JP4287213B2 - 振動抑制機能を有する磁気軸受装置、振動推定機能を有する磁気軸受装置及び該磁気軸受装置を搭載したポンプ装置 - Google Patents

振動抑制機能を有する磁気軸受装置、振動推定機能を有する磁気軸受装置及び該磁気軸受装置を搭載したポンプ装置 Download PDF

Info

Publication number
JP4287213B2
JP4287213B2 JP2003207729A JP2003207729A JP4287213B2 JP 4287213 B2 JP4287213 B2 JP 4287213B2 JP 2003207729 A JP2003207729 A JP 2003207729A JP 2003207729 A JP2003207729 A JP 2003207729A JP 4287213 B2 JP4287213 B2 JP 4287213B2
Authority
JP
Japan
Prior art keywords
magnetic bearing
rotating body
vibration
displacement
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003207729A
Other languages
English (en)
Other versions
JP2004150628A5 (ja
JP2004150628A (ja
Inventor
好伸 大立
英夫 深美
啓能 並木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EDWARDSJAPAN LIMITED
Original Assignee
EDWARDSJAPAN LIMITED
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EDWARDSJAPAN LIMITED filed Critical EDWARDSJAPAN LIMITED
Priority to JP2003207729A priority Critical patent/JP4287213B2/ja
Publication of JP2004150628A publication Critical patent/JP2004150628A/ja
Publication of JP2004150628A5 publication Critical patent/JP2004150628A5/ja
Application granted granted Critical
Publication of JP4287213B2 publication Critical patent/JP4287213B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/44Centrifugal pumps
    • F16C2360/45Turbo-molecular pumps

Description

【0001】
【発明の属する技術分野】
本発明は振動抑制機能を有する磁気軸受装置、振動推定機能を有する磁気軸受装置及び該磁気軸受装置を搭載したポンプ装置に係わり、特に新たな振動センサを配設することなく、真空ポンプの被対象設備を含めた装置システム全体の低振動化を実現することが可能な振動抑制機能を有する磁気軸受装置、振動推定機能を有する磁気軸受装置及び該磁気軸受装置を搭載したポンプ装置に関する。
【0002】
【従来の技術】
近年のエレクトロニクスの発展に伴い、メモリや集積回路といった半導体の需要が急激に増大している。
これらの半導体は、極めて純度の高い半導体基板に不純物をドープして電気的性質を与えたり、半導体基板上に微細な回路パターンを形成し、これを積層するなどして製造される。
【0003】
そして、これらの作業は空気中の塵等による影響を避けるため高真空状態のチャンバ内で行われる必要がある。このチャンバの排気には、一般に真空ポンプが用いられているが、特に残留ガスが少なく、保守が容易である等の点から真空ポンプの中の一つであるターボ分子ポンプが多用されている。
【0004】
また、半導体の製造工程では、さまざまなプロセスガスを半導体の基板に作用させる工程が数多くあり、ターボ分子ポンプはチャンバ内を真空にするのみならず、これらのプロセスガスをチャンバ内から排気するのにも使用される。
【0005】
さらに、ターボ分子ポンプは、電子顕微鏡等の設備において、粉塵等の存在による電子ビームの屈折等を防止するため、電子顕微鏡等のチャンバ内の環境を高度の真空状態にするのにも用いられている。
【0006】
このようなターボ分子ポンプは、半導体製造装置や電子顕微鏡等のチャンバからガスを吸引排気するためのターボ分子ポンプ本体と、このターボ分子ポンプ本体を制御する制御装置とから構成されている。
【0007】
ここで、ターボ分子ポンプ本体の縦断面図を図10に、このターボ分子ポンプ本体をチャンバ内の真空引き等に用いた場合の装置システム全体の構成図を図11に示す。
図10において、ターボ分子ポンプ本体100は、円筒状の外筒127の上端に吸気口101が形成されている。外筒127の内方には、ガスを吸引排気するためのタービンブレードとしての複数の回転翼102a,102b,102c・・・を周部に放射状かつ多段に形成した回転体103を備える。
【0008】
この回転体103の中心にはロータ軸113が取り付けられており、このロータ軸113は、例えば、いわゆる5軸制御の磁気軸受により浮上支持かつ位置制御されている。
【0009】
上側径方向電磁石104は、4個の電磁石が互いに直行するX軸とY軸とに対をなしロータ軸113を挟んで対向配置されている。このX軸とY軸は、ロータ軸113が磁気軸受の制御目標位置にあるときのロータ軸113の軸芯に対して直角な平面上に想定されている。また、この上側径方向電磁石104に近接かつ対応されコアに巻かれた4個のコイルからなる上側径方向センサ107が備えられている。この上側径方向センサ107は回転体103の径方向変位を検出し、その信号を図11に示す制御装置200に送るように構成されている。
【0010】
制御装置200は、補償器201とアンプ202等から構成された磁気軸受フィードバック制御手段を備えており、この制御装置200においては、上側径方向センサ107が検出した変位信号に基づき、PID調節機能を有する補償器201を介したアンプ202の出力により、上側径方向電磁石104の励磁を制御し、ロータ軸113の上側の径方向位置を調整する。
ロータ軸113は、高透磁率材(鉄など)などにより形成され、上側径方向電磁石104の磁力により吸引されるようになっている。かかる調整は、X軸方向とY軸方向とにそれぞれ独立して行われる。
【0011】
また、下側径方向電磁石105及び下側径方向センサ108が、上側径方向電磁石104及び上側径方向センサ107と同様に配置され、ロータ軸113の下側の径方向位置が、上側の径方向位置と同様に、制御装置200において、磁気軸受フィードバック制御手段により調整されている。
【0012】
さらに、軸方向電磁石106A,106Bが、ロータ軸113の下部に備えた円板状の金属ディスク111を上下に挟んで配置されている。金属ディスク111は、鉄などの高透磁率材で構成されている。回転体103の軸方向変位を検出するために軸方向センサ109が備えられ、その軸方向変位信号が制御装置200に送られるように構成されている。
【0013】
そして、軸方向電磁石106A,106Bは、この軸方向変位信号に基づき制御装置200のPID調節機能を有する補償器201を介したアンプ202の出力により、励磁制御されるようになっている。軸方向電磁石106Aは、磁力により金属ディスク111を上方に吸引し、軸方向電磁石106Bは、金属ディスク111を下方に吸引する。
【0014】
このように、制御装置200では、磁気軸受フィードバック制御手段により、軸方向電磁石106A,106Bが金属ディスク111に及ぼす磁力を適当に調節し、ロータ軸113を軸方向に磁気浮上させ、空間に非接触で保持する。
【0015】
モータ121は、その回転子側にロータ軸113を取り囲むように周状に配置された複数の永久磁石の磁極を備えている。そして、これらの永久磁石の磁極には、モータ121の固定子側である電磁石から、ロータ軸113を回転させるトルク成分が加えられるようになっており、回転体103が回転駆動されるようになっている。
また、モータ121には、図示しない回転数センサ及びモータ温度センサが取り付けられており、これらの回転数センサ及びモータ温度センサの検出信号を受けて、制御装置200においてロータ軸113の回転が制御されている。
【0016】
回転翼102a,102b,102c・・・とわずかの空隙を隔てて複数枚の固定翼123a,123b,123c・・・が配設されている。回転翼102a,102b,102c・・・は、それぞれ排気ガスの分子を衝突により下方向に移送するため、ロータ軸113の軸線に垂直な平面から所定の角度だけ傾斜して形成されている。
【0017】
また、固定翼123も、同様にロータ軸113の軸線に垂直な平面から所定の角度だけ傾斜して形成され、かつ外筒127の内方に向けて回転翼102の段と互い違いに配設されている。
そして、固定翼123の一端は、複数の段積みされた固定翼スペーサ125a,125b,125c・・・の間に嵌挿された状態で支持されている。
【0018】
固定翼スペーサ125はリング状の部材であり、例えばアルミニウム、鉄、ステンレス、銅などの金属、又はこれらの金属を成分として含む合金などの金属によって構成されている。
固定翼スペーサ125の外周には、わずかの空隙を隔てて外筒127が固定されている。外筒127の底部にはベース部129が配設され、固定翼スペーサ125の下部とベース部129の間にはネジ付きスペーサ131が配設されている。
【0019】
このベース部129中のネジ付きスペーサ131の下部には排気口133が形成されている。そして、排気口133には、図示しないドライポンプ通路が接続されており、排気口133は、このドライポンプ通路を介して、図示しないドライポンプと接続されている。
【0020】
ネジ付きスペーサ131は、アルミニウム、銅、ステンレス、鉄、又はこれらの金属を成分とする合金などの金属によって構成された円筒状の部材であり、その内周面に螺旋状のネジ溝131aが複数条刻設されている。
ネジ溝131aの螺旋の方向は、回転体103の回転方向に排気ガスの分子が移動したときに、この分子が排気口133の方へ移送される方向である。
【0021】
回転体103の回転翼102a,102b,102c・・・に続く最下部には円筒部102dが垂下されている。この円筒部102dの外周面は、ネジ付きスペーサ131の内周面に向かって張り出されており、このネジ付きスペーサ131の内周面と所定の隙間を隔てて近接されている。
【0022】
ベース部129は、ターボ分子ポンプ本体100の基底部を構成する円盤状の部材であり、一般には鉄、アルミニウム、ステンレスなどの金属によって構成されている。ベース部129はターボ分子ポンプ本体100を物理的に保持すると共に、熱の伝導路の機能も兼ね備えているので、鉄、アルミニウムや銅などの剛性があり、熱伝導率も高い金属が使用されるのが望ましい。
【0023】
また、ベース部129には、コネクタ160が配設されており、このコネクタ160には、ターボ分子ポンプ本体100と制御装置200との間の信号線が接続されている。
【0024】
かかる構成において、回転翼102がロータ軸113と共にモータ121により駆動されて回転すると、回転翼102と固定翼123の作用により、吸気口101を通じて、図11に示すチャンバ300から排気ガスが吸気される。
【0025】
吸気口101から吸気された排気ガスは、回転翼102と固定翼123の間を通り、ベース部129へ移送される。そして、ベース部129に移送されてきた排気ガスは、ネジ付きスペーサ131のネジ溝131aに案内されつつ排気口133へと送られる。
【0026】
また、吸気口101から吸気された排気ガスが、モータ121、上側径方向電磁石104、上側径方向センサ107、下側径方向電磁石105、下側径方向センサ108などで構成される電装部側に侵入することのないよう、電装部は周囲をステータコラム122で覆われ、この電装部内はパージガスにて所定圧に保たれている。
【0027】
このため、ベース部129には図示しない配管が配設され、この配管を通じてパージガスが導入される。導入されたパージガスは、保護ベアリング120とロータ軸113間、モータ121のロータとステータ間、ステータコラム122と回転翼102間の隙間を通じて排気口133へ送出される。
【0028】
ここに、ターボ分子ポンプ本体100は、機種の特定と、個々に調整された固有のパラメータ(例えば、機種に対応する諸特性)に基づいた制御を要する。この制御パラメータを格納するために、ターボ分子ポンプ本体100は、その内部に電子回路部141を備えている。電子回路部141は、EEP−ROM等の半導体メモリ及びそのアクセスのための半導体素子等の電子部品、その実装用の基板143等から構成される。
【0029】
この電子回路部141は、ターボ分子ポンプ本体100の下部を構成するベース部129の中央付近の図示しない回転数センサの下部に収容され、気密性の底蓋145によって閉じられている。
【0030】
ところで、ターボ分子ポンプ本体100は、半導体製造装置や電子顕微鏡等のチャンバ300に用いられる性質上、その低振動化が望まれている。
すなわち、半導体製造装置のチャンバ300において、回路パターンの露光を行っている最中に振動が発生してしまうと、下層の回路パターンとの合わせずれが生じてしまい、正常な回路動作ができなくなるおそれがあった。
また、電子顕微鏡のチャンバ300においても、対象物を観察しているときに振動が発生してしまうと、その焦点が合わなくなり、画像が乱れてしまうおそれがあった。
【0031】
そのため、図11に示すように、ターボ分子ポンプ本体100は、チャンバ300との間にポンプ用ダンパ301を介設されつつ、宙吊りにされている。
図11に示すポンプ用ダンパ301は、蛇腹状のベローズ302を備えており、このベローズ302の外周には、ゴム部材306が巻かれている。そして、ターボ分子ポンプ本体100とチャンバ300との間で、回転体103の回転に伴う振動を吸収するようになっている。このとき、ベローズ302の一端は、図示しないフランジを介してチャンバ300に締結固定され、その他端は、フランジ303を介してターボ分子ポンプ本体100の吸気口101と締結固定されている。
【0032】
また、チャンバ300は、床400に配設されたフレーム402によって支持されており、チャンバ300とフレーム402との間には、装置用ダンパ401が介設されている。
この装置用ダンパ401も、ポンプ用ダンパ301と同様に、フレーム402とチャンバ300との間で振動を吸収するようになっている。
【0033】
かかる構成において、ターボ分子ポンプ本体100から振動が発生しても、その振動は、ポンプ用ダンパ301に吸収されるため、チャンバ300に伝わり難くなる。
また、床400から発生される振動に対しても同様で、その振動は、装置用ダンパ401に吸収され、チャンバ300に伝わり難くなる。
以上により、チャンバ300は、その低振動化が図られていた。
【0034】
しかしながら、このようなメカニカルなダンパによる除振の場合、その構造上、特にターボ分子ポンプ本体100やフレーム402を介して伝わる振動に対して、特に低周波数帯域において良好な除振効果が得られ難いという問題点があった。
【0035】
そのため、チャンバ300とターボ分子ポンプ本体100やフレーム402の間に、ポンプ用ダンパ301や装置用ダンパ401をそれぞれ複数個直列に介設するなどして、チャンバ300への除振効果の向上を図っているが、近年の半導体製造プロセスの微細化や電子顕微鏡の高分解能化等に対応するため、低周波数帯域でのさらなる低振動化が望まれていた。
【0036】
また、近年の半導体製造装置等のチャンバ300の容積拡大に伴い、ターボ分子ポンプ本体100には大排気速度化の要望が強く、これに対応するため、ターボ分子ポンプ本体100は大型化が進み、ポンプ用ダンパ301の大型化が進んでいる。
【0037】
このようなポンプ用ダンパ301の大型化は、その除振効果を一定以上に保つとすれば、そのコストの上昇に直結するおそれがあった。
【0038】
