Systems and methods for extending physical sensor range using virtual sensors |
US20130268177A1 (en) * | 2012-04-05 | 2013-10-10 | Chrysler Group Llc | Individual cylinder fuel air ratio estimation for engine control and on-board diagnosis |
US20140012791A1 (en) * | 2012-07-05 | 2014-01-09 | Caterpillar Inc. | Systems and methods for sensor error detection and compensation |
US9328644B2 (en) * | 2013-09-24 | 2016-05-03 | GM Global Technology Operations LLC | Exhaust system and method of estimating diesel particulate filter soot loading for same using two-tier neural network |
US10415492B2 (en) * | 2016-01-29 | 2019-09-17 | Garrett Transportation I Inc. | Engine system with inferential sensor |
US10634081B2 (en) * | 2018-02-05 | 2020-04-28 | Toyota Jidosha Kabushiki Kaisha | Control device of internal combustion engine |
JP6477951B1 (ja) * | 2018-04-05 | 2019-03-06 | トヨタ自動車株式会社 | 車載電子制御ユニット |
-
2018
- 2018-04-20 JP JP2018081365A patent/JP6501018B1/ja active Active
- 2018-06-13 US US16/007,446 patent/US10991174B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US20190325671A1 (en) | 2019-10-24 |
US10991174B2 (en) | 2021-04-27 |
JP2019190306A (ja) | 2019-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6501018B1 (ja) | 未燃燃料量の機械学習装置 | |
JP6477951B1 (ja) | 車載電子制御ユニット | |
EP3690558B1 (en) | Control device of internal combustion engine, in-vehicle electronic control unit, machine learning system, control method of internal combustion engine, manufacturing method of electronic control unit, and output parameter calculation device | |
CN111016920B (zh) | 车辆用驱动装置的控制装置及控制方法、车载电子控制单元、已学习模型和机器学习系统 | |
CN111022206B (zh) | 车辆用驱动装置的控制装置及方法、车载电子控制单元 | |
US9228511B2 (en) | Engine feedback control system and method | |
CN101622437B (zh) | 用于估计内燃机的排气温度的方法和设备 | |
CN104895651A (zh) | 对颗粒过滤器碳烟速率的环境湿度和温度校正 | |
JP6699702B2 (ja) | 内燃機関の制御装置及びその制御方法、並びに内燃機関を制御するための学習モデル及びその学習方法 | |
De Cesare et al. | Neural network based models for virtual no x sensing of compression ignition engines | |
Quérel et al. | State of the art and analysis of control oriented NOx models | |
Fischer | Transient NOx estimation using artificial neural networks | |
JP2011132915A (ja) | 物理量推定装置 | |
CN102102565B (zh) | 在内燃发动机运转过程中进行“车上”故障诊断的方法和装置 | |
US20220351022A1 (en) | Method and Arrangement for Predicting Engine Out Nitrogen Oxides (EONOx) using a Neural Network | |
CN111164292B (zh) | 用于求取燃烧马达的燃烧废气中的炭黑浓度的方法和装置 | |
Wang | A study of model-based control strategy for a gasoline turbocharged direct injection spark ignited engine | |
JP2010096021A (ja) | 内燃機関の燃焼状態診断装置 | |
JP2020045821A (ja) | 内燃機関の制御装置 | |
US11840974B2 (en) | Intelligent mass air flow (MAF) prediction system with neural network | |
Bojahr et al. | Synthetic Fuel Detection for Vehicles in Field using Machine Learning | |
WO2021034259A1 (en) | Method of performing misfire diagnosis, control arrangement, internal combustion engine, and related devices | |
bin Elias | Modelling and prediction of air path behaviour in a heavy-duty engine using artificial neural networks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180615 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180615 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20180615 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20180918 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180925 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181019 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20181204 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190116 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20190116 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20190123 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20190129 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190219 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190304 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6501018 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |