JP4857520B2 - バイポーラ半導体装置及びその製造方法 - Google Patents

バイポーラ半導体装置及びその製造方法 Download PDF

Info

Publication number
JP4857520B2
JP4857520B2 JP2004002367A JP2004002367A JP4857520B2 JP 4857520 B2 JP4857520 B2 JP 4857520B2 JP 2004002367 A JP2004002367 A JP 2004002367A JP 2004002367 A JP2004002367 A JP 2004002367A JP 4857520 B2 JP4857520 B2 JP 4857520B2
Authority
JP
Japan
Prior art keywords
semiconductor device
chip
drift region
semiconductor
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004002367A
Other languages
English (en)
Other versions
JP2005197472A (ja
Inventor
幸司 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004002367A priority Critical patent/JP4857520B2/ja
Publication of JP2005197472A publication Critical patent/JP2005197472A/ja
Application granted granted Critical
Publication of JP4857520B2 publication Critical patent/JP4857520B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、半導体装置に関し、特にゲート電極を有する縦型バイポーラ半導体要素が複数配置された半導体装置に関する。
大電流を制御して、電力の変換や制御を行う電力用半導体装置は、社会の様々な用途に幅広く使用されている。電力用半導体装置は、大電流を流すために1つのチップに多数の半導体要素を配置する構造を有している。例えば、オン抵抗が小さく耐圧が高いIGBT(Insulated Gate Bipolor Transistor)は、ゲート電極を有する縦型半導体要素(IGBT要素)をチップに複数配置し、それぞれのIGBT要素を並列接続して大電流の制御を可能としている。大電流を流す電力用半導体装置は、電力損失による発熱が大きい。発熱の大きい電力用半導体装置は破壊に至る温度上昇を防止するため放熱器に取り付けて用いられる。
発熱要素である複数の半導体要素を備える半導体チップにおいて、チップの中央部の半導体要素は、その周りを他の半導体要素で囲まれるためチップ周辺部と比べて放熱性が悪い。特に電流定格が大きくチップサイズが大きい電力用半導体素子ではチップ中央部とチップ周辺部との放熱性の差が大きい。そのため、チップ中央部の半導体要素は、チップ周辺部の半導体要素と比べ温度が上昇し、安定した動作が阻害される場合があった。
そこで、チップの備える複数の縦型バイポーラ半導体要素のうちチップ中央部の半導体要素のトレンチを、チップ周辺部の半導体要素のトレンチより浅くする構造が提案された(例えば、特許文献1参照)。この構造によれば、チップ中央部の半導体要素のオン抵抗は、チップ周辺部の半導体要素のオン抵抗より高くなる。したがって、チップ中央部の半導体要素の電流密度はチップ周辺部の半導体要素と比べて減るため、チップ中央部の半導体要素の発熱をチップ周辺部の半導体要素と比べ抑制できる。
特開2001−274399号公報
一般に、半導体装置には動作時の素子温度の上限が存在し、装置の一部の領域であってもその上限温度を超えないような使い方をする必要があった。すなわち、例えば装置温度上限が150℃であった場合、動作時にその装置内で最も温度が高い領域が、150℃を超えないように、電流、電圧、キャリア周波数等の動作条件および放熱環境にする必要があった。
また、電力用半導体装置の分野においては、半導体素子を駆動回路、保護回路等と共にモジュール化して使用する場合が多い。そのようなモジュールでは、半導体素子に温度検出素子を付けて半導体素子の温度を検出する。半導体素子のチップ内の温度分布が大きいと温度検出素子の検出した温度と半導体素子の実際の局所的な温度との差が大きくなり、保護回路の温度設定に大きなマージンを持たせる必要があり、さらに動作条件が制限されるという問題があった。
半導体装置の局所的な温度上昇には、その部分の発熱と放熱との差による蓄熱の寄与と、温度上昇に伴う特性の変化による寄与がある。ここで、後者に着目すると、MOSFET等のユニポーラ動作をする半導体要素では、オン抵抗の温度係数が正であるため、チップ内の温度が高い領域の電流は抑制されるという負帰還が働き、チップ内の温度分布が緩和される方向に働く。しかしながら、IGBT等のバイポーラ動作をする半導体要素は、オン抵抗の温度係数が負であるため、チップ内の温度が高いところほど電流が流れやすくなるという正帰還が働き、チップ内の温度分布が増幅されてチップ中央部の半導体要素の温度がさらに上昇する。
このバイポーラ半導体素子の温度と電流との正帰還関係を抑制すること無しに、半導体素子のチップ内の温度分布を小さくするためには、特許文献1の発明のように、チップ中央部の半導体要素の発熱量をチップ周辺部の半導体要素と比べて減らし、かつ、チップ中央部と周辺部との放熱性の差を極めて小さくする方法が考えられる。放熱性の差を小さくするためには、半導体装置の放熱器を大型化したり、冷却ファンを設けるなどの方法があるが、装置の大型化、高コスト化を招くため現実的ではなかった。
一方、半導体装置の全ての半導体要素について、温度特性の正帰還が小さくなるようにすることは、装置全体としての電力損失が増加するというデメリットが大きくこれも現実的ではない。
そこで、本発明は、半導体装置全体としての電力損失の増加を招くこと無く、チップ中央部の半導体要素の温度上昇を抑制するバイポーラ半導体装置を提供する。
発明のゲート電極を有する縦型バイポーラ半導体要素が複数配置された半導体装置は、ゲート電極を有する縦型バイポーラ半導体要素が複数配置された半導体装置において、 下面にコレクタ電極を有するn(p)型半導体基板の上面に形成されたp(n)型高濃度ドリフト領域と、前記p(n)型高濃度ドリフト領域の上面に形成されたp(n)型低濃度ドリフト領域と、前記p(n)型低濃度ドリフト領域の上面に形成されたn(p)型ボディ領域と、前記n(p)型ボディ領域の上面に形成されたp(n)型エミッタ領域と、 前記n(p)型ボディ領域にキャリアのチャネルを形成するためのゲート電極と、を備え、前記複数の半導体要素が配置されるアクティブ領域のうち外縁部から所定の距離以内の領域である半導体装置周辺部以外の半導体装置中央部に配置された少なくとも1つの半導体要素の前記p(n)型高濃度ドリフト領域の結晶欠陥量が、前記複数の半導体要素のうち前記半導体装置周辺部の半導体要素の前記p(n)型高濃度ドリフト領域の結晶欠陥量より少なく、前記n(p)型半導体基板及び前記コレクタ電極は、前記半導体装置周辺部及び前記半導体装置中央部に渡って形成されている。このようなゲート電極を有する縦型バイポーラ半導体要素が複数配置された半導体装置により、半導体装置中央部に配置された少なくとも1つの半導体要素の常温時と高温時との電圧−電流特性のクロスポイントを半導体装置周辺部の半導体要素の常温時と高温時との電圧−電流特性のクロスポイントより下げることができる。したがって、通常使用電流領域において、半導体装置の温度上昇に対して半導体装置中央部に配置された少なくとも1つの半導体要素よりも半導体装置周辺部の半導体要素の方に電流が流れ込みやすくなり、半導体素子中央部の半導体要素への電流集中を緩和することができる。
また、本発明の他の態様では、前記p(n)型エミッタ領域および前記n(p)型ボディ領域を貫き前記p(n)型低濃度ドリフト領域に達するゲートトレンチを備え、前記ゲート電極は、前記ゲートトレンチの中にゲート絶縁膜を介して埋め込まれている。
また、本発明の他の態様では、前記半導体装置周辺部の半導体要素の前記p(n)型高濃度ドリフト領域において結晶欠陥分布が最大となる深さが、前記半導体装置中央部に配置された少なくとも1つの半導体要素の前記p(n)型高濃度ドリフト領域において結晶欠陥分布が最大となる深さと比べて、前記p(n)型高濃度ドリフト領域の厚みの中央から近い。
また、本発明の他の態様では、前記半導体要素は、IGBT、トランジスタ、サイリスタのいずれかである。
発明のゲート電極を有する縦型バイポーラ半導体要素が複数配置された半導体装置の製造方法は、下面にコレクタ電極を有するn(p)型半導体基板の上面にp(n)型高濃度ドリフト領域を形成するステップと、前記p(n)型高濃度ドリフト領域の上面にp(n)型低濃度ドリフト領域を形成するステップと、前記p(n)型低濃度ドリフト領域の上面にn(p)型ボディ領域を形成するステップと、前記n(p)型ボディ領域の上面にp(n)型エミッタ領域を形成するステップと、前記n(p)型ボディ領域にキャリアのチャネルを形成するためのゲート電極を形成するステップと、前記複数の半導体要素が配置されるアクティブ領域のうち外縁部から所定の距離以内の領域である半導体装置周辺部以外の半導体装置中央部に配置された少なくとも1つの半導体要素のエミッタ電極と、前記複数の半導体要素のうち前記半導体装置周辺部の半導体要素のエミッタ電極と、をそれぞれ異なる厚みで形成するエミッタ電極形成ステップと、前記エミッタ電極を形成した半導体装置にイオン照射もしくは電子線照射を行う照射ステップと、を含み、前記半導体装置周辺部の半導体要素のp(n)型低濃度ドリフト領域の下側端面から前記半導体装置周辺部の半導体要素のp(n)型高濃度ドリフト領域における結晶欠陥分布が最大となる第1の位置までの距離のうち前記p(n)型高濃度ドリフト領域の厚み方向に沿った距離が、前記下側端面の同一水平面から前記半導体装置中央部の少なくとも1つの半導体要素の前記p(n)型高濃度ドリフト領域における結晶欠陥分布が最大となる第2の位置まで距離のうち前記p(n)型高濃度ドリフト領域の厚み方向に沿った距離と比べて短く、あるいは、長く、前記第1の位置が前記p(n)型高濃度ドリフト領域の厚み方向の中央部に設けられ、前記n(p)型半導体基板及び前記コレクタ電極は、前記半導体装置周辺部及び前記半導体装置中央部に渡って形成されている
このようなゲート電極を有する縦型バイポーラ半導体要素が複数配置された半導体装置の製造方法により、同一のイオン照射工程で半導体装置周辺部より内側に配置された少なくとも1つの半導体要素のp(n)型高濃度ドリフト領域のキャリアライフタイムを半導体装置周辺部の半導体要素のp(n)型高濃度ドリフト領域のキャリアライフタイムより長くすることができる。
また、本発明の他の態様では、 前記エミッタ電極を形成するステップは、前記半導体要素の全てに所定の厚みの第1のエミッタ電極層を形成する第1のエミッタ電極形成ステップと、前記半導体装置中央部に配置された少なくとも1つの半導体要素または前記半導体装置周辺部の前記半導体要素のいずれか一方の前記第1のエミッタ電極層の厚みをエッチングにより薄くするエミッタ電極エッチングステップと、を含む。

また、本発明の他の態様では、前記エミッタ電極を形成するステップは、前記エミッタ電極エッチングステップに引き続いて、前記全ての半導体要素に第2のエミッタ電極層を所定の厚み形成する第2のエミッタ電極形成ステップを含む
また、本発明の他の態様では、前記エミッタ電極を形成するステップは、前記全ての半導体要素に所定の厚みの第1のエミッタ電極層を形成する第1のエミッタ電極形成ステップと、前記半導体装置周辺部より内側に配置された少なくとも1つの半導体要素または前記半導体装置周辺部の前記半導体要素のいずれか一方の前記第1のエミッタ電極層上にめっきマスクを形成するめっきマスク形成ステップと、前記めっきマスクを形成した後、前記第1のエミッタ電極層上に第2のエミッタ電極層をめっきするめっきステップと、を含む。
このようなゲート電極を有する縦型バイポーラ半導体要素が複数配置された半導体装置の製造方法により、同一のイオン照射工程によりスループットを損なうことなく、チップ中央部のキャリアライフタイムをチップ周辺部に比べ長くなるように形成することができる。また、結晶欠陥分布の深さの精度は、エミッタ電極の膜厚の精度で決めることができるため、高い精度で結晶欠陥分布の深さを制御することができる。
また、本発明の他の態様では、前記エミッタ電極層はAlからなる。
イオンおよび電子の飛程はAlと半導体装置の母材であるSiとでほぼ等しい。したがって、このようなゲート電極を有する縦型バイポーラ半導体要素が複数配置された半導体装置の製造方法によれば、半導体装置周辺部より内側に配置された少なくとも1つの半導体要素と半導体装置周辺部の半導体要素とにおける結晶欠陥分布の高さの差を、Alからなるエミッタ電極層の厚みの差により制御することができるため高い精度で結晶欠陥分布の深さを制御することができる。
本発明の半導体装置によれば、半導体装置内の温度分布を抑制することができるため、半導体装置の電流、電圧、キャリア周波数等の動作条件および放熱条件を緩和でき、半導体装置を低コスト化、高信頼性化することができる。
また、本発明の半導体装置の製造方法によれば、同一のイオン照射工程により半導体装置内の温度分布を抑制する構造を実現できるので、低コストで、温度特性に優れた半導体装置を製造することができる。
以下、本発明を実施するための最良の形態(以下、実施形態という)について、図面に基づいて説明する。
(第1の実施形態)
図1は、本発明の第1の実施形態に係る半導体装置100の平面図である。半導体装置100は、耐圧保持部28と、チップ周辺部26と、チップ中央部30と、の3つの部分に大きく分けられる。耐圧保持部28は、電流を流すためのトランジスタ構造が形成されていないチップの外縁にあり、チップ外縁の電界集中を緩和する役目を果たす部分である。一方、電流を流すためのトランジスタ構造(半導体要素)が複数形成された領域をアクティブ領域という。チップ周辺部26は、アクティブ領域のうち、耐圧保持部から所定の距離L以内の領域をいい、アクティブ領域の中でチップ外縁からの距離が短く、放熱性が比較的良い領域である。この所定の距離Lは、具体的にはチップ厚さの2倍以上の距離である。一般に、チップ周辺部26は、アクティブ領域全体の面積に対して20%〜70%の面積を占める。チップ中央部30は、アクティブ領域のうち、チップ周辺部26以外の領域であり、発熱する他の半導体要素に周囲を囲まれ、チップ周辺部26と比べ、放熱性が比較的悪い領域である。図1においてLは、一例として、耐圧保持部28の内側の境界の四辺形の各辺からそれぞれ等しい距離としたが、チップ厚さの2倍以上の距離であれば、それぞれ異なる距離であっても良いし、チップ周辺部26とチップ中央部30との境界は直線でなく曲線であっても良い。チップ周辺部26とチップ中央部30との境界の形状及び距離Lは、エミッタ電極配置、IGBT素子の間隔、耐圧保持部の配置等によって最適に決められる。
半導体装置100のアクティブ領域には、行列状に配置された複数の半導体要素であるIGBT要素を備える。各IGBT要素は行方向に配置されたエミッタ電極12,14,16,18,20,22の下に各々列方向に配置されている。例えば、エミッタ電極14の下に、半導体装置100の端部の方向から中央部へ向かって順にIGBT32,33,34,36,37,38が列状に配置されている。各IGBT要素のエミッタは、その上部のエミッタ電極に接続され、ゲート電極はゲート電極パッド24に共通接続され、コレクタはコレクタ電極(図2参照)に共通接続されている。
次に、半導体装置100の断面構造について説明する。図2は、半導体装置100の図1におけるA−A線断面図である。A−A線は、耐圧保持部28と、チップ周辺部26と、チップ中央部30とを横断し、図2(a)は、耐圧保持部28の断面を、図2(b)は、チップ周辺部26の断面を、図2(c)はチップ中央部30の断面を示す。
耐圧保持部28、チップ周辺部26、およびチップ中央部30のいずれの部分も、n型高濃度基板40上に、p型高濃度ドリフト領域42と、p型低濃度ドリフト領域44との積層構造を有している。n型高濃度基板40の下面には全面にコレクタ電極58が形成される。ここで、p型高濃度ドリフト領域42の厚さは、典型的には5μm〜15μm程度である。
チップ周辺部26、およびチップ中央部30ではさらに、p型低濃度ドリフト領域44の上面にn型ボディ領域46とp型エミッタ領域48が形成され、p型エミッタ領域48およびn型ボディ領域46を貫きp型低濃度ドリフト領域44に達するゲートトレンチ50が形成されている。ゲートトレンチ50の中にはシリコン酸化物からなるゲート絶縁膜52を介してポリシリコンからなるゲート電極54が埋め込まれ、ゲート電極54は、それぞれ図1に示すゲート電極パッド24に電気的に接続されている。また、p型エミッタ領域48は、エミッタ電極14と電気的接続され、ゲート電極54とは層間絶縁膜56により電気的に絶縁されている。
IGBT要素32,33,34,36,37,38は、それぞれ、エミッタ電極14と電気的に接続されたp型エミッタ領域48と、トレンチ50と、ゲート絶縁膜52と、埋め込みゲート電極54と、層間絶縁膜56と、を備える。IGBT要素32,33,34,36,37,38は、埋め込み電極54に印加されるゲート電圧により、n型ボディ領域46のトレンチ50の近傍にチャネルを形成し、それぞれ、IBGTとして動作する。
一方、耐圧保持部28では、n型ボディ領域46およびp型エミッタ領域48は形成されず、トレンチゲート構造の代わりにp型低濃度ドリフト領域44上面からフローティングのp型半導体領域がトレンチ内に形成されている。このフローティングのp型半導体領域は、フィールドリミッティングリング(FLR)60といい、p型低濃度ドリフト領域44の深さ方向の電界分布を平坦化する役目をする。耐圧保持部28において、n型ボディ領域46が形成されない構造を例に説明したが、チップ周辺部26、およびチップ中央部30と同様にn型ボディ領域46を形成してもよい。
本発明において特徴的なことは、チップ中央部30のドリフト領域42および44のキャリアライフタイムがチップ周辺部26のドリフト領域42および44のキャリアライフタイムより長いことである。
ドリフト領域のキャリアライフタイムを長くするとIGBT素子の常温時と高温時との電圧−電流特性のクロスポイントが低くなることが知られている。図3は、IGBT素子の出力特性のクロスポイントにおけるコレクタ電流Icxのドリフト領域のキャリアライフタイム依存性の一例を示したグラフである。ドリフト領域のキャリアライフタイムが短いほど、Icxは大きくなり、ドリフト領域のキャリアライフタイムが長くなると、Icxは小さくなる。
次に出力特性のクロスポイントと温度上昇に伴うコレクタ電流Icの増加の割合との関係を説明する。図4は、第1の実施形態に係る半導体装置100のIGBT要素の出力特性の一例を示す図である。図4(a)にチップ周辺部26におけるIGBT要素の25℃と125℃との出力特性の一例を示し、図4(b)にチップ中央部30におけるIGBT要素の25℃と125℃との出力特性の一例を示す。図4(a)および図4(b)は、横軸にコレクタ−エミッタ間電圧Vceをとり、縦軸にコレクタ電流Icをとっている。IGBT要素のコレクタ電流Icは、Vceがコレクタ側のpn接合のしきい値電圧を超えて流れはじめ、そのしきい値電圧以上ではコレクタ電流IcはVceにほぼ比例して増加する。125℃におけるチップ中央部30のIGBT要素およびチップ周辺部26のIGBT要素はいずれも25℃の場合に比べ、Icが流れ始める閾値電圧が小さくなり、Vceの増加に対するIcの増加の傾きが小さくなる。したがって、IGBT要素の常温(25℃)と高温(125℃)との2温度の出力特性には、交差するクロスポイントが存在する。クロスポイント以上のIcの範囲では、温度の上昇に伴いIcを一定とするVceが増加する特性(正の温度特性)を示し、クロスポイント以下のIcの範囲では、温度上昇に伴いIcを一定とするVceが低下する特性(負の温度特性)を示す。通常IGBTが使用される定格電流以下の領域は、クロスポイント以下の電流範囲であり、その範囲では温度上昇に伴いオン抵抗が減少するためチップ内の温度が高いところほど電流が流れやすくなるという正帰還が働く。
第1の実施形態に係る半導体装置100において、チップ中央部30におけるIGBT要素のドリフト領域のキャリアライフタイムは、チップ周辺部26におけるIGBT要素と比べて長いため、チップ中央部30におけるIGBT要素のIcxはチップ周辺部26におけるIGBT要素と比べて小さい。
したがって、図4に示すように、クロスポイントIcxが小さいほど、一定のIcを流すためのVceが低下する割合である負の温度係数が小さいことになる。
すなわち、チップ中央部30におけるIGBT要素において、ドリフト領域のキャリアライフタイムが、チップ周辺部26におけるIGBT要素と比べて長いため、チップ中央部30におけるIGBT要素のクロスポイントIcxは、チップ周辺部26におけるIGBT要素と比べて小さい。したがって、チップ中央部30において、IGBT要素の温度上昇に伴うオン抵抗の低下の割合は、チップ周辺部26におけるIGBT要素と比べて小さく、温度上昇に伴うIcの増加の割合は、チップ周辺部26のIGBT要素と比べて小さいため、チップ中央部30のIGBT要素への電流の集中を抑制でき、チップの温度分布の増幅が抑制される。
第1の実施形態に係る半導体装置100では、チップ中央部のドレイン領域のキャリアライフタイムをチップ周辺部のドリフト領域のキャリアライフタイムより長くする構造の一例として、チップ中央部30のp型高濃度ドリフト領域42の結晶欠陥量をチップ周辺部のp型高濃度ドリフト領域42の結晶欠陥量より少なくしている。
図5は、半導体装置100のチップ中央部30とチップ周辺部26の断面および断面における結晶欠陥分布の一例を示す図である。各断面おいて結晶欠陥分布が最大となる位置を×で示し、×の数で結晶欠陥量の程度を示す。チップ中央部30とチップ周辺部26とにおいて、結晶欠陥分布が最大となる深さは共にp型高濃度ドリフト領域42のほぼ同じところにあるが、結晶欠陥分布の最大値は、チップ中央部30ではチップ周辺部26と比べて少なく、チップ中央部30のp型高濃度ドリフト領域42の結晶欠陥量は、チップ周辺部26のp型高濃度ドリフト領域42の結晶欠陥量より少ない。
ここで、IGBT素子における、ドリフト領域のキャリアライフタイムと結晶欠陥量との関係について説明する。ドリフト領域のキャリアライフタイムは、p型低濃度ドリフト領域44のキャリアライフタイムとp型高濃度ドリフト領域42のライフタイムとによって決まるが、不純物濃度の低いp型低濃度ドリフト領域44のキャリアライフタイムにはほとんど依存せず、不純物濃度の高いp型高濃度ドリフト領域42のキャリアライフタイムによってほぼ決まることが知られている。一方、結晶欠陥密度が高いほど、キャリアライフタイムが短くなることが知られている。この結晶欠陥はバンドギャップ中の深いレベルをつくるので、ホールと電子の再結合を促す。したがって、結晶欠陥が多いほど、キャリアライフタイムは短くなる。
1つの半導体素子においてドリフト領域が一体で形成されている場合、ドリフト領域の厚みは領域によらず一定であるので、結晶欠陥密度は結晶欠陥量に比例することになる。第1の実施形態に係る半導体装置100においては、p型高濃度ドリフト領域42の厚みは一定であるので、p型高濃度ドリフト領域42の結晶欠陥量の多いチップ周辺部26では、チップ中央部30と比べて結晶欠陥密度が高く、ドリフト領域のキャリアライフタイムが短くなる。
図6は、結晶欠陥量とキャリアライフタイムの関係の一例を示す図である。図6から分かるように、結晶欠陥量が小さくなるほど、キャリアライフタイムは長くなる。図6のグラフにおいて、チップ周辺部26の結晶欠陥数をA点で示し、チップ中央部30の結晶欠陥数をB点で示すと、A点とB点との高さの差がチップ周辺部26とチップ中央部30とのキャリアライフタイムの差となる。
第1の実施形態に係る半導体装置100の一例では、チップ周辺部26のp型高濃度ドリフト領域42の結晶欠陥密度は1013cm-3程度とし、チップ中央部30のp型高濃度ドリフト領域42の結晶欠陥密度はその半分程度とする。キャリアライフタイムは、半導体素子に要求される仕様に応じて結晶欠陥量を制御して最適に決められるが、例えばチップ周辺部26でキャリアライフタイムが数ns〜数百nsである場合にこの結晶欠陥量の違いにより、チップ中央部30では、チップ周辺部26に比べ数百ns程度キャリアライフタイムが長くなる。第1の実施形態に係る半導体装置100の一例のようにp型高濃度ドリフト領域42における結晶欠陥量を1013cm-3程度からその半分程度に少なくしても、半導体装置100の特性に悪影響を与えることはなく、キャリアライフタイムを制御することができる。
以上説明したように、チップ中央部30のドリフト領域のキャリアライフタイムをチップ周辺部26のドリフト領域のキャリアライフタイムより長くすることにより、チップ周辺部26のIGBT要素に比べチップ中央部30のIGBT要素のIcxを低下させる。この構造により温度上昇に対してチップ中央部30のIGBT要素よりもチップ周辺部26のIGBT要素に電流が流れやすくなり、従来問題であったチップ中央部30のIGBT要素への電流集中による温度分布の増幅が緩和できる。
図7は、本発明の第1の実施形態に係る半導体装置100(図5(a))と従来技術の半導体装置(図5(b))との動作時のチップ表面の温度分布の一例をそれぞれ示す図である。動作条件は、共に電流密度150A/cm2で数秒間のDC印加とした。従来の半導体装置ではチップ外縁部の温度が100℃であるのに対して、チップ中央部の最も温度が高い領域では、放熱性の悪さに起因した温度上昇に加え高温部への電流集中が起こり温度分布が増幅するため、温度は150℃に達する。一方、本発明の第1の実施形態に係る半導体装置100では、チップ中央部のIGBT要素への電流集中を緩和できるため、チップ中央部の温度は130℃以下であり、チップの温度分布を従来技術の半導体装置と比べて半減することができる。
次に、本発明の第1の実施形態に係る半導体装置100の製造方法について説明する。まず、各領域のn型高濃度基板40上に、p型高濃度ドリフト領域42と、p型低濃度ドリフト領域44とを形成する。さらに、チップ周辺部26とチップ中央部30とには、p型低濃度ドリフト領域44の上面に、n型ボディ領域46とp型エミッタ領域48を形成する。次に、p型エミッタ領域48およびn型ボディ領域46を貫きp型低濃度ドリフト領域44に達するゲートトレンチ50を形成し、ゲートトレンチ50の中にシリコン酸化物からなるゲート絶縁膜52を介してポリシリコンからなるゲート電極54を埋め込む。一方、耐圧保持部28には、p型低濃度ドリフト領域44にイオン注入によりフローティングのp型半導体領域のFLR60を形成する。
次に、p型低濃度ドリフト領域44およびn型ボディ領域46の上面に、ゲート電極54およびFLR60とエミッタ電極14とを絶縁するための層間絶縁膜56を形成した後、スパッタによりAlを堆積し、エミッタ電極14とする。エミッタ電極は、配線ワイヤのボンディングに耐えるための強度を得ることと、オン抵抗の成分となる電極のシート抵抗を所定以下にする厚みに決められる。エミッタ電極材料としてAlを用いた場合、一般に厚さ5μm以上とする。
以上の構造を形成した半導体装置の上面から陽子等のイオン照射ないし電子線の照射を行う。この照射は、チップ周辺部でp型高濃度ドリフト領域42の厚みの中央が結晶欠陥分布の最大値となるような加速エネルギーで行う。ここで、一般にイオン照射等は、面内のイオン照射量が一定となるように一定面積のビームを順次重なりができるようにスキャンする。ここでは、チップ周辺部26とチップ中央部30との結晶欠陥量を変えるために、イオンないし電子線のビーム径をキャリアの拡散長以下に絞り、照射ビームのスキャンの重ね具合を変えて、所定の領域ごとの照射時間ないし照射回数(スキャン回数)を制御する。すなわち、チップ周辺部26では、結晶欠陥量を増やすために、照射ビームの重なりが多くなるようにスキャンを行い、単位面積当たりの照射時間ないし照射回数を多くし、チップ中央部30では、結晶欠陥量をチップ周辺部26と比べて少なくするために、チップ周辺部26での照射のスキャンにおける照射ビームの重なりを少なくするようにスキャンを行い、単位面積当たりの照射時間ないし照射回数をチップ周辺部26でのイオン照射のスキャンの場合より少なくする。
この製造方法によれば、特別なエネルギー吸収マスクを用いることなく、同一照射工程で、p型高濃度ドリフト領域42の結晶欠陥量をチップ周辺部36とチップ中央部30とで異なるように形成することができる。
また、チップ中央部30のみに開口を有するAl等のエネルギー吸収マスクを配置して、チップ周辺部26のみ選択的にイオン照射ないし電子線照射を行い、チップ中央部との結晶欠陥量を変化させることも好ましい。エネルギー吸収マスクを配してイオン照射を行い、チップ周辺部26のみに所定の量の結晶欠陥を形成し、エネルギー吸収マスクを配さないで半導体装置100の全面にイオン照射を行い、チップ周辺部26とチップ中央部30とに同じ量の結晶欠陥を行う工程の組み合わせによりチップ周辺部26とチップ中央部30との結晶欠陥量を変化させることができる。また、全面へのイオン照射の代わりに、チップ周辺部26のみに開口を有するAl等のエネルギー吸収マスクを配置し、チップ周辺部26のみ選択的にイオン照射を行うことも好ましい。エネルギー吸収マスクの厚みは、p型高濃度ドリフト領域42に結晶欠陥を形成する加速エネルギーを吸収するため、マスクをAl材とした場合、厚みを100μm以上とする。この方法によれば、チップ周辺部26とチップ中央部30と結晶欠陥分布のパターンを好適に形成することができる。
(第2の実施形態)
図8は、本発明の第2の実施形態に係る半導体装置102のチップ中央部30とチップ周辺部26の断面および断面における結晶欠陥分布の一例を示す図である。各断面おいて結晶欠陥分布が最大となる位置を×で示し、×の数で結晶欠陥量の程度を示す。
第1の実施形態に係る半導体装置100では、チップ中央部30のドリフト領域のキャリアライフタイムを、チップ周辺部26のドリフト領域のキャリアライフタイムより長くするために、結晶欠陥が最大となる深さを一定としてチップ中央部30のドリフト領域の結晶欠陥量をチップ周辺部26のドリフト領域の結晶欠陥量と比べて少なくしたが、第2の実施形態に係る半導体装置102では、結晶欠陥分布を同一として、チップ中央部30の結晶欠陥が最大となる深さをチップ周辺部26の結晶欠陥が最大となる深さに比べてp型高濃度ドリフト領域42の厚みの中央から深い方向に遠くすることにより実現したものである。
図8に示すようにチップ周辺部26では、結晶欠陥のほとんどがp型高濃度ドリフト領域42にあるのに対し、チップ中央部30では、結晶欠陥分布がp型高濃度ドリフト領域42の厚みの中央より下にシフトしているため、結晶欠陥分布の一部がn型基板40に含まれる。したがって、p型高濃度ドリフト領域42の結晶欠陥の量は、チップ周辺部26に比べチップ中央部30の方が少なく、チップ中央部30のドレイン領域のキャリアライフタイムはチップ周辺部26のドリフト領域のキャリアライフタイムより長くなる。
図9は、一例のチップ中央部30のIGBT要素とチップ周辺部26のIGBT要素のチップ上面からの深さに対してキャリアライフタイムをプロットした図である。チップ周辺部26では、p型高濃度ドリフト領域42の厚みの中央部近傍で結晶欠陥分布が最大であるから、p型高濃度ドリフト領域42の厚みの中央部近傍でキャリアライフタイムは最も短くなり、そこから離れるにしたがって、キャリアライフタイムは長くなる。一方、チップ中央部30では、結晶欠陥分布が最大となる深さはp型高濃度ドリフト領域42のn型基板40との境界に近い深さにある。したがって、その深さでキャリアライフタイムは最も短くなり、そこから離れるにしたがって、キャリアライフタイムは長くなる。チップ周辺部26とチップ中央部30との結晶欠陥分布は同一でその深さが異なるだけであるから、図9に示すキャリアライフタイムの分布もチップ周辺部の分布に対しチップ中央部の分布はチップ上面からの深さが深い位置にシフトしたものになっている。
したがって、第2の実施形態に係る半導体装置102において、第1の実施形態に係る半導体装置100と同様にチップ周辺部のIGBT要素に比べチップ中央部のIGBT要素のIcxが低下し、温度上昇に対してチップ中央部のIGBT要素よりもチップ周辺部のIGBT要素に電流が流れやすくなり、従来問題であったチップ中央部のIGBT要素への電流集中による温度分布の増幅が緩和できる。
第2の実施形態に係る半導体装置102においては、チップ中央部30とチップ周辺部26の結晶欠陥分布は同一のものとしたが、同一でなくとも、結晶欠陥が最大となる深さが、チップ周辺部26に比べてチップ中央部30でp型高濃度ドリフト領域42の厚みの中央から浅い方向に遠くに位置し、p型高濃度ドリフト領域42に含まれる結晶欠陥量が
チップ周辺部26に比べチップ中央部30で少ないものであればよい。
また、第2の実施形態に係る半導体装置102においては、チップ周辺部26では、p型高濃度ドリフト領域42の厚みの中央部近傍で結晶欠陥分布が最大となるようにイオン照射ないし電子照射するとしたが、チップ中央部30との結晶欠陥分布の深さのシフトによりp型高濃度ドリフト領域42の結晶欠陥量の差を所定のものとできれば、p型高濃度ドリフト領域42の厚みの中央部近傍でなくても良い。また、結晶欠陥分布は、半導体装置102の要求仕様により適切に定められる。
次に、本発明の第2の実施形態に係る半導体装置102の製造方法について説明する。半導体装置102の製造には2通りの方法がある。図10〜図12は第1の製造方法を説明するための工程図である。図10〜図12は、それぞれの工程における耐圧保持部28、チップ周辺部26およびチップ中央部30の断面を示している。半導体装置102の製造方法は、半導体装置100の製造方法と、エミッタ電極の形成工程およびイオン照射の工程が異なっている。
エミッタ電極は、図10に示すように、まず、第1のAl層62をスパッタ等により形成する。次に耐圧保持部28とチップ周辺部26の第1のAl層62上に、フォトリソグラフィー法によりレジストマスク64を形成する。
次に、図11に示すように、チップ中央部の第1のAl層62のエッチングを行う。第1のAl層62のエッチングは、酸を用いたウエットエッチングであっても良いし、RIE(Reactive Ion Etching)法であっても良いし、CDE(Chemical Dry Etching)法であっても良い。RIE法およびCDE法のエッチングガスとして、例えばBCl3等を用いる。耐圧保持部28とチップ周辺部26の第1のAl層62はレジストでマスクされているため、エッチングされることなく、残存する。チップ中央部30の第1のAl層62のエッチング終了後、レジストマスク64を除去する。ここで、チップ中央部30の第1のAl層62は、全てエッチングにより除去されるものとしたが、所定の厚みを残しても良い。このエッチング終了後の耐圧保持部28およびチップ周辺部26とチップ中央部30とのAl膜の厚みの差が所定の厚みとなるように、第1のAl層の形成厚みおよび第1のAl層のエッチングの深さを制御する。
次に、図12に示すように、基板の上面全面にスパッタにより第2のAl層66を堆積し、第1のAl層62と合わせてエミッタ電極14とする。エミッタ電極14のAlの厚みは、ワイヤボンドに耐えるための強度を得ることとオン抵抗の成分となる電極のシート抵抗を所定以下にするために決められ、Al電極の場合、一般に5μm以上とする。耐圧保持部28およびチップ周辺部26とチップ中央部30とのエミッタ電極14の厚みの差は、図11に示すエッチング終了後の差がそのまま保存される。
次に、図13に示すように、半導体装置104の上面から陽子等のイオン照射を行う。このイオン照射は、チップ周辺部26においてp型高濃度ドリフト領域42の厚みの中央で結晶欠陥量が最大となるような加速エネルギーで行う。照射される陽子等のイオンの飛程は半導体装置104の上面からエミッタ電極14のAlと半導体装置104の母材であるSiのエネルギー吸収特性によって決まる。ここで、AlとSiのエネルギー吸収特性はほぼ等しいため、エミッタ電極14の厚みの差がそのまま、p型高濃度ドリフト領域42におけるチップ周辺部26とチップ中央部30とに形成される結晶欠陥分布の深さの差となる。例えば、チップ周辺部26とチップ中央部30とのエミッタ電極14の厚みの差が5μmである場合、チップ中央部30で結晶欠陥量が最大となる深さは、チップ周辺部26で結晶欠陥量が最大となる深さより5μm下となる。
本実施形態の第1の製造方法によれば、特別なエネルギー吸収マスクを用いる必要が無く、一回の均一なイオン照射工程によりスループットを損なうことなく、チップ中央部30のキャリアライフタイムをチップ周辺部26に比べ長くなるように形成することができる。また、結晶欠陥分布の深さの精度は、エミッタ電極14の膜厚の精度で決めることができるため、高い精度で結晶欠陥分布の深さを制御することができる。
次に半導体装置102の第2の製造方法について説明する。図14〜図16は第2の製造方法を説明するための工程図である。図14〜図16は、それぞれの工程における耐圧保持部28、チップ周辺部26およびチップ中央部30の断面を示している。半導体装置102の第2の製造方法は、第1の製造方法と、チップ周辺部26および耐圧保持部28とチップ中央部30のエミッタ電極を異なる厚みに形成する工程が異なっている。
図14に示すように、まず、第1の製造方法と同様に、第1のAl層62をスパッタ等により形成する。この第1のAl層の厚みは、チップ中央部30のIGBT要素のエミッタ電極14の厚みとなるため、第1のAl層の厚みは5μm以上とする。次にチップ中央部30の第1のAl層62上に、フォトリソグラフィー法を用いてSiO2等の絶縁膜からなるメッキマスク68を形成する。
次に、図15に示すように半導体装置102の第1のAl層62上面に第2のAl層70をメッキする。第1のAl層上62は、導電性があるためAlメッキが付着するが、表面が絶縁膜でマスクされているチップ中央部30ではメッキされない。メッキによる第2のAl層70は、チップ中央部とチップ周辺部26のAl層の厚みの差が所定の厚みとなるまで行う。以上の工程により、第1の製造方法と同様にチップ周辺部26および耐圧保持部28に対してチップ中央部30のエミッタ電極を薄く形成することができる。
次に、図16に示すように、第1の製造方法と同様に半導体装置102の上面からイオン照射を行う。チップ中央部30では、エミッタ電極14の厚みがチップ周辺部26に比べて第2のAl層70の厚みだけ薄いので、その厚みの差だけ、結晶欠陥分布がチップ周辺部26に比べて半導体装置102の深さ方向にシフトしたものとなる。ここで、イオン照射は、チップ中央部30にメッキマスク68を付けたまま行うものとしたが、メッキマスク68はメッキ終了後除去してメッキマスク68無しでイオン照射を行っても良い。その場合は、絶縁膜でのイオンのエネルギー吸収を考慮して、結晶欠陥分布の差が所望のものとなるようにAlメッキの厚みを調整する。メッキはAlとしたが、Alに限られずその他の金属材料であってもよい。その場合、イオン粒子のエネルギー吸収特性のSiと相違を考慮し、エミッタ電極14のチップ周辺部26とチップ中央部30との厚みを適切に設定する。
本実施形態の第2の製造方法によれば、特別なエネルギー吸収マスクを用いる必要が無く、一回の均一なイオン照射工程によりスループットを損なうことなく、チップ中央部30のキャリアライフタイムをチップ周辺部26に比べ長くなるように形成することができる。また、結晶欠陥分布の深さの精度は、エミッタ電極14の膜厚の精度で決めることができるため、高い精度で結晶欠陥分布の深さを制御することができる。
(第3の実施形態)
図17は、本発明の第3の実施形態に係る半導体装置104のチップ中央部30とチップ周辺部26の断面および断面における結晶欠陥分布を示す図である。各断面おいて結晶欠陥分布が最大となる位置を×で示し、×の数で結晶欠陥量の程度を示す。
第2の実施形態に係る半導体装置102では、チップ中央部30のドリフト領域のキャリアライフタイムを、チップ周辺部26のドリフト領域のキャリアライフタイムより長くするために、結晶欠陥分布を同一として、チップ中央部30の結晶欠陥が最大となる深さをチップ周辺部26の結晶欠陥が最大となる深さに比べてp型高濃度ドリフト領域42の厚みの中央から深い方向に遠くすることにより実現したが、第3の実施形態に係る半導体装置104では、結晶欠陥分布を同一として、チップ中央部30の結晶欠陥が最大となる深さをチップ周辺部26の結晶欠陥が最大となる深さに比べてp型高濃度ドリフト領域42の厚みの中央から浅い方向に遠くすることにより実現したものである。
第2の実施形態に係る半導体装置102と同様に、チップ周辺部26では、結晶欠陥分布のほとんどがp型高濃度ドリフト領域42にあるのに対し、チップ中央部30では、結晶欠陥分布がp型高濃度ドリフト領域42の厚みの中央より上にシフトしているため、結晶欠陥分布の一部がp型低濃度ドリフト領域44に含まれる。したがって、p型高濃度ドリフト領域42の結晶欠陥の数は、チップ周辺部26に比べチップ中央部30の方が少なく、チップ中央部30のドレイン領域のキャリアライフタイムはチップ周辺部26のドリフト領域のキャリアライフタイムより長くなる。
図18は、一例のチップ中央部30のIGBT要素とチップ周辺部26のIGBT要素とのチップ上面からの深さに対してキャリアライフタイムをプロットした図である。チップ周辺部26では、p型高濃度ドリフト領域42の厚みの中央部近傍で結晶欠陥分布が最大となるから、p型高濃度ドリフト領域42の厚みの中央部近傍でキャリアライフタイムは最も短くなり、そこから離れるにしたがって、キャリアライフタイムは長くなる。一方、チップ中央部30では、結晶欠陥分布が最大となる深さはp型高濃度ドリフト領域42のp型低濃度ドリフト領域44との境界に近い深さにある。したがって、その深さでキャリアライフタイムは最も短くなり、そこから離れるにしたがって、キャリアライフタイムは長くなる。チップ周辺部26とチップ中央部30との結晶欠陥分布は同一でその深さが異なるだけであるから、図18に示すキャリアライフタイムの分布もチップ周辺部の分布に対しチップ中央部の分布はチップ上面からの深さが浅い位置にシフトしたものになっている。
したがって、第3の実施形態に係る半導体装置104においても、第1の実施形態に係る半導体装置100および第2の実施形態に係る半導体装置102と同様にチップ周辺部26のIGBT要素に比べチップ中央部30のIGBT要素のIcxが低下する。したがって、温度上昇に対してチップ中央部30のIGBT要素よりもチップ周辺部26のIGBT要素に電流が流れやすくなり、従来問題であったチップ中央部30のIGBT要素への電流集中による温度分布の増幅が緩和できる。
第3の実施形態に係る半導体装置104は、第2の実施形態に係る半導体装置102の製造方法における、チップ周辺部とチップ中央部とのエミッタ電極の厚みの関係を逆にしてイオン照射することにより実現できる。すなわち、第2の実施形態に係る半導体装置102の製造工程において、チップ中央部30のエミッタ電極14の厚みを、チップ周辺部30と比べて結晶欠陥分布のシフト量だけ薄く形成したが、第3の実施形態に係る半導体装置104の製造工程において、チップ中央部30のエミッタ電極14の厚みを、チップ周辺部26と比べて結晶欠陥分布のシフト量だけ厚く形成する。
エミッタ電極14の厚みを、チップ中央部30とチップ周辺部26とで結晶欠陥分布のシフト量だけ異なるように形成する方法は、第2の実施形態に係る半導体装置102の製造方法と同様である。すなわち第1の方法は、全面に第1のAl層62を形成した後、チップ周辺部26の第1のAl層62のみエッチングし、さらに全面に第2のAl層66を形成する方法である。第2の方法は、全面に第1のAl層62を形成した後、チップ周辺部26の第1のAl層62上にメッキマスクを形成し、チップ中央部30のみに選択的にAlメッキを行、第2のAl層70を形成する方法である。
このような方法により、チップ中央部30のエミッタ電極14の厚みを、チップ周辺部26と比べて結晶欠陥分布のシフト量だけ厚く形成した後、チップ周辺部26でp型高濃度ドリフト領域42の厚みの中央で結晶欠陥量が最大となる加速エネルギーでイオン照射を行う。このイオン照射により、図17に示すように、チップ中央部30では、チップ周辺部26と比べ、エミッタ電極14の厚みの差だけ、結晶欠陥分布が半導体装置104の上面にシフトして形成される。
したがって、チップ中央部30のp型高濃度ドリフト領域42における結晶欠陥量は、チップ周辺部26と比べ少なくなり、チップ中央部30のキャリアライフタイムをチップ周辺部26と比べ長くすることができる。
以上説明した本発明の実施形態に係る半導体装置はn型基板を用いるものとしたが、p型基板を用いても良い。この場合、半導体装置の各領域の多数キャリアは反対、すなわち、n型はp型に、p型はn型となる。また、結晶欠陥を形成する方法は、イオン照射によるものとしたが、電子線の照射でも結晶欠陥を同様に形成することができる。また、本発明の実施形態に係る半導体装置の構造および半導体装置の製造方法において、キャリアライフタイムおよびp型高濃度ドリフト領域における結晶欠陥分布は、チップ中央部とチップ周辺部との二段階に形成するものとしたが、3段階以上に細分化して形成しても良いし、なめらかに変化するように形成しても良い。また、本実施形態において、半導体要素をIGBTとしたが、同じくバイポーラ動作をするトランジスタやサイリスタ等の装置にも適用できる。
本発明の第1の実施形態に係る半導体装置100の平面図である。 半導体装置100の図1におけるA−A線断面図である。 IGBT素子の出力特性におけるクロスポイントのコレクタ電流Icxのドリフト領域のキャリアライフタイム依存性の一例を示したグラフである。 第1の実施形態に係る半導体装置100の出力特性の一例を示す図である。 半導体装置100のチップ中央部30とチップ周辺部26の断面および断面における結晶欠陥分布の一例を示す図である。 結晶欠陥量とキャリアライフタイムの関係の一例を示す図である。 本発明の実施形態に係る半導体装置100と従来技術の半導体装置の動作時のチップ表面の温度分布の一例を示す図である。 半導体装置102のチップ中央部30とチップ周辺部26の断面および断面における結晶欠陥分布の一例を示す図である。 半導体装置102のチップ中央部30のIGBT要素とチップ周辺部26のIGBT要素のチップ上面からの深さに対するキャリアライフタイムの一例をプロットした図である。 半導体装置102の第1の製造方法を説明するための工程図である。 図10の工程に引き続き、チップ中央部の第1のAl層62のエッチング工程を示す図である。 図11の工程に引き続き、基板の上面全面にスパッタにより第2のAl層66を堆積する工程を示す図である。 図12の工程に引き続き、イオン照射する工程を示す図である。 半導体装置102の第2の製造方法を説明するための工程図である。 図14の工程に引き続き、第2のAl層をめっきする工程を示す図である。 図15の工程に引き続き、イオン照射する工程を示す図である。 本発明の第3の実施形態に係る半導体装置104のチップ中央部30とチップ周辺部26のIGBT要素の断面における結晶欠陥分布を示す図である。 半導体装置104のチップ中央部30のIGBT要素とチップ周辺部26のIGBT要素のチップ上面からの深さに対するキャリアライフタイムの一例をプロットした図である。
符号の説明
12,14,16,18,20,22 エミッタ電極、24 ゲート電極パッド、26 チップ周辺部、28 耐圧保持部、30 チップ中央部、32 半導体要素、36 チップ周辺部、40 基板、42 高濃度ドリフト領域、44 低濃度ドリフト領域、46 ボディ領域、48 エミッタ領域、50 ゲートトレンチ、52 ゲート絶縁膜、54 ゲート電極、56 層間絶縁膜、58 コレクタ電極、60 FLR(フィールドリミットリング)、62,66,70 Al層、64 レジストマスク、68 めっきマスク、100,102,104 半導体装置。

Claims (9)

  1. ゲート電極を有する縦型バイポーラ半導体要素が複数配置された半導体装置において、
    下面にコレクタ電極を有するn(p)型半導体基板の上面に形成されたp(n)型高濃度ドリフト領域と、
    前記p(n)型高濃度ドリフト領域の上面に形成されたp(n)型低濃度ドリフト領域と、
    前記p(n)型低濃度ドリフト領域の上面に形成されたn(p)型ボディ領域と、
    前記n(p)型ボディ領域の上面に形成されたp(n)型エミッタ領域と、
    前記n(p)型ボディ領域にキャリアのチャネルを形成するためのゲート電極と、
    を備え、
    前記複数の半導体要素が配置されるアクティブ領域のうち外縁部から所定の距離以内の領域である半導体装置周辺部以外の半導体装置中央部に配置された少なくとも1つの半導体要素の前記p(n)型高濃度ドリフト領域の結晶欠陥量が、前記複数の半導体要素のうち前記半導体装置周辺部の半導体要素の前記p(n)型高濃度ドリフト領域の結晶欠陥量より少なく、
    前記n(p)型半導体基板及び前記コレクタ電極は、前記半導体装置周辺部及び前記半導体装置中央部に渡って形成されていることを特徴とする半導体装置。
  2. 請求項に記載の半導体装置において、
    前記p(n)型エミッタ領域および前記n(p)型ボディ領域を貫き前記p(n)型低濃度ドリフト領域に達するゲートトレンチを備え、
    前記ゲート電極は、前記ゲートトレンチの中にゲート絶縁膜を介して埋め込まれていることを特徴とする半導体装置。
  3. 請求項またはに記載の半導体装置において、
    前記半導体装置周辺部の半導体要素の前記p(n)型高濃度ドリフト領域において結晶欠陥分布が最大となる深さが、前記半導体装置中央部に配置された少なくとも1つの半導体要素の前記p(n)型高濃度ドリフト領域において結晶欠陥分布が最大となる深さと比べて、前記p(n)型高濃度ドリフト領域の厚みの中央から近いことを特徴とする半導体装置。
  4. 請求項1〜のいずれか1項に記載の半導体装置であって、
    前記半導体要素は、IGBT、トランジスタ、サイリスタのいずれかであることを特徴とする半導体装置。
  5. ゲート電極を有する縦型バイポーラ半導体要素が複数配置された半導体装置の製造方法において、
    下面にコレクタ電極を有するn(p)型半導体基板の上面にp(n)型高濃度ドリフト領域を形成するステップと、
    前記p(n)型高濃度ドリフト領域の上面にp(n)型低濃度ドリフト領域を形成するステップと、
    前記p(n)型低濃度ドリフト領域の上面にn(p)型ボディ領域を形成するステップと、
    前記n(p)型ボディ領域の上面にp(n)型エミッタ領域を形成するステップと、
    前記n(p)型ボディ領域にキャリアのチャネルを形成するためのゲート電極を形成するステップと、
    前記複数の半導体要素が配置されるアクティブ領域のうち外縁部から所定の距離以内の領域である半導体装置周辺部以外の半導体装置中央部に配置された少なくとも1つの半導体要素のエミッタ電極と、前記複数の半導体要素のうち前記半導体装置周辺部の半導体要素のエミッタ電極と、をそれぞれ異なる厚みで形成するエミッタ電極形成ステップと、
    前記エミッタ電極を形成した半導体装置にイオン照射もしくは電子線照射を行う照射ステップと、
    を含み、
    前記半導体装置周辺部の半導体要素のp(n)型低濃度ドリフト領域の下側端面から前記半導体装置周辺部の半導体要素のp(n)型高濃度ドリフト領域における結晶欠陥分布が最大となる第1の位置までの距離のうち前記p(n)型高濃度ドリフト領域の厚み方向に沿った距離が、前記下側端面の同一水平面から前記半導体装置中央部の少なくとも1つの半導体要素の前記p(n)型高濃度ドリフト領域における結晶欠陥分布が最大となる第2の位置まで距離のうち前記p(n)型高濃度ドリフト領域の厚み方向に沿った距離と比べて短く、あるいは、長く、
    前記第1の位置が前記p(n)型高濃度ドリフト領域の厚み方向の中央部に設けられ、
    前記n(p)型半導体基板及び前記コレクタ電極は、前記半導体装置周辺部及び前記半導体装置中央部に渡って形成されていることを特徴とする半導体装置の製造方法。
  6. 請求項に記載の半導体装置の製造方法であって、
    前記エミッタ電極を形成するステップは、
    前記半導体要素の全てに所定の厚みの第1のエミッタ電極層を形成する第1のエミッタ電極形成ステップと、
    前記半導体装置中央部に配置された少なくとも1つの半導体要素または前記半導体装置周辺部の前記半導体要素のいずれか一方の前記第1のエミッタ電極層の厚みをエッチングにより薄くするエミッタ電極エッチングステップと、
    を含むことを特徴とする半導体装置の製造方法。
  7. 請求項に記載の半導体装置の製造方法であって、
    前記エミッタ電極を形成するステップは、
    前記エミッタ電極エッチングステップに引き続いて、前記全ての半導体要素に第2のエミッタ電極層を所定の厚み形成する第2のエミッタ電極形成ステップを含むことを特徴とする半導体装置の製造方法。
  8. 請求項に記載の半導体装置の製造方法であって、
    前記エミッタ電極を形成するステップは、
    前記全ての半導体要素に所定の厚みの第1のエミッタ電極層を形成する第1のエミッタ電極形成ステップと、
    前記半導体装置中央部に配置された少なくとも1つの半導体要素または前記半導体装置周辺部の前記半導体要素のいずれか一方の前記第1のエミッタ電極層上にめっきマスクを形成するめっきマスク形成ステップと、
    前記めっきマスクを形成した後、前記第1のエミッタ電極層上に第2のエミッタ電極層をめっきするめっきステップと、
    を含むことを特徴とする半導体装置の製造方法。
  9. 請求項のいずれか1項に記載の半導体装置の製造方法であって、
    前記エミッタ電極層はAlからなることを特徴とする半導体装置の製造方法。
JP2004002367A 2004-01-07 2004-01-07 バイポーラ半導体装置及びその製造方法 Expired - Lifetime JP4857520B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004002367A JP4857520B2 (ja) 2004-01-07 2004-01-07 バイポーラ半導体装置及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004002367A JP4857520B2 (ja) 2004-01-07 2004-01-07 バイポーラ半導体装置及びその製造方法

Publications (2)

Publication Number Publication Date
JP2005197472A JP2005197472A (ja) 2005-07-21
JP4857520B2 true JP4857520B2 (ja) 2012-01-18

Family

ID=34817606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004002367A Expired - Lifetime JP4857520B2 (ja) 2004-01-07 2004-01-07 バイポーラ半導体装置及びその製造方法

Country Status (1)

Country Link
JP (1) JP4857520B2 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4984485B2 (ja) * 2005-10-17 2012-07-25 富士電機株式会社 半導体装置
JP5036327B2 (ja) * 2007-01-23 2012-09-26 三菱電機株式会社 半導体装置及びその製造方法
JP2009164510A (ja) * 2008-01-10 2009-07-23 Renesas Technology Corp 半導体装置および半導体装置の製造方法
JP2010109031A (ja) 2008-10-29 2010-05-13 Sanken Electric Co Ltd 半導体装置及びその製造方法
JP5366521B2 (ja) * 2008-12-05 2013-12-11 三菱電機株式会社 炭化珪素半導体装置及びその製造方法
JP2010147239A (ja) * 2008-12-18 2010-07-01 Toshiba Corp 半導体装置及びその製造方法
JP5563779B2 (ja) * 2009-03-30 2014-07-30 日産自動車株式会社 半導体装置
JP2011044529A (ja) * 2009-08-20 2011-03-03 Mitsubishi Electric Corp 金属製マスク
JP5361808B2 (ja) * 2010-06-23 2013-12-04 三菱電機株式会社 電力用半導体装置
US9627517B2 (en) 2013-02-07 2017-04-18 Infineon Technologies Ag Bipolar semiconductor switch and a manufacturing method therefor
JP6181597B2 (ja) 2014-04-28 2017-08-16 トヨタ自動車株式会社 半導体装置及び半導体装置の製造方法
JP7188230B2 (ja) * 2019-03-28 2022-12-13 株式会社デンソー 半導体装置
CN113707706A (zh) * 2020-05-21 2021-11-26 华大半导体有限公司 功率半导体装置及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2950025B2 (ja) * 1992-07-02 1999-09-20 株式会社デンソー 絶縁ゲート型バイポーラトランジスタ
JPH09246570A (ja) * 1996-03-13 1997-09-19 Hitachi Ltd 半導体装置
JPH10270451A (ja) * 1997-03-25 1998-10-09 Rohm Co Ltd 半導体装置およびその製造方法
JP4198251B2 (ja) * 1999-01-07 2008-12-17 三菱電機株式会社 電力用半導体装置およびその製造方法
JP2001358146A (ja) * 2000-06-16 2001-12-26 Toyota Central Res & Dev Lab Inc 半導体装置および半導体基板の処理方法
JP3655181B2 (ja) * 2000-09-28 2005-06-02 株式会社東芝 半導体装置およびそのパッケージ

Also Published As

Publication number Publication date
JP2005197472A (ja) 2005-07-21

Similar Documents

Publication Publication Date Title
US9601485B2 (en) Reverse-conducting IGBT with buffer layer and separation layer for reducing snapback
US10109725B2 (en) Reverse-conducting semiconductor device
JP5013436B2 (ja) 電力用半導体装置
JP5103830B2 (ja) 絶縁ゲート型半導体装置
JP5617190B2 (ja) 半導体装置の製造方法および半導体装置
JP5384878B2 (ja) 半導体装置およびその製造方法
JP5915756B2 (ja) 半導体装置および半導体装置の製造方法
JP2012043890A (ja) 半導体装置
JP4857520B2 (ja) バイポーラ半導体装置及びその製造方法
JP5321377B2 (ja) 電力用半導体装置
JP2010147239A (ja) 半導体装置及びその製造方法
JP2009076642A (ja) 半導体装置
EP2223340A1 (en) Reverse-conducting semiconductor device and method for manufacturing such a reverse-conducting semiconductor device
US10297683B2 (en) Method of manufacturing a semiconductor device having two types of gate electrodes
JP2009188178A (ja) 半導体装置
US7816706B2 (en) Power semiconductor device
JP4910894B2 (ja) 半導体装置の製造方法および半導体装置
JP6354458B2 (ja) 半導体装置
US11699744B2 (en) Semiconductor device and semiconductor apparatus
JP2010109031A (ja) 半導体装置及びその製造方法
JP2009043782A (ja) 半導体装置及びその製造方法
JP2004247593A (ja) 半導体装置及びその製造方法
JP2005175174A (ja) 絶縁ゲート型バイポーラトランジスタの製造方法
JP2005136092A (ja) 半導体装置とその製造方法
JP6020317B2 (ja) 半導体素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061103

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111017

R151 Written notification of patent or utility model registration

Ref document number: 4857520

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3