さらに、ターボ分子ポンプ本体100には、図示しないドライポンプが接続されているが、このドライポンプの発生する振動は、わずかではあるが、ドライポンプ通路を介して、ターボ分子ポンプ本体100等に伝わり、チャンバ300を振動させてしまう。また、床400には、このドライポンプや、他の半導体製造装置等が発生する振動、人が歩く際に発生される振動等も伝わってくるため、この振動が、チャンバ300を振動させてしまう場合もある。
【0039】
このようなチャンバ300の振動は、ターボ分子ポンプ本体100自体の低振動化を進めても避けることができず、ターボ分子ポンプ本体100だけでなく、チャンバ300を含めた装置システム全体としての低振動化が望まれていた。
【0040】
かかる問題点を解決するため、特許文献1には、磁気軸受からある程度離れた場所の振動を低減することが可能な磁気軸受装置を備える回転機械が開示されている。すなわち、この磁気軸受装置を備える回転機械は、ポンプ用ダンパ301のフランジ303や、チャンバ300側の図示しないフランジ等に振動検出センサを配設し、この振動検出センサが検知した検知信号に基づいて、逆位相の振動を回転体103に与え、装置システム全体の振動を打ち消すようにするものである。
【特許文献1】
特開2002−147454号公報
【0041】
【発明が解決しようとする課題】
しかしながら、特許文献1の場合、ターボ分子ポンプ本体100として、新たな振動検出センサを用意する必要があり、その分、部品コストが上昇してしまうおそれがあった。
【0042】
また、この振動検出センサは、ポンプ用ダンパ301やチャンバ300側に配設されるため、予めポンプ用ダンパ301やチャンバ300等の周辺に配置スペースを確保することが必要であり、かつ、振動検出センサと制御装置200との間を交信するために、ポンプ用ダンパ301やチャンバ300等との間に新たな信号線が必要であった。
【0043】
本発明はこのような従来の課題に鑑みてなされたもので、特に新たな振動センサを配設することなく、真空ポンプの被対象設備を含めた装置システム全体の低振動化を実現することが可能な振動抑制機能を有する磁気軸受装置、振動推定機能を有する磁気軸受装置及び該磁気軸受装置を搭載したポンプ装置を提供することを目的とする。
【0044】
【課題を解決するための手段】
このため本発明は、振動抑制機能を有する磁気軸受装置に関し、回転体と、該回転体に浮上力を作用させる電磁石と、該電磁石が固設されたステータ部と、前記回転体の前記ステータ部に対する径方向及び/又は軸方向の相対変位を検出する変位検出手段と、該変位検出手段が検出した相対変位に基づいて前記浮上力の調整量を算出する磁気軸受制御補償器と、該磁気軸受制御補償器による前記浮上力の調整量の算出結果に応じて前記浮上力を調整する電磁石制御手段と、前記ステータ部に対する相対位置が固定された装置固定部の所定の物理量を検出する振動検出手段と、該振動検出手段の出力を、該出力の極性を反転し、少なくとも前記変位検出手段と前記磁気軸受制御補償器と前記電磁石制御手段によって構成される磁気軸受フィードバック制御手段の伝達信号に加算する加算手段とを備え、前記所定の物理量は、前記装置固定部及び/又は前記ステータ部の加速度、該加速度を所要回数だけ微分又は積分した変位、速度及び加加速度等のうちの少なくとも一つであり、前記加速度は、前記変位検出手段で検出された前記回転体の相対変位のラプラス変換と所定の伝達関数とを乗算した第1の乗算結果を時間領域に変換した変換結果であることを特徴とする。
【0045】
振動検出手段は、装置固定部及び/又はステータ部の所定の物理量を検出し、これを加算手段に出力する。また、加算手段は、振動検出手段から出力された信号に対し、その極性を反転して磁気軸受フィードバック制御手段の出力と加算させる。
このことにより、磁気軸受装置に振動抑制機能を備えることができる。
なお、回転体の変位のラプラス変換とは、数5中のY(s)をいう。
【0046】
また、本発明は、振動抑制機能を有する磁気軸受装置に関し、前記回転体に作用する不釣り合い力を検出又は推定する不釣り合い力検出手段を備え、前記加速度は、前記第1の乗算結果と、前記不釣り合い力検出手段で検出又は推定された前記回転体に作用する不釣り合い力の変動分のラプラス変換と前記回転体の質量の逆数とを乗算した第2の乗算結果とを加算した加算結果を時間領域に変換した変換結果であることを特徴とする。
【0047】
このことにより、磁気軸受装置は、さらに回転体に作用する不釣り合い力に起因して装置固定部及び/又はステータ部に生じる振動を抑制する振動抑制機能を備えることができる。
なお、不釣り合い力の変動分のラプラス変換とは、数4中のUb(s)をいう。
【0048】
さらに、本発明は、振動抑制機能を有する磁気軸受装置に関し、前記所定の伝達関数は、前記回転体の相対変位と該相対変位により前記電磁石と前記回転体との間に作用する力との関係である磁気軸受フィードバック制御手段固有の伝達関数と、前記回転体の質量により表されたことを特徴とする。
【0049】
所定の伝達関数は、回転体の質量と、磁気軸受フィードバック制御手段固有の伝達関数とにより定義付けられた関数である。ここで、磁気軸受フィードバック制御手段固有の伝達関数は、磁気軸受の設計段階で決まる関数である。
このことにより、新たな振動センサを配設することなく、磁気軸受装置内のパラメータのみで、所定の伝達関数を算出することができる。
なお、磁気軸受フィードバック制御手段固有の伝達関数とは、数4、数5中のF(s)をいう。
【0050】
さらに、本発明は、振動抑制機能を有する磁気軸受装置に関し、回転体と、該回転体に浮上力を作用させる電磁石と、該電磁石が固設されたステータ部と、前記回転体の前記ステータ部に対する径方向及び/又は軸方向の相対変位を検出する変位検出手段と、該変位検出手段が検出した相対変位に基づいて前記浮上力の調整量を算出する磁気軸受制御補償器と、該磁気軸受制御補償器による前記浮上力の調整量の算出結果に対応して前記浮上力を調整する電磁石制御手段と、前記ステータ部に対する相対位置が固定された装置固定部の所定の物理量を検出する振動検出手段と、該振動検出手段の出力を、該出力の極性を反転し、少なくとも前記変位検出手段と前記磁気軸受制御補償器と前記電磁石制御手段によって構成される磁気軸受フィードバック制御手段の伝達信号に加算する加算手段とを備え、前記所定の物理量は、前記装置固定部及び/又は前記ステータ部の加速度、該加速度を所要回数だけ微分又は積分した変位、速度及び加加速度等のうちの少なくとも一つであり、前記加速度は、前記磁気軸受制御補償器による前記浮上力の調整量の算出結果又は前記加算手段による加算結果と、前記回転体の質量の逆数とを乗算した第3の乗算結果から、前記変位検出手段で検出された前記回転体の相対変位を2階微分した結果を減算した減算結果であることを特徴とする。
【0051】
前記加算手段が、前記磁気軸受制御補償器による前記浮上力の調整量の算出結果に、前記振動検出手段の出力を、その極性を反転して加算する場合には、前記加速度は、前記加算手段による加算結果と、前記回転体の質量の逆数とを乗算した第3の乗算結果から、前記変位検出手段で検出された前記回転体の相対変位を2階微分した結果を減算した減算結果となる。
【0052】
請求項1と異なり、装置固定部及び/又はステータ部の加速度等を検出するに際し伝達関数の演算が行われない。この代わりに、電磁石が回転体に作用させる浮上力そのものが用いられる。そして、この浮上力として磁気軸受制御補償器による浮上力の調整量の算出結果又は加算手段で加算された加算結果が用いられる。
このことにより、装置固定部及び/又はステータ部の加速度等の検出にあたり既知である磁気軸受制御補償器による浮上力の調整量の算出結果又は加算手段による加算結果を用いているので、安価な演算装置を用いても高精度に装置固定部及び/又はステータ部の加速度等を算出することが可能である。
【0053】
さらに、本発明は、振動抑制機能を有する磁気軸受装置に関し、前記電磁石と前記回転体の間に発生する磁束の変動量を検出する磁束検出手段を備え、前記第3の乗算結果として、前記磁気軸受制御補償器による前記浮上力の調整量の算出結果の代わりに、前記磁束検出手段で検出された磁束の変動量に比例する値を用いた乗算結果を用いることを特徴とする。
【0054】
電磁石が回転体に作用させる浮上力の調整量として、磁束検出手段で検出された磁束の変動量に比例する値が用いられる。
このことにより、伝達関数の演算が行われないので、安価な演算装置を用いても高精度に装置固定部及び/又はステータ部の加速度等を算出することが可能である。
【0055】
さらに、本発明は、振動抑制機能を有する磁気軸受装置に関し、前記回転体を回転駆動する誘導モータと、該誘導モータの通電状態を制御するモータ制御手段とを備え、前記振動検出手段で前記所定の物理量を検出するとき、前記モータ制御手段は前記誘導モータを無通電とすることを特徴とする。
【0056】
一般に、モータが界磁手段として永久磁石を使用する場合には、永久磁石の減磁現象などの不確定な特性変化により、回転体に及ぼす力を正確に把握することは困難である。
しかしながら、モータとして永久磁石を有しない誘導モータを使用することで、振動検出手段で所定の物理量を検出するときに、誘導モータを無通電にして誘導モータが回転体に及ぼす力の影響をゼロにすることができる。
このことにより、所定の物理量を精度良く検出することができる。
【0057】
さらに、本発明は、振動抑制機能を有する磁気軸受装置に関し、前記回転体の回転周波数に追従して、該周波数成分を除去する回転周波数追従型ノッチフィルタを備え、前記加速度等は、前記減算結果が前記回転周波数追従型ノッチフィルタを通過した結果であることを特徴とする。
【0058】
回転体に作用する不釣り合い力は、周波数を回転体の回転周波数とする正弦波に近似される。そこで、回転体の回転周波数に追従して、この周波数成分を除去する回転周波数追従型ノッチフィルタを設けることにより、回転体の回転周波数付近の結果を考慮せずに、装置固定部及び/又はステータ部の加速度等を検出することができる。
このことにより、回転体の回転周波数付近に不感帯が生じるものの、その他の周波数帯域では、不釣り合い力の影響を取り除いて装置固定部及び/又はステータ部の加速度等を精度良く算出することができる。
なお、回転周波数とは、1秒間の回転回数をいう。
【0059】
さらに、本発明は、振動抑制機能を有する磁気軸受装置に関し、前記加速度等が通過するローパスフィルタを備えて構成した。
【0060】
加速度等が通過するローパスフィルタを備えることで、ラプラス領域においては厳密にプロパーな式で演算することが可能となる。
このことにより、演算の過程において微分器を必要としないため、装置固定部及び/又はステータ部の加速度等に基づいて振動抑制制御を行うフィードバック制御系の安定性を向上させることができ、かつノイズを低減することができる。
【0061】
さらに、本発明は、振動抑制機能を有する磁気軸受装置に関し、前記振動検出手段の出力にゲイン調整及び/又は位相補償と、PID制御と、その他の制御補償のいずれか少なくとも一つの制御補償を施す振動抑制制御補償手段を備えて構成した。
【0062】
振動抑制制御補償手段は、振動検出手段の出力信号にゲイン調整及び/又は位相補償を施す補償器であっても良いし、PID制御補償器、又は、最適制御補償器、H∞制御補償器、スライディングモード制御補償器等のその他の方式の制御補償器であっても良い。また、これらの補償器のうちのいずれか少なくとも二つを組み合わせて構成しても良い。
このことにより、装置固定部及び/又はステータ部の振動を発散させることなく、効果的に抑制することができる。
【0063】
さらに、本発明は、振動推定機能を有する磁気軸受装置に関し、回転体と、該回転体に浮上力を作用させる電磁石と、該電磁石が固設されたステータ部と、前記回転体の前記ステータ部に対する径方向及び/又は軸方向の相対変位を検出する変位検出手段と、該変位検出手段が検出した変位に基づいて前記浮上力の調整量を算出する磁気軸受制御補償器と、該磁気軸受制御補償器による前記浮上力の調整量の算出結果に対応して前記浮上力を調整する電磁石制御手段と、前記ステータ部に対する相対位置が固定された装置固定部の所定の物理量を検出する振動検出手段とを備え、前記所定の物理量は、前記装置固定部及び/又は前記ステータ部の加速度、該加速度を所要回数だけ微分又は積分した変位、速度及び加加速度等のうちの少なくとも一つであり、前記加速度は、前記変位検出手段で検出された前記回転体の相対変位のラプラス変換と所定の伝達関数とを乗算した第1の乗算結果を時間領域に変換した変換結果であることを特徴とする。
【0064】
さらに、本発明は、振動推定機能を有する磁気軸受装置に関し、回転体と、該回転体に浮上力を作用させる電磁石と、該電磁石が固設されたステータ部と、前記回転体の前記ステータ部に対する径方向及び/又は軸方向の相対変位を検出する変位検出手段と、該変位検出手段が検出した変位に基づいて前記浮上力の調整量を算出する磁気軸受制御補償器と、該磁気軸受制御補償器による前記浮上力の調整量の算出結果に対応して前記浮上力を調整する電磁石制御手段と、前記ステータ部に対する相対位置が固定された装置固定部の所定の物理量を検出する振動検出手段とを備え、前記所定の物理量は、前記装置固定部及び/又は前記ステータ部の加速度、該加速度を所要回数だけ微分又は積分した変位、速度及び加加速度等のうちの少なくとも一つであり、前記加速度は、前記磁気軸受制御補償器による前記浮上力の調整量の算出結果と、前記回転体の質量の逆数とを乗算した第3の乗算結果から、前記変位検出手段で検出された前記回転体の相対変位を2階微分した結果を減算した減算結果であることを特徴とする。
【0065】
さらに、本発明は、振動推定機能を有する磁気軸受装置に関し、前記電磁石と前記回転体の間に発生する磁束の変動量を検出する磁束検出手段を備え、前記第3の乗算結果として、前記磁気軸受制御補償器による前記浮上力の調整量の算出結果の代わりに、前記磁束検出手段で検出された磁束の変動量に比例する値を用いた乗算結果を用いることを特徴とする。
【0066】
さらに、本発明は、振動抑制機能を有するポンプ装置に関し、磁気軸受装置が搭載された真空ポンプであって、該真空ポンプは、被対象設備に設置され、該被対象設備から所定のガスを吸引することを特徴とする。
【0067】
真空ポンプは、被対象設備に設置されており、かつ、振動抑制機能を有する磁気軸受装置を搭載している。
このことにより、新たな振動センサを配設することなく、ポンプ装置の低振動化を実現することが可能である。
【0068】
さらに、本発明は、振動推定機能を有するポンプ装置に関し、磁気軸受装置が搭載された真空ポンプであって、該真空ポンプは、被対象設備に設置され、該被対象設備から所定のガスを吸引することを特徴とする。
【0069】
このことにより、新たな振動センサを配設することなく、ポンプ装置の振動推定を実現することが可能である。
【0070】
【発明の実施の形態】
以下、本発明の第1実施形態について説明する。図1に、本発明の第1実施形態である装置システム全体の構成図を示す。なお、図11と同一要素のものについては同一符号を付して説明は省略する。
図1に示す制御装置500は、磁気軸受フィードバック制御手段を備えた従来の制御装置200に加えて、振動検出手段としての振動検出器503、振動抑制制御補償手段としての振動抑制制御補償器504及び加算手段としての加算器505を備えている。
【0071】
振動検出器503は、ターボ分子ポンプ本体100の各回転体位置センサ107,108,109から出力された変位信号を入力としている。
また、振動検出器503では、回転体103の変位のラプラス変換と所定の伝達関数とを乗算した第1の乗算結果と、回転体103に作用する不釣り合い力の変動分のラプラス変換と回転体103の質量の逆数とを乗算した第2の乗算結果とを加算した結果を時間領域に変換し、この変換結果を、装置固定部600の加速度信号として出力するようになっている。
【0072】
また、振動検出器503内には、伝達関数の算出のために必要なパラメータが予め決められており(あるいは予め測定されており)、図示しない記憶装置等に保存されている。そして、振動検出器503の出力信号は、装置固定部600の加速度として、振動抑制制御補償器504へ出力されている。
なお、装置固定部600とは、チャンバ300及びターボ分子ポンプ本体100のうち回転体103を除いた部分のことをいう。
【0073】
振動抑制制御補償器504は、振動検出器503から出力された加速度信号に、所定の周波数特性を持つ増幅率を掛け合わせてゲインを調節し、装置固定部600の発散又は発振を防止するために、位相補償を行うようになっている。
【0074】
加算器505には、補償器201の出力信号である位置制御力指令信号と、振動抑制制御補償器504の出力信号である加速度調節信号とが入力されている。そして、加算器505は、装置固定部600の振動を抑制できるように、加速度調節信号の正負(+−)の極性を反転させ、位置制御力指令信号に加算するようになっている。
【0075】
そして、加算器505の加算結果である制御力指令値は、電磁石制御手段としてのアンプ202に出力されるようになっている。この結果、アンプ202からは、電磁石104,105,106A,106Bを介して、回転体103に浮上支持力が作用されるようになっている。このとき、電磁石104,105,106A,106B(すなわち、装置固定部600)は浮上支持力の反力を受けるが、その反力には装置固定部600の振動を抑制する力が含まれているため、この力によって装置固定部600の振動が抑制されるようになっている。
【0076】
また、図1に示す装置システムは、図11に示す装置システムと異なり、ターボ分子ポンプ本体100とチャンバ300との間には、ポンプ固定部304が介設されている。
【0077】
このポンプ固定部304は、円筒状の固定柱305を備えており、ターボ分子ポンプ本体100をチャンバ300に固定するものである。
このとき、固定柱305は、その一端が、図示しないフランジを介してチャンバ300に締結固定され、その他端は、フランジ303を介してターボ分子ポンプ本体100の吸気口101と締結固定されている。
【0078】
次に、第1実施形態である装置システムの作用について説明する。
まず、装置固定部600の加速度を導出する方法について説明する。この加速度の導出方法を説明するにあたり、装置システム全体のブロック図を図2に示す。なお、図1と同一要素のものについては同一符号を付して説明は省略する。
【0079】
図2に示す装置用ダンパ401は、その機能を、ばね定数ksを有する弾性体401aと、粘性係数csを有する粘性抵抗401bとでモデル化することができる。
また、ターボ分子ポンプ本体100の回転体103は、各電磁石104,105,106A,106Bにより浮上支持されている。
【0080】
この浮上支持の剛性は、ラプラス領域においては、径方向では、回転体103の装置固定部600に対する径方向変位のラプラス変換を入力とし、電磁石104,105から回転体103に作用する力の変動分のラプラス変換を出力とする伝達関数Fr(s)で表される。
【0081】
また、軸方向では、回転体103の装置固定部600に対する軸方向変位のラプラス変換を入力とし、電磁石106A,106Bから回転体103に作用する力の和の変動分のラプラス変換を出力とする伝達関数Fa(s)で表される。
従って、これらの伝達関数Fr(s),Fa(s)は、制御装置500の補償器201やアンプ202等から構成される磁気軸受フィードバック制御手段固有の伝達関数であるといえる。
【0082】
さらに、ターボ分子ポンプ本体100は、従来と異なり、チャンバ300に固定されているので、装置固定部600すなわちチャンバ300及びターボ分子ポンプ本体100のうち回転体103を除いた部分は一体として考えることができる。
以上により、床400と、装置固定部600と、回転体103との間の運動モデルは、径方向、軸方向ともに図3に示すようなモデルで表現することができる。
【0083】
図3において、変位xb(t)は、床400の絶対変位を表している。そして、変位xs(t)は、装置固定部600の絶対変位を示し、変位xr(t)は、回転体103の絶対変位を示している。
また、質量msは、装置固定部600の質量を表し、質量mrは、回転体103の質量を表している。
【0084】
さらに、外乱力bp(t)は、装置固定部600に作用する外乱力を示している。外乱力bp(t)としては、例えば、ターボ分子ポンプ本体100に接続されたドライポンプから伝わる振動等が考えられる。
【0085】
また、不釣り合い力ub(t)は、回転体103の形状中心軸と慣性中心軸の位置ずれに起因して発生する不釣り合い力を示す。
【0086】
ここで、装置固定部600に対する回転体103の相対変位を相対変位y(t)とおくと、この相対変位y(t)は、数1のように定義される。
【0087】
【数1】
Figure 0004287213
【0088】
さらに、図2において、回転体103が、装置固定部600から浮上支持されていることを、相対変位y(t)と、電磁石104,105又は電磁石106A,106Bが回転体103に作用する力との関係として、関数fを定義すると、回転体103の運動方程式は数2のように表現される。
【0089】
【数2】
Figure 0004287213
【0090】
また、数2は数1を導入することにより数3のように表される。
【0091】
【数3】
Figure 0004287213
【0092】
ここで、f(y(t))はy(t)の線形方程式で表されるので、初期値を0として数3をラプラス変換すると、数4が得られる。なおsはラプラス演算子である。
【0093】
【数4】
Figure 0004287213
【0094】
数4の左辺はラプラス領域における装置固定部600の加速度を表し、数4の両辺を時間領域に変換することで、装置固定部600の加速度を求めることができる。
【0095】
ここで、相対変位y(t)は、各回転体位置センサ107,108,109によって検出され、不釣り合い力ub(t)は、例えば「不釣り合い補償機能を備えた磁気軸受制御系の構成」(水野・樋口 計測自動制御学会論文集,20,12,p1095)や「弾性ロータのフィードフォワード形不釣り合い力相殺制御」(日本機械学会論文集(C編),56,528(1990)pp.2056−2064)に開示されているように、オブザーバを構成することにより、磁気軸受が回転体103を浮上支持する制御力と各回転体位置センサ107,108,109によって検出された回転体103の変位から推定することができる。
【0096】
なお、これらの例は、オブザーバにより回転体103に作用する不釣り合い力を推定し、フィードフォワード制御により回転体103に作用する不釣り合い力を相殺することで、回転体103の振動を抑制しようとするものであるが、本発明は、数4又は後述する数5を時間領域に変換した結果に基づく計算により、装置固定部600の加速度を求め、この加速度を抑制するように制御するものであって、これらの例とは制御対象と制御方法が異なる。また、これらの例は回転体103の振動を抑制するのに対し、本発明は、敢えて回転体103を振動させ、その振動によって装置固定部600に作用する力を利用して、装置固定部600の振動を抑制するものである。
【0097】
また、数4又は数5から明らかなように、装置固定部600の加速度は、装置固定部600側の状態にはよらず、ターボ分子ポンプ本体100側に存在するパラメータと、各回転体位置センサ107,108,109の検出した変位信号から求められる。
【0098】
次に、算出した装置固定部600の加速度に基づいて、装置固定部600の振動を抑制するための動作を説明する。
制御装置500の振動検出器503は、数4の両辺を時間領域に変換した結果の計算を行うことにより、装置固定部600の加速度を求め、この加速度の信号を出力する。
【0099】
この信号は、振動抑制制御補償器504に入力され、ここで補償器201の出力へ加算する際のゲインが調節される。また、振動抑制制御補償器504では、制御装置500と振動抑制制御補償器504とターボ分子ポンプ本体100とがフィードバック制御系を構成しているため、装置固定部600が発散又は発振しないように、加速度信号に対して、位相補償等の対策を取る。
【0100】
そして、振動抑制制御補償器504から出力された加速度調節信号は、加算器505に送られ、ここで装置固定部600の振動を抑制するように正負(+−)の極性を反転して、補償器201の出力である位置制御力指令信号へ加算される。
【0101】
この加算結果である制御力指令値は、アンプ202に出力され、アンプ202は、加算器505からの制御力指令値に基づいて、電磁石104,105,106A,106Bを励磁し回転体103を浮上支持する。このとき、電磁石104,105,106A,106B(すなわち、装置固定部600)は、回転体103に作用させる浮上支持力の反力を受けるが、この反力には装置固定部600の振動を抑制する力が含まれているため、この力によって装置固定部600の振動が抑制される。
このように、装置固定部600の加速度に対して、この加速度を抑制する力を、電磁石104,105,106A,106Bに作用する浮上支持力の反力に発生させることで、装置固定部600の振動を抑制することができる。
【0102】
以上により、ターボ分子ポンプ本体100及び制御装置500は、装置システム全体の振動を抑制することが可能である。
【0103】
そして、この振動抑制は、チャンバ300に新たな振動検出センサ等を設置することなく、各回転体位置センサ107,108,109の変位信号とターボ分子ポンプ本体100側のパラメータのみを利用して達成することができる。
よって、新たなセンサを配設することなく、真空ポンプの被対象設備を含めた装置システム全体の低振動化を実現することが可能である。
【0104】
なお、本実施形態においては、振動検出器503は、数4を時間領域に変換した結果の計算を行うことにより装置固定部600の加速度を求めるとして説明してきたが、これに限られるものではない。
すなわち、回転体103に作用する不釣り合い力ub(t)が装置固定部600の加速度に及ぼす影響を無視する場合には、回転体103の変位のラプラス変換と所定の伝達関数とを乗算した乗算結果を時間領域に変換した変換結果、例えば、以下に示す数5の両辺を時間領域に変換した結果の計算を行うことにより装置固定部600の加速度を求めても良い。
【0105】
【数5】
Figure 0004287213
【0106】
また、本実施形態においては、振動抑制制御補償器504は、振動検出器503の出力信号にゲイン調整と位相補償を施すように構成したが、これに限られるものではなく、PID制御補償器、又は、最適制御補償器、H∞制御補償器、スライディングモード制御補償器等のその他の方式の補償器であっても良いし、これらの補償器のいずれか少なくとも二つを組み合わせて構成しても良い。また、補償器201の制御対象である回転体103の変位と、振動抑制制御補償器504の制御対象である装置固定部600の加速度が発散又は発振しなければ、振動抑制制御補償器504を備えなくても良い。
【0107】
さらに、本実施形態において、加算器505は、補償器201の出力信号に振動抑制制御補償器504が出力する加速度調節信号を正負(+−)の極性を反転して加算し、その加算結果である制御力指令値をアンプ202に出力するとして説明してきたが、これに限られるものではない。加算器505は、制御装置500のフィードバック制御ループ上の伝達信号であれば、どの信号に加算しても良い。
【0108】
例えば、加算器505は、各回転体位置センサ107,108,109と補償器201との間に接続されて、各回転体位置センサ107,108,109の変位信号に、振動抑制制御補償器504が出力する加速度調整信号を正負(+−)の極性を反転して加算し、その加算結果を補償器201に出力しても良い。このとき、振動抑制制御補償器504は、加算器505によって加速度調整信号が正負(+−)の極性を反転して加算されるフィードバック制御ループ上の伝達信号に応じた制御補償を行う。
【0109】
また、上述のように、加算器505を各回転体位置センサ107,108,109と補償器201との間に接続した場合、通常、補償器201は、信号のゲイン調整やその位相補償、PID制御補償、又は、最適制御補償、H∞制御補償、スライディングモード制御補償等のその他の制御補償を行うための機能を備えている。このため、振動抑制制御補償器504が行っていた機能を補償器201内に容易に組み込むことができる。
【0110】
さらに、本実施形態は、いわゆる5軸制御の磁気軸受に用いられる場合に限られず、3軸、1軸制御の磁気軸受に対して用いても良い。例えば1軸制御の場合、制御機能を有する電磁石も1軸分しか存在しないので、装置固定部600が振動したときに、その振動を抑制する力を作用させることができる方向が、その電磁石で制御できる1方向となる。
【0111】
また、本実施形態では、装置固定部600の加速度を算出することで、装置固定部600の振動を抑制していたが、これを装置固定部600の加加速度、速度、位置等のように加速度を所要回数だけ微分又は積分した結果に相当する物理量を算出することで達成しても良い。
【0112】
次に、本発明の第2実施形態について説明する。
第1実施形態である装置システムでは、電磁石104,105又は電磁石106A,106Bが回転体103に作用する力を求めるに際し、伝達関数Fr(s),Fa(s)を計算していたが、本実施形態である装置システムでは、伝達関数Fr(s),Fa(s)の計算を行う代わりに、加算器505から出力された制御力指令値等を用いるものである。
【0113】
図4に、本発明の第2実施形態である装置システム全体の構成図を示す。なお、図1と同一要素のものについては同一符号を付して説明は省略する。
図4に示す制御装置550は、第1実施形態の振動検出器503に代えて、振動検出手段及びモータ制御手段としての振動検出/モータ制御器553を備えている。
【0114】
この振動検出/モータ制御器553には、加算器505の出力である制御力指令値が入力されるようになっている。そして、振動検出/モータ制御器553では、装置固定部600の加速度を求める際に、この制御力指令値を使用するようになっている。
【0115】
また、本実施形態のターボ分子ポンプ本体150では、第1実施形態で用いられていた永久磁石を有するモータ121の代わりに、誘導モータ171が使用されている。そして、この誘導モータ171には、振動検出/モータ制御器553から無通電信号が出力されており、誘導モータ171は、振動検出/モータ制御器553で装置固定部600の加速度の算出が行われる期間中、無通電状態(フリーラン)とされるようになっている。
【0116】
さらに、振動検出/モータ制御器553には、回転体103に作用する不釣り合い力ub(t)による誤差を低減するための回転周波数追従型ノッチフィルタ806が設けられている(詳細は後述する)。
【0117】
なお、本実施形態の振動検出/モータ制御器553には、加算器505から出力される制御力指令値の代わりに、回転体103と、電磁石104,105又は電磁石106A,106Bとの間に発生する磁束の変動量を示す磁束検出信号が入力されても良い。そして、この磁束の変動量に基づいて、装置固定部600の加速度を求めても良い。
【0118】
この場合には図5に示すように、ターボ分子ポンプ本体150に、回転体103と電磁石104,105又は電磁石106A,106Bとの間に発生する磁束の変動量を検出する磁束検出器181を設け、この検出結果を振動検出/モータ制御器553に出力するようにすれば良い。
【0119】
次に、第2実施形態である装置システムの作用について説明する。
まず、装置固定部600の加速度を導出する方法について説明する。
この加速度の導出方法を説明するにあたり、装置システム全体のブロック図は、第1実施形態で説明した図2と同様である。そして、このブロック図に基づいて運動モデルを構成すると、図6のようになる。
【0120】
このとき、図6において、第1実施形態である運動モデル(図3)との対比を行うと以下のようになる。
まず、第1実施形態である運動モデルでは、相対変位y(t)と、電磁石104,105又は電磁石106A,106Bが回転体103に作用させる力との関係として関数fr,faを定義していたが、本実施形態ではこれらの関数fr,faは定義されていない。その代わりに、本実施形態では電磁石104,105又は電磁石106A,106Bが回転体103に及ぼす力として、磁気軸受の浮上力の調整量fmb(t)そのものが定義されている。
【0121】
また、第1実施形態である運動モデルでは考慮されていなかったが、本実施形態の運動モデルでは、誘導モータ171が回転体103に及ぼす力としてモータ力fmt(t)が考慮されている。
【0122】
通常、第1実施形態のターボ分子ポンプ本体100であっても、モータ121の回転子側である永久磁石のS極とN極がロータ軸113の軸心を挟んで対向配置され、かつ固定子側である電磁石がロータ軸113の軸心を挟んで対向配置されていれば、回転体103には回転させるトルク成分のみが生じて、永久磁石の磁極とモータ121の電磁石との間に作用する力は、全て相殺されて0になる。従って、この場合にはモータ力fmt(t)を考慮する必要はない。
【0123】
しかしながら、実際には永久磁石の磁束の誤差や、固定子側の電磁石に対するロータ軸113の偏心等が起こり得る。そのため、これらの原因によりモータ力fmt(t)はゼロにならない。従って、装置固定部600の加速度の算出における誤差を小さくするためには、このモータ力fmt(t)の影響を考慮することが望ましい。
【0124】
さらに、本実施形態の運動モデルでは、不釣り合い力ub(t)は角速度が回転体103の回転角速度ωと等しい正弦波に近似される(以下、不釣り合い力ub(ωt)と示す)。この不釣り合い力ub(ωt)は、上述したように回転体103の形状中心軸と慣性中心軸の位置ずれに起因して発生する不釣り合い力であるため、このように角速度ωの正弦波に近似することが可能となっている。
【0125】
そこで、回転体103が装置固定部600から浮上支持されていることについて、回転体103の運動方程式を求めると数6のようになる。
【0126】
【数6】
Figure 0004287213
【0127】
また、数6は、数1で定義した相対変位y(t)を導入することにより数7のように表される。
【0128】
【数7】
Figure 0004287213
【0129】
さらに、数7は若干の変形を加えることで数8のように表される。
【0130】
【数8】
Figure 0004287213
【0131】
ここで、数8に示された磁気軸受の浮上力の調整量fmb(t)、モータ力fmt(t)、不釣り合い力ub(ωt)について考察する。
まず、磁気軸受の浮上力の調整量fmb(t)について考察する。
上述したように、第1実施形態では相対変位y(t)と、電磁石104,105又は電磁石106A,106Bが回転体103に作用させる力との関係として、関数fr,faを定義していた。そして、この関数fr,faをラプラス領域に変換し、伝達関数Fr(s),Fa(s)等からラプラス領域における装置固定部600の加速度を求め、さらにこれを時間領域に変換することで、装置固定部600の加速度を求めていた。
【0132】
しかしながら、伝達関数Fr(s),Fa(s)の算出のために必要なパラメータは予め決められるか、測定される必要があり、かつこれらを振動検出器503内に記憶しておく必要があった。また、伝達関数Fr(s),Fa(s)の演算はそれ自体複雑であるため、高速な演算器が必要であった。
【0133】
これに対し、本実施形態では、伝達関数Fr(s),Fa(s)の計算を行う代わりに、磁気軸受の浮上力の調整量fmb(t)そのものを定義し、この浮上力の調整量fmb(t)として加算器505から出力された制御力指令値を使用している。そのため、装置固定部600の加速度の算出にあたり、既知となる制御力指令値を用いているので、安価な演算器でも十分に使用に耐えられる。
【0134】
ところで、このように制御力指令値を磁気軸受の浮上力の調整量fmb(t)とみなして演算を行う場合、この制御力指令値と実際の浮上力の調整量fmb(t)との間の誤差が問題となり得る。しかしながら、ロータ軸113に対して直角な平面上において、電磁石を回転体103を挟んで対向配置し、制御装置550として、電磁石104,105又は電磁石106A,106Bから発生される磁束の変動量が加算器505から出力される制御力指令値に高速に追従するような高ゲイン磁束フィードバック制御器を使用することで、かかる問題は解消される。
【0135】
この高ゲイン磁束フィードバック制御器のブロック線図を図7に示す。図7において、Fr(s)は、制御力指令値fr(t)の変動分のラプラス変換である。また、Vm(s)は、磁束指令値vm(t)の変動分のラプラス変換であり、Im(s)は、電磁石電流値Im(t)の変動分のラプラス変換であり、φm(s)は、電磁石の磁束φm(t)の変動分のラプラス変換である。さらに、Fmb(s)は、電磁石の制御力fmb(t)の変動分のラプラス変換であり、X(s)は、電磁石と回転体の隙間の変動分のラプラス変換である。また、Rは、電磁石のコイルの抵抗であり、Lは、電磁石のインダクタンスである。
【0136】
ここに、ゲインK2を“L・s+R”と比較して非常に大きくすることで、磁束指令値vm(t)と、電磁石104,105又は電磁石106A,106Bから発生される制御磁束φm(t)は、一対一に対応するようになる。また、磁束φm(t)の変動分は、浮上力の調整量fmb(t)と比例関係を保ち、比例ゲインK1をこの比例定数K4の逆数とすれば、制御力指令値fr(t)は浮上力の調整量fmb(t)と一対一に対応するようになる。
以上により、制御力指令値と実際の浮上力の調整量fmb(t)との間の誤差を低減することが可能である。
【0137】
次に、モータ力fmt(t)について考察する。
上述したように、本実施形態においては装置固定部600の加速度の算出に際し、モータ力fmt(t)を考慮している。
しかしながら、このモータ力fmt(t)を正確に把握することは困難である。
【0138】
そこで、本実施形態では、永久磁石からなるモータ121の代わりに、誘導モータ171を使用している。そして、回転体位置センサ107,108,109が回転体103の位置を検出し、装置固定部600の加速度の算出を行う期間中は誘導モータ171を無通電状態とすることで、モータ力fmt(t)の影響をゼロにしている。この点、第1実施形態のように永久磁石からなるモータ121を用いた場合には、この永久磁石による磁束の影響をゼロにできないので、モータ力fmt(t)の影響を常に考慮する必要がある。
【0139】
なお、誘導モータ171を無通電状態とする期間は、以下のように決めることが望ましい。例えば、ターボ分子ポンプ本体150が電子顕微鏡等の設備に用いられる場合、電子顕微鏡により撮像が行われる時間、すなわち振動の抑制が最も望まれる期間は、数秒程度である。従って、誘導モータ171を無通電状態とする期間としては、数十秒〜1分程度の時間があれば十分である。
【0140】
一方、この期間中、回転体103に対しては誘導モータ171から回転力が与えられないため、回転体103の失速が問題となり得る。しかしながら、回転体103は慣性モーメントが大きいので、数十秒〜1分程度の時間では回転速度が大きく失速することはない。また、撮像を行うまでに十分にチャンバ300内のガス吸引が行われていると考えれば、この期間中のガス負荷による回転速度の低下もほとんど起こり得ない。従って、回転体103の位置を検出し、装置固定部600の加速度の算出を行う期間中に、誘導モータ171を無通電状態とすることによる不都合は考えられない。
【0141】
そこで、装置システムの振動抑制を行う期間中に誘導モータ171を無通電状態とすることで、数8中のモータ力fmt(t)をゼロとした式により、装置固定部600の加速度の算出が行われる。
【0142】
続いて、不釣り合い力ub(ωt)について考察する。
上述したように、不釣り合い力ub(ωt)は、オブザーバを構成することで、磁気軸受の浮上力の調整量と回転体位置センサが出力する回転体の変位の情報から推定することが可能である。
しかしながら、このようなオブザーバ理論に基づく計算は、複雑になるおそれがある。
【0143】
一方、不釣り合い力ub(ωt)は、回転体103の回転角速度ωを角速度とする正弦波に近似される。そのため、この不釣り合い力ub(ωt)をゼロと仮定して装置固定部600の加速度を算出しても、これによる演算誤差は、回転体103の回転角速度ωの周波数に限定され、その他の周波数帯域では装置固定部600の加速度を精度良く算出することができる。また、この不釣り合い力ub(ωt)による回転体103の振れも、回転角速度ωの周波数に限定されたものとなる。
【0144】
従って、上述したような誘導モータ171を無通電状態とした状態での装置固定部600の加速度の演算結果を、回転周波数追従型ノッチフィルタ806に通すことで、回転体103の回転角速度ωの周波数付近の演算結果を考慮しないようにすることができる。これにより、回転体103の回転角速度ωの周波数付近に不感帯が生じるものの、その他の周波数帯域では装置固定部600の加速度を精度良く算出することができる。
【0145】
ここで、回転周波数追従型ノッチフィルタ806の原理について詳細に説明する。
まず、回転体103の装置固定部600に対する振れxdは、フーリエ級数展開することで、数9のように表される。
【0146】
【数9】
Figure 0004287213
【0147】
但し、Rr(ωt)は回転体103の振れの回転体103の回転周波数成分(不釣り合い力ubにより生じる)、ωは回転体103の回転角速度、tは時間、Erは回転体103の振れの回転体103の回転周波数以外の周波数成分、Rs(ωt)は装置固定部600の変位の回転体103の回転周波数成分、Esは装置固定部600の変位の回転体103の回転周波数以外の周波数成分、ArはRr(ωt)の振幅、ψrはRr(ωt)の位相、AsはRs(ωt)の振幅、ψsはRs(ωt)の位相を表す。
【0148】
このとき、回転体103の装置固定部600に対する振れxdは、各回転体位置センサ107,108,109によって検出される。また、回転体103の回転角速度ωは、モータ121等に設けられた回転数センサ等によって検出される。
【0149】
そして、この回転体位置センサ107,108,109により検出された回転体103の検出信号xdに対し、以下のような演算処理を行う。
まず、検出信号xdに対し、sin(ωt),cos(ωt)を乗算することで、数10、数11を得る。
【0150】
【数10】
Figure 0004287213
【0151】
【数11】
Figure 0004287213
【0152】
また、数10、数11に対し三角関数の加法定理を導入することで、数12、数13を得る。
【0153】
【数12】
Figure 0004287213
【0154】
【数13】
Figure 0004287213
【0155】
そして、数12、数13をカットオフ周波数の低いローパスフィルタに通すとAC成分が除去されて、数14、数15を得る。
【0156】
【数14】
Figure 0004287213
【0157】
【数15】
Figure 0004287213
【0158】
さらに、数14、数15のar,brのそれぞれにsin(ωt),cos(ωt)を乗算して加算し、かつ2倍に増幅することで、数16のように回転体103の装置固定部600に対する振れの回転体103の回転周波数成分Rr(ωt)−Rs(ωt)が得られる。
【0159】
【数16】
Figure 0004287213
【0160】
さらに、回転体位置センサ107,108,109による回転体103の検出信号xdから、数16の回転周波数成分Rr(ωt)−Rs(ωt)を減算することで、数17のように結果信号xoを得る。
【0161】
【数17】
Figure 0004287213
【0162】
そして、数17の結果信号xoを制御装置550の補償器201に出力することで、補償器201では、回転体103の装置固定部600に対する振れの回転体103の回転周波数以外の周波数成分Er−Esのみが認識される。
【0163】
ここで、以上で説明した回転周波数追従型ノッチフィルタ806の原理を表したブロック図を図8に示す。
図8において、入力701が数10、数11中の検出信号xdに対応する。また、サイン波702、コサイン波703が数10、数11で乗算されたsin(ωt),cos(ωt)に対応する。そして、ローパスフィルタ704、705が数12、数13を通すローパスフィルタに対応する。その結果、図8の出力706は数16で計算される回転体103の装置固定部600に対する変位の回転周波数成分Rr(ωt)−Rs(ωt)に対応するようになる。そして、入力701からこの出力706を減算することで(図示略)、数17の結果信号xoが得られる。
【0164】
そこで、以上のような磁気軸受の浮上力の調整量fmb(t)、モータ力fmt(t)、不釣り合い力ub(ωt)についての考察結果に基づき、装置固定部600の加速度の算出を行う数8は、数18のように簡略化される。
【0165】
【数18】
Figure 0004287213
【0166】
一方、数18は、初期値が0であるとすれば、ラプラス領域では数19のように表される。
【0167】
【数19】
Figure 0004287213
【0168】
ここで、数19の右辺第2項のY(s)にはラプラス演算子sの二乗の係数が掛かっている。そのため、数19はプロパーな式ではなく(すなわち、分子のラプラス演算子sの次数が分母のラプラス演算子sの次数よりも大きく)、数18からも明らかなように、この計算には相対変位y(t)を2階微分するための2次の微分器が必要となる。
【0169】
そして、演算の過程において微分器を必要とすると、周波数が高くなるに連れて高ゲインとなり、この演算結果を振動抑制制御補償器にフィードバック入力し、装置固定部600の振動を抑制しようとすれば、そのフィードバック制御系の安定性が損なわれるおそれがある。また、一般にノイズは高周波数帯域に生じる場合が多く、この微分器によりノイズが増幅される傾向にもある。
そのため、数19を厳密にプロパーな式(すなわち、分子のラプラス演算子sの次数が分母のラプラス演算子sの次数よりも小さい式)にすることが望ましい。そこで、数19の演算結果を2次のローパスフィルタに通すと、数20が得られる。なおζ,ωcは所定の定数である。
【0170】
【数20】
Figure 0004287213
【0171】
さらに、数20に変形を加えると数21が得られる。
【0172】
【数21】
Figure 0004287213
【0173】
数21の右辺は全ての項について厳密にプロパーな式であり、この数21を、装置固定部600の加速度の算出に用いることで、振動抑制のためのフィードバック制御系の安定性を向上させることができ、かつノイズを低減することができる。
【0174】
なお、以上のような装置固定部600の加速度の算出方法を表したブロック図を図9に示す。
図9において、入力801が数21中の相対変位y(t)のラプラス変換Y(s)に対応する。また、入力802が数21中の磁気軸受の浮上力の調整量fmb(t)のラプラス変換Fmb(s)に対応する。そして、ローパスフィルタ803は数21中の右辺第3、4項に掛かる係数であり、ローパスフィルタ804は右辺第1、2項に掛かる係数に対応する。従って、中間出力805が数21中の装置固定部600の加速度のラプラス変換s2s(s)に対応する。
さらに、この中間出力805を、上述で説明した回転周波数追従型ノッチフィルタ806に通すことで、図9の出力807は、数18で計算される装置固定部600の加速度のラプラス変換に対応するようになる。
【0175】
次に、算出した装置固定部600の加速度に基づいて、装置固定部600の振動を抑制するための動作を説明する。
本実施形態における振動抑制動作は、第1実施形態と同様であるが、振動検出/モータ制御器553から、誘導モータ171に対し無通電信号による制御が行われる点が異なっている。
【0176】
例えば、チャンバ300側から自動あるいは手動により、チャンバ300で電子顕微鏡による撮像等が行われる旨の信号が振動検出/モータ制御器553に入力されると(図示略)、この信号に基づき振動検出/モータ制御器553は誘導モータ171を無通電状態とする。
【0177】
そして、この誘導モータ171を無通電状態としている期間中、振動検出/モータ制御器553では装置固定部600の加速度の算出が行われ、加速度信号が振動抑制制御補償器504に出力される(以降は第1実施形態と同様である)。
これにより、装置固定部600の加速度に対して、この加速度を抑制する力を、電磁石104,105,106A,106Bに作用する浮上支持力の反力に発生させることができるので、装置固定部600の振動を抑制することができる。
【0178】
一方、チャンバ300側から、電子顕微鏡による撮像等が終了した旨の信号が振動検出/モータ制御器553に入力されると(図示略)、この信号に基づき振動検出/モータ制御器553は誘導モータ171を通電させる。
これにより、誘導モータ171から回転体103に回転力が与えられ、磁気軸受は、回転体103に対して、例えば従来と同様の位置制御を行う。
【0179】
以上により、伝達関数Fr(s),Fa(s)の計算を行う代わりに、磁気軸受の制御力指令値等を用いて装置固定部600の加速度の算出を行っているので、安価な演算器を用いても高精度に算出することが可能となる。
【0180】
また、数21のような厳密にプロパーな式に基づいて、装置固定部600の加速度を求めているので、振動抑制のフィードバック制御系の安定性を向上させることができ、かつノイズを低減することができる。
【0181】
なお、本実施形態においては、数21等において、装置固定部600の加速度を求めるとして説明してきたが、これに限られず、第1実施形態と同様に、装置固定部600の加加速度、速度、位置等のように加速度を所要回数だけ微分又は積分した結果に相当する物理量を算出するようにしても良い。
【0182】
また、本実施形態においては、ターボ分子ポンプ本体150がチャンバ300に固定されるものとして説明してきたが、これに限られるものではない。もちろん、装置固定部600側が完全な剛体であれば、以上で説明した通りの効果が得られるので最も望ましいが、チャンバ300等は完全な剛体であるとは限らないからである。
【0183】
チャンバ300の剛性が低い場合や、従来のようにターボ分子ポンプ本体150がポンプ用ダンパ301を介してチャンバ300に固定される構成であっても、各実施形態ではターボ分子ポンプ本体100,150を中心とした系の低振動化が行われるので、十分に装置システム全体の低振動化に寄与することが可能である。
【0184】
さらに、本実施形態においては、回転体位置センサ107,108,109の変位信号に基づいて、それぞれに対応する装置固定部600の加速度等を求め、各電磁石104,105,106A,106Bを制御するとして説明してきたが、これに限られない。
【0185】
一般に、回転体103の運動は、並進成分の運動と回転成分の運動とが複雑に混在し合っている。そして、従来から行われているように、上側径方向センサ107及び下側径方向センサ108等の検出結果から、回転体103の運動は、並進成分と回転成分とに分離することができる。従って、回転体103の並進成分と回転成分のそれぞれに対応して装置固定部600の加速度等を求めれば、装置固定部600の加速度等の並進成分と回転成分を求めることができる。
【0186】
具体的には、以下のような計算を行う。まず、並進成分に対応した装置固定部600の加速度等を求める場合には、回転体103の変位の並進成分を、数8の相対変位y(t)に代入して計算を行う。一方、回転成分に対応した装置固定部600の加速度等を求める場合には、回転体103の変位の回転成分を、数8の相対変位y(t)に代入し、回転体103のその回転中心軸まわりの慣性モーメントを、数8の質量mrに代入して計算を行う。
そして、これらの算出結果である並進成分と回転成分に対応した装置固定部600の加速度等から、再び上側径方向電磁石104及び下側径方向電磁石105に対する制御力指令値等を求めることで、電磁石104,105を制御すれば良い。
【0187】
【発明の効果】
以上説明したように本発明によれば、磁気軸受装置は、振動検出手段と加算手段と振動抑制制御手段とを備えて構成したことから、新たな振動センサを配設することなく、真空ポンプの被対象設備を含めた装置システム全体の低振動化を実現することが可能である。
また、磁気軸受装置は、振動検出手段を備えて構成したことから、新たな振動センサを配設することなく、真空ポンプの被対象設備を含めた装置システム全体の振動検出を実現することが可能である。
【図面の簡単な説明】
【図1】 本発明の第1実施形態である装置システム全体の構成図
【図2】 装置システム全体のブロック図
【図3】 装置システム全体の運動モデルを示した図
【図4】 本発明の第2実施形態である装置システム全体の構成図
【図5】 同上(別例)
【図6】 装置システム全体の運動モデルを示した図
【図7】 高ゲイン磁束フィードバック制御器のブロック線図
【図8】 回転周波数追従型ノッチフィルタの原理を表したブロック図
【図9】 装置固定部の加速度の算出方法を表したブロック図
【図10】 従来のターボ分子ポンプの縦断面図
【図11】 従来の装置システム全体の構成図
【符号の説明】
100,150 ターボ分子ポンプ本体
103 回転体
104 上側径方向電磁石
105 下側径方向電磁石
106A,106B 軸方向電磁石
107 上側径方向センサ
108 下側径方向センサ
109 軸方向センサ
171 誘導モータ
181 磁束検出器
200,500,550 制御装置
201 補償器
202 アンプ
300 チャンバ
301 ポンプ用ダンパ
400 床
401 装置用ダンパ
503 振動検出器
504 振動抑制制御補償器
505 加算器
553 振動検出/モータ制御器
600 装置固定部
806 回転周波数追従型ノッチフィルタ

Claims (17)

  1. 回転体と、
    該回転体に浮上力を作用させる電磁石と、
    該電磁石が固設されたステータ部と、
    前記回転体の前記ステータ部に対する径方向及び/又は軸方向の相対変位を検出する変位検出手段と、
    該変位検出手段が検出した相対変位に基づいて前記浮上力の調整量を算出する磁気軸受制御補償器と、
    該磁気軸受制御補償器による前記浮上力の調整量の算出結果に応じて前記浮上力を調整する電磁石制御手段と、
    前記ステータ部に対する相対位置が固定された装置固定部の所定の物理量を検出する振動検出手段と、
    該振動検出手段の出力を、該出力の極性を反転し、少なくとも前記変位検出手段と前記磁気軸受制御補償器と前記電磁石制御手段によって構成される磁気軸受フィードバック制御手段の伝達信号に加算する加算手段とを備え、
    前記所定の物理量は、
    前記装置固定部及び/又は前記ステータ部の加速度、該加速度を所要回数だけ微分又は積分した変位、速度及び加加速度等のうちの少なくとも一つであり、
    前記加速度は、
    前記変位検出手段で検出された前記回転体の相対変位のラプラス変換と所定の伝達関数とを乗算した第1の乗算結果を時間領域に変換した変換結果であることを特徴とする振動抑制機能を有する磁気軸受装置。
  2. 前記回転体に作用する不釣り合い力を検出又は推定する不釣り合い力検出手段を備え、
    前記加速度は、
    前記第1の乗算結果と、前記不釣り合い力検出手段で検出又は推定された前記回転体に作用する不釣り合い力の変動分のラプラス変換と前記回転体の質量の逆数とを乗算した第2の乗算結果とを加算した加算結果を時間領域に変換した変換結果であることを特徴とする請求項1記載の振動抑制機能を有する磁気軸受装置。
  3. 前記所定の伝達関数は、
    前記回転体の相対変位と該相対変位により前記電磁石と前記回転体との間に作用する力との関係である磁気軸受フィードバック制御手段固有の伝達関数と、前記回転体の質量により表されたことを特徴とする請求項1又は請求項2記載の振動抑制機能を有する磁気軸受装置。
  4. 回転体と、
    該回転体に浮上力を作用させる電磁石と、
    該電磁石が固設されたステータ部と、
    前記回転体の前記ステータ部に対する径方向及び/又は軸方向の相対変位を検出する変位検出手段と、
    該変位検出手段が検出した相対変位に基づいて前記浮上力の調整量を算出する磁気軸受制御補償器と、
    該磁気軸受制御補償器による前記浮上力の調整量の算出結果に対応して前記浮上力を調整する電磁石制御手段と、
    前記ステータ部に対する相対位置が固定された装置固定部の所定の物理量を検出する振動検出手段と、
    該振動検出手段の出力を、該出力の極性を反転し、少なくとも前記変位検出手段と前記磁気軸受制御補償器と前記電磁石制御手段によって構成される磁気軸受フィードバック制御手段の伝達信号に加算する加算手段とを備え、
    前記所定の物理量は、
    前記装置固定部及び/又は前記ステータ部の加速度、該加速度を所要回数だけ微分又は積分した変位、速度及び加加速度等のうちの少なくとも一つであり、
    前記加速度は、
    前記磁気軸受制御補償器による前記浮上力の調整量の算出結果又は前記加算手段による加算結果と、前記回転体の質量の逆数とを乗算した第3の乗算結果から、前記変位検出手段で検出された前記回転体の相対変位を2階微分した結果を減算した減算結果であることを特徴とする振動抑制機能を有する磁気軸受装置。
  5. 前記電磁石と前記回転体の間に発生する磁束の変動量を検出する磁束検出手段を備え、
    前記第3の乗算結果として、
    前記磁気軸受制御補償器による前記浮上力の調整量の算出結果の代わりに、前記磁束検出手段で検出された磁束の変動量に比例する値を用いた乗算結果を用いることを特徴とする請求項4記載の振動抑制機能を有する磁気軸受装置。
  6. 前記回転体を回転駆動する誘導モータと、
    該誘導モータの通電状態を制御するモータ制御手段とを備え、
    前記振動検出手段で前記所定の物理量を検出するとき、前記モータ制御手段は前記誘導モータを無通電とすることを特徴とする請求項4又は請求項5記載の振動抑制機能を有する磁気軸受装置。
  7. 前記回転体の回転周波数に追従して、該周波数成分を除去する回転周波数追従型ノッチフィルタを備え、
    前記加速度等は、
    前記減算結果が前記回転周波数追従型ノッチフィルタを通過した結果であることを特徴とする請求項4、5又は6記載の振動抑制機能を有する磁気軸受装置。
  8. 前記加速度等が通過するローパスフィルタを備えたことを特徴とする請求項4〜7のいずれか1項に記載の振動抑制機能を有する磁気軸受装置。
  9. 前記振動検出手段の出力にゲイン調整及び/又は位相補償と、PID制御と、その他の制御補償のいずれか少なくとも一つの制御補償を施す振動抑制制御補償手段を備えたことを特徴とする請求項1〜8のいずれか1項に記載の振動抑制機能を有する磁気軸受装置。
  10. 回転体と、
    該回転体に浮上力を作用させる電磁石と、
    該電磁石が固設されたステータ部と、
    前記回転体の前記ステータ部に対する径方向及び/又は軸方向の相対変位を検出する変位検出手段と、
    該変位検出手段が検出した変位に基づいて前記浮上力の調整量を算出する磁気軸受制御補償器と、
    該磁気軸受制御補償器による前記浮上力の調整量の算出結果に対応して前記浮上力を調整する電磁石制御手段と、
    前記ステータ部に対する相対位置が固定された装置固定部の所定の物理量を検出する振動検出手段とを備え、
    前記所定の物理量は、
    前記装置固定部及び/又は前記ステータ部の加速度、該加速度を所要回数だけ微分又は積分した変位、速度及び加加速度等のうちの少なくとも一つであり、
    前記加速度は、
    前記変位検出手段で検出された前記回転体の相対変位のラプラス変換と所定の伝達関数とを乗算した第1の乗算結果を時間領域に変換した変換結果であることを特徴とする振動推定機能を有する磁気軸受装置。
  11. 回転体と、
    該回転体に浮上力を作用させる電磁石と、
    該電磁石が固設されたステータ部と、
    前記回転体の前記ステータ部に対する径方向及び/又は軸方向の相対変位を検出する変位検出手段と、
    該変位検出手段が検出した変位に基づいて前記浮上力の調整量を算出する磁気軸受制御補償器と、
    該磁気軸受制御補償器による前記浮上力の調整量の算出結果に対応して前記浮上力を調整する電磁石制御手段と、
    前記ステータ部に対する相対位置が固定された装置固定部の所定の物理量を検出する振動検出手段とを備え、
    前記所定の物理量は、
    前記装置固定部及び/又は前記ステータ部の加速度、該加速度を所要回数だけ微分又は積分した変位、速度及び加加速度等のうちの少なくとも一つであり、
    前記加速度は、
    前記磁気軸受制御補償器による前記浮上力の調整量の算出結果と、前記回転体の質量の逆数とを乗算した第3の乗算結果から、前記変位検出手段で検出された前記回転体の相対変位を2階微分した結果を減算した減算結果であることを特徴とする振動推定機能を有する磁気軸受装置。
  12. 前記電磁石と前記回転体の間に発生する磁束の変動量を検出する磁束検出手段を備え、
    前記第3の乗算結果として、
    前記磁気軸受制御補償器による前記浮上力の調整量の算出結果の代わりに、前記磁束検出手段で検出された磁束の変動量に比例する値を用いた乗算結果を用いることを特徴とする請求項11記載の振動推定機能を有する磁気軸受装置。
  13. 前記回転体を回転駆動する誘導モータと、
    該誘導モータの通電状態を制御するモータ制御手段とを備え、
    前記振動検出手段で前記所定の物理量を検出するとき、前記モータ制御手段は前記誘導モータを無通電とすることを特徴とする請求項11又は請求項12記載の振動推定機能を有する磁気軸受装置。
  14. 前記回転体の回転周波数に追従して、該周波数成分を除去する回転周波数追従型ノッチフィルタを備え、
    前記加速度等は、
    前記減算結果が前記回転周波数追従型ノッチフィルタを通過した結果であることを特徴とする請求項11、12又は13記載の振動推定機能を有する磁気軸受装置。
  15. 前記加速度等が通過するローパスフィルタを備えたことを特徴とする請求項11〜14のいずれか1項に記載の振動推定機能を有する磁気軸受装置。
  16. 請求項1〜9のいずれか1項に記載の磁気軸受装置が搭載された真空ポンプであって、
    該真空ポンプは、
    被対象設備に設置され、該被対象設備から所定のガスを吸引することを特徴とする振動抑制機能を有するポンプ装置。
  17. 請求項10〜15のいずれか1項に記載の磁気軸受装置が搭載された真空ポンプであって、
    該真空ポンプは、
    被対象設備に設置され、該被対象設備から所定のガスを吸引することを特徴とする振動推定機能を有するポンプ装置。
JP2003207729A 2002-09-03 2003-08-18 振動抑制機能を有する磁気軸受装置、振動推定機能を有する磁気軸受装置及び該磁気軸受装置を搭載したポンプ装置 Expired - Fee Related JP4287213B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003207729A JP4287213B2 (ja) 2002-09-03 2003-08-18 振動抑制機能を有する磁気軸受装置、振動推定機能を有する磁気軸受装置及び該磁気軸受装置を搭載したポンプ装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002257538 2002-09-03
JP2003207729A JP4287213B2 (ja) 2002-09-03 2003-08-18 振動抑制機能を有する磁気軸受装置、振動推定機能を有する磁気軸受装置及び該磁気軸受装置を搭載したポンプ装置

