JP4981331B2 - 燃料電池セルスタック及び集電体 - Google Patents

燃料電池セルスタック及び集電体 Download PDF

Info

Publication number
JP4981331B2
JP4981331B2 JP2006046384A JP2006046384A JP4981331B2 JP 4981331 B2 JP4981331 B2 JP 4981331B2 JP 2006046384 A JP2006046384 A JP 2006046384A JP 2006046384 A JP2006046384 A JP 2006046384A JP 4981331 B2 JP4981331 B2 JP 4981331B2
Authority
JP
Japan
Prior art keywords
gas
fuel
cell
current collector
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006046384A
Other languages
English (en)
Other versions
JP2007227125A (ja
Inventor
達 宮地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2006046384A priority Critical patent/JP4981331B2/ja
Publication of JP2007227125A publication Critical patent/JP2007227125A/ja
Application granted granted Critical
Publication of JP4981331B2 publication Critical patent/JP4981331B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、固体電解質形燃料電池セルを複数配列させた燃料電池セルスタックと、その燃料電池セル間を電気的に接続する集電体に関する。
近年、次世代エネルギーとして燃料電池セルのスタックを収納ケースに収容した燃料電池が種々提案されている。
図10は、特許文献1等において従来提示されている固体電解質形燃料電池セルの一例であり、燃料電池セル30の断面を含む部分斜視図である。燃料電池セル30は全体形状が扁平な柱状であり、ガス透過性のある導電性支持管31の内部に軸方向に沿って燃料ガス通路31aが穿設され、導電性支持管31の外面上にサーメットからなる燃料極32、固体電解質33、導電性セラミックスからなる酸素極34が順次積層されている。酸素極34に対向する外面上には接合層38を介して導電性セラミックスからなるインターコネクタ35が設けられ、その上に接触抵抗低減用のP型半導体層39を設けている。例えば、燃料極32はNiと、Yを含有するZrO(YSZ)とから形成され、固体電解質33はYを含有するZrO(YSZ)から形成され、酸素極34はランタンマンガネート系のペロブスカイト型複合酸化物から形成される。
斯かる燃料電池セル30では、燃料ガス通路31aに燃料ガスを流すことにより燃料極32に水素を供給し、一方、燃料電池セル30の周囲に酸素含有ガスを供給することにより酸素極34に酸素を供給する。これにより、酸素極34及び燃料極32で次の電極反応がそれぞれ生じることによって発電する。反応は、600〜1000℃で行われる。
酸素極:1/2O+2e→O2−(固体電解質)
燃料極:O2−(固体電解質)+H→HO+2e
上記構造の燃料電池セルは、セル当たりの発電量が小さいため、複数個一列に配列させて各燃料電池セルの一端をマニホールドに支持固定し、導電性材料からなる集電体を用いて隣り合う燃料電池セルの酸素極とインターコネクタとを電気的に接続することにより、燃料電池セルスタックを構成する。従来の集電体は、各燃料電池セルとの接触抵抗をできるだけ小さくしかつ酸素極へのガス供給を妨げないような構造とされている。集電体の従来例としては、特許文献2の網状のものや特許文献3の螺旋状のものなど、周囲空間との通気性を確保しかつセル間距離の変動に追随できる柔軟なタイプのものがよく用いられている。
さらに、この燃料電池セルスタックを、燃料極32への燃料ガス供給手段及び酸素極34への酸素含有ガス供給手段等と共に収容ケースに収容して燃料電池モジュールを構成する。
収容ケース内の酸素含有ガスの供給手段としては、例えば、燃料電池セルスタックの近傍に酸素含有ガス供給ノズルを設け、その末端の流出口から加圧された酸素含有ガス(例えば空気)を噴射する形態がある。また、燃料ガス供給手段としては、例えば、被改質ガスを改質する改質器を備え、改質された水素リッチな燃料ガスを、マニホールドの内部空間を介して燃料電池セルの燃料ガス通路へ送り込む形態がある。
特開2003−317751号公報 特開2005−19239号公報 特開2004−228050号公報
燃料電池セルスタックには複数の燃料電池セルが含まれるが、発電量及び発電効率を向上させるためには、各々のセルに対して均等にガスを供給することが好ましい。そして、燃料電池セルにおける発電効率は、酸素極と燃料極の酸素濃度差が大きいほど良好である。
しかしながら、加圧された酸素含有ガスをセルスタックの周囲で噴射しても、収容ケース内がほぼ大気圧であるので酸素含有ガスはセルスタックの周囲に留まらず拡散しやすく、酸素極に対して十分高濃度の酸素含有ガスを供給することができなかった。噴射後の酸素含有ガスの拡散を防止するために、例えばその流速や流量を好適に制御すると、収納ケース内の熱が排出されてしまい燃料電池セルが熱自立しなくなり、発電性能が低下するという問題がある。また、流速等の制御のために圧縮機等の設備が大きくなりコストも高くなるという問題もある。
同様の問題は、酸素極と燃料極が逆に設けられる形態の燃料電池セルにおいてもいえる。この場合は、燃料電池セル内を酸素含有ガスが通過し、セルスタックの周囲に燃料ガスが供給される。そして、燃料ガスがセルスタックの周囲に留まらず拡散してしまうために、セル外面上の燃料極に対して十分高濃度の燃料ガスが供給できなくなる。
さらに集電体については、隣り合う燃料電池セル間の電気抵抗をできるだけ小さくするために、セル外面上の電極に対し大面積で密着しかつセル間を短距離で接続することが望ましいが、同時にセル外面上の電極に反応ガスを十分供給できる構成とすることが要求される。
以上の現状に鑑み本発明は、燃料電池セル間を集電体を用いて電気的に接続した燃料電池セルスタックにおいて、セル外面上の電極に対し反応ガス(酸素含有ガスまたは燃料ガス)を十分高濃度で供給すると同時に良好な電気的接続を行うことにより、集電ロスを低減して高出力の発電を可能とすることを目的とする。さらにこれを、熱自立を損なわず現状の設備を増大したり制御システムを変更することなく実現することを目的とする。
上記の目的を達成するべく本発明は以下の構成を提供する。
(1)請求項1に係る燃料電池セルスタックは、軸方向に第1ガス流路を具備する柱状の固体電解質形燃料電池セルを複数個配列させ、隣り合う燃料電池セル間を集電体を用いて電気的に接続する燃料電池セルスタックにおいて、
前記集電体が、前記隣り合う燃料電池セル間に挿入されかつ前記軸方向と平行な第2ガス流路となる内部空間を具備する筒体を有し、
前記筒体が、前記隣り合う燃料電池セルの各々に対して当接する一対の対向するセル当接部と、前記一対のセル当接部における前記軸方向に垂直な方向の両端同士を連結する一対のガス封止部とを具備するとともに、前記セル当接部は通気孔を有し、
前記第2ガス流路を、前記軸方向における一方側開口から他方側開口に向けてガスが流れ、前記セル当接部が前記燃料電池セルに当接することにより前記第2ガス流路から前記通気孔を介して前記燃料電池セルへガスが供給されることを特徴とする。
(2)請求項2に係る燃料電池セルスタックは、請求項1において、前記燃料電池セルにおける前記第1ガス流路が燃料ガス流路であり、かつ前記集電体における前記第2ガス流路が酸素含有ガス流路であることを特徴とする。
)請求項に係る燃料電池セルスタックは、請求項1または2において、前記通気孔の大きさが前記第2ガス流路の上流側より下流側において大きいことを特徴とする。
)請求項に係る燃料電池セルスタックは、請求項1〜のいずれかにおいて、前記集電体の前記ガス封止部の一部に前記第2ガス流路への導入開口を穿設したことを特徴とする。
)請求項に係る燃料電池セルスタックは、請求項1〜のいずれかにおいて、前記集電体が、前記一対のセル当接部同士を連結するべく前記筒体の内部空間に架設される導電性架橋部をさらに具備することを特徴とする。
)請求項に係る集電体は、軸方向に貫通する第1ガス流路を具備する柱状の固体電解質形燃料電池セルを複数個配列させた燃料電池セルスタックにおいて隣り合う燃料電池セル間を電気的に接続する集電体であって、
