JP5046647B2 - ダンパおよび真空ポンプ - Google Patents

ダンパおよび真空ポンプ Download PDF

Info

Publication number
JP5046647B2
JP5046647B2 JP2006540960A JP2006540960A JP5046647B2 JP 5046647 B2 JP5046647 B2 JP 5046647B2 JP 2006540960 A JP2006540960 A JP 2006540960A JP 2006540960 A JP2006540960 A JP 2006540960A JP 5046647 B2 JP5046647 B2 JP 5046647B2
Authority
JP
Japan
Prior art keywords
vibration
damper
frequency
bellows
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006540960A
Other languages
English (en)
Other versions
JPWO2006041113A1 (ja
Inventor
啓能 並木
智 奥寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EDWARDSJAPAN LIMITED
Original Assignee
EDWARDSJAPAN LIMITED
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EDWARDSJAPAN LIMITED filed Critical EDWARDSJAPAN LIMITED
Priority to JP2006540960A priority Critical patent/JP5046647B2/ja
Publication of JPWO2006041113A1 publication Critical patent/JPWO2006041113A1/ja
Application granted granted Critical
Publication of JP5046647B2 publication Critical patent/JP5046647B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/10Vibration-dampers; Shock-absorbers using inertia effect
    • F16F7/1028Vibration-dampers; Shock-absorbers using inertia effect the inertia-producing means being a constituent part of the system which is to be damped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/14Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/601Mounting; Assembling; Disassembling specially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/668Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps damping or preventing mechanical vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • F16F15/08Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with rubber springs ; with springs made of rubber and metal
    • F16F15/085Use of both rubber and metal springs

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Non-Positive Displacement Air Blowers (AREA)
  • Compressor (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Description

本発明は、真空ポンプで発生した振動の伝搬(伝導)を抑制する機構を有するダンパおよび真空ポンプに関する。
真空ポンプを用いて排気処理を行い、内部が真空に保たれるような真空装置を用いる装置には、半導体製造装置、電子顕微鏡、表面分析装置、微細加工装置などがある。
また、各種ある真空ポンプのうち、高真空の環境を実現するために多用されるものに、ターボ分子ポンプがある。
ターボ分子ポンプは、吸気口および排気口を有するケーシングの内部でロータが高速回転するように構成されている。ケーシングの内周面には、ステータ翼が多段に配設されており、一方、ロータにはロータ翼が放射状かつ多段に配設されている。ロータが高速回転すると、ロータ翼とステータ翼との作用により気体が吸気口から吸引され、排気口から排出されるようになっている。
ところで、ターボ分子ポンプは、ロータが高速回転すると、モータのコギングトルクにより振動が発生する。また、ロータは、完全にバランスがとれてない場合には、軸の振れによる振動が発生するおそれもある。
このような真空ポンプで発生した振動が、真空装置側に伝搬してしまうと装置の性能に支障を来すおそれがある。例えば、電子顕微鏡や表面分析装置などは、μオーダーやナノオーダーの微小振動であっても大きな影響を受けるおそれがある。
そこで従来、真空チャンバと真空ポンプとの間にダンパを配置し、真空ポンプで発生する振動(微小振動を含む)が真空チャンバへ伝搬されることを抑制している。
ダンパとしては、例えば、周面を蛇腹状に折曲形成した薄いステンレス合金製の部材(ベローズ)をシリコンラバー等の弾性部材で被覆したものが用いられている。真空ポンプ使用時には、このダンパに外方からホースバンド等を装着してダンパを締め付ける。
このダンパは、ダンピング特性を大きくするために、即ち、振動の絶縁性を向上させるために、ダンパの系全体の固有振動数を低く(例えば100Hz以下)設定することが望ましい。
固有振動数の低下は、ダンパの剛性および減衰係数を小さくすることによって実現できる。
しかしながら、ダンパは、大気中に配置されるため、真空排気流路と大気との圧力差に耐えうる構造が必要となる。そのため、ダンパには、ある程度の高い剛性が要求される。つまり、ダンパの剛性を小さくするには限界があった。
真空ポンプの起動時や停止時などの加減速時において、ロータの回転数がダンパの系全体の固有振動数を通過する。この固有振動数の通過時に、即ち、ロータの振動数とダンパの系全体の固有振動数が一致した場合に共振を起こす。
また、ロータを支持する力や配管などから伝わってくる外乱によって、この周波数の振動が励起されてしまう場合がある。特に、固有振動数付近の帯域については、ダンパを使用しない場合よりも振動が著しく大きくなってしまう場合もある。
共振現象は、小さな外力でも大きな振動を生じてしまうが、ダンパの系全体における減衰係数を大きくすることによって、共振時の変位(振れ幅)を小さくすることができる。
このような共振による影響を低減させるため、ダンパには、ある程度の高い減衰係数が要求される。つまり、ダンパの減衰係数を小さくするにも限界があった。
そこで従来、ダンパの系全体の固有振動数を低下させるための技術が、下記の特許文献をはじめ、種々提案されている。
特開昭59−221482号公報 実用新案登録第3092699号公報
特許文献1には、真空ポンプが受ける吸引力を相殺させるためのバランス用真空室を設ける技術が提案されている。このようなバランス用真空室を設けることによりべローズに作用する圧縮力を抑制することができる。これにより、べローズをよりやわらかい部材で形成しても略自由長で機能させることができ、ダンパの系全体の固有振動数を低下させることができる。
また、特許文献2には、真空引きの力を撚り線ワイヤで受ける技術が提案されている。撚り線ワイヤを用いて真空力に耐え得る構成とすることにより、ダンパの固有振動数を小さくすることができる。
しかしながら、減衰係数を小さくしてダンパの系全体の固有振動数を低下させた場合には、外乱を受けた場合における真空ポンプの安定性が損なわれるおそれがある。
また、ダンパの剛性を小さくしてダンパの系全体の固有振動数を低下させた場合には、真空ポンプを倒立姿勢(吸気口を下向き)や水平姿勢(横向き)で取り付けた時に真空ポンプの安定支持ができなくなるおそれがある。詳しくは、真空ポンプを倒立姿勢や水平姿勢で取り付けた場合には、真空ポンプの自重によりダンパに撓みや傾きが生じるおそれがある。このような撓みや傾きなどの不具合が生じてしまうと、真空ポンプの取付姿勢の自由度(柔軟度)が制限されてしまう。
そこで、本発明は、真空ポンプの取付姿勢の自由度(柔軟度)を保持しつつ、特定の周波数帯域の振動の低減化を図ることができるダンパおよび真空ポンプを提供することを目的とする。
請求項1記載の発明は、真空装置と前記真空装置の排気処理を行う真空ポンプとの間に配設され、前記真空ポンプで発生した振動を前記真空装置へ伝播することを抑制するダンパであって、振動エネルギーを抑制する振動吸収の解析モデルにおいて、ばね定数kのばね要素および質量mのマス(質量)要素を備えた第1の振動吸収性部材と、前記第1の振動吸収性部材と接触しない位置に配置され、振動エネルギーを抑制する振動吸収の解析モデルにおいて、ばね定数Kのばね要素および粘性減衰係数Cの減衰要素を備えた第2の振動吸収性部材と、を備え、前記第1の振動吸収性部材および前記第2の振動吸収性部材は、前記真空ポンプの回転体の回転周波数と略一致する特定の周波数帯域において急峻な減衰特性を有するノッチフィルタ形の振動絶縁構造を形成することを特徴とするダンパを提供する。
請求項2記載の発明は、請求項1記載の発明において、前記第1の振動吸収性部材は、周面が蛇腹状の薄肉円筒部材によって形成され、前記第2の振動吸収性部材は、弾性部材によって形成され、前記薄肉円筒部材の外周に配設する。
請求項3記載の発明は、前記真空ポンプは、吸気口および排気口、さらに、前記吸気口から前記排気口まで気体を移送する気体移送機構を備え、前記気体移送機構は、前記真空ポンプに内包された前記回転体の回転作用により気体を移送し、前記ノッチフィルタ形の振動絶縁構造における前記特定の周波数帯域の中心周波数fcは、前記第1の振動吸収性部材の固有振動数によって決まることを特徴とする請求項1または請求項2記載のダンパを提供する。
なお、前記第1の振動吸収性部材の固有振動数は、例えば、2次以上の固有振動数を含んでもよい。
請求項4記載の発明は、請求項2または請求項3記載の発明において、前記特定の周波数帯域の中心周波数fcは、前記薄肉円筒部材の固有振動数を変化させることにより調整する。
請求項5記載の発明は、請求項4記載の発明において、前記薄肉円筒部材は、その両端をそれぞれ第1の部材および第2の部材に固定され、前記弾性部材もまた、その両端をそれぞれ前記第1の部材および前記第2の部材に固定され、前記薄肉円筒部材の固有振動数は、前記第1の部材および前記第2の部材との間隔を変化させて、前記薄肉円筒部材の引き伸ばし量を調節する。
請求項6記載の発明は、請求項5記載の発明において、前記第1の部材および前記第2の部材との間隔は、前記第1の部材または前記第2の部材の少なくとも一方の部材と、前記弾性部材との間にスペーサ部材を挿入、または、調整ねじを用いて隙間を形成することにより調整する。
請求項7記載の発明は、請求項5記載の発明において、前記第1の部材および前記第2の部材との間隔は、前記第1の部材または前記第2の部材の少なくとも一方の部材と、前記弾性部材との間隔をアクチュエータを用いて変化させることにより調整する。
請求項8記載の発明は、請求項7記載の発明において、前記第1の部材および前記第2の部材との間隔は、前記回転体の回転周波数に基づいて変化させる。
請求項9記載の発明は、請求項1乃至請求項8のいずれか1に記載のダンパを備えることにより前記目的を達成する。
本発明によれば、定数kのばね要素および質量mのマス(質量)要素を備えた第1の振動吸収性部材、および、ばね定数Kのばね要素および粘性減衰係数Cの減衰要素を備えた第2の振動吸収性部材を用いてノッチフィルタ形の振動絶縁構造を形成することにより、適切に特定の周波数帯域の振動の低減化を図ることができる。
以下、本発明の好適な実施の形態について、図1〜図9を参照して詳細に説明する。本実施の形態では、真空ポンプの一例としてターボ分子ポンプを用いて説明する。
図1は、本実施形態に係るダンパ部Dを備えたターボ分子ポンプ1の構成を示した図である。なお、図1は、軸線方向の断面を示している。
また、図1には、ターボ分子ポンプ1に接続された真空装置60の一部も示してある。
本実施形態に係るターボ分子ポンプ1は、ダンパ部Dとポンプ部Pからなる。さらにポンプ部Pは、ターボ分子ポンプ部Tとねじ溝ポンプ部Sを備えている。
ターボ分子ポンプ1のポンプ部Pの外装体を形成するケーシング2は、略円筒状の形状をしており、ケーシング2の下部(排気口6側)に設けられたベース3と共にポンプ部Pの筐体を構成している。そして、この筐体の内部には、ターボ分子ポンプ1に排気機能を発揮させる構造物、即ち、気体移送機構が収納されている。
この気体移送機構は、大きく分けて回転自在に軸支された回転部と筐体に対して固定された固定部から構成されている。
ケーシング2の端部には、ターボ分子ポンプ1のポンプ部Pへ気体を導入するための吸気口4が形成されている。また、ケーシング2の吸気口4側の端面には、外周側へ張り出したフランジ部5が形成されている。
また、ベース3には、ターボ分子ポンプ1から気体を排気するための排気口6が形成されている。
回転部は、回転軸であるシャフト7、このシャフト7に配設されたロータ8、ロータ8に設けられた回転翼9、排気口6側(ねじ溝ポンプ部S)に設けられた円筒部材10などから構成されている。
回転翼9は、シャフト7の軸線に垂直な平面から所定の角度だけ傾斜してシャフト7から放射状に伸びたブレードからなる。
また、円筒部材10は、ロータ8の回転軸線と同心の円筒形状をした部材からなる。
シャフト7の軸線方向中程には、シャフト7を高速回転させるためのモータ部11が設けられている。本実施の形態では、一例として、モータ部11は以下のように構成されたDCブラシレスモータであるとする。
モータ部11では、シャフト7の周囲に永久磁石が固着してある。この永久磁石は、例えばシャフト7の周りにN極とS極が180°ごとに配置されるように固定されている。この永久磁石の周囲には、シャフト7から所定のクリアランスを経て、例えば6個の電磁石が60°ごとにシャフト7の軸線に対して対称的に対向するように配置されている。
また、ターボ分子ポンプ1には、回転数センサが取り付けられている。制御装置30は、この回転数センサの検出信号によりシャフト7の回転数を検出することができるようになっている。
さらに、ターボ分子ポンプ1には、例えば、モータ部11の近傍に、シャフト7の回転の位相を検出する位相センサが取り付けられている。制御装置30は、この位相センサと回転数センサの検出信号を共に用いて永久磁石の位置を検出するようになっている。
制御装置30は、検出した磁極の位置に従って、シャフト7の回転が持続するように電磁石の電流を次々に切り替える。即ち、制御装置30は、6個の電磁石の励磁電流を切り替えることによりシャフト7に固定された永久磁石の周りに回転磁界を生成し、永久磁石をこの回転磁界に追従させることによりシャフト7を回転させる。
シャフト7のモータ部11に対して吸気口4側、および排気口6側には、シャフト7をラジアル方向(径方向)に軸支するための磁気軸受部12、13、シャフト7の下端には、シャフト7を軸線方向(アキシャル方向)に軸支するための磁気軸受部14が設けられている。
これらの磁気軸受部12〜14は、いわゆる5軸制御型の磁気軸受を構成している。
シャフト7は、磁気軸受部12、13によってラジアル方向(シャフト7の径方向)に非接触で支持され、磁気軸受部14によってスラスト方向(シャフト7の軸方向)に非接触で支持されている。
また、磁気軸受部12〜14の近傍には、それぞれシャフト7の変位を検出する変位センサ15〜17が設けられている。
磁気軸受部12では、4個の電磁石がシャフト7の周囲に、90°ごとに対向するように配置されている。シャフト7は、高透磁率材(鉄など)などにより形成され、これらの電磁石の磁力により吸引されるようになっている。
変位センサ15は、シャフト7のラジアル方向の変位を所定の時間間隔でサンプリングして検出する。そして制御装置30は、変位センサ15からの変位信号によってシャフト7がラジアル方向に所定の位置から変位したことを検出すると、各電磁石の磁力を調節してシャフト7を所定の位置に戻すように動作する。この電磁石の磁力の調節は、各電磁石の励磁電流をフィードバック制御することにより行われる。
制御装置30は、変位センサ15の信号に基づいて磁気軸受部12をフィードバック制御し、これによってシャフト7は、磁気軸受部12において電磁石から所定のクリアランスを隔ててラジアル方向に磁気浮上し、空間中に非接触で保持される。
磁気軸受部13の構成と作用は、磁気軸受部12と同様である。制御装置30は、変位センサ16の信号に基づいて磁気軸受部13をフィードバック制御し、これによってシャフト7は、磁気軸受部13でラジアル方向に磁気浮上し、空間中に非接触で保持される。
このように、シャフト7は、磁気軸受部12、13の作用により、ラジアル方向に所定の位置で保持される。
また、磁気軸受部14は、円板状の金属ディスク18、電磁石19、20を備え、シャフト7をスラスト方向に保持する。
金属ディスク18は、鉄などの高透磁率材で構成されており、その中心においてシャフト7に垂直に固定されている。金属ディスク18の上には電磁石19が設置され、下には電磁石20が設置されている。電磁石19は、磁力により金属ディスク18を上方に吸引し、電磁石20は、金属ディスク18を下方に吸引する。制御装置30は、この電磁石19、20が金属ディスク18に及ぼす磁力を適当に調節し、シャフト7をスラスト方向に磁気浮上させ、空間に非接触で保持するようになっている。
変位センサ17は、シャフト7のスラスト方向の変位をサンプリングして検出し、これを制御装置30に送信する。制御装置30は、変位センサ17から受信した変位検出信号によりシャフト7のスラスト方向の変位を検出する。
シャフト7がスラスト方向のどちらかに移動して所定の位置から変位した場合、制御装置は、この変位を修正すように電磁石19、20の励磁電流をフィードバック制御して磁力を調節し、シャフト7を所定の位置に戻すように動作する。制御装置30は、このフィードバック制御を連続的に行う。これにより、シャフト7はスラスト方向に所定の位置で磁気浮上し、保持される。
以上に説明したように、シャフト7は、磁気軸受部12、13によりラジアル方向に保持され、磁気軸受部14によりスラスト方向に保持されるため、シャフト7の軸線周りに回転するようになっている。
筐体の内周側には、固定部が形成されている。この固定部は、吸気口4側(ターボ分子ポンプ部)に設けられた固定翼21と、ケーシング2の内周面に設けられたねじ溝スペーサ22などから構成されている。
固定翼21は、シャフト7の軸線に垂直な平面から所定の角度だけ傾斜して筐体の内周面からシャフト7に向かって伸びたブレードから構成されている。
各段の固定翼21は、円筒形状をしたスペーサ23により互いに隔てられている。
ターボ分子ポンプ部Tでは、固定翼21が軸線方向に、回転翼9と互い違いに複数段形成されている。
ねじ溝スペーサ22には、円筒部材10との対向面にらせん溝が形成されている。ねじ溝スペーサ22は、所定のクリアランス(間隙)を隔てて円筒部材10の外周面に対面するようになっている。ねじ溝スペーサ22に形成されたらせん溝の方向は、らせん溝内をシャフト7の回転方向にガスが輸送された場合、排気口6に向かう方向である。
また、らせん溝の深さは、排気口6に近づくにつれ浅くなるようになっており、らせん溝を輸送されるガスは排気口6に近づくにつれて圧縮されるようになっている。
このように構成されたターボ分子ポンプ1のポンプ部Pにより、真空装置60内の真空排気処理を行うようになっている。
真空装置60は、例えば半導体装置をエッチングするためのチャンバなどのプロセスガスの排出が必要なものや、電子顕微鏡の観察試料を設置するチャンバなどの高真空を要するものである。このような真空装置60においては、装置の性能に支障を来すおそれがあるため、ターボ分子ポンプ1のポンプ部Pで発生した振動の伝播が好ましくない。
そこで、本実施形態に係るターボ分子ポンプ1は、ダンパ部Dを介して真空装置60に接続する。ダンパ部Dは、ターボ分子ポンプ1のポンプ部Pで発生した振動(例えば、μオーダーやナノオーダーといった微小振動を含む)を吸収する目的で設けられている。
ダンパ部Dは、中空円筒形状の円筒部材41を備えている。この円筒部材41のポンプ部P側端面には、外周側へ張り出したフランジ部42が形成されている。なお、このフランジ部42とポンプ部Pのフランジ部5とは対向している。
円筒部材41は、ポンプ部Pのケーシング2と同様の材質の金属(例えば、アルミニウム合金やステンレス鋼等)で形成されている。
また、円筒部材41の他端側は、真空装置60の排気口の周縁部に固定されている。
この円筒部材41のフランジ部42とポンプ部Pのフランジ部5とに挟装される状態で、弾性部材45(エラストマ)が配置されている。なお、この弾性部材45は、第2の振動吸収性部材として機能する。また、円筒部材41は第1の部材として機能し、フランジ部5は第2の部材として機能する。
弾性部材45は、環状の部材(円筒形状の部材)であり、シリコンゴム等のゴム材で形成されている。なお、弾性部材45は、ゲル材で形成するようにしてもよい。
ポンプ部Pのフランジ部5には、ダンパ部Dのフランジ部42との対向面上に環状の凹溝24が形成されている。
弾性部材45の一端側は、この凹溝24に嵌め込まれて固定されている。そして、弾性部材45のもう一端側は、ダンパ部Dのフランジ部42によって押さえられている。
なお、フランジ部42の外周縁には、ポンプ部P方向へ突出するストッパ部43が形成されている。このストッパ部43は、弾性部材45がフランジ部42の外周側へずれてしまうことを抑止するための位置ずれ防止部材である。
さらに、このストッパ部43は、フランジ部42とフランジ部5により弾性部材45を挟んで保持する際の位置決め部材としても機能している。
ここで、ダンパ部Dをポンプ部Pへ固定する方法について説明する。ダンパ部Dのポンプ部Pへの固定には、ボルト46、スペーサ47、貫通孔48、ボルト穴25を用いる。
ボルト46は、丸棒の一端に頭部を有し、他端側にねじが切ってある締結部材である。
スペーサ47は、ダンパ部Dをポンプ部Pへ固定する際に、ボルト46によって弾性部材45が締め付けられ過ぎないようにするための位置決め部材である。
このスペーサ47は、中空円筒状の部材であり、その内径は、ボルト46の径よりも大きく、ボルト46の頭部の径よりも小さい。スペーサ47の長さ方向の距離を変えることによって、ダンパ部Dのフランジ部42とポンプ部Pのフランジ部5との間隔を調節することができる。
貫通孔48は、フランジ部42に形成されたスルーホール(バカ穴)であり、その径は、スペーサ47の外径よりも大きい。また、貫通孔48は、弾性部材45の配設される位置よりも内周側に形成されている。
ボルト穴25は、ポンプ部Pのフランジ部5に形成されたねじ穴であり、その大きさはボルト46の形状に対応している。また、ボルト穴25は、貫通孔48と対向する位置に形成されている。
組み立て時には、まず、スペーサ47を貫通孔48に遊挿する。そして、このスペーサ47にボルト46を貫通させる。ボルト46をボルト穴25に嵌め込み、ボルト46を締め付ける。このようにして、ダンパ部Dはポンプ部Pへ固定される。
なお、ボルト46は、ダンパ部Dのフランジ部42とポンプ部Pのフランジ部5とが離れ過ぎることを規制する機能も有している。
即ち、ダンパ部Dのフランジ部42とポンプ部Pのフランジ部5との間隔は、スペーサ47の働きにより近づき過ぎないように、また、ボルト46の働きにより離れ過ぎないように規制されている。
また、ダンパ部Dの円筒部材41の内側には、べローズ44が設けられている。なお、このベローズ44は、第1の振動吸収性部材として機能する。
ベローズ44は、ステンレス鋼により形成された、ひだ状のなめらかな山形の連続断面を有する薄肉の管である。ベローズ44は、山形に形成された側面が伸び縮みすることにより弾力性を発揮する。なお、ベローズ44は、一体成形タイプであっても、山ごとに溶接された溶接成形タイプであってもよい。
また、ベローズ44の両端の開口部は、それぞれ円筒部材41の内周壁、ポンプ部のフランジ部5と接合されている。これらの接合部は、例えば、ろう付けまたは溶接により形成されている。そして、接合部における気密性を確保すると共に、ポンプ部Pの振動に対しても十分な強度を備えるようになっている。
次に、このように構成された本実施形態に係るダンパ部Dの機能について詳しく説明する。
本実施形態に係るダンパ部Dでは、図1に示すように、ベローズ44は、弾性部材45の内側に間隔を持って配設されている。なお、ベローズ44と弾性部材45は、ベローズ44が圧縮された場合においても、両者が接触しない間隔を持って配設されている。
そして、このベローズ44と弾性部材45によって、ノッチフィルタ形の振動絶縁器を構成している。
ノッチフィルタとは、特定の周波数に急峻な減衰を与えるフィルタである。即ち、ノッチフィルタ形の振動絶縁器とは、特定の周波数帯域の振動を減衰させるダンパ(振動吸収)装置である。
本実施形態に係るダンパ部Dでは、ノッチフィルタ形の振動絶縁器が有する特性を利用して、特に大きくなるロータ8(シャフト7)の回転周波数近傍の振動を適切に低減(絶縁)させている。
ここで、本実施形態に係るダンパ部Dと従来のダンパ装置とを比較しながら、ダンパ部Dの特徴を説明する。ここで、従来のダンパ装置とは、ベローズを弾性部材で被覆したタイプのものである。
図2(a)は従来のダンパ装置のモデルを示した図であり、(b)は本実施形態に係るダンパ部Dのモデルを示した図である。
なお、図2(a)および(b)は、ポンプ部Pから真空装置60への振動伝達をモデル化したものである。
図2中に示す符号は、
1 :真空装置60の質量要素
2 :ベローズ44の質量要素
3 :ポンプ部Pの質量要素
1 :ベローズを弾性部材で被覆したもののばね定数
1 :ベローズを弾性部材で被覆したものの減衰係数
2 、k 3 :ベローズ44のばね定数
4 :弾性部材45のばね定数
2 、c 3 :ベローズ44の減衰係数
4 :弾性部材45の減衰係数
fin:ターボ分子ポンプ1のポンプ部Pで発生する振動
fout:真空装置60に伝わる振動
2 :m 2 の変位
3 :m 3 の変位
を示している。
また、 2 ’’および 3 ’’は、それぞれ 2 および 3 の2階の時間微分を示す。
なお、図2に示すモデル図は、図示しやすいようにアキシャル方向における状態を示しているが、ラジアル方向についても同様の特性を示す。
図2(a)に示すように、従来のダンパ装置は、減衰係数c1とばね定数k1のみを有する要素で構成されている。従来のダンパ装置は、ベローズに減衰係数c1を持たせるために、ベローズと弾性部材とを接触させている。
図2(a)に示すようなモデル構造を有する振動絶縁器は、基本形と呼ばれるものである。
なお、減衰要素とは、粘性減衰係数(減衰係数)cを有する要素であり、ばね要素とは、ばね定数を有する要素である。
図2(b)に示すモデルは、ベローズ44と弾性部材45とを接触しないように十分な間隔を持って配設することにより実現することができる。
次に、急峻な減衰を与える周波数帯域(以下、ノッチ帯域とする)の中心周波数fcの導出方法について図2を参照しながら説明する。
図2(a)に示す従来のダンパは、ベローズと弾性部材を接触させベローズと弾性部材を一体とみなしたり、あるいは、ベローズのばね定数を無視できる程度まで小さく設定したりして、基本形の振動絶縁器を構成していた。
これに対して、図2(b)に示す本実施形態に係るダンパDでは、ベローズ44のばね定数を従来のダンパよりも大きく設定し、ベローズ44自身による振動伝達率への影響を考慮している。
ここで、本実施形態に係るダンパDの振動伝達率、即ち、fout/finを求める。
まず、振動伝達モデルの運動方程式をラプラス演算子(s)を用いて示すと、
Figure 0005046647
となる。
但し、 2 、X 3 、Fout、Finは、それぞれ 2 ,x 3 、fout、finのラプラス変換値である。
そして上式をFout/Finについて解くと、
Figure 0005046647
となる。
ここで、ベローズ44自身の減衰は十分に小さいと考え、 2 =c 3 =0とすると、
Figure 0005046647
となる。
数3に対して、 2 =0とみなすことができる場合、
Figure 0005046647
となる。これは、 2 2 +k 3 =0の時、入力Finの大きさに関わらず出力Fout=0となるノッチフィルタ特性を示す。
そして、後述する図5に示すように、実測によってもノッチフィルタ特性が観測されている。
ラプラス演算子(s)を周波数領域で考えると、
s=2πfj (但し、fは周波数[Hz]、jは虚数単位とする)
であるから、ノッチフィルタの中心周波数fcは、
−(2πfc) 2 2 +k 3 =0
より求まる。
即ち、中心周波数fcは、
Figure 0005046647
となる。このようにfcは、 4 、c 4 、m 3 に依存せず、つまり、ベローズ44の特性(m 2 およびk 3 で決まる固有振動数である。
数5に示すように、中心周波数fcは、ベローズ44の自重である質量(マス)要素と関係している。
ベローズ44の自重は、ポンプ部Pや真空装置60の質量と比較すると、非常に小さなものである。しかしながら、ダンパ部Dにおいて低減(減衰)の対象としている振動が、μオーダーやナノオーダーといった微小振動であるため、十分に減衰効果を得ることができる。
図3は、固有振動数を実測した結果を示すグラフである。
なお、このfcの測定時には、 4 およびc 4 の影響を無くすため、弾性部材45の代わりに金属製のスペーサを用いている。
図3に示すように、fcは、ベローズ44の引き伸ばし量を金属スペーサの厚さによって調整することによって変化する。
なお、図3および図5に示す実測結果は、真空装置60側に別途設けられた振動吸収要素などの特性を含む。
図1に示す本実施形態に係るダンパ部Dでは、ノッチ帯域の中心周波数fcがポンプ部Pにおけるロータ8の回転周波数と一致するように、ベローズ44および弾性部材45における各要素の定数が設定されている。
なお、ノッチ帯域の中心周波数fcとロータ8の回転周波数とは、一致させることが望ましいが、ノッチ帯域の中心周波数fcは、ロータ8の回転周波数の±40%以内であれば、十分にノッチ帯域における減衰を期待することができる。
これは、実際のシステムにおいては、減衰が0(ゼロ)となることはなく、ノッチ帯域の中心周波数fcの周辺に、ある程度の幅(帯域)を持って振動低減効果の帯域が現れる。この帯域幅は、減衰の大きさに依存するものであるが、第1の振動吸収部材としてベローズ44をそのまま使用する場合は、ロータ8の回転周波数の±40%以内であれば、振動の低減効果を十分に期待できる(実機確認済み)。なお、ロータ8の回転周波数と中心周波数fcが近づくほど振動低減の効果は大きくなる。
このように、図1に示す本実施形態では、ベローズ44と弾性部材45とを接触しない十分な間隔を持って配置し、弾性部材45にばね要素Kと減衰要素Cを、ベローズ44にばね要素kとマス要素mを備えさせる。これによりノッチフィルタ形の振動絶縁器を構成する。
そして、ベローズ44と弾性部材45は、ノッチ帯域の中心周波数fcがロータ8の回転周波数の近傍(±40%以内)となる各要素の定数に設定される。各要素の定数に合致するように部材の材質や引き伸ばし量を調整する。
例えば、ロータ8の回転数が30,000rpmである場合には、ロータ8の回転周波数は500Hzとなる。この場合ベローズ44および弾性部材45は、ノッチ帯域の中心周波数fcが300Hz〜700Hzの範囲に収まるような定数に設定される。
このようにベローズ44と弾性部材45により構成されるノッチフィルタ形の振動絶縁器により、特定周波数の振動、つまりロータ8の回転周波数帯域の振動を適切に減衰させることができる。
ただし、ベローズ44の引き伸ばし範囲は、一体成形タイプのベローズ44が損傷しない範囲とする。その目安として、例えば、ベローズ44の自然長の±50%以内とする。
また、ポンプ部Pとダンパ部Dとを一体化したターボ分子ポンプ1においては、構造的にこれらの部位を別体で構成した場合と比較して小型化することができる。さらに、真空装置60への取り付け時の作業性を向上させることができるだけでなく、例えば、ターボ分子ポンプ1の破壊時などの異常時における取り付け強度を確保することが容易になる。
ところで、上述したノッチ帯域の中心周波数fcを求める計算式からも分かるように、中心周波数fcは、ベローズ44の固有振動数を変化させることにより変化する。
ベローズ44の固有振動数は、ベローズ44の材質や形状、あるいはベローズ44の引き伸ばし量(張力の変形や形状の変化)によっても変化する。
一般に弦や薄膜は張力が高いほど復元力が大きくなるため固有振動数が高くなる性質(特性)を有している。本実施の形態におけるベローズ44においてもこのような性質を有することが実測で確認できた。
なお、張力を直接調整することは困難であるため、本実施の形態ではベローズ44の引き伸ばし量を機械的手段などで調整するようにしている。
次に、このベローズ44の引き伸ばし量に基づいてノッチ帯域の中心周波数fcの周波数が変化する特性を利用した、ノッチ帯域の中心周波数fcの調整機構を有するダンパ部Dを備えた真空ポンプについて説明する。
図4は、ノッチ帯域の中心周波数fcの調整機構を有するダンパ部Dを備えたターボ分子ポンプ1の構成を示した図である。
なお、上述した図1に示すターボ分子ポンプ1と同一部分(重複する箇所)には、同一の符号を用い詳細な説明を省略する。
図4に示すターボ分子ポンプ1は、ダンパ部Dにおいて、ノッチ帯域の中心周波数fcの調整機構を備えている。
このノッチ帯域の中心周波数fcの調整機構は、主スペーサ49と調整スペーサ50によって構成されている。
主スペーサ49は、金属製の環状部材であり、弾性部材45とポンプ部Pのフランジ部5との間に挿入することによって、円筒部材41のフランジ部42とポンプ部Pのフランジ部5との間隔(距離)を拡張させる働きをする。
調整スペーサ50は、円筒部材41のフランジ部42とポンプ部Pのフランジ部5との間隔(距離)を拡張させる際の微調整をするための金属製の環状部材であり、主スペーサ49とフランジ部5との間に挿入する。
図4に示す実施の形態においては、調整スペーサ50を一枚挿入するようにしているが、円筒部材41のフランジ部42とポンプ部Pのフランジ部5との間隔(距離)が所定の値に満たない場合には、調整スペーサ50を複数枚挿入して調整を行うようにする。
このように、主スペーサ49および調整スペーサ50を用いて、円筒部材41のフランジ部42とポンプ部Pのフランジ部5との間隔(距離)を拡張すことにより、ベローズ44の引き伸ばし量が変化する。
ベローズ44の引き伸ばし量が変化することにより、ノッチ帯域の中心周波数fcが変化する。詳しくは、ノッチ帯域の中心周波数fcが高くなる方向へ変化する。
図5は、スペーサによる拡張間隔を変化させた場合における、ノッチ帯域の中心周波数fcの変化の様子の一例(測定例)を示したグラフである。
また、図6は、スペーサによる拡張間隔を変化させた場合における、ノッチ帯域の中心周波数fcの変化の様子の別の測定例を示したグラフである。
図6に示す別の測定例は、図5に示す測定を行う際に用いたパラメータと異なるパラメータで設計されたベローズを用いて測定したものである。
なお、スペーサによる拡張間隔は、主スペーサ49と調整スペーサ50との合計値を示している。
図5に示すように、スペーサによる拡張間隔を5mm、7mm、9mmと広げるに従って、ノッチ帯域の中心周波数fcは、ポイントA、ポイントB、ポイントCと高周波側へ変化することが分かる。
また、図6に示すように、スペーサによる拡張間隔を0mm、5mm、7mmと広げるに従って、ノッチ帯域の中心周波数fcは、ポイントD、ポイントEと高周波側へ変化することが分かる。
なお、図5および図6に示すグラフから、ノッチ帯域の中心周波数fcが高周波側へ変化した場合であっても、低周波側の応答は大きく変化しないことがわかる。
このように、ノッチ帯域の中心周波数fcは、フランジ部42とフランジ部5との間隔(距離)を拡張することにより容易に変化させることができる。
ところで、例えば、第1の振動吸収性部材(ベローズ44)と第2の振動吸収性部材(弾性部材45)を離して配置した場合であっても、従来のようにベローズ44のばね定数を小さく設定した場合には、ノッチ特性が比較的低周波の帯域に現れる。
なお、ノッチ帯域から大きく離れた周波数帯の応答は大きく変化しないため、このようにノッチ特性が低周波帯域に現れるダンパにおいては、ノッチ特性によるロータ8の回転周波数帯域の振動の減衰(低減)効果を十分得ることができない。つまり、従来は、ノッチ特性によるロータ8の回転周波数帯域の振動の減衰(低減)を考慮した設計は成されていなかったといえる。
このように主スペーサ49および調整スペーサ50により拡張される、フランジ部42とフランジ部5との間隔(距離)を調整することにより、即ち、ベローズ44の引き伸ばし量(張力や形状)を変えてベローズ44の固有振動数を調整することにより、容易にノッチ帯域の中心周波数fcをロータ8の回転周波数の近傍とすることができる。これにより、適切に、ロータ8の回転周波数帯域の振動を減衰(低減)させることができる。
このように、ノッチ帯域の中心周波数fcの調整において調整スペーサ50の枚数を変えることによる固定方式を用いる場合には、ターボ分子ポンプ1の出荷時にノッチ帯域の中心周波数fcを設定しておくことにより、輸送時や使用時における緩み等を抑制することができる。
次に、上述した(図4)ノッチ帯域の中心周波数fcの調整機構の変形例について説明する。
図7は、ノッチ帯域の中心周波数fcの調整機構(変形例1)を有するダンパ部Dを備えたターボ分子ポンプ1の構成を示した図である。
なお、上述した図1および図4に示すターボ分子ポンプ1と同一部分(重複する箇所)には、同一の符号を用い詳細な説明を省略する。
図7に示すノッチ帯域の中心周波数fcの調整機構の変形例では、図4に示すノッチ帯域の中心周波数fcの調整機構において、調整スペーサ50が担っているフランジ部42とフランジ部5との拡張間隔(距離)の微調整を調整ねじ52を用いて行う。
詳しくは、図7に示すノッチ帯域の中心周波数fcの調整機構(変形例1)は、主スペーサ51、調整ねじ52およびねじ穴53によって構成されている。
主スペーサ51は、図4で用いられる主スペーサ49と同様の金属製の環状部材であり、弾性部材45と円筒部材41のフランジ部42との間に挿入することによって、円筒部材41のフランジ部42とポンプ部Pのフランジ部5との間隔(距離)を拡張させる働きをする。
調整ねじ52は、フランジ部42の外周部における主スペーサ51と対向する位置に形成されたねじ穴53に嵌入する。そして、調節ねじ52の先端部を主スペーサ51の真空装置60と対向する面に当接させた状態でねじの締め量を調節することによって、主スペーサ51とフランジ部42との間隔の調節を行う。
調整ねじ52は、右ねじ方向に締め付けることにより、ねじ穴53に嵌入された先端部分がねじ穴53を貫通し、主スペーサ51に押し当てられる。ここでは、ねじ穴53を貫通した調整ねじ52の先端部分の長さを調節することにより、主スペーサ51とフランジ部42との間隔を変化させる。
即ち、調整ねじ52の締め付け量を変化させることにより、ベローズ44の引き伸ばし量を調節するようにしている。
このように、主スペーサ51とフランジ部42との間隔の調整を調整ねじ52を用いて行う場合には、間隔の調整値を連続的に変化させることができるため、調整スペーサ50を用いて行う場合よりもより微細な調節が可能となる。
また、ノッチ帯域の中心周波数fcの調整において調整ねじ52の締め付け量を変化させることによる半固定方式を用いる場合には、ダンパ部Dを組み立ててからノッチ帯域の中心周波数fcの調整を容易に行うことができるため、組み立て性の向上を図ることができる。さらに、使用中の経時変化にあわせて調整をすることができるだけでなく、真空装置60に取り付けた後に、装置特性に適合した適切な調整が容易に行える。
次に、上述した(図4)ノッチ帯域の中心周波数fcの調整機構の他の変形例について説明する。
図8は、ノッチ帯域の中心周波数fcの調整機構(変形例2)を有するダンパ部Dを備えたターボ分子ポンプ1の構成を示した図である。
なお、上述した図1および図4に示すターボ分子ポンプ1と同一部分(重複する箇所)には、同一の符号を用い詳細な説明を省略する。
図8に示すノッチ帯域の中心周波数fcの調整機構の変形例では、図4に示すノッチ帯域の中心周波数fcの調整機構において、調整スペーサ50が担っているフランジ部42とフランジ部5との拡張間隔(距離)の微調整を調整アクチュエータ54を用いて行う。
詳しくは、図8に示すノッチ帯域の中心周波数fcの調整機構(変形例2)は、主スペーサ49および調整アクチュエータ54によって構成されている。
主スペーサ49は、金属製の環状部材であり、弾性部材45とポンプ部Pのフランジ部5との間に挿入することによって、円筒部材41のフランジ部42とポンプ部Pのフランジ部5との間隔(距離)を拡張させる働きをする。
調整アクチュエータ54は、電気や流体などから与えられたエネルギーを機械的な動力に変換して負荷を駆動する調整素子である。つまり、調整アクチュエータ54は、制御装置30からの信号に基づいて間隔を変化させることが可能なアクティブスペーサとして機能する。
なお、調整アクチュエータ54の制御部を、ポンプ部Pの制御装置30に搭載することにより、ケーブルや電源部が省略でき装置の小型化を図ることができる。また、調整アクチュエータ54の制御部をポンプ部Pの制御装置30に搭載することにより、ポンプ部Pの制御シーケンスと同期した制御が容易になる。
調整アクチュエータ54は、例えば、電気式、油圧式、空気圧式のいずれのエネルギー形態であってもよい。
電気式のエネルギー形態を利用したアクチュエータの一例として、ピエゾ素子を用いた圧電アクチュエータがある。この圧電アクチュエータは、誘電体に電圧を加えるとひずみを発生する逆圧電効果を利用したアクチュエータである。セラミック圧電材料の代表的なものとしては、チタン酸バリウムやジルコンチタン酸鉛がある。
この圧電アクチュエータは、得られる変位が極めて小さいため、間隔の微調整に向いている。
また、電気式のエネルギー形態を利用したアクチュエータの他の例として、電磁力(ボイスコイル)を利用した電磁力アクチュエータがある。
調整アクチュエータ54を用いたノッチ帯域の中心周波数fcの調整機構は、上述した調整スペーサ50や調整ねじ52による間隔調整と異なりアクティブ制御を行うことができる。
従って、調整アクチュエータ54を用いたノッチ帯域の中心周波数fcの調整機構は、ターボ分子ポンプ1の稼働時(運転時)においても調整を行うことができる。
ところで、ロータ8の回転数は、起動/停止時において加速/減速(加減速)を行う。この加減速時には、回転数が変化する。即ち、ロータ8の加減速時には、回転周波数の変化にともなって、振動の周波数も変化する。
そこで、調整アクチュエータ54によるノッチ帯域の中心周波数fcの調整を、ロータ8の回転数、即ち回転周波数の変化に同期させて行うことにより、ロータ8の加減速時に発生する振動を適切に低減(減衰)させることができる。
例えば、円筒部材41のフランジ部42とポンプ部Pのフランジ部5との間隔(距離)を4mm拡張することによりノッチ帯域の中心周波数fcが約600Hzから約700Hzまで約100Hz変化するとする。
ターボ分子ポンプ1におけるロータ8の加減速が例えば、100Hz/20秒である場合には、4mm/20秒程度の動特性を有する調整アクチュエータ54を用いる。
するとノッチ帯域の中心周波数fcの調整がロータ8の加減速に追従することができるため、この周波数範囲において、適切な振動の低減(減衰)を図ることができる。
このように、調整アクチュエータ54を用いてノッチ帯域の中心周波数fcの調整を行うことにより、ターボ分子ポンプ1の状態に応じて減衰特性を変化させることができる。 例えば、加減速時と定常運転時とでノッチ帯域の中心周波数fcを変化させたり、ロータ8の回転周波数に追従してノッチ帯域の中心周波数fcを変化させたりして振動絶縁器における減衰特性を変化させることができる。
また、ノッチ帯域の中心周波数fcの変化は、真空装置60側のシーケンスに応じて変化させるようにしてもよい。
なお、本実施形態に係る調整アクチュエータ54においては、ダンパ部D(振動絶縁器)における振動減衰特性(ノッチフィルタ特性)の周波数を能動的(アクティブ)に制御するため、ロータ8の回転周波数を直接制御するような高速性(高応答性)は必ずしも必要とはならない。
本実施形態によれば、調整アクチュエータ54の制御回路は、ポンプ部Pを制御する制御装置30内に搭載するようにしているが、調整アクチュエータ54の制御はこれに限定されるものではない。例えば、ポンプ部Pの制御装置30とは別に独立した調整アクチュエータ54専用の制御装置を設けるようにしてもよい。
このように、調整アクチュエータ54専用の制御装置を設け、この制御装置から必要な信号や情報を取得することにより装置を実装する際の自由度(実装設計自由度)を向上させることができる。
図9は、ダンパ装置80を別体で構成した場合におけるターボ分子ポンプ70の取付例を示した図である。
なお、上述した図1に示すターボ分子ポンプ1と同一部分(重複する箇所)には、同一の符号を用い詳細な説明を省略する。
上述したターボ分子ポンプ1においては、ダンパ部Dを備えた、即ち、ダンパ部Dを一体構成した実施形態について説明したが、本実施形態はこれに限られるものではない。
図9に示すように、ダンパ部Dおよびポンプ部Pをそれぞれ別体のダンパ装置80およびターボ分子ポンプ70で構成するようにしてもよい。
この場合、ダンパ装置80に環状のフランジ55を設け、ベローズ44および弾性部材45をこのフランジ55と円筒部材41との間に配設する。
そして、フランジ55に凹溝56およびボルト穴57を形成し、一体型のターボ分子ポンプ1のフランジ部5に形成されている凹溝24およびボルト穴25と同様の機能を持たせる。
ベローズ44の両端の開口部は、それぞれ円筒部材41の内周壁、フランジ55と接合されている。これらの接合部は、例えば、ろう付けまたは溶接により形成されている。
弾性部材45の一端側は、凹溝56に嵌め込まれて固定されている。そして、弾性部材45のもう一端側は、フランジ部42によって押さえられている。
なお、ダンパ装置80およびターボ分子ポンプ70とはボルト58を用いて締結する。詳しくは、ダンパ装置80のフランジ55とターボ分子ポンプ70のフランジ部5とをボルト58を用いて結合する。
このとき、ダンパ装置80とターボ分子ポンプ70との結合部(接合部)における気密性を確保するために、フランジ55とフランジ部5との間にOリング59を配設する。
ダンパ装置80とターボ分子ポンプ70との結合部との気密性を確保する方法は、Oリング59を配設する方法に限られるものではない。例えば、ガスケットシール等の他の密封処理を施すようにしてもよい。
本実施形態によれば、このようなダンパ装置80を介してターボ分子ポンプ70を真空装置60に取り付けることにより、特定周波数の振動、つまりロータ8の回転周波数帯域の振動を適切に減衰させることができる。
なお、図4に示す調整スペーサ50を用いたノッチ帯域の中心周波数fcの調整機構を有するターボ分子ポンプ1についても、ダンパ部Dおよびポンプ部Pを図9に示すダンパ装置80およびターボ分子ポンプ70と同様に別体で構成するようにしてもよい。
また、図7に示す調整ねじ52を用いたノッチ帯域の中心周波数fcの調整機構、図8に示す調整アクチュエータ54を用いたノッチ帯域の中心周波数fcの調整機構を有するターボ分子ポンプ1についても、ダンパ部Dおよびポンプ部Pを図9に示すダンパ装置80およびターボ分子ポンプ70と同様に別体で構成するようにしてもよい。
上述したように、本実施形態によれば、ベローズ44と弾性部材45によって、ノッチフィルタ形の振動絶縁器を構成することにより、特定周波数(例えば、ロータ8の回転周波数)の振動を効果的に低減(減衰)させることができる。ベローズ44と弾性部材45は、従来のダンパにも備えられていた要素である。ベローズ44は薄肉部材で形成されているため質量は大きくないが、微小振動の低減には十分である。即ち、本実施形態においては、構成要素を追加することなく、特定周波数の振動を効果的に低減させることができる。
また、上述したノッチ帯域の中心周波数fcの調整機構を備えることにより、容易にノッチ帯域の中心周波数fcの調整ができる。ノッチ帯域の中心周波数fcを、例えば、ロータ8の回転周波数の近傍に設定することにより、ロータ8の回転周波数と同期する振動を適切に低減(減衰)させることができる。
なお、本実施形態における振動絶縁器(ダンパ部Dやダンパ装置80)では、振動絶縁器の系全体における固有振動数を小さくすることなく振動の低減(減衰)を図ることができる。
従って、振動絶縁器における低周波剛性を小さくする必要がないため、外乱に対する剛性を十分に保持することができる。さらに、振動絶縁器における低周波剛性を十分に保持することができるため、ターボ分子ポンプ1、70の取付姿勢の自由度(柔軟度)を向上させることができる。
装置ごとに低減(減衰)を希望する周波数帯域が異なるような場合であっても、本実施形態によれば、ノッチ帯域の中心周波数fcを、低減(減衰)を希望する周波数帯域近傍に設定することにより柔軟に対応することができる。なお、低減(減衰)を希望する周波数帯域としては、例えば、ロータ8の回転周波数の帯域や、ロータ8の回転周波数の高次(2次、3次など)成分を含む周波数の帯域がある。
なお、複数の周波数帯域の振動を同時に低減(減衰)させることを希望する場合には、それぞれノッチ帯域の中心周波数fcの設定領域が異なる振動絶縁器を複数段重ねて結合(接合)することによって対応することができる。この場合においてもそれぞれの振動絶縁器の結合部における気密性を確保するために適切なシール処理を施すようにする。
また、ベローズ44の固有振動数は、ラジアル方向にもアキシャル方向にも存在し、さらに、2次以上の高次の固有振動数も存在する。従って、固有振動数の方向と周波数を適切に設定することにより、ラジアル方向やアキシャル方向など低減(減衰)を希望する振動の方向や周波数に柔軟に対応することができる。
なお、磁気軸受式のターボ分子ポンプのように、ラジアル方向の振動とアキシャル方向の振動が密接に関係している装置においては、ラジアル方向の振動低減でアキシャル方向も振動低減したり、アキシャル方向の振動低減でラジアル方向も振動低減したりする効果が得られる場合もある。
本実施形態においては、ベローズ44の引き伸ばし量を変化させることによってノッチ帯域の中心周波数fcを調整するようにしているが、ノッチ帯域の中心周波数fcの調整方法はこれに限られるものではない。例えば、ベローズ44の板厚や山数(段数)を変更したり、ベローズ44におもりを追加して質量を変更したりすることでノッチ帯域の中心周波数fcを調整したり、中心周波数fcを複数設定してもよい(例えば、fc1、fc2…)。
その他、例えば、振動絶縁器(ダンパ部D、ダンパ装置80)や、ターボ分子ポンプ1(ポンプ部P)の内部または外部に、梁やバネなどの部材を配設し、これらの自重または質量要素と組み合わせるなどして、これらの固有振動数を利用してノッチ帯域の中心周波数fcを調整するようにしてもよい。なお、この場合も、複数の部材を設け、複数の中心周波数fcを設定してもよい。
さらに、例えば、弾性部材45の替わりにスプリング(ばね)材を円周状に配設し、このスプリング材の固有振動数を変化させることによってノッチ帯域の中心周波数fcを調整するようにしてもよい。
本実施形態に係るダンパ部を備えたターボ分子ポンプの構成を示した図である。 (a)は従来のダンパ装置のモデルを示した図であり、(b)は本実施形態に係るダンパ部のモデルを示した図である。 ベローズの固有振動数と振動低減の関係を示したグラフである。 ノッチ帯域の中心周波数fcの調整機構を有するダンパ部を備えたターボ分子ポンプの構成を示した図である。 スペーサによる拡張間隔を変化させた場合における、ノッチ帯域の中心周波数fcの変化の様子の一例(測定例)を示したグラフである。 スペーサによる拡張間隔を変化させた場合における、ノッチ帯域の中心周波数fcの変化の様子の別の測定例を示したグラフである。 ノッチ帯域の中心周波数fcの調整機構(変形例1)を有するダンパ部を備えたターボ分子ポンプの構成を示した図である。 ノッチ帯域の中心周波数fcの調整機構(変形例2)を有するダンパ部を備えたターボ分子ポンプの構成を示した図である。 ダンパ装置を別体で構成した場合におけるターボ分子ポンプの取付例を示した図である。
符号の説明
1 ターボ分子ポンプ
2 ケーシング
3 ベース
4 吸気口
5 フランジ部
6 排気口
7 シャフト
8 ロータ
9 回転翼
10 円筒部材
11 モータ部
12 磁気軸受部
13 磁気軸受部
14 磁気軸受部
15 変位センサ
16 変位センサ
17 変位センサ
18 金属ディスク
19 電磁石
20 電磁石
21 固定翼
22 ねじ溝スペーサ
23 スペーサ
24 凹溝
25 ボルト穴
30 制御装置
41 円筒部材
42 フランジ部
43 ストッパ部
44 ベローズ
45 弾性部材
46 ボルト
47 スペーサ
48 貫通孔
49 主スペーサ
50 調整スペーサ
51 主スペーサ
52 調整ねじ
53 ねじ穴
54 調整アクチュエータ
55 フランジ
56 凹溝
57 ボルト穴
58 ボルト
59 Oリング
60 真空装置
70 ターボ分子ポンプ
80 ダンパ装置

Claims (9)

  1. 真空装置と前記真空装置の排気処理を行う真空ポンプとの間に配設され、前記真空ポンプで発生した振動を前記真空装置へ伝播することを抑制するダンパであって、
    振動エネルギーを抑制する振動吸収の解析モデルにおいて、ばね定数kのばね要素および質量mのマス(質量)要素を備えた第1の振動吸収性部材と、
    前記第1の振動吸収性部材と接触しない位置に配置され、振動エネルギーを抑制する振動吸収の解析モデルにおいて、ばね定数Kのばね要素および粘性減衰係数Cの減衰要素を備えた第2の振動吸収性部材と、
    を備え、
    前記第1の振動吸収性部材および前記第2の振動吸収性部材は、前記真空ポンプの回転体の回転周波数と略一致する特定の周波数帯域において急峻な減衰特性を有するノッチフィルタ形の振動絶縁構造を形成することを特徴とするダンパ。
  2. 前記第1の振動吸収性部材は、周面が蛇腹状の薄肉円筒部材によって形成され、
    前記第2の振動吸収性部材は、弾性部材によって形成され、前記薄肉円筒部材の外周に配設されることを特徴とする請求項1記載のダンパ。
  3. 前記真空ポンプは、吸気口および排気口、さらに、前記吸気口から前記排気口まで気体を移送する気体移送機構を備え、
    前記気体移送機構は、前記真空ポンプに内包された前記回転体の回転作用により気体を移送し、
    前記ノッチフィルタ形の振動絶縁構造における前記特定の周波数帯域の中心周波数fcは、前記第1の振動吸収性部材の固有振動数によって決まることを特徴とする請求項1または請求項2記載のダンパ。
  4. 前記特定の周波数帯域の中心周波数fcは、前記薄肉円筒部材の固有振動数を変化させることにより調整することを特徴とする請求項2または請求項3記載のダンパ。
  5. 前記薄肉円筒部材は、その両端をそれぞれ第1の部材および第2の部材に固定され、
    前記弾性部材もまた、その両端をそれぞれ前記第1の部材および前記第2の部材に固定され、
    前記薄肉円筒部材の固有振動数は、前記第1の部材および前記第2の部材との間隔を変化させて、前記薄肉円筒部材の引き伸ばし量を調節することを特徴とする請求項4記載のダンパ。
  6. 前記第1の部材および前記第2の部材との間隔は、前記第1の部材または前記第2の部材の少なくとも一方の部材と、前記弾性部材との間にスペーサ部材を挿入、または、調整ねじを用いて隙間を形成することにより調整することを特徴とする請求項5記載のダンパ。
  7. 前記第1の部材および前記第2の部材との間隔は、前記第1の部材または前記第2の部材の少なくとも一方の部材と、前記弾性部材との間隔をアクチュエータを用いて変化させることにより調整することを特徴とする請求項5記載のダンパ。
  8. 前記第1の部材および前記第2の部材との間隔は、前記回転体の回転周波数に基づいて変化させることを特徴とする請求項7記載のダンパ。
  9. 請求項1乃至請求項8のいずれか1に記載のダンパを備えたことを特徴とする真空ポンプ。
JP2006540960A 2004-10-15 2005-10-13 ダンパおよび真空ポンプ Active JP5046647B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006540960A JP5046647B2 (ja) 2004-10-15 2005-10-13 ダンパおよび真空ポンプ

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004302177 2004-10-15
JP2004302177 2004-10-15
JP2006540960A JP5046647B2 (ja) 2004-10-15 2005-10-13 ダンパおよび真空ポンプ
PCT/JP2005/018835 WO2006041113A1 (ja) 2004-10-15 2005-10-13 ダンパおよび真空ポンプ

Publications (2)

Publication Number Publication Date
JPWO2006041113A1 JPWO2006041113A1 (ja) 2008-05-15
JP5046647B2 true JP5046647B2 (ja) 2012-10-10

Family

ID=36148400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006540960A Active JP5046647B2 (ja) 2004-10-15 2005-10-13 ダンパおよび真空ポンプ

Country Status (5)

Country Link
US (1) US7993113B2 (ja)
EP (1) EP1811175B1 (ja)
JP (1) JP5046647B2 (ja)
KR (1) KR101185265B1 (ja)
WO (1) WO2006041113A1 (ja)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL161900A (en) * 2004-05-09 2011-01-31 Rami Ben Maimon Vibration reliever for vacuum pump
EP1837521A4 (en) * 2004-12-20 2009-04-15 Edwards Japan Ltd STRUCTURE FOR CONNECTING END PARTS AND VACUUM SYSTEM USING THIS STRUCTURE
JP4925781B2 (ja) * 2006-10-05 2012-05-09 エドワーズ株式会社 真空ポンプとその振動吸収ダンパ
GB0620723D0 (en) * 2006-10-19 2006-11-29 Boc Group Plc Vibration isolator
FR2936287B1 (fr) * 2008-09-22 2018-06-22 Soc De Mecanique Magnetique Pompe turbomoleculaire a montage souple
JP4798307B2 (ja) * 2009-05-13 2011-10-19 トヨタ自動車株式会社 制振制御装置
EP2631487A4 (en) * 2010-10-19 2014-06-18 Edwards Japan Ltd VACUUM PUMP
GB2486470A (en) * 2010-12-16 2012-06-20 Flakt Woods Ltd Fan blade with oscillating damping mass
JP5413435B2 (ja) * 2011-10-31 2014-02-12 株式会社豊田自動織機 電動コンプレッサ
JP5768670B2 (ja) * 2011-11-09 2015-08-26 株式会社島津製作所 ターボ分子ポンプ装置
US10222863B1 (en) * 2017-09-05 2019-03-05 Apple Inc. Linear haptic actuator including field members and biasing members and related methods
EP3720528B1 (en) * 2017-12-08 2022-05-11 Koninklijke Philips N.V. Pressure generation system
JP7088688B2 (ja) * 2018-02-16 2022-06-21 エドワーズ株式会社 真空ポンプと真空ポンプの制御装置
JP7096006B2 (ja) * 2018-02-16 2022-07-05 エドワーズ株式会社 真空ポンプと真空ポンプの制御装置
NL2022799B1 (en) * 2019-03-25 2020-10-02 Meyn Food Processing Tech Bv Apparatus and method for harvesting meat from poultry thighs
WO2020195942A1 (ja) * 2019-03-26 2020-10-01 エドワーズ株式会社 真空ポンプ、ケーシング及び吸気口フランジ
JP7378697B2 (ja) * 2019-03-26 2023-11-14 エドワーズ株式会社 真空ポンプ
WO2021078637A1 (en) * 2019-10-21 2021-04-29 Koninklijke Philips N.V. A sound isolation suspension system
EP3827824A1 (en) 2019-11-26 2021-06-02 Hercules Pharmaceuticals B.V. Treatment of congenital zika virus syndrome
JP7228612B2 (ja) 2020-03-27 2023-02-24 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法、基板処理方法及びプログラム
CN112032029A (zh) * 2020-09-10 2020-12-04 河北通嘉宏盛科技有限公司 一种具有减震功能的真空泵固定装置
GB2598762B (en) 2020-09-11 2024-01-31 Thermo Fisher Scient Bremen Gmbh Coupling for connecting analytical systems with vibrational isolation
GB2601515B (en) 2020-12-02 2022-12-28 Agilent Technologies Inc Vacuum pump with elastic spacer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002295396A (ja) * 2001-03-28 2002-10-09 Boc Edwards Technologies Ltd 真空ポンプ、及びダンパ

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5660895A (en) * 1979-10-25 1981-05-26 Jeol Ltd Evacuation system of electron microscope
JPS5692396A (en) * 1979-12-26 1981-07-27 Hitachi Ltd Vacuum exhaust device
US4523612A (en) 1983-04-15 1985-06-18 The United States Of America As Represented By The United States Department Of Energy Apparatus and method for suppressing vibration and displacement of a bellows
JPH0772556B2 (ja) 1988-03-18 1995-08-02 株式会社荏原製作所 ターボ分子ポンプ
DE10001509A1 (de) * 2000-01-15 2001-07-19 Leybold Vakuum Gmbh Vakuumpumpe mit Schwingungsdämpfer
JP4536881B2 (ja) 2000-07-19 2010-09-01 ザ・パック株式会社 蓋付き包装用紙箱
JP2002295581A (ja) 2001-03-28 2002-10-09 Boc Edwards Technologies Ltd ダンパ、及び真空ポンプ
JP4250353B2 (ja) * 2001-06-22 2009-04-08 エドワーズ株式会社 真空ポンプ
JP4152121B2 (ja) * 2002-05-09 2008-09-17 Ntn株式会社 ターボ分子ポンプを用いた真空排気装置
JP4287213B2 (ja) * 2002-09-03 2009-07-01 エドワーズ株式会社 振動抑制機能を有する磁気軸受装置、振動推定機能を有する磁気軸受装置及び該磁気軸受装置を搭載したポンプ装置
US7300261B2 (en) * 2003-07-18 2007-11-27 Applied Materials, Inc. Vibration damper with nested turbo molecular pump
FR2867823B1 (fr) * 2004-03-22 2006-07-14 Cit Alcatel Raccord amortisseur pour pompe a vide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002295396A (ja) * 2001-03-28 2002-10-09 Boc Edwards Technologies Ltd 真空ポンプ、及びダンパ

Also Published As

Publication number Publication date
EP1811175B1 (en) 2011-10-05
KR20070063003A (ko) 2007-06-18
JPWO2006041113A1 (ja) 2008-05-15
WO2006041113A1 (ja) 2006-04-20
EP1811175A1 (en) 2007-07-25
US7993113B2 (en) 2011-08-09
KR101185265B1 (ko) 2012-09-21
EP1811175A4 (en) 2008-12-31
US20080085202A1 (en) 2008-04-10

Similar Documents

Publication Publication Date Title
JP5046647B2 (ja) ダンパおよび真空ポンプ
KR100732275B1 (ko) 진공펌프
JP4250353B2 (ja) 真空ポンプ
JP5632992B2 (ja) ターボ分子ポンプの接続装置
JP2003532838A (ja) 減衰部を有するマグネットベアリング
US6899529B2 (en) Connecting structure for vacuum pump
JPWO2009011042A1 (ja) 防振ダンパ
JP2002295581A (ja) ダンパ、及び真空ポンプ
EP1293682A2 (en) Vacuum pump support
JP2005147151A (ja) 振動減衰器を備えた真空ポンプ
JP6271852B2 (ja) 電子線応用装置の鏡筒部へ真空ポンプを接続する真空ポンプ用接続装置、及び該接続装置の設置方法
JP3399800B2 (ja) モータ及びターボ分子ポンプ
JP4672204B2 (ja) 真空ポンプの接続構造及び真空ポンプ
JP2007239464A (ja) ロータ軸と回転体との固定構造及び該固定構造を有するターボ分子ポンプ
JP2010144739A (ja) 真空ポンプ防振構造
JP2008232029A (ja) ポンプ装置
JP2002303294A (ja) 真空ポンプ
JP2002295372A (ja) ダンパ装置、及び真空ポンプ
JP4152121B2 (ja) ターボ分子ポンプを用いた真空排気装置
JP2002295396A (ja) 真空ポンプ、及びダンパ
KR20200133329A (ko) 진공 펌프 및 진공 펌프용 댐퍼
JP2003254286A (ja) 真空ポンプ装置
JPH04254014A (ja) ラジアル磁気軸受
JP2006077714A (ja) ダンパ及び真空ポンプ
JPH08145058A (ja) ロータの支持方法、カップリング装置、ラジアル磁気軸受、および回転式流体機械

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080901

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080901

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110506

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120717

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5046647

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250