JP4931160B2 - 固体撮像素子 - Google Patents

固体撮像素子 Download PDF

Info

Publication number
JP4931160B2
JP4931160B2 JP2009531123A JP2009531123A JP4931160B2 JP 4931160 B2 JP4931160 B2 JP 4931160B2 JP 2009531123 A JP2009531123 A JP 2009531123A JP 2009531123 A JP2009531123 A JP 2009531123A JP 4931160 B2 JP4931160 B2 JP 4931160B2
Authority
JP
Japan
Prior art keywords
pixel
solid
imaging device
state imaging
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009531123A
Other languages
English (en)
Other versions
JPWO2009031301A1 (ja
Inventor
成利 須川
泰志 近藤
秀樹 冨永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Shimadzu Corp
Original Assignee
Tohoku University NUC
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Shimadzu Corp filed Critical Tohoku University NUC
Priority to JP2009531123A priority Critical patent/JP4931160B2/ja
Publication of JPWO2009031301A1 publication Critical patent/JPWO2009031301A1/ja
Application granted granted Critical
Publication of JP4931160B2 publication Critical patent/JP4931160B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/571Control of the dynamic range involving a non-linear response
    • H04N25/575Control of the dynamic range involving a non-linear response with a response composed of multiple slopes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/771Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising storage means other than floating diffusion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

本発明は固体撮像素子に関し、さらに詳しくは、破壊、爆発、燃焼などの高速の現象を撮影するために好適な高速動作可能な固体撮像素子に関する。
例えば爆発、破壊、燃焼、衝突、放電などの高速の現象を、短時間だけ連続的に撮影するための高速撮影装置(高速ビデオカメラ)が従来より開発されている(非特許文献1など参照)。こうした高速撮影装置では、100万枚/秒程度以上もの、きわめて高速度の撮影が必要である。そのため、従来一般的にビデオカメラやデジタルカメラなどに利用されている撮像素子とは異なる、特殊な構造を有する高速動作可能な固体撮像素子が利用されている。
こうした固体撮像素子として、従来、特許文献1などに記載のものが利用されている。これは画素周辺記録型撮像素子と呼ばれるものである。この撮像素子について概略的に説明する。即ち、受光部であるフォトダイオード毎にそれぞれ記録枚数(フレーム数)分の転送を兼ねた蓄積用CCDを備え、撮影中には、フォトダイオードで光電変換された画素信号を蓄積用CCDに順次転送する。そして、撮影終了後に蓄積用CCDに記憶してある記録枚数分の画素信号をまとめて読み出し、撮像素子の外部で記録枚数分の画像を再現する。撮影中に記録枚数分を越えた画素信号は古い順に廃棄され、常に最新の所定記録枚数分の画素信号が蓄積用CCDに保持される。そのため、撮影の終了時に蓄積用CCDへの画素信号の転送を中止すれば、その時点から記録枚数分だけ時間的に遡った時点以降の最新の画像が得られることになる。
このように画素周辺記録型撮像素子では、1フレーム分の画像信号が得られる毎にそれを外部に取り出す必要がある一般的な撮像素子とは異なり、非常に高速に複数枚の連続画像を得ることができるという特徴を有している。しかしながら、上記画素周辺記録型撮像素子では次のような課題がある。
(1)上記画素周辺記録型撮像素子では、CCDに信号電荷を転送する際に、大きな容量性負荷を持つゲート電極と信号線とを一斉に駆動しなければならないため、及びゲート駆動信号の電圧振幅が大きいために、もともと消費電力が大きい。撮影速度を上げるために駆動速度を上げようとすると消費電力は一層大きくなり、発熱が大きくなって放熱の限界を超えるおそれがある。また、大きな容量性負荷のために駆動信号の波形の鈍り等の波形歪みが大きくなり、速度を上げようとすると電荷転送自体ができなくなる場合もある。
(2)上記画素周辺記録型撮像素子では、半導体チップ上で、隣接するフォトダイオードの間に蓄積用CCDが配置されているため、強い光がフォトダイオードに入射して多量の光電荷が生成されるとこれが蓄積用CCDに流れ込む場合がある。この結果、例えば画像のS/Nが劣化したり、酷い場合には画像が二重写りになったりすることがある。
(3)蓄積用CCDでは信号読み出しのために待機している期間中にも暗電荷による偽信号が混入するため、これによって画像のS/Nが劣化するおそれがある。
一方、CMOS型の撮像素子においては、例えば特許文献2に記載のものが従来知られている。この撮像素子では、各画素内に複数の記憶用のコンデンサを設け、フレーム毎に、フォトダイオードで生成した光電荷を異なる記憶用コンデンサに連続的に記憶させることができるようになっている。しかしながら、このような構成では、数フレーム程度の連続記録には対応できるものの、上述のような高速撮影装置で意図しているような多数の連続コマ撮り撮影は行えない。連続撮影フレーム数を増やすために記憶用コンデンサの数を増やすと、フォトダイオードで生成した電荷を蓄積する検出ノードからの信号線の容量性負荷が増大し、速度を上げることが困難になる。また、1画素内のフォトダイオードの面積を小さくせざるをえず、開口率が小さくなり、ひいては感度低下が避けられない。
特開2001−345441号公報 特表2002−512461号公報 近藤ほか5名、「高速度ビデオカメラHyperVision HPV-1の開発」、島津評論、島津評論編集部、2005年9月30日発行、第62巻、第1・2号、p.79−86
本発明は上記課題に鑑みて成されたものであり、その主な目的とするところは、消費電力を抑えながらきわめて高速の連続撮影を行うことができる固体撮像素子を提供することにある。また本発明の他の目的は、高速連続撮影に際して画素信号のS/Nやダイナミックレンジを向上させることで、画質を向上させることができる固体撮像素子を提供することにある。
上記課題を解決するために成された発明に係る固体撮像素子は、
a)光を受光して光電荷を生成する光電変換素子、該光電変換素子で生成された光電荷を電荷信号から電圧信号に変換する検出ノード、前記光電変換素子を前記検出ノードへ転送する転送素子、前記検出ノードから後記複数本の画素出力線のうちの1本の画素出力線に出力信号を送出するバッファ素子、及び、少なくとも前記光電変換素子及び前記検出ノードをリセットするリセット素子、を含む画素二次元アレイ状に複数配列された画素領域と、
b)前記画素領域内の各画素からそれぞれ独立に後記記憶領域まで延設された複数本の画素出力線と、
c)前記画素領域とは分離された領域であって、画素領域内の各画素に対応して前記複数本の画素出力線のうちの1本の画素出力線を通して同一バッファ素子から送られる出力信号を保持するための複数の記憶部が集約して配設された記憶領域と、
を有し前記複数本の画素出力線にそれぞれ各画素に対応付けられた前記複数の記憶部が接続され、該複数の記憶部はそれぞれ少なくとも1個の記憶素子を含み、各記憶素子と該記憶素子が含まれる記憶部に接続された1本の画素出力線との間にはゲート手段が設けられることを特徴としている。
発明に係る固体撮像素子はCMOS構造であり、上記光電変換素子は例えばフォトダイオード、好ましくは埋め込み型フォトダイオードとすることができる。また、記憶部は各画素からの出力信号を保持するためにキャパシタを用いるものとすることができる。
この発明に係る固体撮像素子では、画素領域内の各画素からそれぞれ独立に画素出力線が記憶領域まで延設され、各画素出力線にそれぞれ上記複数の記憶部が接続される構成としている。そのため、各画素の光電変換素子で得られた光電荷を蓄積することにより得た電荷に応じた信号を、画素毎に1本ずつ設けられた画素出力線を通して複数の記憶部に順番に保持させることができる。
従って、記憶部の数の分だけ、連続的にアナログの信号を取り込んで、その取り込み終了の後に各記憶部から順番に信号を外部に読み出して処理することができる。
即ち、発明に係る固体撮像素子では、素子内に各画素に対応した複数の記憶部を備えるが、従来の蓄積用CCDを用いた画素周辺記録型撮像素子のように新たな信号電荷を保持する際に全ゲート負荷を一斉に駆動する必要はない。そのため、電力消費が少なくて済み、高速駆動の場合でも発熱を抑えることができる。また、容量性負荷が小さいので、高速駆動の際にも駆動波形の歪みが小さくて済み、各画素から記憶部への信号の出力を確実に行うことができる。
また、画素領域と記憶領域とが分離されているため、画素領域内の画素数、光電変換素子の受光面の面積、画素領域全体のサイズなどに影響を与えることなく、1画素に対応する記憶部の数を増やすことができる。これにより、高速度で連続撮影可能なフレーム数を十分に確保することができる。
また、画素領域と記憶領域とが分離されているため、光電変換素子に強い光が入射して過剰な量の光電荷が発生しても、それが記憶部にまで到達することを防止することができる。さらに、記憶部において例えばダブルポリシリコン構造やスタック構造などのキャパシタにより信号を保持する構成とすることにより、信号読み出しまでの待機時間中に暗電荷が発生することもない。これにより、信号のS/Nを向上させることができ、例えば読み出した信号により再現される画像の質を向上させることができる。
また本発明に係る固体撮像素子では数の記憶部はそれぞれ少なくとも1個の記憶素子を含み、各記憶素子と前記画素出力線との間にゲート手段を有する構成であるので、各画素から画素出力線に出力された信号を任意の1つの記憶素子に選択的に記憶させることができる。
明に係る固体撮像素子において、検出ノードは例えば拡散層によるフローティング領域(フローティングディフュージョン)とすることができる。また、転送素子、リセット素子はそれぞれトランジスタ、バッファ素子は1乃至複数のトランジスタで構成されるソースフォロアアンプとすることができる。
発明に係る固体撮像素子では、画素毎に設けられたバッファ素子により画素出力線と検出ノードとが切り離されるので、連続撮影フレーム数を増やすために同一の画素出力線に接続される記憶部の数を増やしても、光電荷蓄積動作が影響を受けずに済む。従って、1画素に対応する記憶部の数を増やすことができ、連続撮影可能フレーム数を十分に確保することができる。
また発明に係る固体撮像素子において、画素領域内の各画素は、光電荷を蓄積する光電荷蓄積動作時に前記光電変換素子から前記転送素子を通して溢れた又は前記検出ノードから溢れた光電荷を蓄積する電荷蓄積素子を少なくとも1つ有する構成とすると好ましい。ここで電荷蓄積素子はキャパシタとすることができる。
光電変換素子で生成された光電荷は光電変換素子内の容量にて保持され、信号読み出し時に転送素子を介して例えばフローティングディフュージョンなどの検出ノードで電圧信号に変換される。光電変換ゲインを上げて光感度を高める場合、フローティングディフュージョンの変換容量は小さいほうが望ましい。しかしながら、小さな変換容量のフローティングディフュージョンは大きな信号電荷を扱うことができない。また光電変換素子から溢れた光電荷は廃棄されてしまい利用されないので、結果的にダイナミックレンジを低下させることになる。これに対し、光電変換素子から転送素子を通して溢れた光電荷、又は検出ノードから溢れた光電荷を蓄積する電荷蓄積素子を設けることにより、強い光の入射により過剰に発生した光電荷を廃棄することなく、一旦電荷蓄積素子に溜めて信号に反映させることが可能となる。
また検出ノードと電荷蓄積素子との間に蓄積トランジスタを介在させることで、オーバーフロー後の信号読み出し時には検出ノードの一部となる電荷蓄積素子を、オーバーフロー前信号読み出し時には切り離すことができる。そのため、小信号電荷時の検出ノード(フローティングディフュージョン)の変換容量を小さくし、光電変換ゲインを上げることができる。一方、信号電荷が大きいときにはオーバーフロー後信号を電荷蓄積素子とフローティングディフュージョンとの合成容量で以て検出する。これにより、強い光が入射したときに多量に生成された光電荷も廃棄することなく利用し、広いダイナミックレンジを実現することができる。
また、画素毎にそれぞれ独立した画素出力線を有するので、全画素同時に信号を記憶部に移す読み出し動作を実行することができる。そこで、発明に係る固体撮像素子では、各画素における光電荷蓄積動作と各画素出力線を通しての各画素からの信号の読み出し動作とが、全画素で同時に実行されるように各画素に供給される制御信号が共通化されている構成とするとよい。
これにより、各画素から記憶部に信号を出力する動作を短時間で行えるので、光電荷蓄積動作と読み出し動作とのサイクルを高速で繰り返すことができる。また、1サイクルの中で光を受光してそれにより生成した光電荷を蓄積する動作期間を相対的に長くすることができるので、感度の向上に有利である。
また発明に係る固体撮像素子では、各画素における光電荷蓄積動作と各画素出力線を通しての各画素からの信号の読み出し動作とが全画素で同時に繰り返され、且つ、信号の読み出し動作毎に各画素出力線を通して送られる信号が前記複数の記憶部に順番に保持されるように、各画素及び記憶部に対して制御信号を供給する構成とするとよい。
これにより、或る時点で撮影により各画素で取得した信号(画素信号)を一斉に記憶部に移し、速やかに次の撮影を実行することができる。これにより、高速に連続的な撮影を行うことができる。
また明に係る固体撮像素子では、1画素に対応した複数の記憶部のそれぞれが、独立に各画素からの出力信号を保持可能な複数の記憶素子を有し、1回の光電荷蓄積動作のサイクルの中で、各画素内で光電変換素子及び検出ノードがリセットされた際に残るノイズ成分と、光電荷の蓄積による電荷に応じた信号とが、同一の記憶部で異なる記憶素子に保持されるように、各画素及び記憶部に対して制御信号を供給する構成とすることが好ましい。
この構成では、例えば外部で(又は内蔵した演算手段により)信号からノイズ成分を差し引くような演算を行うことにより、各種素子に由来する固有のノイズの影響を軽減して、より純度の高い(つまりS/Nの高い)画素信号を得ることができる。これにより、撮影画像の高画質化に有利である。
また明に係る固体撮像素子では、1画素に対応した複数の記憶部のそれぞれが、独立に各画素からの出力信号を保持可能な複数の記憶素子を有し、1回の光電荷蓄積動作のサイクルの中で、各画素内で光電変換素子及び検出ノードがリセットされた際に残るノイズ成分、光電荷を蓄積する際に電荷蓄積素子に溢れ出る前の電荷に応じた信号、及び光電荷を蓄積する際に電荷蓄積素子に溢れ出た後の電荷に応じた信号が、同一の記憶部で異なる記憶素子に保持されるように、各画素及び記憶部に対して制御信号を供給する構成とするとさらに好ましい。
この構成によれば、強い光の入射により過剰に発生した光電荷を無駄にせずに信号に反映させることでダイナミックレンジの拡大を図りつつ、各種素子に由来する固有のノイズの影響も軽減することができる。これにより、撮影画像の高画質化に一層有利であり、例えば高速の現象の物理的解析などに有益な情報を提供することができる。
また明に係る固体撮像素子では、同一の列又は行に属する複数の画素からの画素出力線を列毎又は行毎に集約して垂直方向又は水平方向に配設した構成とすることができる。
また、画素領域を垂直方向及び/又は水平方向に複数に区画し、それぞれの区画画素領域の中で同一の列又は行に属する複数の画素からの画素出力線を列毎又は行毎に集約して垂直方向又は水平方向に配設した構成としてもよい。
このように各画素から信号を取り出す画素出力線を列毎又は行毎に集約して配設することにより、画素領域内で複数の画素を片寄らずにバランスよく配置することができ、二次元画像を再現するための画像処理が容易で画質の向上も期待できる。また、本固体撮像素子を製造する際にパターンニングが容易である。
また明に係る固体撮像素子では、画素領域は平面視で矩形状であり、記憶領域は画素領域の四辺の中の1乃至複数の外側に配置される構成とするとよい。また、上記区画画素領域に対応して記憶領域を分割し、その分割記憶領域をそれぞれ画素領域の四辺の中の異なる辺の外側に配置した構成としてもよい。これにより、画素出力線の配線のための領域をできるだけ小さくすることができる。また、例えば半導体チップ全体でのレイアウトが効率的に行える。そのために、同じ画素数、同じ連続撮影フレーム数の条件の下で、半導体チップ面積を小さくすることができ、コスト的に有利になる。
また、明に係る固体撮像素子では、前記複数の画素出力線を前記光電変換素子上に配置した構成としてもよい。さらに、集光率を向上するために、前記複数の画素出力線の上に、概略球面の一部又は概略円柱の一部の形状を有する複数のオンチップマイクロレンズを画素出力線間に結像するように配置した構成としてもよい。このように、前記複数の画素出力線を前記光電変換素子上に配置して複数のオンチップマイクロレンズを画素出力線間に結像するように配置することで、実効開口率の劣化を抑制して、画素ピッチを縮小することができる。そのため、多画素化やチップサイズ縮小の点で有利である。
また明に係る固体撮像素子では、同一半導体チップ上の同一面に画素領域と記憶領域とを設ける構成としてもよいのは当然であるが、それ以外の各種の態様を採ることができる。一態様として、各画素の少なくとも光電変換素子を、半導体基板の記憶領域が形成された素子形成面とは反対側の裏面に配置し、この裏面を光入射面とした構成としてもよい。
このように光電変換素子の配置面と記憶領域とを異なる面とすることにより、各光電変換素子の受光面を広く確保することができ、特に量子効率と開口率と高め、感度を高くすることができる。従って、光電荷蓄積時間を短くすることができ、連続撮影の高速化を図るのに有利である。また、画素領域と記憶領域とを明確に分離することができ、画素信号のS/Nの向上の点でも有利である。
また明に係る固体撮像素子の別の態様として、絶縁物層で分離された複数の半導体層を有する3次元集積回路として構成され、前記画素領域と前記記憶領域とが異なる半導体層に形成されているものとしてもよい。さらに別の態様として、複数の半導体集積回路素子から構成され、前記画素領域と前記記憶領域とが異なる半導体集積回路素子に形成されているものとしてもよい。
即ち、明に係る固体撮像素子は単一の半導体チップから構成される素子である必要はなく、複数の半導体チップを用いてこれらを横方向(半導体チップの延展方向)に並べた又は半導体チップの厚さ方向に積層させた構造としてもよい。複数の半導体チップ間の結線を行うためにワイヤボンディングを用いてもよいが、周知のフリップチップ技術を利用するとチップ間の配線を短くすることができ、また素子全体を小型化するのにも有利である。
また、明に係る固体撮像素子では、前記記憶部は、キャパシタと、画素出力線を通して送られる各画素からの出力信号を前記キャパシタに送り込むスイッチ素子と、を含む構成としてもよい。
明に係る固体撮像素子によれば、消費電力を抑えながら高速動作を達成することができ、例えば100万フレーム/秒以上もの高速度での連続的な撮影可能フレーム数も十分に確保することができる。これにより、従来の固体撮像素子を利用する場合に比べて撮影のさらなる高速化が実現でき、高速の現象の解析に有益な情報を得ることができるようになる。また、暗電荷や過剰な光電荷の流れ込みなどによる信号の劣化が軽減されるので、S/Nが改善され、高速撮影時の画質の向上を図ることができる。
本発明の一実施例である固体撮像素子の半導体チップ上の概略レイアウトを示す平面図。 本実施例の固体撮像素子において画素領域内の1個の画素の概略レイアウトを示す平面図。 本実施例の固体撮像素子における要部のブロック構成図。 本実施例の固体撮像素子における1個の画素の回路構成図。 本実施例の固体撮像素子において1個の画素における光電変換部の概略レイアウトを示す平面図。 図5中のA−A’矢視線縦断面における概略ポテンシャル図。 本実施例の固体撮像素子において垂直方向に配列された132個の画素に対応する1個の記憶部ユニットの概略構成図。 本実施例の固体撮像素子における1個の記憶部の回路構成図。 本実施例の固体撮像素子における1個の記憶素子部の概略レイアウトを示す平面図。 本実施例の固体撮像素子において各記憶部に保持されている信号を逐次読み出しする概略構成を示すブロック図。 本実施例の固体撮像素子において光電荷蓄積時間が短い場合の動作モードのタイミング図。 図11の動作における各画素内の概略ポテンシャル図。 本実施例の固体撮像素子において光電荷蓄積時間が相対的に長い場合の動作モードのタイミング図。 図13の動作における各画素内の概略ポテンシャル図。 本実施例の固体撮像素子における画素信号の逐次読み出し時の動作タイミング図。 本実施例の固体撮像素子における水平シフトレジスタの要部の動作タイミング図。 本実施例の固体撮像素子における垂直シフトレジスタの要部の動作タイミング図。
符号の説明
1…半導体基板
2、2a、2b…画素領域
3a、3b…記憶領域
4a、4b…垂直走査回路領域
5a、5b…水平走査回路領域
6a、6b…電流源領域
10…画素
11…光電変換領域
12…画素回路領域
13…配線領域
14、141…画素出力線
15…駆動ライン
20…記憶部ユニット
22…記憶部
23、23a〜23d…信号出力線
24、24a〜24d…記憶素子
25、25a〜25d…キャパシタ
26、26a〜26d…サンプリングトランジスタ
27、27a〜27d…読み出しトランジスタ
31…フォトダイオード
32…転送トランジスタ
33、331、332…フローティングディフュージョン
333…金属配線
34…蓄積トランジスタ
35…リセットトランジスタ
36…蓄積キャパシタ
37、40…トランジスタ
38、41…選択トランジスタ
39…電流源
43…ソースフォロアアンプ
50…記憶部ユニットブロック
VSR1〜104…垂直シフトレジスタ
HSR1〜HSR320…水平シフトレジスタ
以下、本発明の一実施例である固体撮像素子について、添付図面を参照して説明する。
まず本実施例による固体撮像素子の全体の構成及び構造について説明する。図1は本実施例の固体撮像素子の半導体チップ上の概略レイアウトを示す平面図、図3は本実施例の固体撮像素子における要部のブロック構成図である。
図1に示すように、この固体撮像素子においては、光を受光して画素毎の信号を生成するための画素領域2(2a、2b)と、前記信号を所定フレーム(コマ)数分保持するための記憶領域3a、3bとが、半導体基板1上で混在せずに完全に分離され、それぞれまとまった領域として設けられている。略矩形状の画素領域2内には、N行、M列の合計N×M個の画素10が二次元アレイ状に配置され、この画素領域2はそれぞれ(N/2)×M個の画素10が配置された第1画素領域2a、第2画素領域2bの2つに分割されている。この第1画素領域2a、第2画素領域2bがそれぞれ本発明における区画画素領域に相当する。
第1画素領域2aの下側には、小面積の第1電流源領域6aを挟んで第1記憶領域3aが配置され、第2画素領域2bの上側には、同じく小面積の第2電流源領域6bを挟んで第2記憶領域3bが配置されている。この第1記憶領域3a、第2記憶領域3bがそれぞれ本発明における分割記憶領域に相当する。第1及び第2記憶領域3a、3bにはそれぞれ、記憶領域3a、3bからの信号の読み出しを制御するためのシフトレジスタやデコーダなどの回路を設けた、第1及び第2垂直走査回路領域4a、4bと、第1及び第2水平走査回路領域5a、5bとが設けられている。つまり、画素領域2を上下に区画する水平線を境界として、上下対称の構造となっている。この上下の構造や動作は同じであるため、以下の説明では、下方の第1画素領域2a、第1記憶領域3a、第1垂直走査回路領域4a、第1水平走査回路領域5aの構造及び動作を中心に述べることとする。
画素数、つまり上記N、Mの値はそれぞれ任意に決めることができ、これらの値を大きくすれば画像の解像度は上がるが、その反面、全体のチップ面積が大きくなるか、或いは1画素当たりのチップ面積が小さくなる。ここでは、高速度撮影を目的とした固体撮像素子として、N=264、M=320としている。従って、第1、第2画素領域2a、2bにそれぞれ配置される画素数は、図3中に記載したように、132×320である。
図2は、画素領域2(2a、2b)中の1個の画素10の概略レイアウトを示す平面図である。1個の画素10が占める領域はほぼ正方形であり、この内部は3つの領域、即ち、光電変換領域11、画素回路領域12、及び配線領域13に大別される。配線領域13には、(N/2)+α本の画素出力線14が縦方向に延伸するように配設されている。ここでαは0でもよく、その場合、本例では配線本数は132本となる。但し、一般に、このように平行に延伸する配線(例えばAl等の金属配線)を多数形成する場合に、両端の配線の幅や寄生容量が異なり易いため、両端に1本ずつダミーの配線を設ける。その場合には、α=2であって、配線総数は134本となる。
図4は図2に示した1個の画素10の回路構成図である。図4に示すように、各画素10は、光を受光して光電荷を生成するフォトダイオード(本発明における光電変換素子に相当)31と、フォトダイオード31に近接して設けられた光電荷を転送するための転送トランジスタ(本発明における転送素子に相当)32と、転送トランジスタ32を介してフォトダイオード31に接続され、光電荷を一時的に蓄積するとともに電圧信号に変換するフローティングディフュージョンFD(本発明における検出ノードに相当)33と、光電荷蓄積動作時にフォトダイオード31から転送トランジスタ32を介して溢れる電荷を蓄積するための蓄積トランジスタ34及び蓄積キャパシタ(本発明における電荷蓄積素子に相当)36と、フローティングディフュージョン33及び蓄積キャパシタ36に蓄積された電荷を排出するためのリセットトランジスタ(本発明におけるリセット素子に相当)35と、フローティングディフュージョン33に蓄積された電荷又はフローティングディフュージョン33及び蓄積キャパシタ36の両方に蓄積された電荷を電圧信号として出力するための、従属接続された2個のPMOS型のトランジスタ37、38、同じく従属接続された2個のNMOS型のトランジスタ40、41の2段構成であるソースフォロアアンプ(本発明におけるバッファ素子に相当)と、を含んで構成される。
なお、図4では、ソースフォロアアンプ43の初段の2個のトランジスタ37、38に電流を供給するための電流源39を画素10内に記述してあるが、実際には各画素10内ではなく第1電流源領域6a又は第2電流源領域6bに配置されている。
転送トランジスタ32、蓄積トランジスタ34、リセットトランジスタ35、及び、ソースフォロアアンプ43の選択トランジスタ38、41のゲート端子には、それぞれφT、φC、φR、φXなる制御信号を供給するための駆動ライン15が接続される。図3に示すように、これら駆動ラインは全ての画素(第2画素領域2b内の画素も含めて)に共通である。
ソースフォロアアンプ43の2段目のトランジスタ41の出力42が、上述の配線領域13に配設される132本の画素出力線14のうちの1本(図4では符号141で示す画素出力線)に接続される。この画素出力線141は各画素10毎に1本ずつ設けられているため、1本の画素出力線141には画素10(つまりはソースフォロアアンプ43)は1個しか接続されない。
ソースフォロアアンプ43は、画素出力線141を高速で駆動するための電流バッファの機能を持つ。各画素出力線141は、図3に示したように、画素領域2aから記憶領域3aまで延伸されているため、或る程度大きな容量性負荷となり、これを高速で駆動するためには大きな電流を流すことが可能な、大きなサイズのトランジスタが必要である。しかしながら、検出感度を高めるべく光電変換ゲインを上げるためには、光電荷を電圧に変換するためのフローティングディフュージョン33の容量はできるだけ小さいほうがよい。フローティングディフュージョン33に接続されるトランジスタのゲート端子の寄生容量はフローティングディフュージョン33の容量を実効的に増加させるため、上記理由により、このトランジスタはゲート入力容量が小さな小型のトランジスタであることが望ましい。そこで、出力側での大電流の供給と入力側での低容量とを満たすために、ソースフォロアアンプ43を二段構成とし、初段のトランジスタ37を小型のトランジスタとすることにより入力ゲート容量を抑え、後段のトランジスタ40、41は大きなトランジスタを使用して大きな出力電流を確保できるようにしている。
また、ソースフォロアアンプ43において、初段の選択トランジスタ38はなくても構わないが、後段の選択トランジスタ41がオフ状態であるときに同時に選択トランジスタ38もオフすることにより、電流源39からトランジスタ37に電流が流れないようにしてその分だけ電流消費を抑えることができる。
図5は1個の画素10における光電変換領域11の概略レイアウトを示す平面図、図6は図5中のA−A’矢視線縦断面における概略ポテンシャル図である。略矩形状の受光面を有するフォトダイオード31は埋め込みフォトダイオード構造である。高速撮影では露光時間が極端に短いため、適切な露出を確保するには各画素のフォトダイオードの受光面の面積をできるだけ広くして、入射(受光)する光量をできるだけ増やす必要がある。しかしながら、一般的に、フォトダイオードの受光面の面積を広くすると、特にその周辺側で生成された光電荷が検出ノードであるフローティングディフュージョンに移動するまでの所要時間が問題となり、高速撮影の短い1サイクル期間中に転送できない電荷は無駄になったり、残像現象を起こす原因となったりする。そこで、本実施例の固体撮像素子では、次のような特殊な構造を採用することで電荷転送の速度向上を図っている。
通常、フローティングディフュージョンはフォトダイオードの側方に配置されるが、この固体撮像素子では、図5に示すように、フォトダイオード31のほぼ中央部に小面積のフローティングディフュージョン331が形成され、そのフローティングディフュージョン331を取り囲むように環状に転送トランジスタ32のゲートが設けられている。これにより、フォトダイオード31の周辺部からフローティングディフュージョン331までの光電荷の移動距離ができるだけ短くなるようにしている。
さらに、フォトダイオード31を形成する際に、複数のフォトマスクを使用することにより、フォトダイオード31の周辺部から中央(つまりフローティングディフュージョン331)に向かって不純物ドープ量又は不純物打ち込み深さの勾配を設けている。それにより、フォトダイオード31のPN接合に適宜のバイアス電圧が印加された状態で、図6(a)に示すように、外側から内側に向かって下傾するポテンシャル勾配が形成されるようにしている。この作り込みの、つまりプロセス上形成されるポテンシャル勾配により、光の受光により生成された光電荷は周辺部で生成したものほど大きく加速され中央側に進行する。従って、転送トランジスタ32がオフ状態であれば、図6(a)に示したように転送トランジスタ32の環状のゲートの周囲に光電荷が集積され、転送トランジスタ32がオン状態であれば、図6(b)に示したように、光電荷は転送トランジスタ32を経てフローティングディフュージョン331に落ち込む。いずれにしても、フォトダイオード31で生成された光電荷を高い確率で且つ迅速にフローティングディフュージョン331に転送することができる。
フォトダイオード31の中央部にフローティングディフュージョン331を設けることで上述のような大きな利点があるものの、オーバーフローした光電荷を蓄積する蓄積キャパシタ36などはフローティングディフュージョン331に近接して配置すると開口率が低下するという問題が生じる。そこで、上記フローティングディフュージョン(以下、第1フローティングディフュージョンという)331とは別に画素回路領域12中に第2フローティングディフュージョン332を拡散層として形成し、第1フローティングディフュージョン331と第2フローティングディフュージョン332との間をアルミニウム(Al)等による金属配線333で接続することにより同電位となるようにしている。つまり、第1フローティングディフュージョン331及び第2フローティングディフュージョン332が一体となって、図4で示した、電荷信号を電圧信号に変換する検出ノードとしてのフローティングディフュージョン33として機能する。
次に、第1及び第2記憶領域3a、3b内の構成の詳細について説明する。図3に示すように第1及び第2記憶領域3a、3b内には、垂直方向に並べられた132個の画素10に対してそれぞれ接続された132本の画素出力線14の延伸方向に沿って、蓄積フレーム数L分の記憶部ユニット20が配列されている。この例では、蓄積フレーム数Lつまり連続撮影フレーム数は104であり、垂直方向に104個の記憶部ユニット20が配列され、さらにこれが水平方向に320個並んでいる。従って、第1記憶領域3aには104×320個の記憶部ユニット20が配設されている。第2記憶領域3bにも同数の記憶部ユニット20が配設されている。
図7は1個の記憶部ユニット20の内部構成を示す概略図である。1個の記憶部ユニット20内には、水平方向に11個、垂直方向に12個の、合計132個の記憶部22が配設されており、各記憶部22はそれぞれ異なる1本ずつの画素出力線141に接続されている。画素出力線141を介して、各記憶部22はそれぞれ画素10に一対一に対応しており、1個の記憶部ユニット20内の132個の記憶部22には、画素領域2a内の垂直方向の132個の画素10の出力信号がそれぞれ保持される。従って、水平方向に並べられた320個の記憶部ユニット20(図3中で符号21で示した記憶部ユニット行)に、320×132画素(ピクセル)から成る1フレームの画素信号が保持されることになり、これが垂直方向に104個配列されていることで104フレーム分の画素信号の保持が可能となっている。
また、各記憶部ユニット20において、132個の記憶部22の全ての信号出力線は接続されて1本の信号出力線23となっており、さらに図3に示すように水平方向に並べられた記憶部ユニット20は隣接する10個ずつが1組とされ、各組毎に10個の記憶部ユニット20の出力線は接続されて1本の信号出力線23となっており、垂直方向の104個の記憶部ユニット20の信号出力線23も接続されている。従って、全部で信号出力線23の数は上記組の数だけ、つまり32本であり、これが並列に出力される。また、第2記憶領域3bからも同数の信号出力線が取り出されるから、全部で64本の出力信号線を通して並列に信号読み出しが行われる。
図8は1個の記憶部22の回路構成を示す図、図9は1個の記憶部22の概略レイアウトを示す平面図である。1本の画素出力線141に接続されたサンプリングトランジスタ26(26a〜26d)と、サンプリングトランジスタ26を介して画素出力線141に接続されるキャパシタ25(25a〜25d)と、キャパシタ25に保持されたアナログ電圧信号を読み出すための読み出しトランジスタ27(27a〜27d)と、から最小記憶単位である記憶素子24(24a〜24d)が構成され、1個の記憶部22は、4個の記憶素子24a〜24dが1組になって構成される。従って、1個の記憶部22には、同一の画素から送られる4つの異なるアナログ電圧信号を保持することが可能である。4個の読み出しトランジスタ27a〜27dを通した信号出力線23a、23b、23c、24dは図8、図9に示すようにそれぞれ独立に設けられているから、図7に示した信号出力線23は実際には4本(信号出力線23a、23b、23c、23d)存在する。
これは、後述するようなダイナミックレンジ拡大処理を行うために、オーバーフロー前の電荷に応じた信号、オーバーフロー後の電荷に応じた信号、オーバーフロー前の電荷に応じた信号に含まれるノイズ信号、オーバーフロー後の電荷に応じた信号に含まれるノイズ信号、の4つのアナログ電圧信号を独立に保持するためである。しかしながら、必ずしもそうした目的に拘泥することなく、他の動作態様で各記憶素子24a〜24dを利用することもできる。例えば、各画素10の蓄積キャパシタ36を利用しないのであれば、オーバーフロー後の信号やオーバーフロー後の信号に含まれるノイズ信号は考慮する必要がなく、その分だけ連続撮影のフレーム数を増やすのに記憶素子24を利用することができる。これにより、2倍の208フレームの連続撮影が可能となる。また、ノイズ除去も行わないのであれば、さらに2倍の416フレームの連続撮影が可能となる。
キャパシタ25a〜25dは各画素10内の蓄積キャパシタ36と同様に、例えばダブルポリシリコンゲート構造やスタック構造により形成することができる。CCD構造を利用した電荷保持を行う場合、熱励起等による暗電荷に由来する偽信号が光信号に加算されるという問題があるが、ダブルポリシリコンゲート構造やスタック構造のキャパシタ25a〜25dではそうした暗電荷の発生がないので偽信号が加算されることがなく、外部に読み出す信号のS/Nを高くすることができる。
なお、キャパシタ25a〜25dは単位面積当たりの容量が大きいことが望ましいから、高誘電率の絶縁膜を用いるとよい。これにより、記憶領域3a、3bの面積を抑えることができ、この固体撮像素子のチップ面積も抑えることができる。また、単位面積当たりの容量をより大きくするために、キャパシタ25a〜25dの絶縁膜をトレンチ構造などの非平面構造としてもよい。
図10は、記憶領域3a内の各記憶部に保持されている信号を、上述したような信号出力線23を通して読み出すための概略構成を示すブロック図である。2次元アレイ状に配置された記憶部ユニット20(20−01〜20−10)の垂直方向の1列毎に水平シフトレジスタHSR1〜HSR320が配置され、水平方向の1行毎に垂直シフトレジスタVSR1〜VSR104が配置されている。逐次読み出しの際には、水平シフトレジスタHSR1〜HSR320と垂直シフトレジスタVSR1〜VSR104との組み合わせにより記憶部ユニット20が選択され、選択された記憶部ユニット20の中で順番に記憶部22が選択されて画素信号が読み出されるようになっている。
続いて、本実施例の固体撮像素子を用いて高速連続撮影を行う際の動作について説明する。まず各画素10における光電変換動作とこれにより生成される信号を1個の記憶部22に格納するまでの動作について、図11〜図14により説明する。
本実施例の固体撮像素子では、光電荷蓄積時間が短い場合と光電荷蓄積時間が相対的に長い場合とで異なる2つの動作モードを選択し得る。目安として、前者は光電荷蓄積時間が10μs程度以下の、フローティングディフュージョンで発生する暗電荷量が無視できると考えられる場合であり、100万フレーム/秒以上の高速撮影を行う場合にはこの動作モードを採用することが好ましい。
(A)光電荷蓄積時間が短い場合の動作モード
図11は光電荷蓄積時間が短い場合の動作モードの駆動タイミング図、図12はこの動作における各画素10内の概略ポテンシャル図である。なお、図12(後述の図14も同様)でCPD、CFD、CCSはそれぞれフォトダイオード31、フローティングディフュージョン33、蓄積キャパシタ36の容量を示し、CFD+CCSはフローティングディフュージョン33と蓄積キャパシタ36の合成容量を示す。
この場合、各画素10に供給する共通の制御信号であるφXをハイレベルとして、ソースフォロアアンプ43内の選択トランジスタ38、41をともにオン状態に維持する。そして、光電荷蓄積を行う前に、同じく共通の制御信号であるφT、φC、φRをハイレベルとし、転送トランジスタ32、蓄積トランジスタ34、及びリセットトランジスタ35を共にオンする(時刻t0)。これにより、フローティングディフュージョン33及び蓄積キャパシタ36はリセット(初期化)される。またこのとき、フォトダイオード31は完全に空乏化された状態にある。このときのポテンシャルの状態が図12(a)である。
次にφRをローレベルにしてリセットトランジスタ35をオフすると、フローティングディフュージョン33にはこのフローティングディフュージョン33と蓄積キャパシタ36で発生するランダムノイズと、ソースフォロアアンプ43のトランジスタ37の閾値電圧のばらつきに起因する固定パターンノイズを等価的に含むノイズ信号N2が生じ(図12(b)参照)、このノイズ信号N2に対応した出力電流が画素出力線141に流れる。そこで、このタイミング(時刻t1)で記憶部22にサンプリングパルスφN2を与えてサンプリングトランジスタ26dをオンすることにより、画素出力線141を通して出力されたノイズ信号N2をキャパシタ25dに保持する。
次に、φCをローレベルにして蓄積トランジスタ34をオフすると、その時点でフローティングディフュージョン33及び蓄積キャパシタ36に蓄積されていた信号電荷は、フローティングディフュージョン33と蓄積キャパシタ36とのそれぞれの容量CFD、CCSの比に応じて配分される(図12(c)参照)。このときフローティングディフュージョン33には、φCをオフしたときに発生するランダムノイズとソースフォロアアンプ43のトランジスタ37の閾値電圧のばらつきに起因する固定パターンノイズを等価的に含むノイズ信号N1が生じ、このノイズ信号N1に対応した出力電流が画素出力線141に流れる。そこで、このタイミング(時刻t2)で記憶部22にサンプリングパルスφN1を与えてサンプリングトランジスタ26cをオンすることにより、画素出力線141を通して出力されたノイズ信号N1をキャパシタ25cに保持する。
転送トランジスタ32はオン状態に維持されるので、フォトダイオード31に入射した光により発生した光電荷は転送トランジスタ32を通して(図6(b)に示した状態)フローティングディフュージョン33に流れ込んできて、先のノイズ信号N1に重畳してフローティングディフュージョン33に蓄積される(時刻t3)。強い光が入射してフォトダイオード31で多量の光電荷が発生しフローティングディフュージョン33が飽和した場合には、オーバーフローした電荷が蓄積トランジスタ34を介して蓄積キャパシタ36に蓄積される(図12(d)参照)。蓄積トランジスタ34の閾値電圧を適宜に低く設定しておくことにより、フローティングディフュージョン33から蓄積キャパシタ36に効率良く電荷を転送することができる。これにより、フローティングディフュージョン33の容量CFDが小さく、蓄積可能な最大飽和電荷量が少なくても、飽和した電荷を廃棄することなく有効に利用することができる。このようにして、フローティングディフュージョン33での電荷飽和(オーバーフロー)前及び電荷飽和(オーバーフロー)後のいずれに発生した電荷も、出力信号として利用することができる。
所定の光電荷蓄積時間が経過したならば、蓄積トランジスタ34をオフした状態で記憶部22にサンプリングパルスφS1を与えることでサンプリングトランジスタ26aをオンすることにより、その時点(時刻t4)でフローティングディフュージョン33に蓄積されている電荷に応じた信号を画素出力線141を通して出力してキャパシタ25aに保持する(図12(e)参照)。このときにフローティングディフュージョン33に蓄積されている信号はノイズ信号N1にオーバーフロー前の電荷に応じた信号S1が重畳されたものであるから、キャパシタ25aに保持されるのは、蓄積キャパシタ36に蓄積されている電荷の量を反映しないS1+N1である。
その直後に、φCをハイレベルにして蓄積トランジスタ34をオンすると、その時点でフローティングディフュージョン33に保持されていた電荷と蓄積キャパシタ36に保持されていた電荷は混合される(図12(f)参照)。その状態で記憶部22にサンプリングパルスφS2を与えることでサンプリングトランジスタ26bをオンすることにより(時刻t5)、フローティングディフュージョン33及び蓄積キャパシタ36に蓄積されていた電荷に応じた信号、つまりノイズ信号N2にオーバーフロー後の信号S2が重畳された信号を画素出力線141を通して出力してキャパシタ25bに保持する。従って、キャパシタ25bに保持されるのは、蓄積キャパシタ36に蓄積されている電荷の量を反映したS2+N2である。
以上のようにして、1個の記憶部22に含まれる4個のキャパシタ25a、25b、25c、25dにそれぞれ、信号S1+N1、S2+N2、N1、N2を保持し、これを以て1サイクルの画像信号の取り込みを終了する。上述のようにランダムノイズや固定パターンノイズを含むノイズ信号N1、N2が、これらノイズ信号を含む信号とは別に求まる。従って、それぞれの信号をキャパシタ25a、25b、25c、25dから読み出した後に減算処理することで、ノイズ信号N1、N2の影響を除去した高いS/Nの画像信号を得ることができる。また、フローティングディフュージョン33からオーバーフローした電荷も廃棄せずに利用することができるので、強い光が入射した際にも飽和が起こりにくく、その光を反映した信号を得ることができ、広いダイナミックレンジを確保することができる。なお、こうしたダイナミックレンジの拡大が可能であることについての詳しい説明は例えば特開2006−245522号公報などの文献に記載されているので、ここでは説明を省略する。
(B)光電荷蓄積時間が相対的に長い場合の動作モード
次に、光電荷蓄積時間が相対的に長い場合の動作について説明する。図13は光電荷蓄積時間が相対的に長い場合の駆動タイミング図、図14はこの動作における各画素内の概略ポテンシャル図である。
光電荷蓄積時間が短い場合と最も大きく異なる点は、光電荷蓄積期間中に転送トランジスタ32をオフしフォトダイオード31で発生した光電荷を空乏層に蓄積すること、光電荷蓄積期間中において転送トランジスタ32をオフにすること、ノイズ信号N1のサンプリングを光電荷蓄積期間の最後に行うことによりフローティングディフュージョン33で発生する暗電荷(及び光電荷)をS1信号に含めないこと、などである。転送トランジスタ32をオフにするのは、そのゲート直下のシリコン−絶縁膜界面をアキュムレーション状態として、シリコン表面をホールで満たしシリコン−絶縁膜界面からの暗電荷の侵入を防止するためである。さらにまた光電荷蓄積時間が長いため、消費電力を抑えるべくソースフォロアアンプ43の選択トランジスタ38、41を所定時間オフするようにしている。
光電荷蓄積を行う前にはφT、φC、φRをハイレベルとし、転送トランジスタ32、蓄積トランジスタ34、リセットトランジスタ35を共にオンする(時刻t10)。これにより、フローティングディフュージョン33及び蓄積キャパシタ36はリセット(初期化)される。またこのとき、フォトダイオード31は完全に空乏化された状態にある。このときのポテンシャルの状態が図14(a)である。
次にφRをローレベルにしてリセットトランジスタ35をオフすると、フローティングディフュージョン33にはこのフローティングディフュージョン33と蓄積キャパシタ36で発生するランダムノイズと、ソースフォロアアンプ43のトランジスタ37の閾値電圧のばらつきに起因する固定パターンノイズを等価的に含むノイズ信号N2が生じ(図14(b)参照)、このノイズ信号N2に対応した出力電流が画素出力線141に流れる。そこで、このタイミング(時刻t11)で記憶部22にサンプリングパルスφN2を与えてサンプリングトランジスタ26dをオンすることにより、画素出力線141を通して出力されたノイズ信号N2をキャパシタ25dに保持する。ここまでの動作は光電荷蓄積時間が短い場合の動作モードと同じである。
次に、φCをローレベルにして蓄積トランジスタ34をオフすると、その時点でフローティングディフュージョン33及び蓄積キャパシタ36に蓄積されていた信号電荷は、フローティングディフュージョン33と蓄積キャパシタ36とのそれぞれの容量CFD、CCSの比に応じて配分される。さらにφTをローレベルにして転送トランジスタ32をオフし、φXもローレベルにしてソースフォロアアンプ43の2個の選択トランジスタ38、41もオフにする(時刻t12)。これにより、フォトダイオード31とフローティングディフュージョン33との間にはポテンシャル障壁が形成され、フォトダイオード31での光電荷の蓄積が可能な状態となる(図14(c)参照)。
フォトダイオード31に入射した光により発生した光電荷はフォトダイオード31の容量CPDに蓄積されるが、フォトダイオード31で飽和が生じるとそれ以上の過剰な電荷は転送トランジスタ32を介して、上述のように容量比により配分されたノイズ信号に重畳してフローティングディフュージョン33に蓄積する。さらに強い光が入射してフローティングディフュージョン33が飽和すると、蓄積トランジスタ34を介して蓄積キャパシタ36に電荷が蓄積されるようになる(図14(d)参照)。
蓄積トランジスタ34の閾値電圧を転送トランジスタ32の閾値電圧よりも適宜に低く設定しておくことにより、フローティングディフュージョン33で飽和した電荷をフォトダイオード31側に戻すことなく蓄積キャパシタ36に効率良く転送することができる。これにより、フローティングディフュージョン33の容量CFDが小さく、蓄積可能な電荷量が少なくても、オーバーフローした電荷を廃棄することなく有効に利用することができる。このようにして、フローティングディフュージョン33でのオーバーフロー前及びオーバーフロー後のいずれに発生した電荷も出力信号として利用することができる。
所定の光電荷蓄積時間が経過したならば、φXをハイレベルにして選択トランジスタ38、41をオンした後に、記憶部22にサンプリングパルスφN1を与えることでサンプリングトランジスタ26cをオンすることにより、その時点(時刻t13)でフローティングディフュージョン33に蓄積されている信号電荷に対応したノイズ信号N1を画素出力線141を通して出力してキャパシタ25cに保持する。このときのノイズ信号N1にはソースフォロアアンプ43のトランジスタ37の閾値電圧のばらつきに起因する固定パターンノイズが含まれる。
次に、φTをハイレベルにして転送トランジスタ32をオンさせ、フォトダイオード31に蓄積されていた光電荷をフローティングディフュージョン33に完全に転送する(図14(e)参照)。その直後(時刻t14)に、記憶部22にサンプリングパルスφS1を与えることでサンプリングトランジスタ26aをオンすることにより、フローティングディフュージョン33に蓄積されている電荷に応じた信号を画素出力線141を通して出力してキャパシタ25aに保持する。このときの信号は先のノイズ信号N1にフォトダイオード31に蓄積されていた電荷による信号、つまりオーバーフロー前の信号S1が重畳したものであるから、S1+N1である。
続いて、φCをハイレベルにして蓄積トランジスタ34をオンすると、その時点でフローティングディフュージョン33に保持されていた電荷と蓄積キャパシタ36に保持されていた電荷は混合される(図14(f)参照)。その状態(時刻t15)で記憶部22にサンプリングパルスφS2を与えることでサンプリングトランジスタ26bをオンすることにより、フローティングディフュージョン33及び蓄積キャパシタ36に蓄積されていた電荷に応じた信号を画素出力線141を通して出力してキャパシタ25bに保持する。このときの信号はS2+N2となる。
以上のようにして、1個の記憶部22に含まれる4個のキャパシタ25a、25b、25c、25dにそれぞれ、信号S1+N1、S2+N2、N1、N2を保持し、これを以て1サイクルの画像信号の取り込みを終了する。光電荷蓄積時間が短い場合の動作モードと同様に、ランダムノイズや固定パターンノイズを含むノイズ信号N1、N2が、これらノイズ信号を含む信号とは別に求まるから、それぞれの信号をキャパシタ25a、25b、25c、25dから読み出した後に減算処理することで、ノイズ信号N1、N2の影響を除去した高いS/Nの画素信号を得ることができる。また、フローティングディフュージョン33からオーバーフローした電荷も廃棄せずに利用することができるので、強い光が入射した際にも飽和が起こりにくく、その光を反映した信号を得ることができ、広いダイナミックレンジを確保することができる。
上述の如く各画素10に供給される制御信号φX、φT、φR、φCは共通であるため、全ての画素10で同時に上記のような光電荷蓄積動作及び各画素10から記憶部22への信号の転送動作が行われる。つまり、上記1サイクルで1フレーム分の画像信号が、図3中の記憶領域3aの水平方向に並ぶ320個の記憶部ユニット20内の記憶部22に保持される。この動作が104回繰り返されることで、全ての記憶部ユニット20内の記憶部22に画素信号が保持される。105回目以降は再び1番上の記憶部ユニット20に画素信号が書き込まれるというように、循環的に保持動作が実行される。このような動作を、外部から撮影停止指示信号が与えられるまで繰り返す。撮影停止指示信号が与えられ撮影が中止されると、その時点では、最新の104フレーム分の画素信号が記憶領域3a、3bに保持されている。
なお、各記憶部22において上述のように既に何らかの信号が保持されているキャパシタ25に新たな信号を保持する際には、それ以前の信号を廃棄するべくリセットを実行する必要がある。そのため、図示しないものの、各画素出力線141にはそれぞれリセット用のトランジスタが接続されており、或る記憶部22のキャパシタ25をリセットする際にはその記憶部22のサンプリングトランジスタ26がオンされるとともに対応する画素出力線141に接続されているリセット用トランジスタがオンされ、キャパシタ25に蓄積されている信号はサンプリングトランジスタ26、画素出力線141を通してリセットされる。こうしたリセットが実行された後に、新たな信号がキャパシタ25に保持される。
各記憶部22のキャパシタ25に保持された信号は、同一の信号出力線23に接続された読み出しトランジスタ27を順番にオンすることにより読み出す。同一記憶部22の4個の読み出しトランジスタ27a〜27dはそれぞれ異なる信号出力線23a〜23dに接続されているから、同一記憶部22内の4個のキャパシタ25a〜25dにそれぞれ保持されている信号は同時に読み出すことができる。そして、図示しない減算回路で(S1+N1)−N1、(S2+N2)−N2の減算処理を行うことにより、ランダムノイズや固定パターンノイズを除去したS1信号、S2信号をそれぞれ取り出すことができる。なお、画素信号としてS1、S2のいずれを採用するかは、S1の飽和信号量以下の適当な信号レベルを基準(閾値)として、それ以上かそれ未満かでそれぞれS1、S2を選択するようにする。飽和信号量以下でこうした切り替えを実施することにより、信号S1の飽和ばらつきの影響を回避することができる。
次に、記憶領域3a、3bからの信号の逐次読み出しの動作について図15〜図17により説明する。図15は記憶領域3a、3bからの信号の逐次読み出し時の動作タイミング図、図16は水平シフトレジスタHSRの要部の動作タイミング図、図17は垂直シフトレジスタVSRの要部の動作タイミング図である。
一例として、図10に示した1フレーム目の320個の記憶部ユニット20の中で、左端側の記憶部ユニットブロック50における読み出し順序を説明する。まず左端の記憶部ユニット20−01において、図7に示す水平方向の1行目の記憶部22の画素信号を左から右に向かって順に11画素分読み出す。この記憶部ユニット20−01は、水平シフトレジスタHSR1と垂直シフトレジスタVSR1とが能動化されることで選択され、水平方向の読み出しクロックH−CLKにより、水平方向の左から右方向へ1個ずつ記憶部22の読み出しトランジスタ27をオンするパルス信号が移動する。このパルス信号の一例が図16に示したy1、y2、y3である。こうして1行分の読み出しが終わると、垂直方向への読み出しを進めるクロックV−CLKが与えられ、これにより次の2行目の記憶部22に移り、同様にこれを左から右に向かって11画素分読み出す。この繰り返しにより、12行目の終わりまで画素信号の読み出しを行う。この垂直方向における各行の読み出しトランジスタ27を能動化する信号の一例が図17に示したv1、v2、v3である。
その後に、今度は水平シフトレジスタHSR2と垂直シフトレジスタVSR1とが能動化されることで、右隣の記憶部ユニット20−02が選択され、図16に示すように、読み出し対象がこの記憶部ユニット20−02へ移る。そうして先と同様に、行→列の順に1画素分ずつ各記憶部22の読み出しトランジスタ27をオンすることにより信号を読み出す。こうして順に記憶部ユニット20の選択を記憶部ユニット20−10まで進め、前記記憶部ユニット20−10の12行目の記憶部22の読み出しを終了すると、1フレーム分の読み出しが完了する。別の記憶部ユニットブロック50でも上記と並行して対応する記憶部ユニットの記憶部からの信号の読み出しが実行される。
上述のようにして1フレーム目の全ての画素信号の読み出しが終了した後に、引き続き、2フレーム目の画素信号の読み出しが開始される。即ち、図16に示すように、水平シフトレジスタHSR1と垂直シフトレジスタVSR2とが能動化されることで、図10に示した2行目の記憶部ユニットの中の左端のものが選択されるから、1フレーム目と同様の順序で読み出しが実行され、これを繰り返すことで104フレームまでの読み出しが完了する。但し、こうした、読み出しの手順は特にこれに限定されるものではなく、適宜に変更することができる。
上記実施例の固体撮像素子では、画素出力線14を光電変換領域11上に配置した構成とすることもできる。さらに、集光率を向上するために、画素出力線14の上に、概略球面の一部又は概略円柱の一部の形状を有する複数のオンチップマイクロレンズを画素出力線14間に結像するように配置した構成としてもよい。
上記実施例の固体撮像素子では、画素領域2(2a、2b)と記憶領域3a、3bとをそれぞれ独立した領域とし、半導体基板1上の同一面上に分離して設けていたが、裏面光入射型の構造とすることもできる。即ち、例えばフォトダイオード31を二次元アレイ状に配置した光入射面を、トランジスタ等を形成したパターン面とは反対側とすることにより、画素領域2(2a、2b)と記憶領域3a、3bとを分離してもよい。
また画素領域2(2a、2b)と記憶領域3a、3bとを同一の半導体チップ上に形成せずにそれぞれ別の半導体チップ上に形成し、既知の手法で両者を接続する構成としてもよい。具体的には、別々の半導体チップを別の基板上に搭載し、ワイヤボンディングにより両者の間の信号のやり取りを行う構成とすることができる。また、水平方向に並べずに、例えばフリップチップ実装により複数の半導体チップ間の信号のやり取りを可能として積層するようにしてもよい。
また、画素領域2(2a、2b)と記憶領域3a、3bとを別の半導体チップ上に設けるのではなく、二次元アレイ状のフォトダイオード31を1つの半導体チップに、フォトダイオード31を除く画素領域2(2a、2b)と記憶領域3a、3bとを別の半導体チップ上に形成し、それらをワイヤボンディング又はフリップチップ実装により接続するようにしてもよい。
また上記実施例は本発明に係る固体撮像素子の一例であり、本発明の趣旨の範囲で適宜変形や修正、追加を行っても本願請求の範囲に包含されることは当然である。

Claims (15)

  1. a)光を受光して光電荷を生成する光電変換素子、該光電変換素子で生成された光電荷を電荷信号から電圧信号に変換する検出ノード、前記光電変換素子を前記検出ノードへ転送する転送素子、前記検出ノードから後記複数本の画素出力線のうちの1本の画素出力線に出力信号を送出するバッファ素子、及び、少なくとも前記光電変換素子及び前記検出ノードをリセットするリセット素子、を含む画素二次元アレイ状に複数配列された画素領域と、
    b)前記画素領域内の各画素からそれぞれ独立に後記記憶領域まで延設された複数本の画素出力線と、
    c)前記画素領域とは分離された領域であって、画素領域内の各画素に対応して前記複数本の画素出力線のうちの1本の画素出力線を通して同一バッファ素子から送られる出力信号を保持するための複数の記憶部が集約して配設された記憶領域と、
    を有し前記複数本の画素出力線にそれぞれ各画素に対応付けられた前記複数の記憶部が接続され、該複数の記憶部はそれぞれ少なくとも1個の記憶素子を含み、各記憶素子と該記憶素子が含まれる記憶部に接続された1本の画素出力線との間にはゲート手段が設けられることを特徴とする固体撮像素子。
  2. 請求項に記載の固体撮像素子において、
    各画素における光電荷蓄積動作と各画素出力線を通しての各画素からの信号の読み出し動作とが、全画素で同時に実行されるように各画素に供給される制御信号が共通化されていることを特徴とする固体撮像素子。
  3. 請求項に記載の固体撮像素子において、
    各画素における光電荷蓄積動作と各画素出力線を通しての各画素からの信号の読み出し動作とが全画素で同時に繰り返され、且つ、信号の読み出し動作毎に各画素出力線を通して送られる信号が前記複数の記憶部に順番に保持されるように、各画素及び記憶部に対して制御信号を供給することを特徴とする固体撮像素子。
  4. 請求項に記載の固体撮像素子において、
    同一の列又は行に属する複数の画素からの画素出力線を列毎又は行毎に集約して垂直方向又は垂直方向に配設したことを特徴とする固体撮像素子。
  5. 請求項に記載の固体撮像素子において、
    前記画素領域を垂直方向及び/又は水平方向に複数に区画し、それぞれの区画画素領域の中で同一の列又は行に属する複数の画素からの画素出力線を列毎又は行毎に集約して垂直方向又は水平方向に配設したことを特徴とする固体撮像素子。
  6. 請求項又はに記載の固体撮像素子において、
    前記画素領域は平面視で矩形状であり、前記記憶領域は前記画素領域の四辺の中の1乃至複数の外側に配置されることを特徴とする固体撮像素子。
  7. 請求項に記載の固体撮像素子において、
    前記区画画素領域に対応して前記記憶領域を分割し、その分割記憶領域をそれぞれ前記画素領域の四辺の中の異なる辺の外側に配置したことを特徴とする固体撮像素子。
  8. 請求項に記載の固体撮像素子において、
    前記画素領域内の各画素は、光電荷を蓄積する光電荷蓄積動作時に前記光電変換素子から前記転送素子を通して溢れた又は前記検出ノードから溢れた光電荷を蓄積する電荷蓄積素子を少なくとも1つ有することを特徴とする固体撮像素子。
  9. 請求項に記載の固体撮像素子において、
    1画素に対応した複数の記憶部のそれぞれが、独立に各画素からの出力信号を保持可能な複数の記憶素子を有し、1回の光電荷蓄積動作のサイクルの中で、各画素内で光電変換素子及び検出ノードがリセットされた際に残るノイズ成分、光電荷を蓄積する際に前記電荷蓄積素子に溢れ出る前の電荷に応じた信号、及び光電荷を蓄積する際に前記電荷蓄積素子に溢れ出た後の電荷に応じた信号が、同一の記憶部で異なる記憶素子に保持されるように、各画素及び記憶部に対して制御信号を供給することを特徴とする固体撮像素子。
  10. 請求項に記載の固体撮像素子において、
    1画素に対応した複数の記憶部のそれぞれが、独立に各画素からの出力信号を保持可能な複数の記憶素子を有し、1回の光電荷蓄積動作のサイクルの中で、各画素内で光電変換素子及び検出ノードがリセットされた際に残るノイズ成分と、光電荷の蓄積による電荷に応じた信号とが、同一の記憶部で異なる記憶素子に保持されるように、各画素及び記憶部に対して制御信号を供給することを特徴とする固体撮像素子。
  11. 請求項に記載の固体撮像素子において、
    前記複数の画素出力線を前記光電変換素子上に配し、複数の画素出力線上に、概略球面の一部又は概略円柱の一部の形状を有する複数のオンチップマイクロレンズを前記画素出力線間に結像するように配置したことを特徴とする固体撮像素子。
  12. 請求項に記載の固体撮像素子において、
    各画素の少なくとも前記光電変換素子を、半導体基板の前記記憶領域が形成された素子形成面とは反対側の裏面に配置し、この裏面を光入射面としたことを特徴とする固体撮像素子。
  13. 請求項に記載の固体撮像素子において、
    絶縁物層で分離された複数の半導体層を有する3次元集積回路として構成され、前記画素領域と前記記憶領域とが異なる半導体層に形成されていることを特徴とする固体撮像素子。
  14. 請求項に記載の固体撮像素子において、
    複数の半導体集積回路素子から構成され、前記画素領域と前記記憶領域とが異なる半導体集積回路素子に形成されていることを特徴とする固体撮像素子。
  15. 請求項に記載の固体撮像素子において、
    前記記憶部は、キャパシタと、前記画素出力線を通して送られる各画素からの出力信号を前記キャパシタに送り込むスイッチ素子と、を含むことを特徴とする固体撮像素子。
JP2009531123A 2007-09-05 2008-09-04 固体撮像素子 Active JP4931160B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009531123A JP4931160B2 (ja) 2007-09-05 2008-09-04 固体撮像素子

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007230178 2007-09-05
JP2007230178 2007-09-05
JP2009531123A JP4931160B2 (ja) 2007-09-05 2008-09-04 固体撮像素子
PCT/JP2008/002425 WO2009031301A1 (ja) 2007-09-05 2008-09-04 固体撮像素子

Publications (2)

Publication Number Publication Date
JPWO2009031301A1 JPWO2009031301A1 (ja) 2010-12-09
JP4931160B2 true JP4931160B2 (ja) 2012-05-16

Family

ID=40428625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009531123A Active JP4931160B2 (ja) 2007-09-05 2008-09-04 固体撮像素子

Country Status (7)

Country Link
US (1) US8988571B2 (ja)
EP (1) EP2190185B1 (ja)
JP (1) JP4931160B2 (ja)
KR (1) KR101126322B1 (ja)
CN (1) CN101796822A (ja)
TW (1) TW200922308A (ja)
WO (1) WO2009031301A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10186537B2 (en) 2016-03-07 2019-01-22 Ricoh Company Ltd. Pixel unit and imaging device
US10468460B2 (en) 2017-04-12 2019-11-05 Samsung Electronics Co., Ltd. Image sensors

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009031304A1 (ja) * 2007-09-05 2009-03-12 Tohoku University 固体撮像素子及びその製造方法
JP5176215B2 (ja) 2008-06-10 2013-04-03 国立大学法人東北大学 固体撮像素子
CN102473714B (zh) 2009-07-10 2016-06-22 株式会社岛津制作所 固体摄像元件
JP2011233949A (ja) * 2010-04-23 2011-11-17 Olympus Corp 撮像装置
JP5709404B2 (ja) * 2010-05-10 2015-04-30 キヤノン株式会社 固体撮像装置およびその駆動方法
JP4657379B1 (ja) * 2010-09-01 2011-03-23 株式会社ナックイメージテクノロジー 高速度ビデオカメラ
WO2012107995A1 (ja) 2011-02-08 2012-08-16 国立大学法人東北大学 固体撮像素子及びその駆動方法
KR101251744B1 (ko) * 2011-04-13 2013-04-05 엘지이노텍 주식회사 Wdr 픽셀 어레이, 이를 포함하는 wdr 이미징 장치 및 그 구동방법
JP2013015357A (ja) * 2011-07-01 2013-01-24 Shimadzu Corp フローサイトメータ
US8836626B2 (en) 2011-07-15 2014-09-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for driving the same
JP5959187B2 (ja) * 2011-12-02 2016-08-02 オリンパス株式会社 固体撮像装置、撮像装置、および信号読み出し方法
US9007504B2 (en) * 2012-04-06 2015-04-14 Omnivision Technologies, Inc. Method, apparatus and system for reducing pixel cell noise
JP6042636B2 (ja) * 2012-05-28 2016-12-14 オリンパス株式会社 固体撮像素子および固体撮像装置
EP2890117B1 (en) 2013-12-26 2020-11-18 IMEC vzw Improvements in or relating to imaging sensors
TWI648986B (zh) * 2014-04-15 2019-01-21 日商新力股份有限公司 攝像元件、電子機器
JP6218799B2 (ja) 2015-01-05 2017-10-25 キヤノン株式会社 撮像素子及び撮像装置
US10070088B2 (en) * 2015-01-05 2018-09-04 Canon Kabushiki Kaisha Image sensor and image capturing apparatus for simultaneously performing focus detection and image generation
WO2017006411A1 (ja) * 2015-07-06 2017-01-12 株式会社島津製作所 固体撮像素子の信号処理方法及び駆動方法
GB2544333B (en) * 2015-11-13 2018-02-21 Advanced Risc Mach Ltd Display controller
WO2017163774A1 (ja) * 2016-03-24 2017-09-28 株式会社ニコン 撮像素子および撮像装置
JP6789678B2 (ja) * 2016-06-06 2020-11-25 キヤノン株式会社 撮像装置、撮像システム
DE102016212765A1 (de) * 2016-07-13 2018-01-18 Robert Bosch Gmbh Pixeleinheit für einen Bildsensor, Bildsensor, Verfahren zum Sensieren eines Lichtsignals, Verfahren zum Ansteuern einer Pixeleinheit und Verfahren zum Generieren eines Bildes unter Verwendung einer Pixeleinheit
TWI754696B (zh) * 2016-12-14 2022-02-11 日商索尼半導體解決方案公司 固體攝像元件及電子機器
DE102019101752B4 (de) 2018-02-05 2020-08-06 pmdtechnologies ag Pixelarray für eine Kamera, Kamera und Lichtlaufzeitkamerasystem mit einer derartigen Kamera
CN113614565B (zh) * 2019-03-29 2024-03-08 凸版印刷株式会社 固体摄像装置、摄像系统及摄像方法
DE102019113597B3 (de) 2019-05-22 2020-08-06 pmdtechnologies ag Pixelarray für eine Kamera, Kamera und Lichtlaufzeitkamerasystem mit einer derartigen Kamera
KR20210059469A (ko) * 2019-11-15 2021-05-25 삼성전자주식회사 픽셀 어레이 및 이를 포함하는 이미지 센서
JP7330124B2 (ja) * 2020-03-19 2023-08-21 株式会社東芝 固体撮像装置
JP7030929B2 (ja) * 2020-11-04 2022-03-07 キヤノン株式会社 撮像装置、撮像システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63174356A (ja) * 1987-01-14 1988-07-18 Agency Of Ind Science & Technol 画像処理用半導体装置
JP2005303621A (ja) * 2004-04-09 2005-10-27 Link Research Kk 高速撮像装置
JP2006101479A (ja) * 2004-09-02 2006-04-13 Canon Inc 固体撮像装置及びそれを用いたカメラ
JP2007166581A (ja) * 2005-11-16 2007-06-28 Matsushita Electric Ind Co Ltd 高速撮影用固体撮像装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3351503B2 (ja) * 1996-10-09 2002-11-25 シャープ株式会社 固体撮像装置
US6787749B1 (en) * 1996-11-12 2004-09-07 California Institute Of Technology Integrated sensor with frame memory and programmable resolution for light adaptive imaging
US5872484A (en) * 1997-07-11 1999-02-16 Texas Instruments Incorporated High performance current output amplifier for CCD image sensors
US6078037A (en) 1998-04-16 2000-06-20 Intel Corporation Active pixel CMOS sensor with multiple storage capacitors
US7139025B1 (en) * 1998-10-29 2006-11-21 Micron Technology, Inc. Active pixel sensor with mixed analog and digital signal integration
US6429036B1 (en) * 1999-01-14 2002-08-06 Micron Technology, Inc. Backside illumination of CMOS image sensor
US6307243B1 (en) * 1999-07-19 2001-10-23 Micron Technology, Inc. Microlens array with improved fill factor
JP3704052B2 (ja) 2000-03-28 2005-10-05 リンク・リサーチ株式会社 高速撮像素子及び高速撮影装置
US6985181B2 (en) * 2000-05-09 2006-01-10 Pixim, Inc. CMOS sensor array with a memory interface
US7027092B2 (en) * 2001-09-17 2006-04-11 Hewlett-Packard Development Company, L.P. Image capture and storage device
JP3846572B2 (ja) * 2001-09-20 2006-11-15 ソニー株式会社 固体撮像装置
JP4466612B2 (ja) 2001-09-20 2010-05-26 ソニー株式会社 固体撮像装置及びその制御方法
US7071982B2 (en) * 2001-10-24 2006-07-04 Texas Instruments Incorporated Adaptive relative and absolute address coding CMOS imager technique and system architecture
US20030206236A1 (en) * 2002-05-06 2003-11-06 Agfa Corporation CMOS digital image sensor system and method
JP4601897B2 (ja) * 2002-11-13 2010-12-22 ソニー株式会社 固体撮像装置及びその駆動方法
US20040125093A1 (en) * 2002-12-30 2004-07-01 Serge Rutman Micro-controller with integrated light modulator
US7817193B2 (en) 2004-11-25 2010-10-19 Sony Corporation Image pickup apparatus and image pickup method to display or record images picked up at high rate in real time
JP5066704B2 (ja) 2005-02-04 2012-11-07 国立大学法人東北大学 固体撮像装置、および固体撮像装置の動作方法
JP4561439B2 (ja) * 2005-03-30 2010-10-13 株式会社デンソー 撮像装置
KR100682829B1 (ko) 2005-05-18 2007-02-15 삼성전자주식회사 씨모스 이미지 센서의 단위 픽셀, 픽셀 어레이 및 이를포함한 씨모스 이미지 센서
JP4745876B2 (ja) * 2006-03-29 2011-08-10 キヤノン株式会社 画像処理装置及び画像処理方法
JP4293210B2 (ja) * 2006-08-18 2009-07-08 ソニー株式会社 物理量検出装置、物理量検出装置の駆動方法、固体撮像装置、固体撮像装置の駆動方法、及び撮像装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63174356A (ja) * 1987-01-14 1988-07-18 Agency Of Ind Science & Technol 画像処理用半導体装置
JP2005303621A (ja) * 2004-04-09 2005-10-27 Link Research Kk 高速撮像装置
JP2006101479A (ja) * 2004-09-02 2006-04-13 Canon Inc 固体撮像装置及びそれを用いたカメラ
JP2007166581A (ja) * 2005-11-16 2007-06-28 Matsushita Electric Ind Co Ltd 高速撮影用固体撮像装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10186537B2 (en) 2016-03-07 2019-01-22 Ricoh Company Ltd. Pixel unit and imaging device
US10468460B2 (en) 2017-04-12 2019-11-05 Samsung Electronics Co., Ltd. Image sensors

Also Published As

Publication number Publication date
US20100208115A1 (en) 2010-08-19
KR101126322B1 (ko) 2012-07-12
JPWO2009031301A1 (ja) 2010-12-09
EP2190185B1 (en) 2013-11-06
EP2190185A1 (en) 2010-05-26
WO2009031301A1 (ja) 2009-03-12
CN101796822A (zh) 2010-08-04
EP2190185A4 (en) 2010-08-18
KR20100038446A (ko) 2010-04-14
US8988571B2 (en) 2015-03-24
TW200922308A (en) 2009-05-16

Similar Documents

Publication Publication Date Title
JP4931160B2 (ja) 固体撮像素子
JP5176215B2 (ja) 固体撮像素子
JP5115937B2 (ja) 固体撮像素子及びその製造方法
KR101036596B1 (ko) 고체촬상소자 및 그 구동방법
KR101836039B1 (ko) 고체 촬상 센서, 고체 촬상 센서의 구동 방법, 촬상 장치 및 전자 기기
JP4844854B2 (ja) 固体撮像素子及び撮影装置
JP6541523B2 (ja) 撮像装置、撮像システム、および、撮像装置の制御方法
JP6570384B2 (ja) 撮像装置及び撮像システム
TWI458346B (zh) Solid - state photographic element and its driving method
KR101945051B1 (ko) 전자 기기 및 전자 기기의 구동 방법
JP2013005396A (ja) 固体撮像装置、固体撮像装置の駆動方法、及び電子機器
JP6376785B2 (ja) 撮像装置、および、撮像システム
JP6676317B2 (ja) 撮像装置、および、撮像システム
JP6525694B2 (ja) 撮像装置、撮像システム、および、撮像装置の駆動方法
JP6494814B2 (ja) 撮像装置、および、撮像システム
JP6289554B2 (ja) 撮像装置、および、撮像システム

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120210

R150 Certificate of patent or registration of utility model

Ref document number: 4931160

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250