JP4929851B2 - 画像形成装置 - Google Patents

画像形成装置 Download PDF

Info

Publication number
JP4929851B2
JP4929851B2 JP2006156986A JP2006156986A JP4929851B2 JP 4929851 B2 JP4929851 B2 JP 4929851B2 JP 2006156986 A JP2006156986 A JP 2006156986A JP 2006156986 A JP2006156986 A JP 2006156986A JP 4929851 B2 JP4929851 B2 JP 4929851B2
Authority
JP
Japan
Prior art keywords
voltage
component
current
photosensitive
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006156986A
Other languages
English (en)
Other versions
JP2007327992A (ja
Inventor
孝一 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Fujifilm Business Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd, Fujifilm Business Innovation Corp filed Critical Fuji Xerox Co Ltd
Priority to JP2006156986A priority Critical patent/JP4929851B2/ja
Priority to US11/640,217 priority patent/US7907854B2/en
Publication of JP2007327992A publication Critical patent/JP2007327992A/ja
Application granted granted Critical
Publication of JP4929851B2 publication Critical patent/JP4929851B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/02Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices
    • G03G15/0266Arrangements for controlling the amount of charge

Description

本発明は、放電を帯電原理とする接触又は近接帯電方式により、交流成分と直流成分とを印加して感光体を一様に帯電させる機構を有する画像形成装置に関し、特に、感光体の膜厚の測定技術に関する。
画像形成装置に搭載された感光体の表面には、各種の部材(例えば、帯電ローラ、現像ブラシ、転写ローラ、クリーニングブラシ、クリーニングブレード等)が物理的に接触した状態で配設される。このため、感光体の表面に形成された感光層は、画像形成の動作行程毎に物理的な接触を繰り返し、その表面が次第に磨耗していく。特に、クリーニングブラシやクリーニングブレードによる摺擦力は大きく、感光層磨耗の大きな要因となっている。
このような磨耗により感光層の厚みがある程度以上減少すると、光感度が著しく減退したり、帯電特性が劣化して表面を所望の電位に均一帯電させることができなくなったりして、鮮明な画像形成ができなくなる。このため、感光体の感光層の厚みを測定し、感光体の寿命を報知することが必要となる。
特許文献1では、感光体表面の2点の電位をプローブで測定し、暗減衰特性から帯電直後の表面電位V0を計算し、この表面電位V0と、単位放電長あたりの流れ込む電流Iから感光薄膜厚dを下式により求めている。
I=(ε/d)・v・V0
但し、ε:感光体誘電率、v:感光体移動速度。
また、特許文献2では、放電開始電圧以上の2つの電圧V1,V2を帯電ローラに印加し、それぞれ流れる電流I1,I2を測定する。
V−I特性の傾きは、(I2−I1)/(V2−V1)で計算される。このとき膜厚dを下式により求めている。
V−I特性の傾き=ε・L・VP/d
但し、VP:プロセススピード、ε:感光体誘電率、L:有効帯電幅、V2−V1:表面電位の差。
また、特許文献2では、ACバイアスとDCバイアスとを帯電ローラに印加し、感光体の表面電位を0からVdに帯電させる時に流れる電流Iを測定し、膜厚を下式により求めている。
I=ε・L・VP・Vd/d
さらに、特許文献3では、消去ランプで電荷が除去された感光体表面を、帯電ローラで再び一様に帯電する際に、感光体、帯電ローラ間を充電する帯電ローラのDC電流を測定すると、図13の第1象限にあるように感光薄膜厚が検知できるとしている。
特開昭59−69774号公報 特開平05−223513号公報 特開平09−101654号公報
しかしながら、特許文献1〜3に開示された技術はいずれも、感光体に流れる電流Iによって膜厚を検出しているが、電流Iにはリーク電流が含まれているため、算出式で求まる膜厚が正確な値であるとは言えない。