Publications (3)

Publication Number Publication Date
JP2004150628A JP2004150628A (ja) 2004-05-27
JP2004150628A5 JP2004150628A5 (ja) 2006-02-02
JP4287213B2 true JP4287213B2 (ja) 2009-07-01

Family

ID=31712280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003207729A Expired - Fee Related JP4287213B2 (ja) 2002-09-03 2003-08-18 振動抑制機能を有する磁気軸受装置、振動推定機能を有する磁気軸受装置及び該磁気軸受装置を搭載したポンプ装置

Country Status (5)

Country Link
US (2) US6806606B2 (ja)
EP (1) EP1396649B1 (ja)
JP (1) JP4287213B2 (ja)
KR (1) KR20040020852A (ja)
DE (1) DE60320072T2 (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2829200B1 (fr) * 2001-09-06 2004-12-31 Mecanique Magnetique Sa Dispositif et procede de compensation automatique de perturbations synchrones
US20030155882A1 (en) * 2002-02-19 2003-08-21 Nikon Corporation Anti-gravity mount with air and magnets
JP4287213B2 (ja) * 2002-09-03 2009-07-01 エドワーズ株式会社 振動抑制機能を有する磁気軸受装置、振動推定機能を有する磁気軸受装置及び該磁気軸受装置を搭載したポンプ装置
JP2005273802A (ja) 2004-03-25 2005-10-06 Boc Edwards Kk 磁気軸受装置及び該磁気軸受装置を搭載したターボ分子ポンプ
WO2006041113A1 (ja) * 2004-10-15 2006-04-20 Boc Edwards Japan Limited ダンパおよび真空ポンプ
JP4962851B2 (ja) * 2006-03-06 2012-06-27 株式会社島津製作所 真空ポンプ
DE102006034478A1 (de) 2006-07-26 2008-01-31 Oerlikon Leybold Vacuum Gmbh Verfahren zur Ermittlung einer Aussage über einen Zustand einer Turbomolekularpumpe sowie eine Turbomolekularpumpe
JP4914165B2 (ja) * 2006-10-06 2012-04-11 エドワーズ株式会社 制振装置及び制振方法
JP2008229806A (ja) * 2007-03-23 2008-10-02 Jtekt Corp 磁気軸受装置
JP4922338B2 (ja) * 2008-04-25 2012-04-25 エーエスエムエル ネザーランズ ビー.ブイ. 位置制御システム、リソグラフィ装置、および可動オブジェクトの位置を制御する方法
US8128649B2 (en) 2008-12-16 2012-03-06 Slater Charles R Spring scissor blade
JP5763885B2 (ja) * 2010-01-29 2015-08-12 株式会社東芝 磁気浮上装置
JP5966651B2 (ja) * 2012-06-19 2016-08-10 株式会社ジェイテクト 主軸装置
DE102013219196A1 (de) * 2013-09-24 2015-03-26 Siemens Aktiengesellschaft Verfahren zum Kompensieren einer niederfrequenten Stör-Kraft eines Rotors mit aktiven Magnetlagern, aktives Magnetlager mit Kompensations-Regel-Kreis zur Durchführung des Kompensierens und Verwendung des Magnetlagers
JP6015701B2 (ja) * 2014-03-27 2016-10-26 Jfeスチール株式会社 鋼板の制振制御方法及び制振制御装置
US9816965B2 (en) 2014-11-14 2017-11-14 General Electric Company Method to detect vibration nodes between a sensor and an actuator in a rotatable component
CN107923538B (zh) 2015-08-10 2020-03-03 埃克森美孚上游研究公司 用于磁力控制的干燥气体密封的设备和方法
US10132412B2 (en) 2016-08-05 2018-11-20 Exxonmobil Upstream Research Company Device and method for controlling rotating equipment seal without buffer support equipment
JP6864447B2 (ja) * 2016-09-06 2021-04-28 キヤノン株式会社 リソグラフィ装置、および物品の製造方法
JP7148230B2 (ja) * 2017-08-31 2022-10-05 エドワーズ株式会社 真空ポンプ及び制御装置
CN111193454B (zh) * 2020-01-16 2023-05-09 江苏大学 开关磁阻轮毂电机减振及脉动抑制复合控制系统构造方法
CN111836013B (zh) * 2020-07-09 2022-04-12 河南中电投华新电力工程有限公司 一种基于vr的火电厂检修平台
US11698287B2 (en) * 2020-08-31 2023-07-11 Rolls-Royce Deutschland Ltd & Co Kg System and method for detecting vibrations in rotating machinery
CN113623239A (zh) * 2021-09-16 2021-11-09 北京航空航天大学宁波创新研究院 一种不平衡磁拉力控制方法、装置、系统、设备和介质
CN114235143B (zh) * 2021-12-16 2023-09-22 常州大学 一种磁悬浮多跨转子不对中振动的自适应检测系统
CN114371622B (zh) * 2022-01-07 2024-04-12 北京航空航天大学 基于多谐波逆Park变换的磁悬浮转子谐波振动力抑制方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2561738B1 (fr) * 1984-03-26 1986-08-22 Europ Propulsion Procede et dispositif de reduction des vibrations des machines tournantes equipees d'une suspension magnetique active
US4795927A (en) * 1986-05-02 1989-01-03 Mitsubishi Jukogyo Kabushiki Kaisha Control system for a magnetic type bearing
US4999534A (en) * 1990-01-19 1991-03-12 Contraves Goerz Corporation Active vibration reduction in apparatus with cross-coupling between control axes
JPH0720359B2 (ja) * 1990-03-16 1995-03-06 株式会社荏原製作所 回転体のアンバランス修正装置
EP0527846B1 (de) * 1990-05-08 1994-08-31 Teldix GmbH Vibrationsisolation eines magnetisch gelagerten körpers
US5202824A (en) * 1990-06-21 1993-04-13 Mechanical Technology Incorporated Rotating force generator for magnetic bearings
JPH0676808B2 (ja) * 1991-07-02 1994-09-28 株式会社荏原製作所 磁気軸受装置
JP3182197B2 (ja) * 1992-03-16 2001-07-03 株式会社荏原製作所 磁気軸受装置
JP3296074B2 (ja) * 1994-03-18 2002-06-24 株式会社日立製作所 高速回転体およびそれに用いる磁気軸受の制御装置
US5736801A (en) * 1995-08-18 1998-04-07 Ebara Corporation Filter circuit and control circuit for controlling a rotor
US6394769B1 (en) * 1996-05-03 2002-05-28 Medquest Products, Inc. Pump having a magnetically suspended rotor with one active control axis
US6074180A (en) * 1996-05-03 2000-06-13 Medquest Products, Inc. Hybrid magnetically suspended and rotated centrifugal pumping apparatus and method
JP2002147454A (ja) * 2000-11-15 2002-05-22 Seiko Instruments Inc 磁気軸受装置を備える回転機械
FR2829200B1 (fr) * 2001-09-06 2004-12-31 Mecanique Magnetique Sa Dispositif et procede de compensation automatique de perturbations synchrones
JP2003166554A (ja) * 2001-11-28 2003-06-13 Mitsubishi Heavy Ind Ltd 回転装置の駆動軸
JP4287213B2 (ja) * 2002-09-03 2009-07-01 エドワーズ株式会社 振動抑制機能を有する磁気軸受装置、振動推定機能を有する磁気軸受装置及び該磁気軸受装置を搭載したポンプ装置

Also Published As

Publication number Publication date
DE60320072T2 (de) 2009-06-18
USRE41035E1 (en) 2009-12-15
EP1396649A2 (en) 2004-03-10
US6806606B2 (en) 2004-10-19
US20040041478A1 (en) 2004-03-04
JP2004150628A (ja) 2004-05-27
DE60320072D1 (de) 2008-05-15
EP1396649A3 (en) 2005-06-08
KR20040020852A (ko) 2004-03-09
EP1396649B1 (en) 2008-04-02

Similar Documents

Publication Publication Date Title
JP4287213B2 (ja) 振動抑制機能を有する磁気軸受装置、振動推定機能を有する磁気軸受装置及び該磁気軸受装置を搭載したポンプ装置
JP4165903B2 (ja) 集積された磁気浮揚及び回転装置
JP6351400B2 (ja) 改良された能動型磁気軸受制御システム
US7370524B2 (en) Adaptive vibration control using synchronous demodulation with machine tool controller motor commutation
CN109563876B (zh) 磁轴承装置及使用了该磁轴承装置的流体机械系统
JPS5989821A (ja) 制御形磁気軸受装置
WO2014014557A1 (en) Driving an active vibration balancer to minimize vibrations at the fundamental and harmonic frequencies
Zheng et al. Rotor balancing for magnetically levitated TMPs integrated with vibration self-sensing of magnetic bearings
JP6269080B2 (ja) 磁気軸受装置および真空ポンプ
Tsunoda et al. Vibration control for a rotor supported by oil-film bearings using a bearingless motor
JP5997597B2 (ja) 磁気軸受装置、磁気軸受装置に起因する振動の低減方法
JP6321949B2 (ja) 磁気軸受装置、及び真空ポンプ
JP4914165B2 (ja) 制振装置及び制振方法
JP2008232029A (ja) ポンプ装置
JP2004328822A (ja) モータ制御装置、モータ装置、真空ポンプ、補正電流値計測装置、及びモータ制御方法
JP2001214934A (ja) 磁気軸受装置
JP4152121B2 (ja) ターボ分子ポンプを用いた真空排気装置
JP3883811B2 (ja) アクティブ除振装置を用いる装置
JP3789750B2 (ja) アクティブ除振装置
Wellerdieck et al. Experimental verification of an angle-sensorless control scheme for bearingless permanent magnet machines
JP2003269373A (ja) 真空ポンプシステム及び真空ポンプの回転数制御方法
CN117377828A (zh) 真空泵
JP2002310153A (ja) 磁気軸受を有する回転機
JPH0419422A (ja) 磁気軸受制御装置
JP2003254286A (ja) 真空ポンプ装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051208

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090326

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees