JP5997597B2 - 磁気軸受装置、磁気軸受装置に起因する振動の低減方法 - Google Patents

磁気軸受装置、磁気軸受装置に起因する振動の低減方法 Download PDF

Info

Publication number
JP5997597B2
JP5997597B2 JP2012269120A JP2012269120A JP5997597B2 JP 5997597 B2 JP5997597 B2 JP 5997597B2 JP 2012269120 A JP2012269120 A JP 2012269120A JP 2012269120 A JP2012269120 A JP 2012269120A JP 5997597 B2 JP5997597 B2 JP 5997597B2
Authority
JP
Japan
Prior art keywords
current
vibration
value
rotation
magnetic bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012269120A
Other languages
English (en)
Other versions
JP2014114869A (ja
Inventor
茨田 敏光
敏光 茨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2012269120A priority Critical patent/JP5997597B2/ja
Priority to EP13020134.6A priority patent/EP2740954B1/en
Priority to US14/101,248 priority patent/US9388854B2/en
Publication of JP2014114869A publication Critical patent/JP2014114869A/ja
Application granted granted Critical
Publication of JP5997597B2 publication Critical patent/JP5997597B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • F16C32/0451Details of controllers, i.e. the units determining the power to be supplied, e.g. comparing elements, feedback arrangements with P.I.D. control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0442Active magnetic bearings with devices affected by abnormal, undesired or non-standard conditions such as shock-load, power outage, start-up or touchdown
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • F16C32/0446Determination of the actual position of the moving member, e.g. details of sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2233/00Monitoring condition, e.g. temperature, load, vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/44Centrifugal pumps
    • F16C2360/45Turbo-molecular pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Vibration Prevention Devices (AREA)