また、特許文献1では、暗減衰特性が環境に対して安定していないため電位算出値V0の精度が悪く、感光体移動速度vも変動するため、正確に膜厚が算出できない、という問題がある。
特許文献2では、V2−V1が環境による帯電部材の抵抗や汚れによる抵抗変動の影響を受け、表面電位差と一致しない。また、他の方法でも同様にVP、Iの精度の影響で求まる膜厚が精度な値とならない。
また、特許文献3では、以下の問題を有している。
まず、帯電ローラの微小なDC電流は、高圧部周りの表面状態に大きく依存するため、環境によって変動し易くなる。トナーを含めさまざまな埃が高圧部周辺に付着し、さらに湿度が高いと表面の抵抗が下がりリークでDC電流が増大し膜厚の検出精度が低下する。
また、消去ランプの光量によってDC電流が変動するという問題もある。つまり、消去ランプは残像消去のため帯電ローラで帯電する前に感光体表面の電位をグランドにするように接続されている。しかし、消去ランプの目的が残像をなくすことであるため、必ずしも感光体に光疲労を起こさせるような強い光を当て完全にグランドにする必要は無い。このため、通常、感光体表面電位は消去後も電荷が残り、この電荷が消去ランプの強さや感光体の劣化、環境などで変動するため、帯電ローラで再度帯電したときに流れるDC電流は一定にならない。このため、特許文献3においても、膜厚の値が正確に検出されているとは言えない。
さらに、消去ランプが無いと膜厚を検出できないという問題がある。即ち、消去ランプは残像が画質上聞題ない商品の場合は取り付けられていない。この場合、帯電ローラにはDC電流は流れないので膜厚は求めることができない。
本発明は上記課題に鑑みてなされたものであり、感光体の膜厚を精度よく測定することができる画像形成装置を提供することを目的とする。
本発明の好適な態様である画像形成装置は、回転駆動され、表面に感光薄膜が形成された感光体と、前記感光体の感光薄膜を帯電させる帯電部材と、直流成分、交流成分、又はそれら両成分を重畳して得た成分の電圧を前記帯電部材に印加する電圧印加手段と、前記直流成分と前記交流成分の重畳点と繋がった静電容量部と、前記電圧印加手段が前記帯電部材に電圧を印加した時にその帯電部材から前記感光体に流れる直流電流値を測定する直流電流測定手段と、前記電圧印加手段が前記帯電部材に電圧を印加した時に前記静電容量部に流れ込む電流の静電電荷量を測定する静電容量測定手段と、前記感光薄膜を帯電させるに至らない程度の直流成分の電圧を前記電圧印加手段から印加させ、電圧の印加により前記静電容量部に流れ込む電流の静電電荷量を前記静電容量測定手段が測定すると、その測定結果を、前記直流電流測定手段が測定する直流電流値を前記感光体に電圧が印加された時間で積算した積算結果から減算することにより前記感光薄膜の膜厚に対応した帯電電荷量を算出する制御部とを備える。
本発明の別の好適な態様である画像形成装置は、回転駆動され、表面に感光薄膜が形成された感光体と、前記感光体の感光薄膜を帯電させる帯電部材と、直流成分、交流成分、又はそれら両成分を重畳して得た成分の電圧を前記帯電部材に印加する電圧印加手段と、前記直流成分と前記交流成分の重畳点と繋がった静電容量部と、前記電圧印加手段が前記帯電部材に電圧を印加した時にその帯電部材から前記感光体に流れる直流電流値を測定する直流電流測定手段と、前記電圧印加手段が前記帯電部材に電圧を印加した時に前記静電容量部に流れ込む電流の静電電荷量を測定する静電容量測定手段と、前記感光薄膜を帯電させるに至らない程度の距離まで前記帯電部材を当該感光薄膜から離間させた上で前記電圧印加手段から電圧を印加させ、電圧の印加により前記静電容量部に流れ込む電流の静電電荷量を前記静電容量測定手段が測定すると、その測定結果を、前記直流電流測定手段が測定する直流電流値を前記感光体に電圧が印加された時間で積算した積算結果から減算することにより、前記感光薄膜の膜厚に対応した帯電電荷量を算出する制御部とを備える
本発明の別の好適な態様である画像形成装置は、回転駆動され、表面に感光薄膜が形成された感光体と、前記感光体の感光薄膜を帯電させる帯電部材と、直流成分、交流成分、又はそれら両成分を重畳して得た成分の電圧を前記帯電部材に印加する電圧印加手段と、前記直流成分と前記交流成分の重畳点と繋がった静電容量部と、前記電圧印加手段が前記帯電部材に電圧を印加した時にその帯電部材から前記感光体に流れる直流電流値を測定する直流電流測定手段と、前記電圧印加手段が前記帯電部材に電圧を印加した時に前記静電容量部に流れ込む電流の静電電荷量を測定する静電容量測定手段と、前記電圧印加手段から前記帯電部材に至る電線を開放させた上で当該電圧印加手段から電圧を印加させ、電圧の印加により前記静電容量部に流れ込む電流の静電電荷量を前記静電容量測定手段が測定すると、その測定結果を、前記直流電流測定手段が測定する直流電流値を前記感光体に電圧が印加された時間で積算した積算結果から減算することにより、前記感光薄膜の膜厚に対応した帯電電荷量を算出する制御部とを備える
本発明によると、感光体の膜厚を精度よく測定することができる。
(第1実施形態)
図1は、本実施形態にかかる画像形成装置1のハードウェア概略構成を示す図である。この画像形成装置1に搭載された感光体ドラム2の周囲には、帯電ローラ3、ROS4、現像器5、転写ローラ6、クリーニングブレード7、除電ランプ8等が配設される。
この感光体ドラム2は、導電性のドラム基体2Aと、このドラム基体2Aの表面にOPC(有機電子写真用感光体)を形成した感光薄膜2Bとを備えている。感光体ドラム2は、中心軸線を中心にして矢示の時計方向に所定のプロセススピード(周速度)で回転駆動する。
帯電ローラ(BCR:Bias Charging Roller)3は、感光体ドラム2に接触した帯電部材である。この帯電ローラ3は、感光体ドラム2の回転に従動して回転し、後述する電源装置10から供給される高電圧が印加されることにより、感光体ドラム2の表面が所定の極性・電位に一様に帯電(本実施形態では負帯電)される。
ROS(Raster Optical Scanner;画像書き込み部)4は、感光体ドラム2の帯電処理面に向けて画像変調されたレーザビームを照射(走査露光)する。感光体ドラム2の感光薄膜2Bには、露光部分の電位が減衰して静電潜像が形成される。感光体ドラム2の回転に伴って静電潜像が現像器5に対向する現像位置Aに到来すると、現像器5から負帯電されたトナーが供給されて反転現像によってトナー像が形成される。
転写ローラ6は、感光体ドラム2の回転方向から見て現像器5の下流側に位置し、前記感光体ドラム2に対して圧接した状態で配置される。そして、この転写ローラ6と感光体ドラム2とのニップ部が転写位置Bとなる。
感光体ドラム2表面に形成されたトナー像が感光体ドラム2の回転に従って前記転写位置Bに到達すると、このタイミングに合せて用紙が転写位置Bに供給され、これとともに所定の電圧が転写ローラ6に印加されて、トナー像が感光体ドラム2の表面から用紙に転写される。転写位置Bでトナー像転写を受けた用紙は定着器へ搬送されてトナー像の定着を受けて機外へ排出される。
一方、感光体ドラム2の表面に残った転写残りトナーはクリーニングブレード7によってかき落されることで、感光体ドラム2はその表面が清掃されて、次の画像形成に備える。さらに、感光体ドラム2上の静電潜像は、除電ランプ8で消去される。
次に、帯電ローラ3への給電系について説明する。
この給電系は、帯電ローラ3へ高電圧を供給するAC電源部11、DC電源部16および電流測定部20を備えた電源装置10と、電源装置10の動作を制御する制御部30とを具備している。
ここで、電源装置10は、図2のブロック図に示すように、AC成分の電圧を生成するAC電源部11と、DC成分の電圧を生成するDC電源部16とを具備する。なお、電源部11、16および電流測定部20の構成については後述するものとする。電流測定部20は、膜厚測定モード時に膜厚に対応した計測電流Irefを計測するものである。
制御部30は、コントローラ31、入出力制御部32、記憶部33を具備し、これらはCPU(Central Processing Unit)やRAM(Random Access Memory)により構成されている。入出力制御部32の入出力側には、電源装置10のAC電源部11とDC電源部16とが接続され、出力側には表示部41が接続される。制御部30は、AC電源部11に指令信号Aonを出力し、DC電源部16に指令信号Donを出力する。
コントローラ31は、記憶部33に記憶されている制御プログラムにしたがって、画像形成処理、後述する膜厚判定処理等を行うものである。上記処理のうち、AC電源部11における定電流出力のオン/オフおよび可変、DC電源部16における定電圧出力のオン/オフおよび可変は、画像形成処理時に感光体ドラム2の感光薄膜2Bにおける帯電状態を均一に保つために行われる処理であり、膜厚判定処理は、画像形成処理とは別途に行われる処理である。この膜厚判定処理は、予め設定された条件(所定枚数印刷後、所定時間経過後、或いはユーザ指示等)において測定モードに実行される。
次に、図3の回路図に基づき電源装置10の構成を簡単に説明する。
AC電源部11は、制御部30からの指令信号Aonを受けることにより交流電源12が動作し、トランス13を介して昇圧されたAC成分が生成され、トランス13の2次側の一端が帯電ローラ3に接続される。一方、トランス13の2次側の他端には、DC電源部16からの出力が接続されると共に、直流規制コンデンサ14を介して検波ダイオード15が接続される。この検波ダイオード15は、帯電ローラ3、感光体ドラム2、グランド、検波用回路によって形成された回路を流れる電流のAC成分を半波整流したモニタ信号IACとして電源装置10内の制御部30にフィードバックする。
なお、直流規制コンデンサ14は、AC電源部11から供給されるAC成分の電流がDC電源部16のグランド側に流れ込むのを防止する。このため、負荷容量の約10倍のインピーダンスとなる静電容量C0(例えば2200pF)のものが用いられる。完全にDC成分の電流のグランド側への流れ込みを防止するためには、この直流規制コンデンサ14の静電容量C0を大きくすればよいが、大きくしすぎるとAC成分の電流を供給したときの時定数が大きくなり応答が遅くなってしまう。
このため、実際には、直流規制コンデンサ14を介してDC電源部16のグランド側に若干流れることを見越して静電容量C0を設定しているのが実情である。
DC電源部16は、制御部30からの指令信号Donを受けることによりスイッチングトランジスタ17をオンさせて直流の規定電圧Vdd(例えば、24V)をトランス18の1次側に印加し、このトランス18を介して昇圧されたDC電圧(例えば、−750V)が生成される。トランス18の2次側の一端は、AC電源部11のトランス13の2次側の他端(低電位側)に接続され、AC成分にDC成分を重畳させる。DC電源部16の出力側には分圧抵抗19と共に電流測定部20が直列に接続され、分圧抵抗19の途中をピックアップして生成したモニタ信号VDCが電源装置10内の制御部30にフィードバックされる。
電流測定部20は、DC電源部16の低電位側に接続されており、規定電圧Vddで起動されるOPアンプ21、22を基本部品とした差動回路を構成している。この電流測定部20のグランドは感光体ドラム2のグランドと共通になっているため、帯電ローラ3を介して感光体ドラム2の感光薄膜2Bに流れる電流は、電流測定部20に流れ込み、当該電流測定部20の回路定数(インピーダンス)に応じた電流が計測電流Irefとして測定される。そして、電流測定部20で測定された計測電流Irefは、制御部30に出力される。
帯電ローラ3および感光体ドラム2に供給される電圧のうちAC成分は、感光体ドラム2のグランドを介してAC電源部11と閉回路を成し、DC成分は、感光体ドラム2のグランド、電流測定部20を介してDC電源部16およびAC電源部11と閉回路を成す。
次に、図4のフローチャートを参照しつつ、本実施形態の膜厚判定処理について説明する。
制御部30は、膜厚測定モードであるか否かを判定する(ステップS10)。そして、膜厚測定モードになると(ステップS10;YES)、静電電荷量測定モードであるか否かを更に判定する(ステップS20)。静電電荷量測定モードは、直流規制コンデンサ14に帯電する電荷の電荷量を測定するモードである。
静電電荷量測定モードになると(ステップS20;YES)、制御部30は、感光薄膜2Bを帯電させるに至らない程度の電圧(例えば、−400V)の印加を指示する指令信号DonをDC電源部16に出力する(ステップS30)。この指令信号Donを受けたDC電源部16は、DC成分の電流を帯電ローラ3に供給する。これにより、DC成分の電流が帯電ローラ3に供給されるものの、帯電ローラ3から感光薄膜2Bに電荷を帯電させることなく、電流測定部20へと流れ込む。
制御部30は、電流測定部20に流れ込んだ電流の計測電流Irefを読み込む(ステップS40)。そして、制御部30は、読み込んだ計測電流IrefをDC成分の電流が供給されている時間で積分することによって静電電荷量Q2を算出し(ステップS50)、その静電電荷量Q2を記憶部33に格納する(ステップS60)。
続いて、制御部30は、指令信号AonをAC電源部11に出力した後(ステップS70)、感光薄膜2Bを帯電させるに至る程度の電圧(例えば、−750V)の印加を指示する指令信号DonをDC電源部16に出力する(ステップS80)。これにより、AC成分にDC成分が重畳された重畳成分の電流が帯電ローラ3に順次供給され、感光薄膜2Bに電荷に帯電させた上で、電流測定部20へと流れ込む。なお、AC成分にDC成分が重畳された電流を用いる理由は、絶縁体に近い誘電率を持つ材料に電荷を蓄えるためである。
制御部30は、電流測定部20に流れ込んだ電流の計測電流Irefを読み込む(ステップS90)。そして、制御部30は、読み込んだ計測電流Irefを重畳成分の電流が供給されている時間で積分することによって積算電荷量Q1を算出する(ステップS100)。
制御部30は、ステップS3で記憶部33に格納した静電電荷量Q2を読み出し(ステップS110)、その静電電荷量Q2をステップS100で求めた積算電荷量Q1から減算することにより帯電電荷量Q3を算出する(ステップS120)。
制御部30は、帯電電荷量Q3が閾値電荷量Q0を越えているか否かを判定する(ステップS130)。この判定処理で、Q3>Q0の場合(ステップS130;YES)には、感光薄膜2Bは膜減り量の限界値(限界膜厚)に達しているため、表示部41に「感光体ドラムの交換」を要求する指示を表示する(ステップS140)。
さらに、制御部30は、DC電源部16に対して指令信号Donの出力を停止し(ステップS150)、AC電源部11に対して指令信号Aonの出力を停止し(ステップS160)、膜厚判定処理を終了する。
膜厚判定処理について、図5及び図6を参照して更に詳述する。
図5(a)は、感光薄膜2Bの膜減り量に対応した感光薄膜2Bの電荷量Qの特性を示した図であり、図5(b)は、感光薄膜2Bの膜減り量に対応した感光薄膜2Bの抵抗値Rの特性を示した図である。また、図6は、膜厚測定モードにおける計測電流Irefを時間軸に対して示した図であり、横軸の1マスが感光体ドラム2が1周する時間を示している。なお、説明の都合上、電気を電流として便宜上記述する。
図5(a)に示すように、感光体ドラム2は、その感光薄膜2Bの膜減り量が増加する(つまり、膜厚が薄くなる)に従って、電荷量Qが増加し、感光薄膜2Bの摩耗限界までくると帯電限界になることが分かる。また、図5(b)に示す抵抗値Rの特性は、電荷量Qに反比例した形となるため、膜厚が薄くなるに従って抵抗値Rが減少するようになる。
上述したように、直流規制コンデンサ14は、DC成分の電流がグランド側に流れ込むのを防止するためのものである。しかし、DC成分の電流を供給した際には直流規制コンデンサ14にも電位差が発生して瞬時的に電流が流れ、計測電流Irefにオーバーシュートを発生させることになる。このオーバーシュートが原因となり、図6(a)、(b)の点線で示すような特性線が実測の値となってしまう。
これに対し、膜厚判定処理のステップS30では、感光薄膜2Bを帯電させるに至らない程度の電圧(例えば、−400V)の印加を指示する指令信号DonをDC電源部16に出力し、感光体ドラム2周分の間に渡ってDC電源部16から帯電ローラ3へDC成分の電流を供給させる。そして、電流測定部20に流れ込んだ電流の計測電流Irefを読み込み(ステップS40)、その計測電流IrefをDC成分の電流が供給さていたドラム3周分の時間で積分すると(ステップS50)、図6の計測電流Iref1に示されるように、直流規制コンデンサ14のオーバーシュート分と概ね等しい静電電荷量Q2が得られることになる。
更に、ステップS70にて指令信号AonをAC電源部11に出力し、感光体ドラム2周分の間に渡ってAC電源部11から帯電ローラ3へAC成分の電流を供給させた状態で、ステップS80にて感光薄膜2Bを帯電させるに至る程度の電圧(例えば、−750V)の印加を指示する指令信号DonをDC電源部16に出力し、感光体ドラム3周分の間に渡ってDC電源部16から帯電ローラ3へDC成分の電流を供給させる。そして、電流測定部20に流れ込んだ電流の計測電流Irefを読み込み(ステップS90)、その計測電流IrefをDC成分の電流が供給さていたドラム3周分の時間で積分すると(ステップS100)、図6の計測電流Iref2に示されるように、感光薄膜2Bの帯電分と直流規制コンデンサ14のオーバーシュート分の和に相当する静電電荷量Q1が得られることになる。
よって、静電電荷量Q2から静電電荷量Q1を減算して得た電荷量は、感光薄膜2B自体の帯電電荷量とみなすことができることになる。
以上説明した本実施形態では、DC成分の電流を帯電ローラ3を介して感光体ドラム2に供給した際に発生する計測電流Irefのオーバーシュート分を測定した上でその測定結果を基に得た静電電荷量を制御部30内の処理で除去している。これにより、オーバーシュート分を含まない帯電電荷量Q3が算出される。算出された帯電電荷量Q3は、図5(a)の実線上に存在するため、感光薄膜2B自体の帯電電荷量に対応した膜減り量は正確な値を示すことになる。
この結果、オーバーシュート分を含んだ電荷量Qを用いた場合に発生していた、使用限界に到達していないにも係らず、感光体ドラム2を交換時期と判定してしまうという誤判定を防止でき、画像形成装置1の信頼性を向上させることができる。
さらに、静電電荷量測定モードにて実測値を基に帯電電荷量を算出するようにしているから、膜厚判定処理毎に直流規制コンデンサ14の静電容量C0が変動した場合であっても、正確に静電電荷量Q2を算出することにより、誤差の少ない帯電電荷量Q3を算出することが可能になる。
(第2実施形態)
本願発明の第2実施形態について説明する。
図7は、本実施形態にかかる画像形成装置1のハードウェア概略構成図である。図に示すように、この画像形成装置1は、感光体ドラム2の感光薄膜2Bを帯電させるに至らない程度の距離まで帯電ローラ3を感光体ドラム2から離間させるリトラクト駆動部91を備え付けた点が第1実施形態と異なる。
図8は、本実施形態の膜厚判定処理を示すフローチャートである。図8においては、図4に示すステップ30乃至ステップ60の静電電荷量測定モードの処理が、ステップ21乃至ステップ62に置き換わっている。これら一連の処理について説明すると、まず、静電電荷量測定モードになると(ステップS20;YES)、制御部30は、帯電ローラ3を感光体ドラム2から離間させる(ステップS21)。続いて、制御部30は、電圧の印加を指示する指令信号DonをDC電源部16に出力する(ステップS31)。この指令信号Donを受けたDC電源部16は、AC電源部11のトランス13の2次側の他端を経由してDC成分の電流を帯電ローラ3に供給する。しかしながら、リトラクト駆動部91によって帯電ローラ3は感光体ドラム2から離間させられているので、直流規制コンデンサ14にリークされた電流だけが電流測定部20へと流れ込む。
制御部30は、電流測定部20に流れ込んだ電流の計測電流Irefを読み込む(ステップS41)。そして、制御部30は、読み込んだ計測電流IrefをDC成分の電流が供給さている時間で積分することによって静電電荷量Q2を算出し(ステップS51)、その静電電荷量Q2を記憶部33に格納した後(ステップS61)、帯電ローラ3と感光体ドラム2の離間状態を解除する(ステップS62)。
以降、図4に示すステップ70以降と同様の処理が実行される。
(第3実施形態)
本願発明の第3実施形態について説明する。
図9は、本実施形態にかかる画像形成装置1の電源装置10の回路図である。図に示すように、電源装置10は、AC成分とDC成分の重畳点であるAC電源部11のトランス13の2次側の他端から帯電ローラ3に至る電線上にスイッチ92を備え付けている。そして、このスイッチ92は、制御部30から出力−負荷間ON/OFF信号を受けて開閉するようになっている。
図10は、本実施形態の膜厚判定処理を示すフローチャートである。図10においては、図4に示すステップ30乃至ステップ60の静電電荷量測定モードの処理が、ステップ24乃至ステップ65に置き換わっている。これら一連の処理について説明すると、まず、静電電荷量測定モードになると(ステップS20;YES)、制御部30は、出力−負荷間ON/OFF信号を供給することにより、電源出力端、つまり、AC電源部11のトランス13の2次側の他端と帯電ローラ3との間のスイッチ92を開放した上で(ステップS24)、電圧の印加を指示する指令信号DonをDC電源部16に出力する(ステップS34)。この指令信号Donを受けたDC電源部16は、AC電源部11のトランス13の2次側の他端へDC成分の電流を供給する。しかしながら、AC電源部11のトランス13の2次側の他端から帯電ローラ3に至る電線上のスイッチは開放されているので、直流規制コンデンサ14にリークされた電流だけが電流測定部20へと流れ込む。
制御部30は、電流測定部20に流れ込んだ電流の計測電流Irefを読み込む(ステップS44)。そして、制御部30は、読み込んだ計測電流IrefをDC成分の電流が供給さている時間で積分することによって静電電荷量Q2を算出し(ステップS54)、その静電電荷量Q2を記憶部33に格納する(ステップS64)。
制御部30は、AC電源部11のトランス13の2次側の他端と帯電ローラ3との間のスイッチを接続し(ステップS65)、以降、図4に示すステップ70以降と同様の処理が実行される。
(第4実施形態)
本願発明の第4実施形態について説明する。
図11は、本実施形態にかかる画像形成装置1のの電源装置10の回路図である。図に示すように、電源装置10は、AC成分とDC成分の重畳点であるAC電源部11のトランス13の2次側の他端と直流規制コンデンサ14の間にスイッチ93を備え付けている。このスイッチ93は、制御部30から静電容量ON/OFF信号を受けて開閉するようになっている。
図12は、本実施形態の膜厚判定処理を示すフローチャートである。
まず、制御部30は、膜厚測定モードであるか否かを判定する(ステップS10)。そして、膜厚測定モードになると(ステップS10;YES)、静電容量ON/OFF信号を供給することにより、電源出力端、つまり、AC電源部11のトランス13の2次側の他端と直流規制コンデンサ14の間のスイッチ93を開放した上で(ステップS26)、感光薄膜2Bを帯電させるに至る程度の電圧(例えば、−1500V)の印加を指示する指令信号DonをDC電源部16に出力する(ステップS36)。この指令信号Donを受けたDC電源部16は、AC電源部11のトランス13の2次側の他端へDC成分の電流を供給する。感光薄膜2Bを帯電させるに至る程度のDC成分の電流が帯電ローラ3に順次供給され、感光薄膜2Bに電荷を帯電させた上で、電流測定部20へと流れ込む。
制御部30は、電流測定部20に流れ込んだ電流の計測電流Irefを読み込む(ステップS46)。そして、制御部30は、読み込んだ計測電流Irefを重畳成分の電流が供給されている時間で積分することによって積算電荷量Q1を算出し(ステップS106)、その積算電荷量Q1を帯電電荷量Q3とする(ステップS126)。
続いて、制御部30は、ステップ126で得た帯電電荷量Q3が閾値電荷量Q0を越えているか否かを判定する(ステップS136)。この判定処理で、Q3>Q0の場合(ステップS136;YES)には、感光薄膜2Bは膜減り量の限界値(限界膜厚)に達しているため、表示部41に「感光体ドラム2の交換」を要求する指示を表示する(ステップS146)。
さらに、制御部30は、DC電源部16に対して指令信号Donの出力を停止し(ステップS156)、静電容量ON/OFF信号を供給することにより、AC電源部11のトランス13の2次側の他端と直流規制コンデンサ14の間のスイッチ93を接続した上で(ステップS166)、膜厚判定処理を終了する。
画像形成装置のハードウェア概略構成図である。 画像形成装置の構成を示すブロック図である。 電源装置の構成図である。 膜厚判定処理を示すフローチャートである。 感光薄膜の膜減り量に対する電荷量及び抵抗値の関係を示した特性線図である。 膜厚測定モードにおける計測電流を時間軸に対して示した図である。 画像形成装置のハードウェア概略構成図である(第2実施形態)。 膜厚判定処理を示すフローチャートである(第2実施形態)。 帯電ローラの給電系を示す図である(第3実施形態)。 膜厚判定処理を示すフローチャートである(第3実施形態)。 帯電ローラの給電系を示す図である(第4実施形態)。 膜厚判定処理を示すフローチャートである(第4実施形態)。 従来技術を説明するための図である。
符号の説明
1…画像形成装置、2…感光体ドラム、3…帯電ローラ、4…ROS、5…現像器、6…転写ローラ、7…クリーニングブレード、8…除電ランプ、10…電源装置、11…AC電源部、12…交流電源、13…トランス、14…直流規制コンデンサ、15…検波ダイオード、16…DC電源部、17…スイッチングトランジスタ、18…トランス、19…分圧抵抗、20…電流測定部、21…OPアンプ、30…制御部、32…入出力制御部、33…記憶部、41…表示部、91…リトラクト駆動部、92…スイッチ、93…スイッチ

Claims (3)

  1. 回転駆動され、表面に感光薄膜が形成された感光体と、
    前記感光体の感光薄膜を帯電させる帯電部材と、
    直流成分、交流成分、又はそれら両成分を重畳して得た成分の電圧を前記帯電部材に印加する電圧印加手段と、
    前記直流成分と前記交流成分の重畳点と繋がった静電容量部と、
    前記電圧印加手段が前記帯電部材に電圧を印加した時にその帯電部材から前記感光体に流れる直流電流値を測定する直流電流測定手段と、
    前記電圧印加手段が前記帯電部材に電圧を印加した時に前記静電容量部に流れ込む電流の静電電荷量を測定する静電容量測定手段と、
    前記感光薄膜を帯電させるに至らない程度の直流成分の電圧を前記電圧印加手段から印加させ、電圧の印加により前記静電容量部に流れ込む電流の静電電荷量を前記静電容量測定手段が測定すると、その測定結果を、前記直流電流測定手段が測定する直流電流値を前記感光体に電圧が印加された時間で積算した積算結果から減算することにより前記感光薄膜の膜厚に対応した帯電電荷量を算出する制御部と
    を備える画像形成装置。
  2. 回転駆動され、表面に感光薄膜が形成された感光体と、
    前記感光体の感光薄膜を帯電させる帯電部材と、
    直流成分、交流成分、又はそれら両成分を重畳して得た成分の電圧を前記帯電部材に印加する電圧印加手段と、
    前記直流成分と前記交流成分の重畳点と繋がった静電容量部と、
    前記電圧印加手段が前記帯電部材に電圧を印加した時にその帯電部材から前記感光体に流れる直流電流値を測定する直流電流測定手段と、
    前記電圧印加手段が前記帯電部材に電圧を印加した時に前記静電容量部に流れ込む電流の静電電荷量を測定する静電容量測定手段と、
    前記感光薄膜を帯電させるに至らない程度の距離まで前記帯電部材を当該感光薄膜から離間させた上で前記電圧印加手段から電圧を印加させ、電圧の印加により前記静電容量部に流れ込む電流の静電電荷量を前記静電容量測定手段が測定すると、その測定結果を、前記直流電流測定手段が測定する直流電流値を前記感光体に電圧が印加された時間で積算した積算結果から減算することにより、前記感光薄膜の膜厚に対応した帯電電荷量を算出する制御部と
    を備える画像形成装置。
  3. 回転駆動され、表面に感光薄膜が形成された感光体と、
    前記感光体の感光薄膜を帯電させる帯電部材と、
    直流成分、交流成分、又はそれら両成分を重畳して得た成分の電圧を前記帯電部材に印加する電圧印加手段と、
    前記直流成分と前記交流成分の重畳点と繋がった静電容量部と、
    前記電圧印加手段が前記帯電部材に電圧を印加した時にその帯電部材から前記感光体に流れる直流電流値を測定する直流電流測定手段と、
    前記電圧印加手段が前記帯電部材に電圧を印加した時に前記静電容量部に流れ込む電流の静電電荷量を測定する静電容量測定手段と、
    前記電圧印加手段から前記帯電部材に至る電線を開放させた上で当該電圧印加手段から電圧を印加させ、電圧の印加により前記静電容量部に流れ込む電流の静電電荷量を前記静電容量測定手段が測定すると、その測定結果を、前記直流電流測定手段が測定する直流電流値を前記感光体に電圧が印加された時間で積算した積算結果から減算することにより、前記感光薄膜の膜厚に対応した帯電電荷量を算出する制御部と
    を備える画像形成装置。
JP2006156986A 2006-06-06 2006-06-06 画像形成装置 Expired - Fee Related JP4929851B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006156986A JP4929851B2 (ja) 2006-06-06 2006-06-06 画像形成装置
US11/640,217 US7907854B2 (en) 2006-06-06 2006-12-18 Image forming apparatus and image forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006156986A JP4929851B2 (ja) 2006-06-06 2006-06-06 画像形成装置