前記隣り合う燃料電池セル間に挿入されかつ前記軸方向と平行な第2ガス流路となる内部空間を具備する筒体を有し、
前記筒体が、前記隣り合う燃料電池セルの各々に対して当接する一対の対向するセル当接部と、前記一対のセル当接部における前記軸方向に垂直な方向の両端同士を連結する一対のガス封止部とを具備するとともに、前記セル当接部は通気孔を有し、
前記第2ガス流路を、前記軸方向における一方側開口から他方側開口に向けてガスが流れ、前記セル当接部が前記燃料電池セルに当接することにより前記第2ガス流路から前記通気孔を介して前記燃料電池セルへガスが供給されることを特徴とする。
請求項1の燃料電池セルスタックでは、燃料電池セル内の第1ガス流路に一方の反応ガス(燃料ガスまたは酸素含有ガス)を通過させ、集電体の筒体内部空間である第2ガス流路に他方の反応ガス(酸素含有ガスまたは燃料ガス)を通過させることができる。第2ガス流路は、筒体のセル当接部とガス封止部とにより囲まれているため、通過する反応ガスの拡散を防止することができ、高濃度の反応ガスを燃料電池セルに供給できる。その結果、反応ガスが有効に利用されるため、発電量・発電効率が向上する。また、集電体のセル当接部に通気孔を設けたので、燃料電池セルの外面上に設けた電極(燃料極または酸素極)に対して第2ガス流路から十分に反応ガスを供給できる。
請求項2では、燃料電池セル内の第1ガス流路に燃料ガスを、集電体内の第2ガス流路に酸素含有ガスを供給する。酸素含有ガスとしては通常空気が用いられるため、改質処理が必要な燃料ガスと異なりコスト的に安価である。集電体へのガス供給は、セルスタックの周囲空間と完全に隔絶した状態では行われず多少であってもガスの無駄が生じるため、集電体へ供給する反応ガスを酸素含有ガスとすることが好適である。
請求項では、第2ガス流路上の通気孔の大きさを上流側より下流側において大きくする。反応ガスは流路を移送される間に消費されるため、下流側へ行くほど供給量が少なくなる。従って、通気孔の大きさにこのような差を設けることで、上流側と下流側の反応ガスの濃度差を緩和し、流路上での反応ガス濃度をできるだけ均一とすることができる。
請求項では、集電体のガス封止部の一部に第2ガス流路への導入開口を設けたので、第2ガス流路内に反応ガスを周囲から効率的に取り込むことができる。
請求項では、集電体の筒体内部空間に、対向するセル当接部の内面同士を接続する導電性架橋部を架設したので、対向するセル当接部間の電流経路を短くかつ太くすることができ、その結果、燃料電池セル間の電気抵抗を低減し、電気的接続を良好にする。
請求項の集電体は、燃料電池セルスタックにおける燃料電池セル間の電気的接続に使用されることにより、上記の請求項1と同様の効果を奏することができる。
以下、図面を参照して本発明の実施の形態を説明する。
図1は、本発明の燃料電池セルスタック装置1の実施形態を示す概略的な外観斜視図である。但し、実際の状態と異なり、セルスタックを組む際の押圧力を加えない状態(すなわち、集電体に力が付加されていない状態)で示した説明的な図である。固体電解質形燃料電池セル30は、背景技術で説明した図10と同じ扁平柱状のものである。以下の説明では、便宜上、燃料電池セル30の軸方向を上下方向として説明するが、この軸方向を水平に向けて設置することもある。燃料電池セル30の内部には軸方向に複数の燃料ガス流路(第1ガス流路)31aが穿設されている。前述の通り、扁平柱状の燃料電池セル30の一方の平坦外面上には酸素極が、他方の平坦外面上にはインターコネクタ(燃料極と導通)が設けられている。
なお、以下の説明は、燃料電池セル内部のガス流路に燃料ガスが供給され、燃料電池セルの周囲に酸素含有ガス(例えば空気)が供給される形態を例とするが、逆に、燃料電池セル内部のガス流路に酸素含有ガスが供給され、燃料電池セルの周囲に燃料ガスが供給される形態(この場合、燃料電池セルの燃料極と酸素極も逆の配置となる)においても本発明は適用可能である。
図1では、燃料電池セル30を複数配列させて構成した1つの燃料電池セルスタックの一部のみを示している。各燃料電池セル30の下端は、マニホールド41の上壁を形成するガラスまたはセメント等のセル固定材42により支持固定される。それぞれの燃料ガス流路31aはマニホールド41の内部空間と連通する。
燃料電池セル30同士の間には、一方のセルの酸素極と他方のセルのインターコネクタとを電気的に接続する集電体10が挿入される。集電体10は、耐熱金属、貴金属またはセラミックス等の導電性材料からなる筒体で形成される。この筒体は、燃料電池セル30の平坦外面に対して当接する一対のセル当接部11と、各セル当接部11の両端同士を連結する一対のガス封止部12とを具備する。セル当接部11には通気孔13が穿設されている。ガス封止部12は一連の壁でありガスは通過不能である。なお、筒体の上端と下端は開放されている。この筒体の内部空間は、酸素含有ガスの流路(第2ガス流路)となる。
図1では、説明の便宜上、集電体10のセル当接部11と通気孔13の一部が見える状態を示しているが、実際にはセルスタック1の組み立ての際に矢印のように所定の押圧力を付加して全体を固定するため、セル当接部11は燃料電池セル30の平坦外面と完全に密着された状態となり、通気孔13も外部からは見えなくなる。
図示の例では、酸素含有ガス供給ノズル51がセルスタック1の側面近傍において上方から延び集電体10の下端より低い位置まで到達し、その先端にセルスタック1の方へ向いた流出口を具備する。従って、供給ノズル51により上方から供給された酸素含有ガスは、流出口で水平方向に方向転換させられ、集電体10の下端近傍に向かって噴射される。なお、流出口が両方向に開口しているのは、隣に設置される同じ構造の別のセルスタックに対しても噴射するためである。流出口の位置及びその向きは適宜設定できる。一実施例として、供給ノズル51の流出口を、集電体10の下端開口の直下まで延長し、内部空間に向かって上方に噴射するように設けてもよい。
図1において、噴射された高圧の酸素含有ガスは、集電体10の筒体下端開口からその内部空間に流入し、上昇途中で電極反応のために消費され、余剰ガスが上端開口から放出される。集電体10の筒体側面はガス封止部12により閉じられているため、筒体側面を通したガスの出入はない。従来の集電体は、その側面からもガスを積極的に導入できるように通気性のよい構造(網状、多孔状等)が一般的であったが、本発明の集電体10は、下端開口からのみガスを導入し、側面は完全に閉鎖して煙突状の構造とした点が特徴である。この構造により、酸素含有ガスの拡散を格段に低減でき、高圧状態を保持できるので、高濃度で燃料電池セル30の酸素極へ供給できる。
図2Aは、燃料電池セルスタック1を3個並置した状態の平面図である。酸素含有ガス供給ノズル51は、燃料電池セルスタック1同士の間に燃料電池セル30の配列方向に沿って3個ずつ設けられている。供給ノズル51の数及び位置は、燃料電池セル30の周囲にできるだけ均一な濃度で酸素含有ガスが分布するように設定される。
図2Bは、図2Aのセルスタック1の一部の拡大平面図であり、集電体10の筒体の上端開口側から見た図である。筒体の内部空間16は、一対の対向するセル当接部11a、11bと、これらの両端同士を連結する一対のガス封止部12a、12bにより囲まれている。一方のセル当接部11aは、一方の燃料電池セル30aの酸素極34側の平坦面と当接し、他方のセル当接部11bは、他方の燃料電池セル30bのインターコネクタ35側の平坦面と当接する。セル当接部11aと酸素極34との間、及びセル当接部11bとインターコネクタ35との間の電気的接続は、押圧力のみによる機械的接着及び/または導電性ペースト等を用いた化学的接着により形成される。
なお、通気孔13は、酸素極34に当接する側のセル当接部11aにのみ設ければよい。集電体10の筒体は、外部に開口しておらず、導入された酸素含有ガスは通気孔13を介して酸素極34に供給され、その残余は筒体内部空間を強制的に流通させられる。
図3は、図1に示したセルスタックにおける集電体10の一実施形態を示す図である。(a)は外観図で、白抜き矢印は酸素含有ガスの流れを示す(以下の図面も同様)。(b)は展開図である。一対のセル当接部11と一対のガス封止部12から構成される筒体は、断面が楕円形状である。この集電体10をセルスタックに組み込み、所定の押圧力を付加して固定すると、セル当接部11が燃料電池セルの平坦外面上に密着するように変形して、前述の図2Bに示したような扁平な形状となる。図3の集電体10では、一対のセル当接部11の各々に、幅方向に延びる複数の通気孔13が穿設されている。セル当接部11のうち一方は、燃料電池セルの外面上に設けた酸素極に当接する。従って、筒体内部空間を流れる酸素含有ガスは通気孔13を通して酸素極に供給されることとなる。
通気孔13の大きさ、形状、数及び位置は、後述する別の実施形態のように多様に設定できる。しかしながら、通気孔13の総面積が大きくなりすぎると、セル外面上の電極との電気的接続が阻害され、性能低下につながる。一方、通気孔13の総面積が小さすぎたり、不均一な配置であったりすると、ガスが電極に対して十分かつ均等に供給されず、やはり性能低下につながる。よって、通気孔13は最適に設定する必要がある。
図4は、集電体10の別の実施形態を示している。図3に示した集電体と相違する点は、一対のセル当接部11の一方にのみ、幅方向に延びる複数の通気孔13が穿設されている点である。従って、図4の集電体10をセルスタックに組み込む際には、通気孔13を設けた方のセル当接部11が燃料電池セルの酸素極側に向くように組み込む必要がある。この実施形態では、インターコネクタ側との接触面積を大きく確保できる。
図5は、図3または図4に示した集電体10の変形形態を示している。図5の集電体10では、セル当接部11に設けた通気孔13の大きさが、下方において小さく、上方において大きくなっている。つまり、通気孔13の大きさが、酸素含有ガスの流路の上流側より下流側において大きくなっている。酸素含有ガスは流路を流れる間に消費されて下流側へ行くほど供給量が少なくなる傾向がある。従って、流路上の通気孔の大きさにこのような差を設けることで、上流側と下流側のガスの濃度差を緩和し、流路上でのガス濃度をできるだけ均一とすることができる。
図6は、集電体10のさらに別の実施形態を示している。前述の図3に示した集電体と相違する点は、通気孔13の形状である。図6の集電体10の通気孔13は、幅方向に複数に分割されている。
図7は、集電体10のさらに別の実施形態を示している。前述の図3に示した集電体と相違する点は、通気孔13の形状である。図7の集電体10の通気孔13は円形である。図示しないが、通気孔13の形状は多角形でもよい。
図8は、集電体10のさらに別の実施形態を示している。前述の図3に示した集電体と相違する点は、筒体の形状である。図8の集電体10の筒体は、断面が矩形である。さらに、筒体内部空間にガスが流入しやすいように、一対のガス封止部12の各々の下端部に導入開口14を切り欠いている。
図9Aは、集電体10のさらに別の実施形態を示している。前述の図3に示した集電体と相違する点は、筒体の内部空間16に導電性架橋部15を設けている点である。(b)は(a)のA断面図であり、筒体の内部空間16に架設される導電性架橋部15は、一対のセル当接部11の内面同士を連結している。連結箇所は、例えば導電性ペースト等で接着される。一対のセル当接部11同士は、両端のガス封止部12によって電気的に接続されているが、さらに導電性架橋部15を設けることにより電気的接続経路をさらに短くかつ太くして電気抵抗を低下させることができる。
なお、導電性架橋部15の大きさ、数、形状及び位置は、内部空間内のガスの流れを妨げないかぎり、多様に設定できる。
図9Bは、図9Aで示した導電性架橋部15の別の実施形態である。図9Bの導電性架橋部15は、一方のセル当接部11bから筒体内部空間16に突出し、他方のセル当接部11aの内面に当接可能な突起として形成されている。この場合は、別部材の導電性架橋部15を取り付ける必要がなく、筒体を打ち出し加工することにより設けることができる。
本発明の基本的な実施形態を示す燃料電池セルスタック装置の概略的な外観斜視図である。 図1の燃料電池セルスタック装置を3個並置した状態の平面図である。 図2Aに示した燃料電池セルスタックの一部の拡大平面図である。 図1に示したセルスタックの集電体の一実施形態を示す図である。(a)は外観図、(b)は展開図である。 本発明における集電体の別の実施形態を示している。 本発明における集電体のさらに別の実施形態を示している。 本発明における集電体のさらに別の実施形態を示す図である。 本発明における集電体のさらに別の実施形態を示す図である。 本発明における集電体のさらに別の実施形態を示す図である。 本発明における集電体のさらに別の実施形態を示す図である。(a)は斜視外観図、(b)は(a)のA断面図である。 本発明における集電体のさらに別の実施形態を示す図である。 従来の固体電解質形燃料電池セルの断面を含む部分斜視図である。
符号の説明
1 燃料電池セルスタック
10 集電体
11 セル当接部
12 ガス封止部
13 通気孔
30 燃料電池セル
41 マニホールド

Claims (6)

  1. 軸方向に第1ガス流路を具備する柱状の固体電解質形燃料電池セルを複数個配列させ、隣り合う燃料電池セル間を集電体を用いて電気的に接続する燃料電池セルスタックにおいて、
    前記集電体が、前記隣り合う燃料電池セル間に挿入されかつ前記軸方向と平行な第2ガス流路となる内部空間を具備する筒体を有し、
    前記筒体が、前記隣り合う燃料電池セルの各々に対して当接する一対の対向するセル当接部と、前記一対のセル当接部における前記軸方向に垂直な方向の両端同士を連結する一対のガス封止部とを具備するとともに、前記セル当接部は通気孔を有し、
    前記第2ガス流路を、前記軸方向における一方側開口から他方側開口に向けてガスが流れ、前記セル当接部が前記燃料電池セルに当接することにより前記第2ガス流路から前記通気孔を介して前記燃料電池セルへガスが供給されることを特徴とする燃料電池セルスタック。
  2. 前記燃料電池セルにおける前記第1ガス流路が燃料ガス流路であり、かつ前記集電体における前記第2ガス流路が酸素含有ガス流路であることを特徴とする請求項1に記載の燃料電池セルスタック。
  3. 前記通気孔の大きさが前記第2ガス流路の上流側より下流側において大きいことを特徴とする請求項1または2に記載の燃料電池セルスタック。
  4. 前記集電体の前記ガス封止部の一部における一方側端に前記第2ガス流路への導入開口を穿設したことを特徴とする請求項1〜のいずれかに記載の燃料電池セルスタック。
  5. 前記集電体が、前記一対のセル当接部同士を連結するべく前記筒体の内部空間に架設される導電性架橋部をさらに具備することを特徴とする請求項1〜のいずれかに記載の燃料電池セルスタック。
  6. 軸方向に貫通する第1ガス流路を具備する柱状の固体電解質形燃料電池セルを複数個配列させた燃料電池セルスタックにおいて隣り合う燃料電池セル間を電気的に接続する集電体であって、
    前記隣り合う燃料電池セル間に挿入されかつ前記軸方向と平行な第2ガス流路となる内部空間を具備する筒体を有し、
    前記筒体が、前記隣り合う燃料電池セルの各々に対して当接する一対の対向するセル当接部と、前記一対のセル当接部における前記軸方向に垂直な方向の両端同士を連結する一対のガス封止部とを具備するとともに、前記セル当接部は通気孔を有し、
    前記第2ガス流路を、前記軸方向における一方側開口から他方側開口に向けてガスが流れ、前記セル当接部が前記燃料電池セルに当接することにより前記第2ガス流路から前記通気孔を介して前記燃料電池セルへガスが供給されることを特徴とする集電体。
JP2006046384A 2006-02-23 2006-02-23 燃料電池セルスタック及び集電体 Active JP4981331B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006046384A JP4981331B2 (ja) 2006-02-23 2006-02-23 燃料電池セルスタック及び集電体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006046384A JP4981331B2 (ja) 2006-02-23 2006-02-23 燃料電池セルスタック及び集電体

Publications (2)

Publication Number Publication Date
JP2007227125A JP2007227125A (ja) 2007-09-06
JP4981331B2 true JP4981331B2 (ja) 2012-07-18

Family

ID=38548749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006046384A Active JP4981331B2 (ja) 2006-02-23 2006-02-23 燃料電池セルスタック及び集電体

Country Status (1)

Country Link
JP (1) JP4981331B2 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5041711B2 (ja) * 2006-01-31 2012-10-03 京セラ株式会社 燃料電池セルスタック装置
JP2010541147A (ja) * 2007-09-28 2010-12-24 シーメンス エナジー インコーポレイテッド 燃料電池装置およびその製造方法
JP5207729B2 (ja) * 2007-12-25 2013-06-12 京セラ株式会社 燃料電池セルスタック装置、燃料電池モジュールならびに燃料電池装置
JP2010080266A (ja) * 2008-09-26 2010-04-08 Kyocera Corp 燃料電池セルスタック装置およびそれを具備する燃料電池モジュールならびに燃料電池装置
JP5495168B2 (ja) * 2008-11-19 2014-05-21 Toto株式会社 燃料電池モジュール
JP5328439B2 (ja) * 2009-03-26 2013-10-30 京セラ株式会社 燃料電池セル、燃料電池セルスタック装置、燃料電池モジュールおよび燃料電池装置
JP5441468B2 (ja) * 2009-03-26 2014-03-12 京セラ株式会社 燃料電池セルスタック装置、燃料電池モジュールおよび燃料電池装置
JP5418848B2 (ja) * 2009-07-02 2014-02-19 Toto株式会社 燃料電池
JP5334797B2 (ja) * 2009-10-28 2013-11-06 京セラ株式会社 セルスタック装置および燃料電池モジュールならびに燃料電池装置
JP5451423B2 (ja) * 2010-01-27 2014-03-26 京セラ株式会社 セルスタック装置、燃料電池モジュールおよび燃料電池装置
JP5824560B1 (ja) * 2014-09-02 2015-11-25 日本碍子株式会社 燃料電池のスタック構造体
JP6599709B2 (ja) * 2015-09-29 2019-10-30 京セラ株式会社 セルスタック、セルスタック装置、モジュールおよびモジュール収容装置
JP6643173B2 (ja) * 2016-03-29 2020-02-12 京セラ株式会社 導電部材、セルスタック装置、モジュールおよびモジュール収納装置
JP6976873B2 (ja) * 2018-01-23 2021-12-08 森村Sofcテクノロジー株式会社 燃料電池セルスタック装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03280359A (ja) * 1990-03-28 1991-12-11 Ngk Insulators Ltd 固体電解質型燃料電池
JP4256213B2 (ja) * 2003-06-26 2009-04-22 京セラ株式会社 セルスタック及び燃料電池
JP4546766B2 (ja) * 2004-05-31 2010-09-15 京セラ株式会社 集電部材、燃料電池セルスタック及び燃料電池

Also Published As

Publication number Publication date
JP2007227125A (ja) 2007-09-06

Similar Documents

Publication Publication Date Title
JP4981331B2 (ja) 燃料電池セルスタック及び集電体
US7157169B2 (en) Fuel cell
EP2077597B1 (en) Fuel cell stack with uniform temperature distribution along the stacking axis
JP6909691B2 (ja) 燃料電池モジュール
JP5197081B2 (ja) セルスタック装置および燃料電池モジュール
JP2007234384A (ja) 燃料電池セルスタック装置及び燃料電池モジュール
JP2006032328A (ja) 燃料電池
JP5334456B2 (ja) セルスタック装置および燃料電池モジュールならびに燃料電池装置
JP4325924B2 (ja) 燃料電池
JP4573526B2 (ja) 固体酸化物形燃料電池
CN105765776B (zh) 单元堆装置、模块以及模块收容装置
US9963793B2 (en) Cell unit, cell stack device, cell unit device and module
JP5319460B2 (ja) セルスタック装置、燃料電池モジュールおよび燃料電池装置
JP5377271B2 (ja) セルスタック装置、燃料電池モジュールおよび燃料電池装置
JP4758074B2 (ja) 燃料電池組立体及び燃料電池
JP4300947B2 (ja) 固体酸化物形燃料電池
JP4438315B2 (ja) 固体電解質型燃料電池の運転開始時の予熱方法
JP6749051B2 (ja) セルスタック装置、燃料電池モジュール及び燃料電池装置
JP6407069B2 (ja) 燃料電池スタック
JP4899387B2 (ja) 固体酸化物形燃料電池
JP6386364B2 (ja) セルスタック装置、モジュールおよびモジュール収容装置
JP6121793B2 (ja) セルスタック装置、燃料電池モジュールおよび燃料電池装置
JP2018166131A (ja) セルスタック装置、モジュールおよびモジュール収容装置
JP2783926B2 (ja) 固体電解質型燃料電池の単電池及びこれを用いた発電装置
JP2005294152A (ja) 固体酸化物形燃料電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120420

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4981331

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150