Description

本発明は、磁気軸受装置に起因する振動の低減技術に関する。
磁気軸受装置は、電磁石に流された電流によって生じる電磁力を用いて、磁気浮上によって回転軸を非接触で支承する。かかる磁気軸受装置では、回転軸のバランスが悪い場合には回転軸の振れ回りが大きくなり、電磁加振力に対する大きな制御反力がステータに作用する。かかる制御反力に起因する振動は、回転軸の回転を利用する機器に悪影響を与えるおそれがある。例えば、振動を嫌う露光装置や電子顕微鏡などの装置近辺で配置されるターボ分子ポンプに磁気軸受装置を用いる場合、磁気軸受装置に起因する振動がステータや固定フレームを介して、装置に伝達されるおそれがある。このようなことから、回転軸のアンバランスを修正する技術が開発されている(例えば、下記の特許文献1)。
特開平6−193631号公報 特開平7−20359号公報 特開平9−280250号公報
しかしながら、アンバランスを完全に除去することは困難であり、実際には、ある程度のアンバランスは、許容されている。このため、磁気軸受装置に起因する振動が、その影響範囲内の装置要素、例えば、磁気軸受装置のケーシングや、磁気軸受装置の周辺の装置(例えば、上述の露光装置や電子顕微鏡)に全く伝達されないようにすることは、困難である。しかも、回転軸の低速回転時には問題とならない振動が、高速回転時には問題にな
る、或いはその逆で高速回転時には問題とならないが低速回転時に問題となることがある。また、影響範囲内の装置要素への振動の伝達特性は、各装置要素の接続形態や支持形態などに依存するため、影響範囲内の装置要素の特定の箇所においてどの程度の振動が発生するかを予測することは困難である。機械的に回転軸の釣り合わせを行う場合は、通常、回転軸に設けられたバランス修正面に重りを付ける作業、或いは、ドリル等で削る作業を行うが、スペースが狭い場合、腐食などの問題によって修正面を露出させることが難しい場合、汚染環境などの問題によってバランス修正面に容易に人間が触れることが出来ない場合などでは、機械的な釣り合わせを行うことは困難である。このようなことから、磁気軸受装置に起因して発生する振動の影響範囲内の装置要素の特定の箇所における振動を確実に低減できる技術が求められる。
本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、例えば、以下の形態として実現することが可能である。
本発明の第1の形態は、回転軸を支承する磁気軸受装置として提供される。この磁気軸受装置は、電磁石に流された電流によって生じる電磁力を用いて、磁気浮上によって回転軸を非接触で支承する磁気軸受と、回転軸の回転を検出する回転センサと、電磁石に流す電流を制御する制御部と、回転軸の回転によって生じる振動の影響範囲内に設けられた少なくとも1つの振動センサとを備える。制御部は、前記回転軸を浮上支持するための第1の電流を電磁石に流す第1の制御モードと、少なくとも1つの振動センサの設置箇所のうちの少なくとも1つの設置箇所において、第1の制御モードにおいて検出された第1の振動値よりも振動が低減されるように、回転センサによって検出される回転軸の回転周期に同期した第1の周期的なタイミング、第1の電流に代えて、第1の電流の電流値に対して第1の値だけ加算または減算した電流値を有する第2の電流を電磁石に流す第2の制御モードとで制御可能に構成される。
かかる磁気軸受装置によれば、第2の制御モードでの制御時には、第1の制御モードでの制御時と比べて、第1の周期的なタイミングにおいて第2の電流によって回転軸に作用する電磁力が加えられ、第1の制御モードにおける回転軸の挙動が修正される。この電磁力は、振動センサの少なくとも1つの設置箇所の振動が低減されるように加えられる。したがって、回転軸の回転によって生じる振動の影響範囲内のうちの振動を低減したい箇所に振動センサを設置すれば、所望の箇所の振動を好適に低減できる。回転軸の振れ回りに起因する振動は、回転軸の回転周期に同期した波として生じるので、回転軸の回転周期に同期した第1の周期的なタイミングで第2の電流を流すことにより、振動が効果的に低減可能である。なお、振動センサの設置箇所とは、振動センサが接触式であるか非接触式であるかにかかわらず、振動の検出対象上の検出箇所を意味する。
本発明の第2の形態として、第1の形態において、制御部は、回転周期に同期した第2の周期的なタイミング、第1の電流に代えて、第1の電流の電流値に対して第2の値だけ加算または減算した電流値を有する第3の電流を電磁石に流す第3の制御モードで制御可能に構成されていてもよい。制御部は、第1の振動値と、第3の制御モードでの制御時において振動センサによって検出された第2の振動値と、第3の制御モードでの制御によって回転軸に加えられるアンバランス量の第2の値と第2の周期的なタイミングと、に基づいて、影響係数法を用いて、第2の制御モードに使用する、第2の電流の電流値および第1の周期的なタイミングを決定してもよい。かかる形態によれば、第2の電流の電流値および第1の周期的なタイミングを容易に決定できる。
本発明の第3の形態として、第2の形態において、制御部は、回転軸の1つの回転数での動作条件下で検出された第1の振動値と、第3の制御モードでの制御時において1つの
回転数での動作条件下で振動センサによって検出された第2の振動値と、第3の制御モードでの制御によって回転軸に加えられるアンバランス量の第2の値と第2の周期的なタイミングと、に基づいて、第2の制御モードにおいて第2の電流の電流値および第1の周期的なタイミングによって回転軸のアンバランス量が修正される修正面の数M(Mは1以上の整数)と、振動センサの数N(Nは1以上の整数)とが、N≦Mを満たす場合に、少なくとも1つの振動センサの設置箇所のうちの全ての設置箇所において振動値が最小になるように、第2の電流の電流値および第1の周期的なタイミングを決定してもよい。
本発明の第4の形態として、第2の形態において、制御部は、回転軸の1つの回転数での動作条件下で検出された第1の振動値と、第3の制御モードでの制御時において1つの回転数での動作条件下で振動センサによって検出された第3の振動値と、第3の制御モードでの制御によって回転軸に加えられるアンバランス量の第2の値と第2の周期的なタイミングと、に基づいて、第2の制御モードにおいて第2の電流の電流値および第1の周期的なタイミングによって回転軸のアンバランス量が修正される修正面の数M(Mは1以上の整数)と、振動センサの数N(Nは1以上の整数)とが、N>Mを満たす場合に、N個の振動センサの設置箇所ごとの、1つの回転数での動作条件下での第2の制御モードでの制御時における振動値の二乗和が最小になるように、第2の電流の電流値および第1の周期的なタイミングを決定してもよい。第3および第4の形態によれば、MおよびNの条件に応じて、振動値を著しく低減できる。
本発明の第5の形態として、第2の形態において、制御部は、回転軸のR(Rは2以上の整数)種類の異なる回転数の動作条件下の各々で検出された第1の振動値の各々と、第3の制御モードでの制御時においてR種類の異なる回転数の動作条件下の各々で振動センサによって検出された第2の振動値の各々と、第3の制御モードでの制御によって回転軸に加えられるアンバランス量の第2の値と第2の周期的なタイミングと、に基づいて、第2の制御モードにおいて第2の電流の電流値および第1の周期的なタイミングによって回転軸のアンバランス量が修正される修正面の数M(Mは1以上の整数)と、振動センサの数N(Nは1以上の整数)と、Rとが、N×R≦Mを満たす場合に、少なくとも1つの振動センサの設置箇所のうちの全ての設置箇所において、かつ、R種類の異なる回転数の動作条件下の各々において振動値が最小になるように、第2の電流の電流値および第1の周期的なタイミングを決定してもよい。
本発明の第6の形態として、第2の形態において、制御部は、回転軸のR(Rは2以上の整数)種類の異なる回転数の動作条件下の各々で検出された第1の振動値の各々と、第3の制御モードでの制御時においてR種類の異なる回転数の動作条件下の各々で振動センサによって検出された第2の振動値の各々と、第3の制御モードでの制御によって回転軸に加えられるアンバランス量の第2の値と第2の周期的なタイミングと、に基づいて、第2の制御モードにおいて第2の電流の電流値および第1の周期的なタイミングによって回転軸のアンバランス量が修正される修正面の数M(Mは1以上の整数)と、振動センサの数N(Nは1以上の整数)と、Rとが、N×R>Mを満たす場合に、N個の振動センサの設置箇所ごと、かつ、R種類の異なる回転数の動作条件ごとの、第2の制御モードでの制御時における振動値の二乗和が最小になるように、第2の電流の電流値および第1の周期的なタイミングを決定してもよい。第5および第6の形態によれば、複数種類の異なる回転数の動作条件下のいずれにおいても、M,NおよびRの条件に応じて、振動値を著しく低減できる。
本発明の第7の形態として、第4または第6の形態において、制御部は、影響係数法で使用する影響係数に所定の重み付けを行って、第2の電流の電流値および第1の周期的なタイミングを決定してもよい。かかる形態によれば、振動センサの設置箇所の各々の重要度に応じた、より柔軟な振動低減を行える。
本発明の第8の形態として、第2ないし第7のいずれかの形態において、制御部は、第3の制御モードによって、第2の電流の電流値および第1の周期的なタイミングを決定した場合に、決定した第2の電流の電流値および第1の周期的なタイミングを特定可能な情報を記憶媒体に記憶させてもよい。制御部は、回転軸の回転数が、回転軸の回転の開始後、定格回転数に達した場合に、記憶媒体に記憶された情報から特定される第2の電流の電流値および第1の周期的なタイミングを用いて、第2の制御モードでの制御を行ってもよい。かかる形態によれば、回転軸の回転を利用する装置を起動するたびに第3の制御モードでの制御を実行する必要がない。そのため、2回目以降の起動時には、速やかに振動を低減できる。
本発明の第9の形態として、第1ないし第8のいずれかの形態において、回転センサは、回転軸が1回転するごとに1回のパルスを発生するように構成されてもよい。かかる形態によれば、回転のゼロ点(基準点)を容易に検出できる。したがって、第1の周期的なタイミングを容易に特定できる。
本発明の第10の形態として、第9の形態において、回転センサは、回転軸に固定され、回転軸と直交する方向に円盤状に形成され、磁性材料からなるディスク部と、ディスク部と間隙を有して対向するように設けられたセンサ磁極と、センサ磁極に巻回されたセンサコイルとを備えていてもよい。ディスク部のうちのセンサ磁極と対向する側の面である第1の面には、ディスク部の軸線の方向の厚みが低減された第1の切欠部が形成されていてもよい。ディスク部のうちの第1の面と反対側の面である第2の面には、軸線を中心とした第1の切欠部と180度回転対称の位置に、第1の切欠部と同一の形状の第2の切欠部が形成されていてもよい。かかる形態によれば、回転軸の回転バランスに悪影響を与えることなく、回転軸が1回転するごとに1回のパルスを発生させることができる。
本発明の第11の形態として、第1ないし第10のいずれかの形態において、振動の影響範囲は、磁気軸受装置本体、磁気軸受装置が支承する回転軸の回転を利用する回転装置、及び、回転軸の回転によって内部に気流を生じさせるチャンバのうちの少なくとも1つである。
本発明の第12の形態は、回転軸を支承する磁気軸受装置に起因する振動を低減する方法として提供される。この方法は、回転軸を浮上支持するための第1の電流を磁気軸受の電磁石に流し、電磁石に流された電流によって生じる電磁力を用いて、磁気浮上によって回転軸を非接触で支承させる第1の工程と、第1の工程において、回転軸の回転によって生じる振動の影響範囲内に設けられた少なくとも1つの振動センサによって、振動を検出する第2の工程と、少なくとも1つの振動センサの設置箇所のうちの、少なくとも1つの設置箇所において、第1の工程において検出された振動値よりも振動が低減されるように、回転軸の回転周期に同期した周期的な所定のタイミング、第1の電流に代えて、第1の電流の電流値に対して所定の値だけ加算または減算した電流値を有する第2の電流を電磁石に流し、電磁石に流された電流によって生じる電磁力を用いて、磁気浮上によって回転軸を非接触で支承させる第3の工程とを備える。かかる方法によれば、第1の形態と同様の効果を奏する。第11の形態に、第2ないし第10の形態を適用することも可能である。
本発明の実施例としての軸受装置20の概略構成を示す説明図である。 回転センサ50の概略構成を示す説明図である。 振動評価試験における振動センサ60の取付位置を示す説明図である。 振動評価試験の結果を示す図表である。
A.実施例:
図1は、本発明の一実施例としての軸受装置20の概略構成を示す。本実施例では、軸受装置20は、チャンバ130を負圧にするためのファン120の回転軸100を支承する。ただし、軸受装置20の用途は、特に限定するものではなく、ポンプ、圧縮機、ガス攪拌機など種々の回転機械に適用可能である。図1に示すように、軸受装置20は、磁気軸受30、変位センサ41,42,43、回転センサ50、振動センサ61,62、制御部70を備えている。
磁気軸受30は、電磁石に流された電流によって生じる電磁力を用いて、磁気浮上によって回転軸100を非接触で支承する。この磁気軸受30は、電磁石31,32,33,34と磁性体35とを備えている。電磁石31,32は、回転軸100に回転駆動力を付与するモータ110を間に挟んだ、回転軸100の軸線方向(Z方向)の両側に配置されている。この電磁石31,32は、回転軸100に対して、Z方向に直交するX方向およびY方向に電磁力を作用させるラジアル磁気軸受を構成する。電磁石33,34は、回転軸100の周囲に設けられたディスク状の磁性体35を間に挟んだ、Z方向の両側に配置されている。電磁石33,34および磁性体35は、回転軸100に対してZ方向に電磁力を作用させるスラスト磁気軸受を構成する。本実施例では、電磁石31,32,33,34は、モータ110と共通のステータハウジング115内に設けられている。
変位センサ41,42は、電磁石31,32が設けられたそれぞれの位置において、回転軸100のZ方向と直交するXY平面上の変位量を検出する。変位センサ43は、回転軸100の端部において、回転軸100のZ方向の変位量を検出する。回転センサ50は、回転軸100の端部において、回転軸100の回転を検出する。モータ110は図示しないインバータによって回転軸100を回転駆動する。なお、軸受装置20は、変位センサを必要としないセルフセンシング磁気軸受であってもよい。
図2は、回転センサ50の概略構成を示す。図示するように、回転センサ50は、ディスク部51とセンサ磁極54とセンサコイル55とを備える。ディスク部51は、磁性材料からなり、XY平面上に円盤状に形成される。このディスク部51は、回転軸100の端部に固定されている。センサ磁極54は、U字形状を有しており、ディスク部51と間隙を有して対向するように設けられる。センサコイル55は、センサ磁極54のU字形状の一方側に巻回される。ディスク部51の第1の面51aのうちの1つの径方向の端部には、ディスク部51の軸線の方向(Z方向)の厚みが低減された第1の切欠部52が形成されている。ここでの低減とは、厚みがゼロであることを含まない。この第1の切欠部52は、センサ磁極54のU字形状と対向する位置に形成されている。第1の面51aは、ディスク部51のうちのセンサ磁極54と対向する側の面である。ディスク部51のうちの第1の面51aと反対の第2の面51bには、第2の切欠部53が形成されている。第1の切欠部52と第2の切欠部53とは、回転軸100の軸線を中心とした180度回転対称の位置関係にあり、同一の形状を有している。
かかる回転センサ50では、回転軸100と共にディスク部51が回転し、第1の切欠部52がセンサ磁極54と対向する位置を通過するたびに、つまり、回転軸100が1回転するたびに、センサコイル55から見た磁気抵抗が変化する。この磁気抵抗の変化は、センサコイル55と交差する磁束の変化を伴うので、センサコイル55には、逆起電力のパルスが生じる。
かかる説明から明らかなように、回転センサ50は、回転軸100が1回転するごとに1回のパルスを発生する。これによって、回転軸100の回転のゼロ点を容易に検出できる。その結果、後述する第1のタイミングを容易に特定できる。ただし、1回転当たりの
パルスの発生回数を2回以上とすることも可能である。また、回転センサ50は、上述した位置に第2の切欠部53が形成されている。したがって、径方向の両端での重量が均一化され、回転軸100の回転バランスに悪影響を与えない。第1の切欠部52および第2の切欠部53には、非磁性材料が充填されていてもよい。
ここで、説明を図1に戻す。振動センサ61,62は、回転軸100の回転によって生じる振動の影響範囲内において、振動を低減したい箇所に設けられる。本実施例では、振動センサ61,62は、加速度センサである。振動の影響範囲内とは、例えば、磁気軸受装置(例えば、ステータハウジング115)、回転軸100の回転を直接的に利用する装置(ここではファン120)、当該装置に付随する装置(ここでは、チャンバ130)、当該装置を固定する図示しないフレームなど振動が伝わる部分全てである。本実施例では、振動センサ61は、チャンバ130に設けられ、振動センサ62は、ファン120のケーシング121に設けられる。振動センサの数は、本実施例では2つであるが、1以上の任意の数とすることができる。
制御部70は、コントロールユニット71と、DSP(Digital Signal Processor)システム76とを備え、軸受装置20の動作を制御する。コントロールユニット71は、変位センサ回路72と電磁石駆動回路73と回転センサ回路74とを備える。変位センサ回路72は、変位センサ41,42,43の出力をA/D変換し、DSPシステム76に出力する。回転センサ回路74は、回転センサ50の出力をA/D変換し、DSPシステム76に出力する。DSPシステム76は、変位センサ回路72から出力される回転軸100の変位量に基づいて、電磁石31,32,33,34の制御信号を生成し、D/A変換して、電磁石駆動回路73に出力する。電磁石駆動回路73は、入力された制御信号に基づき、電磁石31,32,33,34に供給される制御電流を制御する。制御部70は、制御部70に制御の指示コマンドを入力するコマンドコンピュータ80に接続される。
かかる制御部70は、本実施例では、第1ないし第3の制御モードで磁気軸受30を制御可能に構成される。第1の制御モードでは、制御部70は、変位センサ回路72の検出結果に基づいて、第1の電流を磁気軸受30に供給させる。第2の制御モードでは、制御部70は、変位センサ回路72の検出結果と振動センサ61,62の検出結果とに基づいて、第2の電流を磁気軸受30に供給させる。第2の電流とは、第1の制御モードにおいて振動センサ61,62によって検出された振動値よりも、振動センサ61,62の設置箇所における振動が低減されるように、回転センサ50によって検出される回転軸100の回転周期に同期した第1の周期的なタイミング(以下、第1のタイミングとも呼ぶ)、第1の電流に代えて、第1の電流の電流値に対して第1の値だけ加算または減算した電流値を有する電流である。ここでいうタイミングとは、回転軸100と一緒に回転する平面上で見た時の回転センサ50で検出した基準角度(基準位相角)に対する0〜360degのうちの任意の角度を指す。回転軸100の基準角度は、回転センサ50によって検出できる。本実施例では、第1のタイミングは、回転軸100の回転周期と等しい周期の所定のタイミングであるが、回転軸100の回転周期の整数倍の周期の所定のタイミングであってもよい。前述のように第1のタイミングは、回転軸100の回転角度として捉えることができる。この第1のタイミングは、回転センサ回路74の検出結果と、DSPシステム76内に別途用意される時間情報(タイマーカウンタ)とから、容易に特定可能である。
上記の説明からも明らかなように、第2の制御モードは、回転軸100に加振を行って、回転軸100のアンバランス量を修正する制御モードである。本実施例では、修正面は、電磁石31に対応する、Z方向に直交する第1の修正面1XYと、電磁石32に対応する、Z方向に直交する第2の修正面2XYとである。ここで、例えば、第2の制御モードにおける第2の電流は、修正面1XY、修正面2XYにおいて、X軸方向を制御する電磁
石と、Y軸方向を制御する電磁石と、にそれぞれ回転周期と同じ周期の余弦波電流、正弦波電流を流すことで回転軸100の回転と同期した径方向の力を回転軸100に加え、回転軸100のアンバランス量を修正する。余弦波電流、正弦波電流の周期は、回転周期の整数倍であっても良い。また、回転周期の整数倍である複数の周期の電流の加算値であっても良い。あるいは、X軸方向を制御する電磁石とY軸方向を制御する電磁石とのうちの片方だけに電流を流しても良い。タイミングの調整は、前述の余弦弦波電流、正弦波電流の位相をずらすことで実施する。第2の電流は、X軸方向に正弦波電流を、Y軸方向に余弦波電流を流すことで回転軸100に加える径方向の力の回転方向を前述とは逆にすることができることは言うまでもない。回転軸100の回転方向に合わせて第2の電流による径方向の力の回転方向を選択すれば良い。なお、第1の制御モードでの第1の電流と、第2の制御モードでの第2の電流のうちの第1のタイミング以外のタイミングでの電流(第1の電流)とは、同一ではないが、本願では、回転軸100の変位量(予測値であってもよい)に基づき、かつ、振動センサ61,62の検出結果に基づかずに決定された電流は、全て「第1の電流」と呼んでいる。
第3の制御モードは、上述の第2の電流の電流値および第1のタイミングを決定するための制御モードである。第3の制御モードでは、制御部70は、回転軸100の回転周期に同期した第2の周期的なタイミング(以下、第2のタイミングとも呼ぶ)、第1の電流に代えて、第1の電流の電流値に対して第2の値だけ加算または減算した電流値を有する第3の電流を磁気軸受30に供給させる。第3の電流の発生形態は、第2の電流と同様である。かかる制御は、磁気軸受30に試し加振力を加える制御である。第2の値は、第3の電流の電流値がゼロよりも大きい任意の値で設定可能である。また、第2のタイミングは、任意の回転角度で設定可能である。
本実施例では、第2の電流の電流値および第1のタイミングは、システム76によって、影響係数法を用いて決定される。影響係数法は、周知であるため、詳しい説明は省略するが、概要について説明すると、まず、第1の制御モードでの制御時に振動センサ61,62によって検出された各振動値A1,A2と、第3の制御モードでの制御時において修正面1XYに試し加振を加えた場合に検出された各振動値B11,B12と、その際の第1の修正面1XYに加えたアンバランス量U01と、第3制御モードでの制御時において修正面2XYに試し加振を加えた場合に検出された各振動値B21,B22と、その際の第2の修正面2XYに加えたアンバランス量U02とから、影響係数α11,α12,α21,α22を算出する。影響係数α11,α12,α21,α22は、次式(1)〜(4)によって表される。
α11=(B11−A1)/U01 ・・・(1)
α12=(B12−A1)/U02 ・・・(2)
α21=(B21−A2)/U01 ・・・(3)
α22=(B22−A2)/U02 ・・・(4)
次に次式(5),(6)を満たすアンバランス量U1,U2を求める。U1は、第2の制御モードにおいて加振されるべき第1の修正面1XYのアンバランス量であり、U2は、第2の制御モードにおいて加振されるべき第2の修正面2XYのアンバランス量である。なお、α11,α12,α21,α22,A1,A2, B11,B12,B21,B22,U01, U02, U1,U2は、全て大きさと回転角度の情報をもっているので、複素数として扱える。
A1+α11×U1+α12×U2=0 ・・・(5)
A2+α21×U1+α22×U2=0 ・・・(6)
次に、複素数計算によって、加振の大きさと回転角度(第1のタイミング)とが求めら
れる。そして、加振の大きさから、第2の電流の電流値が求められる。上記の式(5),(6)から明らかなように、本実施例では、振動センサ61,62の設置箇所のうちのすべての設置箇所における振動が、最小(理論上ゼロ)になるように、第2の電流の電流値および第1のタイミングが決定される。こうすることによって、振動センサ61,62の設置箇所における振動を著しく低減できる。ただし、式(5),(6)における右項は、振動値A1,A2よりも小さい任意の値で設定可能である。なお、修正面の数M(Mは1以上の整数)と、振動センサの数N(Nは1以上の整数)とがN≦Mを満たす場合に、上記のように振動センサ61,62の設置箇所のうちのすべての設置箇所における振動が最小となるアンバランス量U1,U2を求めることが可能である。
上述した第1ないし第3の制御モードは、制御部70によって、例えば、以下のように切り替えられる。まず、制御部70は、ファン120が起動され、回転軸100が回転を開始されると、回転軸100の回転数が1つの定格回転数(制御されるべき特定の回転数)に達してから、第1の制御モードにおける振動値を取得する。次に、制御部70は、第1の制御モードから第3の制御モードに切り替えて、第2の電流の電流値および第1のタイミングを決定する。第3の制御モードでも、第1の制御モードと同一の1つの定格回転数が使用される。次に、制御部70は、第3の制御モードから第2の制御モードに切り替えて、決定した第2の電流の電流値および第1のタイミングを用いて、制御を行う。
一度決定した第2の電流の電流値および第1のタイミングを特定可能な情報は、制御部70によって、記憶媒体に記憶されてもよい。記憶媒体は、制御部70が備えていてもよいし、制御部70に接続されていてもよく、例えば、コマンドコンピュータ80が備える記憶媒体であってもよい。かかる場合、制御部70は、ファン120の2回目以降の起動時には、記憶された情報から特定される第2の電流の電流値および第1のタイミングを使用して、第2の制御モードでの制御を行ってもよい。つまり、第3の制御モードでの制御を省略してもよい。こうすれば、2回目以降の起動時には、速やかに振動を低減できる。さらに、制御部70は、第2の制御モードでの制御時において、振動センサ61,62の振動を検出し、検出される振動値が規定の範囲を超える場合に、第3の制御モードによって、第2の電流の電流値および第1のタイミングを修正してもよい。
上述した軸受装置20によれば、回転軸100の回転によって生じる振動の影響範囲内のうちの振動を低減したい箇所に少なくとも1つの振動センサを設置することによって、予め定められた回転数でのファン120の駆動時において、所望の箇所の振動を好適に低減できる。回転軸100の振れ回りに起因する振動は、回転軸100の回転周期に同期した波として生じるので、回転軸100の振れ回りに起因する振動を効果的に低減可能である。また、影響係数法によって、第2の電流の電流値および第1のタイミングを容易に最適化できる。また、機械的な釣り合わせに頼らないので、スペースが狭い場合や、修正面を露出させることが難しい場合や、汚染環境などの問題によってバランス修正面に人間が触れることが出来ない場合でも、容易にアンバランスの修正が可能である。
以下に、軸受装置20の効果を確認するために実施した振動評価試験について説明する。図3は、軸受装置20を使用した振動評価試験における振動センサ60の取付位置を示す。図示するように、本試験では、取付位置a〜gにそれぞれ振動センサ60a〜60gを取り付けた。取付位置a,b,eは、ステータハウジング115の外表面であり、取付位置c,d,f,gは、チャンバ130の外表面である。
図4は、振動評価試験の結果を示す。振動値基準位置を2つの取付位置c,dとした場合、すなわち、振動センサ60a〜60gのうちの、振動センサ60c,60dの検出結果に基づいて上述した第1ないし第3の制御モードによって振動を低減した場合に、取付位置(測定位置)c,dの振動値が、デフォルト値(第1の制御モードでの制御時に検出
された値)から著しく低減されているのが分かる。取付位置a,b,e,f,gの振動値は、取付位置c,d以外の取付位置における振動の変化を把握するために測定したものであり、係数影響法に使用するものではない。振動値基準位置を取付位置c,dとした場合と同様に、振動値基準位置を取付位置f,gとした場合、取付位置a,eとした場合、取付位置b,eとした場合のいずれにおいても、デフォルト値から著しく低減されているのが分かる。
B.変形例:
B−1.変形例1:
修正面の数は、2つに限らず、1つであってもよいし、3以上であってもよい。また、アンバランスの修正は、ラジアル磁気軸受でのみ行う構成に限らず、スラスト磁気軸受でも行ってもよい。
修正面の数M(Mは1以上の整数)と、振動センサの数N(Nは1以上の整数)とがN>Mを満たす場合には、影響係数法では、N個の振動センサの設置箇所のうちのすべての設置箇所における振動が理論的にゼロとなるアンバランス量U1,U2を求めることができない。この場合には、N個の振動センサの設置箇所ごとの、第2の制御モードでの制御時における振動値の二乗和が最小になるように、アンバランス量U1,U2を求めてもよい。こうしても、設置箇所の各々についての振動を著しく低減できる。かかる場合には、影響係数法で使用する影響係数に所定の重み付けを行ってもよい。こうすれば、振動センサの設置箇所の各々の重要度(振動低減の優先順位)に応じた、より柔軟な振動低減を行える。
B−2.変形例2:
第1の制御モードおよび第3の制御モードでの制御は、2種類以上の異なる回転数に対して実施されてもよい。この場合、修正面の数M(Mは1以上の整数)と、振動センサの数N(Nは1以上の整数)と、設定された回転数の種類の数Rとが、N×R≦Mを満たす場合には、振動センサの全ての設置箇所において、かつ、R種類の異なる回転数の動作条件下の各々において振動値が最小(理論的にゼロ)になるように、アンバランス量U1,U2を求めてもよい。一方、N×R>Mを満たす場合には、変形例1で説明したように、N個の振動センサの設置箇所ごと、かつ、R種類の異なる回転数の動作条件ごとの、第2の制御モードでの制御時における振動値の二乗和が最小になるように、アンバランス量U1,U2を求めてもよい。こうすれば、複数種類の異なる回転数の動作条件下のいずれにおいても、第2の制御モードによって、M,NおよびRの条件に応じて、振動値を著しく低減できる。
B−3.変形例3:
第2の電流の電流値および第1のタイミングは、影響係数法以外の手法によって決定してもよい。例えば、制御部70は、第3の制御モードにおいて、所定回数だけ第2のタイミングおよび第2の値を変えて、振動センサ61,62での検出を行い、検出された振動値が相対的に小さくなる第2のタイミングおよび第2の値を第1のタイミングおよび第1の値として採用してもよい。こうしても、簡易的に振動の低減を行える。
以上、いくつかの実施例に基づいて本発明の実施の形態について説明してきたが、上記した発明の実施の形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得るとともに、本発明にはその等価物が含まれることはもちろんである。また、上述した課題の少なくとも一部を解決できる範囲、または、効果の少なくとも一部を奏する範囲において、特許請求の範囲および明細書に記載された各構成要素の組み合わせ、または、省略が可能である。
20…軸受装置
30…磁気軸受
31,32,33,34…電磁石
35…磁性体
41,42,43…変位センサ
50…回転センサ
51…ディスク部
51a…第1の面
51b…第2の面
52…第1の切欠部
53…第2の切欠部
54…センサ磁極
55…センサコイル
60a〜60g,61,62…振動センサ
70…制御部
71…コントロールユニット
72…変位センサ回路
73…電磁石駆動回路
74…回転センサ回路
76…DSPシステム
80…コマンドコンピュータ
100…回転軸
110…モータ
115…ステータハウジング
120…ファン
121…ケーシング
130…チャンバ
1XY,2XY…修正面

Claims (12)

  1. 回転軸を支承する磁気軸受装置であって、
    電磁石に流された電流によって生じる電磁力を用いて、磁気浮上によって前記回転軸を非接触で支承する磁気軸受と、
    前記回転軸の回転を検出する回転センサと、
    前記電磁石に流す電流を制御する制御部と、
    前記回転軸の回転によって生じる振動の影響範囲内に設けられた少なくとも1つの振動センサと
    を備え、
    前記制御部は、
    前記回転軸を浮上支持するための第1の電流を前記電磁石に流す第1の制御モードと、
    前記少なくとも1つの振動センサの設置箇所のうちの少なくとも1つの設置箇所において、前記第1の制御モードにおいて検出された第1の振動値よりも振動が低減されるように、前記回転センサによって検出される前記回転軸の回転周期に同期した第1の周期的なタイミングで、前記第1の電流に代えて、前記第1の電流の電流値に対して第1の値だけ加算または減算した電流値を有する第2の電流を前記電磁石に流す第2の制御モードと
    で制御可能に構成された
    磁気軸受装置。
  2. 請求項1に記載の磁気軸受装置であって、
    前記制御部は、
    任意の回転角度で設定された前記回転周期に同期した第2の周期的なタイミングで、前記第1の電流に代えて、前記第1の電流の電流値に対して第2の値だけ加算または減算した電流値を有する第3の電流を前記電磁石に流す第3の制御モードで制御可能に構成され、
    前記第1の振動値と、前記第3の制御モードでの制御時において前記振動センサによ
    って検出された第2の振動値と、前記第2の値と前記第2の周期的なタイミングと、に基づいて、影響係数法を用いて、前記第2の制御モードに使用する、前記第2の電流の電流値および前記第1の周期的なタイミングを決定する
    磁気軸受装置。
  3. 請求項2に記載の磁気軸受装置であって、
    前記制御部は、
    前記回転軸の1つの回転数での動作条件下で検出された前記第1の振動値と、前記第3の制御モードでの制御時において前記1つの回転数での動作条件下で前記振動センサによって検出された前記第2の振動値と、前記第2の値と前記第2の周期的なタイミングと、に基づいて、
    前記第2の制御モードにおいて前記第2の電流の電流値および前記第1の周期的なタイミングによって前記回転軸のアンバランス量が修正される修正面の数M(Mは1以上の整数)と、前記振動センサの数N(Nは1以上の整数)とが、N≦Mを満たす場合に、
    前記少なくとも1つの振動センサの設置箇所のうちの全ての設置箇所において振動値が最小になるように、前記第2の電流の電流値および前記第1の周期的なタイミングを決定する
    磁気軸受装置。
  4. 請求項2に記載の磁気軸受装置であって、
    前記制御部は、
    前記回転軸の1つの回転数での動作条件下で検出された前記第1の振動値と、前記第3の制御モードでの制御時において前記1つの回転数での動作条件下で前記振動センサによって検出された前記第2の振動値と、前記第2の値と前記第2の周期的なタイミングと、に基づいて、
    前記第2の制御モードにおいて前記第2の電流の電流値および前記第1の周期的なタイミングによって前記回転軸のアンバランス量が修正される修正面の数M(Mは1以上の整数)と、前記振動センサの数N(Nは1以上の整数)とが、N>Mを満たす場合に、
    前記N個の振動センサの設置箇所ごとの、前記1つの回転数での動作条件下での前記第2の制御モードでの制御時における振動値の二乗和が最小になるように、前記第2の電流の電流値および前記第1の周期的なタイミングを決定する
    磁気軸受装置。
  5. 請求項2に記載の磁気軸受装置であって、
    前記制御部は、
    前記回転軸のR(Rは2以上の整数)種類の異なる回転数の動作条件下の各々で検出された前記第1の振動値の各々と、前記第3の制御モードでの制御時において前記R種類の異なる回転数の動作条件下の各々で前記振動センサによって検出された前記第2の振動値の各々と、前記第2の値と前記第2の周期的なタイミングと、に基づいて、
    前記第2の制御モードにおいて前記第2の電流の電流値および前記第1の周期的なタイミングによって前記回転軸のアンバランス量が修正される修正面の数M(Mは1以上の整数)と、前記振動センサの数N(Nは1以上の整数)と、前記Rとが、N×R≦Mを満たす場合に、
    前記少なくとも1つの振動センサの設置箇所のうちの全ての設置箇所において、かつ、前記R種類の異なる回転数の動作条件下の各々において振動値が最小になるように、前記第2の電流の電流値および前記第1の周期的なタイミングを決定する
    磁気軸受装置。
  6. 請求項2に記載の磁気軸受装置であって、
    前記制御部は、
    前記回転軸のR(Rは2以上の整数)種類の異なる回転数の動作条件下の各々で検出された前記第1の振動値の各々と、前記第3の制御モードでの制御時において前記R種類の異なる回転数の動作条件下の各々で前記振動センサによって検出された前記第2の振動値の各々と、前記第2の値と前記第2の周期的なタイミングと、に基づいて、
    前記第2の制御モードにおいて前記第2の電流の電流値および前記第1の周期的なタイミングによって前記回転軸のアンバランス量が修正される修正面の数M(Mは1以上の整数)と、前記振動センサの数N(Nは1以上の整数)と、前記Rとが、N×R>Mを満たす場合に、
    前記N個の振動センサの設置箇所ごと、かつ、前記R種類の異なる回転数の動作条件ごとの、前記第2の制御モードでの制御時における振動値の二乗和が最小になるように、前記第2の電流の電流値および前記第1の周期的なタイミングを決定する
    磁気軸受装置。
  7. 請求項4または請求項6に記載の磁気軸受装置であって、
    前記制御部は、前記影響係数法で使用する影響係数に所定の重み付けを行って、前記第2の電流の電流値および前記第1の周期的なタイミングを決定する
    磁気軸受装置。
  8. 請求項2ないし請求項7のいずれか一項に記載の磁気軸受装置であって、
    前記制御部は、
    前記第3の制御モードによって、前記第2の電流の電流値および前記第1の周期的なタイミングを決定した場合に、該決定した前記第2の電流の電流値および前記第1の周期的なタイミングを特定可能な情報を記憶媒体に記憶させ、
    前記回転軸の回転数が、該回転軸の回転の開始後、定格回転数に達した場合に、前記記憶媒体に記憶された前記情報から特定される前記第2の電流の電流値および前記第1の周期的なタイミングを用いて、前記第2の制御モードでの制御を行う
    磁気軸受装置。
  9. 請求項1ないし請求項8のいずれか一項に記載の磁気軸受装置であって、
    前記回転センサは、前記回転軸が1回転するごとに1回のパルスを発生するように構成された
    磁気軸受装置。
  10. 請求項9に記載の磁気軸受装置であって、
    前記回転センサは、
    前記回転軸に固定され、該回転軸と直交する方向に円盤状に形成され、磁性材料からなるディスク部と、
    前記ディスク部と間隙を有して対向するように設けられたセンサ磁極と、
    センサ磁極に巻回されたセンサコイルと
    を備え、
    前記ディスク部のうちの前記センサ磁極と対向する側の面である第1の面には、前記ディスク部の軸線の方向の厚みが低減された第1の切欠部が形成され、
    前記ディスク部のうちの前記第1の面と反対側の面である第2の面には、前記軸線を中心とした前記第1の切欠部と180度回転対称の位置に、前記第1の切欠部と同一の形状の第2の切欠部が形成された
    磁気軸受装置。
  11. 請求項1ないし10のいずれか一項に記載の磁気軸受装置であって、
    前記振動の影響範囲は、前記磁気軸受装置本体、前記磁気軸受装置が支承する前記回転軸の回転を利用する回転装置、及び、前記回転軸の回転によって内部に気流を生じさせる
    チャンバのうちの少なくとも1つである、
    磁気軸受装置。
  12. 回転軸を支承する磁気軸受装置に起因する振動を低減する方法であって、
    前記回転軸を浮上支持するための第1の電流を前記磁気軸受の電磁石に流し、該電磁石に流された電流によって生じる電磁力を用いて、磁気浮上によって前記回転軸を非接触で支承させる第1の工程と、
    第1の工程において、前記回転軸の回転によって生じる振動の影響範囲内に設けられた少なくとも1つの振動センサによって、振動を検出する第2の工程と、
    前記少なくとも1つの振動センサの設置箇所のうちの、少なくとも1つの設置箇所において、前記第1の工程において検出された振動値よりも振動が低減されるように、前記回転軸の回転周期に同期した周期的な所定のタイミングで、前記第1の電流に代えて、前記第1の電流の電流値に対して所定の値だけ加算または減算した電流値を有する第2の電流を前記電磁石に流し、該電磁石に流された電流によって生じる電磁力を用いて、磁気浮上によって前記回転軸を非接触で支承させる第3の工程と
    を備えた方法。
JP2012269120A 2012-12-10 2012-12-10 磁気軸受装置、磁気軸受装置に起因する振動の低減方法 Active JP5997597B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012269120A JP5997597B2 (ja) 2012-12-10 2012-12-10 磁気軸受装置、磁気軸受装置に起因する振動の低減方法
EP13020134.6A EP2740954B1 (en) 2012-12-10 2013-12-09 Magnetic bearing apparatus and method for reducing vibration caused by magnetic bearing apparatus
US14/101,248 US9388854B2 (en) 2012-12-10 2013-12-09 Magnetic bearing apparatus and method for reducing vibration caused by magnetic bearing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012269120A JP5997597B2 (ja) 2012-12-10 2012-12-10 磁気軸受装置、磁気軸受装置に起因する振動の低減方法

Publications (2)

Publication Number Publication Date
JP2014114869A JP2014114869A (ja) 2014-06-26
JP5997597B2 true JP5997597B2 (ja) 2016-09-28

Family

ID=49911092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012269120A Active JP5997597B2 (ja) 2012-12-10 2012-12-10 磁気軸受装置、磁気軸受装置に起因する振動の低減方法

Country Status (3)

Country Link
US (1) US9388854B2 (ja)
EP (1) EP2740954B1 (ja)
JP (1) JP5997597B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016004714A1 (de) * 2016-04-19 2017-10-19 Saurer Germany Gmbh & Co. Kg Spinnrotorschaft, Lageranordnung zum aktiven magnetischen Lagern eines solchen Spinnrotorschafts und Spinnrotorantriebseinrichtung
JP2018027574A (ja) * 2016-05-17 2018-02-22 住友重機械工業株式会社 砥石、平面研削盤
KR102573123B1 (ko) 2017-01-06 2023-08-30 엘지전자 주식회사 압축기 구동장치 및 이를 구비한 칠러
KR102047876B1 (ko) * 2017-10-24 2019-12-02 엘지전자 주식회사 자기 베어링 제어장치, 제어방법 및 이를 이용한 고속회전용 모터
CN114718688B (zh) * 2022-06-08 2022-08-26 西安热工研究院有限公司 一种基于磁悬浮平衡的重力压缩空气储能系统和方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2516382B2 (ja) * 1987-11-06 1996-07-24 セイコー精機株式会社 磁気軸受を主軸にもつ加工装置
FR2630354B1 (fr) * 1988-04-20 1990-08-31 Mecanique Magnetique Sa Dispositif vibrateur actif a suspension magnetique asservie selon trois axes
US5347190A (en) * 1988-09-09 1994-09-13 University Of Virginia Patent Foundation Magnetic bearing systems
JP3397818B2 (ja) 1992-12-21 2003-04-21 株式会社荏原製作所 バランサー兼オーバースピン装置
JPH0720359A (ja) 1993-07-01 1995-01-24 Nippon Telegr & Teleph Corp <Ntt> 光デバイス
JP3425475B2 (ja) * 1994-07-12 2003-07-14 セイコーインスツルメンツ株式会社 磁気軸受装置
JP2997632B2 (ja) 1995-04-27 2000-01-11 核燃料サイクル開発機構 回転体に対する電磁的回転加振装置及びそれを用いた回転体の制振装置
JPH09280250A (ja) * 1996-04-08 1997-10-28 Ebara Corp バランサ兼オーバスピン装置
US5925957A (en) 1997-05-30 1999-07-20 Electric Boat Corporation Fault-tolerant magnetic bearing control system architecture
JP2000161358A (ja) * 1998-11-20 2000-06-13 Hitachi Ltd 磁気軸受装置
GB2353873A (en) * 1999-09-03 2001-03-07 Marconi Electronic Syst Ltd Improvements in or relating to the control of electro-magnets
JP2002122138A (ja) * 2000-10-16 2002-04-26 Seiko Instruments Inc 磁気軸受装置
US6590366B1 (en) * 2000-11-02 2003-07-08 General Dyanmics Advanced Technology Systems, Inc. Control system for electromechanical arrangements having open-loop instability
JP2003090340A (ja) * 2001-09-20 2003-03-28 Koyo Seiko Co Ltd 磁気軸受装置
DE102005016855A1 (de) * 2005-04-12 2006-10-19 Siemens Ag Schnittstellenmodul zur Anordnung in oder an einem Motor
JP4914165B2 (ja) * 2006-10-06 2012-04-11 エドワーズ株式会社 制振装置及び制振方法

Also Published As

Publication number Publication date
JP2014114869A (ja) 2014-06-26
US9388854B2 (en) 2016-07-12
US20140175925A1 (en) 2014-06-26
EP2740954B1 (en) 2016-08-10
EP2740954A2 (en) 2014-06-11
EP2740954A3 (en) 2014-11-26

Similar Documents

Publication Publication Date Title
JP5997597B2 (ja) 磁気軸受装置、磁気軸受装置に起因する振動の低減方法
JP2997632B2 (ja) 回転体に対する電磁的回転加振装置及びそれを用いた回転体の制振装置
JP3822565B2 (ja) サーボ制御装置
JP4287213B2 (ja) 振動抑制機能を有する磁気軸受装置、振動推定機能を有する磁気軸受装置及び該磁気軸受装置を搭載したポンプ装置
JP6558501B2 (ja) 磁気軸受装置、及びそれを用いた流体機械システム
JP6351400B2 (ja) 改良された能動型磁気軸受制御システム
JPH10331851A (ja) 故障許容機能を備えた磁気ベアリング制御システム構成
US9793844B2 (en) Permanent magnet motor controller
JP2008535167A (ja) 回転アノードをもつx線発生装置
KR101413790B1 (ko) 래디얼 방향 제어기 및 그것이 적용된 자기 베어링 장치
JP2005513979A (ja) 反作用を釣合わせた回転駆動機構
JP5449068B2 (ja) アンバランスを調整した回転体装置、及び、回転体のアンバランス調整方法
WO2016052084A1 (ja) ダイナモメータシステムの制御装置
JP6638465B2 (ja) 電動モータ、およびモータ制御システム
Tsunoda et al. Frequency response function measurement utilizing radial excitation force generated by permanent magnet synchronous motor
JP2004328822A (ja) モータ制御装置、モータ装置、真空ポンプ、補正電流値計測装置、及びモータ制御方法
JP6628388B2 (ja) ベアリングレスモータ
JP5200713B2 (ja) 動力計測システムの速度制御方法とその装置
WO2020157858A1 (ja) 振動・騒音低減装置、この振動・騒音低減装置を備える電動圧縮機、及び振動・騒音低減方法
JP2004169876A (ja) 磁気軸受装置
JPH08251865A (ja) 振動抑制回転機
JP5391846B2 (ja) 速度推定器の設計方法、および速度推定器の設計方法により設計された速度推定器を適用した速度推定回路
EP3830935A1 (en) System and method for rotor positioning within an electric motor
JP2016208734A (ja) 電動モータ、制御装置、およびモータ制御システム
JP2005218237A (ja) 電動機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160826

R150 Certificate of patent or registration of utility model

Ref document number: 5997597

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250