Publications (2)

Publication Number Publication Date
JP2007327992A JP2007327992A (ja) 2007-12-20
JP4929851B2 true JP4929851B2 (ja) 2012-05-09

Family

ID=38790344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006156986A Expired - Fee Related JP4929851B2 (ja) 2006-06-06 2006-06-06 画像形成装置

Country Status (2)

Country Link
US (1) US7907854B2 (ja)
JP (1) JP4929851B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5305028B2 (ja) * 2008-10-16 2013-10-02 セイコーエプソン株式会社 圧力センサー
JP5328543B2 (ja) * 2009-07-28 2013-10-30 キヤノン株式会社 画像形成装置
US20110064460A1 (en) * 2009-09-16 2011-03-17 Kabushiki Kaisha Toshiba Image forming apparatus and image forming method
US8331809B2 (en) * 2010-07-09 2012-12-11 Xerox Corporation Current monitoring to detect photoreceptor scratches
JP2015012691A (ja) * 2013-06-28 2015-01-19 ブラザー工業株式会社 電源システム、画像形成装置
JP6350478B2 (ja) * 2015-09-30 2018-07-04 京セラドキュメントソリューションズ株式会社 画像形成装置、画像形成方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5486339A (en) * 1977-12-22 1979-07-09 Canon Inc Electric charging method and device
JPS5969774A (ja) 1982-10-14 1984-04-20 Fuji Electric Co Ltd 電子写真用感光体の感光層膜厚測定方法
JP3064643B2 (ja) 1992-02-07 2000-07-12 キヤノン株式会社 被帯電体の厚み検知装置及び画像形成装置
DE69325113T2 (de) * 1992-02-07 1999-11-04 Canon Kk Bilderzeugungsgerät mit einem Auflade-Element in Kontakt mit dem Bildträgerelement
IT1267423B1 (it) * 1993-03-17 1997-02-05 Seiko Epson Corp Apparecchio di carica
JPH07175374A (ja) * 1993-12-20 1995-07-14 Canon Inc 像担持体寿命検出装置
JPH0830073A (ja) * 1994-07-19 1996-02-02 Canon Inc 画像形成装置の制御方法
KR0163809B1 (ko) * 1994-09-01 1999-03-20 켄지 히루마 화상형성장치
JPH08220950A (ja) * 1995-02-20 1996-08-30 Canon Inc 画像形成装置
JP3279152B2 (ja) 1995-10-04 2002-04-30 キヤノン株式会社 画像形成装置の制御方法
JPH09204120A (ja) * 1996-01-26 1997-08-05 Canon Inc 画像形成装置
JP2001201922A (ja) 2000-01-20 2001-07-27 Canon Inc 放電電流制御装置及び放電電流制御方法、並びに該制御装置を備えた画像形成装置
JP2002023464A (ja) 2000-07-04 2002-01-23 Canon Inc 帯電装置および画像形成装置
JP2002108068A (ja) 2000-07-21 2002-04-10 Ricoh Co Ltd 抵抗測定装置及び画像形成装置
JP2005128150A (ja) * 2003-10-22 2005-05-19 Canon Inc 像担持体の寿命検知装置および画像形成装置
US7139501B2 (en) * 2003-11-20 2006-11-21 Canon Kabushiki Kaisha Charge voltage control circuit and image forming apparatus which controls a charge voltage based on a discharge current
JP4882364B2 (ja) * 2005-12-21 2012-02-22 富士ゼロックス株式会社 画像形成装置

Also Published As

Publication number Publication date
US7907854B2 (en) 2011-03-15
JP2007327992A (ja) 2007-12-20
US20070280707A1 (en) 2007-12-06

Similar Documents

Publication Publication Date Title
JP4882364B2 (ja) 画像形成装置
JP5247549B2 (ja) 画像形成装置
JP5627210B2 (ja) 画像形成装置
JP2006343710A (ja) 電圧制御方法、帯電装置、画像形成装置およびプロセスカートリッジ
JP4929851B2 (ja) 画像形成装置
US8606131B2 (en) Charging apparatus with AC and DC current detection
JP2014170116A (ja) 画像形成装置
JP6590578B2 (ja) 画像形成装置
JP2001305837A (ja) 画像形成装置及びプロセスカートリッジ
JP2006276056A (ja) 画像形成装置及び帯電制御方法
JP5106034B2 (ja) 画像形成装置
US8099011B2 (en) Image forming apparatus
JP5150340B2 (ja) 画像形成装置
JP4692125B2 (ja) 帯電制御装置及び帯電制御方法
US10078287B2 (en) Image forming apparatus which sets voltage range for charging an image bearing member
JP6642997B2 (ja) 画像形成装置
JP2007033835A (ja) 帯電制御装置及び帯電制御方法
JP2000305342A (ja) 帯電装置及び画像形成装置
JP2009251127A (ja) 画像形成装置
JP2007187930A (ja) 画像形成装置及び膜厚測定方法
JP2002214888A (ja) 画像形成装置
JP6589889B2 (ja) 画像形成装置
JP2007011094A (ja) 画像形成装置
JP5328470B2 (ja) 画像形成装置
JP2005003728A (ja) 画像形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120130

R150 Certificate of patent or registration of utility model

Ref document number: 4929851

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees