JP4841754B2 - アクティブマトリクス型の発光装置、及び電子機器 - Google Patents

アクティブマトリクス型の発光装置、及び電子機器 Download PDF

Info

Publication number
JP4841754B2
JP4841754B2 JP2001172033A JP2001172033A JP4841754B2 JP 4841754 B2 JP4841754 B2 JP 4841754B2 JP 2001172033 A JP2001172033 A JP 2001172033A JP 2001172033 A JP2001172033 A JP 2001172033A JP 4841754 B2 JP4841754 B2 JP 4841754B2
Authority
JP
Japan
Prior art keywords
circuit
source
gate
electrode
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001172033A
Other languages
English (en)
Other versions
JP2002072964A (ja
JP2002072964A5 (ja
Inventor
舜平 山崎
潤 小山
和江 細木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2001172033A priority Critical patent/JP4841754B2/ja
Publication of JP2002072964A publication Critical patent/JP2002072964A/ja
Publication of JP2002072964A5 publication Critical patent/JP2002072964A5/ja
Application granted granted Critical
Publication of JP4841754B2 publication Critical patent/JP4841754B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Control Of El Displays (AREA)
  • Electroluminescent Light Sources (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はEL(エレクトロルミネッセンス)素子を基板上に作り込んで形成された電子表示装置に関する。特に半導体素子(半導体薄膜を用いた素子)を用いたEL表示装置に関する。またEL表示装置を表示部に用いた電子機器に関する。
【0002】
なお、本明細書中では、EL素子とは、一重項励起子からの発光(蛍光)を利用するものと、三重項励起子からの発光(燐光)を利用するものの両方を含むものとする。
【0003】
【従来の技術】
近年、自発光型素子としてEL素子を有したEL表示装置の開発が活発化している。EL表示装置は有機ELディスプレイ(OELD:Organic EL Display)又は有機ライトエミッティングダイオード(OLED:Organic Light Emitting Diode)とも呼ばれている。
【0004】
EL表示装置は、液晶表示装置と異なり自発光型である。EL素子は一対の電極(陽極と陰極)間にEL層が挟まれた構造となっているが、EL層は通常、積層構造となっている。代表的には、イーストマン・コダック・カンパニーのTangらが提案した「正孔輸送層/発光層/電子輸送層」という積層構造が挙げられる。この構造は非常に発光効率が高く、現在、研究開発が進められているEL表示装置は殆どこの構造を採用している。
【0005】
また他にも、陽極上に正孔注入層/正孔輸送層/発光層/電子輸送層、または正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層の順に積層する構造でも良い。発光層に対して蛍光性色素等をドーピングしても良い。
【0006】
本明細書において、陰極と陽極との間に設けられる全ての層を総称してEL層と呼ぶ。よって上述した正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層等は、全てEL層に含まれる。
【0007】
そして、上記構造でなるEL層に一対の電極(陽極と陰極)から所定の電圧をかけ、それにより発光層においてキャリアの再結合が起こって発光する。ここで、本明細書中では、EL素子の両電極(陽極及び陰極)間に印加される電圧を、EL駆動電圧ということにする。なお本明細書においてEL素子が発光することを、EL素子が駆動すると呼ぶ。また、本明細書中では、陽極、EL層及び陰極で形成される発光素子をEL素子と呼ぶ。
【0008】
図4に、多階調方式EL表示装置のブロック図を示す。なお、ここでは、ソース信号線駆動回路にデジタルの信号を入力して階調を表現する方式の表示装置で、デジタル階調方式を用いる場合を示す。特に、画素の発光する期間を制御することによって輝度を表現する時分割階調方式を用いる場合について説明する。
【0009】
図4のEL表示装置は、基板上に形成された薄膜トランジスタ(以下、TFTと表記する)によって画素部101、画素部101の周辺に配置されたソース信号線駆動回路102及びゲート信号線駆動回路103を有している。またEL駆動電圧を制御する外部スイッチ116が、画素部101に接続されている。
【0010】
ソース信号線駆動回路102は、基本的にシフトレジスタ102a、ラッチ(A)102b、ラッチ(B)102cを含む。また、シフトレジスタ102aには、クロック信号(CLK)及び、スタートパルス(SP)が入力され、ラッチ(A)102bには、デジタルデータ信号(Digital Data Signals)(図中、VDと表記)が入力され、ラッチ(B)102cにはラッチ信号(Latch Signals)(図中、S_LATと表記)が入力される。
【0011】
画素部101に入力されるデジタルデータ信号VDは、時分割階調データ信号発生回路114にて形成される。この回路は、画像情報を有する、アナログ信号又はデジタル信号でなるビデオ信号(図中、Video Signalsと表記)を、時分割階調を行うためのデジタルデータ信号VDに変換すると共に、時分割階調表示を行うために必要なタイミングパルス等を発生させる回路である。
【0012】
典型的には、時分割階調データ信号発生回路114には、1フレーム期間をnビット(nは2以上の整数)の階調に対応した複数のサブフレーム期間に分割する手段と、それら複数のサブフレーム期間において書き込み期間及び表示期間を選択する手段と、その表示期間の長さを設定する手段とが含まれる。
【0013】
画素部101の構造は、図5に示すようなものが一般的である。図5において、選択信号を入力するゲート信号線(G1〜Gy)と、デジタルデータ信号を入力するソース信号線(データ信号線ともいう)(S1〜Sx)とが画素部101に設けられている。なおデジタルデータ信号とは、デジタルのビデオ信号を意味する。
【0014】
また電源供給線(V1〜Vx)が、ソース信号線(S1〜Sx)と平行して設けられている。電源供給線(V1〜Vx)の電位を電源電位と呼ぶ。また配線(Vb1〜Vby)がゲート信号線(G1〜Gy)と平行して設けられている。配線(Vb1〜Vby)は、外部スイッチ116に接続されている。
【0015】
画素部101には、マトリクス状に複数の画素104が配列される。画素104の拡大図を図6に示す。図6において、1701はスイッチング素子として機能するTFT(以下、スイッチング用TFTという)、1702はEL素子1703に供給する電流を制御するための素子(電流制御素子)として機能するTFT(以下、駆動用TFTという)、1704は保持容量である。
【0016】
スイッチング用TFT1701のゲート電極は、ゲート信号を入力するゲート信号線(G1〜Gy)のうちの1つであるゲート信号線1705に接続されている。スイッチング用TFT1701のソース領域とドレイン領域は、一方がデジタルデータ信号を入力するソース信号線(S1〜Sx)のうちの1つであるソース信号線1706に、もう一方が駆動用TFT1702のゲート電極及び保持容量1704にそれぞれ接続されている。
【0017】
また、駆動用TFT1702のソース領域とドレイン領域は、一方は電源供給線(V1〜Vx)の1つである電源供給線1707に接続され、もう一方はEL素子1703に接続されている。また保持容量1704は、電源供給線(V1〜Vx)の1つである電源供給線1707に接続されている。
【0018】
EL素子1703は、陽極と陰極と、陽極と陰極との間に設けられたEL層とからなる。陽極が駆動用TFT1702のソース領域またはドレイン領域と接続している場合、陽極が画素電極となる。このとき陰極は対向電極となる。逆に、陰極が駆動用TFT1702のソース領域またはドレイン領域と接続している場合、陰極が画素電極となる。このとき陽極は対向電極となる。本明細書において、対向電極の電位を対向電位と呼ぶ。対向電極の電位と画素電極の電位の電位差がEL駆動電圧となり、EL層にかかる。
【0019】
EL素子1703の対向電極は、配線(Vb1〜Vby)の1つを通じて外部スイッチ116に接続されている。(図5を参照)
【0020】
次に多階調方式EL表示装置の時分割階調方式の駆動について説明する。ここではnビットデジタルビデオ信号を入力し、2n階調を表示する場合を例に説明する。
【0021】
図7に、タイミングチャートを示す。
【0022】
まず、1フレーム期間をn個のサブフレーム期間(SF1〜SFn)に分割する。
【0023】
なお、画素部の全ての画素が1つの画像を表示する期間を1フレーム期間(F)と呼ぶ。ここで、1フレーム期間は、1/60秒ほどの長さに設定される。これは動画を表示する際に、人間の目がチラツキを感じない程度の時間である。
【0024】
階調数が多くなるにつれて1フレーム期間のサブフレーム期間の数も増え、各駆動回路(ソース信号線駆動回路及びゲート信号線駆動回路)、特にソース信号線駆動回路を高い周波数で駆動しなければならない。
【0025】
1つのサブフレーム期間は、書き込み期間(Ta)と表示期間(Ts)とに分けられる。書き込み期間とは、1サブフレーム期間中、全画素にデジタルデータ信号を入力する期間であり、表示期間(点灯期間とも呼ぶ)とは、EL素子の発光または非発光状態を選択し、表示を行う期間を示している。
【0026】
また、図7に示したEL駆動電圧は、発光状態を選択されたEL素子のEL駆動電圧を表す。すなわち、発光状態を選択された画素のEL素子のEL駆動電圧は、書き込み期間中は、EL素子が発光しないような電圧、例えば0Vとなる。一方、表示期間中はEL素子が発光する程度の大きさを有する。
【0027】
対向電位は、図4及び図5に示した、外部スイッチ116により制御される。書き込み期間において、対向電位は電源電位と同じ高さに保たれる。一方表示期間においては、対向電位は電源電位との間にEL素子が発光する程度の電位差を有するよう変化する。
【0028】
まず、それぞれのサブフレーム期間が有する書き込み期間と表示期間とについて、図5と図6の記号を用いて詳しく説明し、その後、時分割階調方式の表示について説明する。
【0029】
まずゲート信号線G1にゲート信号が入力され、ゲート信号線G1に接続されている全てのスイッチング用TFT1701がオンの状態になる。
【0030】
ここで、本明細書中では、TFTがオンの状態になるとは、TFTのゲート電圧が変化し、そのソース・ドレイン間が導通状態となった状態を示すものとする。
【0031】
書き込み期間において、ソース信号線(S1〜Sx)にデジタルデータ信号が入力される。このとき、対向電位は、電源供給線(V1〜Vx)の電源電位と同じ高さに保たれている。デジタルデータ信号は「0」または「1」の情報を有している。「0」と「1」のデジタルデータ信号は、それぞれHiまたはLoのいずれかの電圧を有する信号を意味する。
【0032】
そしてソース信号線(S1〜Sx)に入力されたデジタルデータ信号は、オンの状態のスイッチング用TFT1701を介して、駆動用TFT1702のゲート電極に入力される。また保持容量1704にもデジタルデータ信号が入力され保持される。
【0033】
そして、ゲート信号線G2〜Gyに順に選択信号を入力することで上述した動作を繰り返し、全ての画素にデジタルデータ信号が入力され、各画素において入力されたデジタルデータ信号が保持される。各サブフレーム期間において、全ての画素にデジタルデータ信号が入力されるまでの期間を書き込み期間と呼ぶ。
【0034】
全ての画素にデジタルデータ信号が入力されると、全てのスイッチング用TFT1701はオフの状態となる。
【0035】
ここで、TFTがオフの状態になるとは、TFTのゲート電圧によって、そのソース・ドレイン間が非導通状態となる状態を示すものとする。
【0036】
その後、対向電極に接続されている外部スイッチ116によって、対向電位は電源電位との間にEL素子が発光する程度の電位差を有するように変化する。
【0037】
デジタルデータ信号が「0」の情報を有していた場合、駆動用TFT1702はオフの状態となりEL素子1703は発光しない。逆に、「1」の情報を有していた場合、駆動用TFT1702はオンの状態となる。その結果、EL素子1703の画素電極は電源電位に保たれ、EL素子1703は発光する。このようにデジタルデータ信号が有する情報によって、EL素子の発光または非発光状態が選択され、全ての画素が一斉に表示を行う。全ての画素が表示を行うことによって、画像が形成される。画素が表示を行う期間を表示期間と呼ぶ。
【0038】
n個のサブフレーム期間(SF1〜SFn)がそれぞれ有する書き込み期間(Ta1〜Tan)の長さは全て一定である。SF1〜SFnがそれぞれ有する表示期間(Ts)をそれぞれTs1〜Tsnとする。
【0039】
表示期間の長さは、例えば、Ts1:Ts2:Ts3:…:Ts(n-1):Tsn=20:2-1:2-2:…:2-(n-2):2-(n-1)となるように設定することができる。この表示期間の組み合わせで、2n階調のうち所望の階調表示を行うことができる。
【0040】
ここではTsnの期間、所定の画素を点灯させたとする。
【0041】
次に、再び書き込み期間に入り、全画素にデジタルデータ信号を入力したら表示期間に入る。このときはTs1〜Ts(n-1)のいずれかの期間が表示期間となる。ここではTs(n-1)の期間、所定の画素を点灯させたとする。
【0042】
以下、残りのn−2個のサブフレームについて同様の動作を繰り返し、順次Ts(n-2)、Ts(n-3)…Ts1と表示期間を設定し、それぞれのサブフレームで所定の画素を点灯させたとする。
【0043】
n個のサブフレーム期間が出現したら1フレーム期間を終えたことになる。このとき、画素が点灯していた表示期間の長さを積算することによって、その画素の階調が表現される。
【0044】
例えば、n=8のとき、全部の表示期間で画素が発光した場合の輝度を100%とすると、Ts1とTs2において画素が発光した場合には75%の輝度が表現でき、Ts3とTs5とTs8を選択した場合には16%の輝度が表現できる。
【0045】
【発明が解決しようとする課題】
本発明は、EL表示装置、特にボトムゲート型TFTを使用したEL表示装置の画質向上を課題とする。以下にこの課題について詳しく説明する。
【0046】
上述した時分割階調方式を用いる場合、画素のEL素子に流れる電流の大きさは、各サブフレーム期間の表示期間において、一定に保たれるのが望ましいが、実際には温度によって左右される。
【0047】
図18は、EL素子の温度特性を示すグラフである。横軸が、EL素子の両電極間に印加された印加電圧である。縦軸が、EL素子に流れる電流である。
【0048】
このグラフにより、ある温度下で、EL素子の両電極間に印加された印加電圧に対して、EL素子を流れる電流量を知ることができる。ここで、温度T1は、温度T2よりも高く、温度T2は温度T3よりも高い。
【0049】
このグラフより、たとえ画素部のEL素子の両電極間にかかる印加電圧が同じであっても、EL素子が有する温度特性によって、EL層の温度が高くなれば高くなるほど、EL素子を流れる電流は大きくなることがわかる。
【0050】
この様に、EL表示装置を使用する温度(以下、環境温度という)によって、画素部のEL素子を流れる電流が変動し、画素部のEL素子の輝度が変化してしまう。このため、正確な階調表現ができなくなり、EL表示装置の信頼性を損なう原因の1つとなっている。
【0051】
また、EL素子を流れる電流が増えることによって、消費電力の増大を招く。
【0052】
この様な、EL素子の環境温度による輝度の変動、及び消費電力の増大を抑えることを課題とする。
【0053】
また、ボトムゲート型TFTには、特に、次のような2つの問題がある。
【0054】
1つ目の問題点について説明する。
【0055】
ボトムゲート型TFTにおいて、ゲート電極の側壁は、その上部に絶縁膜及び半導体薄膜を形成する作製工程上、なだらかな構造にする必要がある。そのため、ボトムゲート型TFTのゲート電極の幅(ゲート長)は、なだらかなゲート電極側壁であることをそれほど要求されないトップゲート型TFTのゲート電極の幅(ゲート長)と比べて、小さくできないという問題がある。
【0056】
次に、2つ目の問題点について説明する。
【0057】
ボトムゲート型TFTでは、ゲート電極を、ソース領域及びドレイン領域として用いる半導体薄膜の下部に形成するため、この半導体薄膜は、凸型の形状となる。この様な凸型の形状の半導体薄膜として、ポリシリコンなどの多結晶膜を用いる場合、平面上に形成された多結晶膜と比較して、結晶性が悪く、電界効果移動度(モビリティー)等の特性が劣るという問題がある。
【0058】
これらの問題点により、ボトムゲート型TFTを用いて形成された駆動回路の周波数特性は、トップゲート型TFTを用いて形成されたものに比べて劣る。
【0059】
ここで、大きな表示画面を有する表示装置で、規格がVGA以上のような、画素数が多い表示装置では、ソース信号線の数も増え、高速動作が必要となる。また、前述の時間分割階調方式を用い、サブフレーム期間を複数設けた場合も、高速動作が必要となる。そのため、ボトムゲート型TFTを用いたソース信号線駆動回路では、特にその動作速度が不十分となる。
【0060】
そこで、環境温度の変化によるEL素子の輝度の変化及び消費電流の増大を抑制可能な表示装置で、また、ボトムゲート型TFTを用いて構成した回路においても、そのソース信号線駆動回路の周波数特性を克服し、大型化、高精細化、及び高階調化が可能な表示装置を提供することを課題とする。
【0061】
【課題を解決するための手段】
EL表示装置に温度モニター用のEL素子(以下、モニター用EL素子という)を設ける。そして温度モニター用のEL素子の一方の電極を、定電流源に接続する。このモニター用のEL素子の温度特性を用いて、画素のEL素子を流れる電流の大きさを一定に保つ。また、映像信号を時間軸伸張して、ソース信号線駆動回路における映像信号のサンプリングにマージンを持たせる。
【0062】
以下に、本発明の構成を示す。
【0063】
本発明によって、
複数のEL素子を有する複数の画素と、モニター用EL素子とを有する表示装置であって、
前記モニター用EL素子の温度特性を用いて、前記複数のEL素子を流れる電流の温度による変動を小さくすることを特徴とする表示装置が提供される。
【0064】
本発明によって、
複数の画素を有する画素部と、電源供給線と、バッファアンプと、モニター用EL素子と、定電流源とを有する表示装置であって、
前記複数の画素は、薄膜トランジスタとEL素子とをそれぞれ有しており、
前記モニター用EL素子及び前記EL素子は、第1の電極と、第2の電極と、前記第1の電極と前記第2の電極との間に設けられたEL層とをそれぞれ有しており、
前記モニター用EL素子の第1の電極と前記定電流源とは接続されており、
前記モニター用EL素子の第1の電極と前記バッファアンプの非反転入力端子が接続されており、
前記バッファアンプの出力端子は、前記電源供給線に接続されており、
前記電源供給線の電位は、前記薄膜トランジスタを介して前記EL素子の第1の電極に与えられていることを特徴とする表示装置が提供される。
【0065】
本発明によって、
複数の画素を有する画素部と、電源供給線と、バッファアンプと、モニター用EL素子と、定電流源と、加算回路とを有する表示装置であって、
前記複数の画素は、薄膜トランジスタとEL素子とをそれぞれ有しており、
前記モニター用EL素子及び前記EL素子は、第1の電極と、第2の電極と、前記第1の電極と前記第2の電極との間に設けられたEL層とをそれぞれ有しており、
前記モニター用EL素子の第1の電極と前記定電流源とは接続されており、
前記モニター用EL素子の第1の電極と前記バッファアンプの非反転入力端子が接続されており、
前記バッファアンプの出力端子は加算回路の入力端子に接続されており、
前記加算回路の出力端子は前記電源供給線に接続されており、
前記加算回路の入力端子と出力端子とは、常に一定の電位差を有しており、
前記電源供給線の電位は、前記薄膜トランジスタを介して前記EL素子の第1の電極に与えられていることを特徴とする表示装置が提供される。
【0066】
本発明によって、
絶縁基板上に、複数のソース信号線と、複数のゲート信号線と、複数の電源供給線と、複数の画素と、前記複数のソース信号線に信号を入力するためのソース信号線駆動回路と、前記複数のゲート信号線に信号を入力するためのゲート信号線駆動回路と、モニター用EL素子とを有し、
前記複数の画素は、それぞれEL素子と、スイッチング用TFTと、駆動用TFTと、保持容量とを有しており、
前記モニター用EL素子及び前記EL素子は、第1の電極と、第2の電極と、前記第1の電極と前記第2の電極との間に設けられたEL層とをそれぞれ有しており、
前記スイッチング用TFTのゲート電極は、前記複数のゲート信号線の1つと接続されており、前記スイッチング用TFTのソース領域とドレイン領域とは、一方は前記複数のソース信号線の1つと、もう一方は前記駆動用TFTのゲート電極とそれぞれ接続されており、
前記駆動用TFTのソース領域とドレイン領域とは、一方は、前記複数の電源供給線の1つと、もう一方は、前記EL素子が有する第1の電極もしくは第2の電極と接続されており、
前記保持容量の電極の一方は、前記複数の電源供給線の一つと、もう一方は駆動用TFTのゲート電極と接続されており、
前記モニター用EL素子を用いて、前記複数の電源供給線より、前記EL素子に流れる電流の、温度による変動を小さくすることを特徴とする表示装置が提供される。
【0067】
本発明によって、
絶縁基板上に、複数のソース信号線と、複数のゲート信号線と、複数の電源供給線と、複数の画素と、前記複数のソース信号線に信号を入力するためのソース信号線駆動回路と、前記複数のゲート信号線に信号を入力するためのゲート信号線駆動回路と、モニター用EL素子と、バッファアンプと、定電流源を有し、
前記複数の画素は、それぞれEL素子と、スイッチング用TFTと、駆動用TFTと、保持容量とを有しており、
前記モニター用EL素子及び前記EL素子は、第1の電極と、第2の電極と、前記第1の電極と前記第2の電極との間に設けられたEL層とをそれぞれ有しており、
前記スイッチング用TFTのゲート電極は、前記複数のゲート信号線の1つと接続されており、
前記スイッチング用TFTのソース領域とドレイン領域とは、一方は前記複数のソース信号線の1つと、もう一方は前記駆動用TFTのゲート電極とそれぞれ接続されており、
前記駆動用TFTのソース領域とドレイン領域とは、一方は、前記複数の電源供給線の一つと、もう一方は、前記EL素子が有する第1の電極と接続されており、
前記保持容量の電極の一方は、前記複数の電源供給線の一つと、もう一方は駆動用TFTのゲート電極と接続されており、
前記モニター用EL素子の第1の電極と前記定電流源とは接続されており、
前記モニター用EL素子の第1の電極と前記バッファアンプの非反転入力端子が接続されており、
前記バッファアンプの出力端子は前記電源供給線に接続されており、
前記電源供給線の電位は前記駆動用TFTを介して前記EL素子の第1の電極に与えられていることを特徴とする表示装置が提供される。
【0068】
本発明によって、
絶縁基板上に、複数のソース信号線と、複数のゲート信号線と、複数の電源供給線と、複数の画素と、前記複数のソース信号線に信号を入力するためのソース信号線駆動回路と、前記複数のゲート信号線に信号を入力するためのゲート信号線駆動回路と、モニター用EL素子と、バッファアンプと、定電流源と、加算回路とを有し、
前記複数の画素は、それぞれEL素子と、スイッチング用TFTと、駆動用TFTと、保持容量とを有しており、
前記モニター用EL素子及び前記EL素子は第1の電極と、第2の電極と、前記第1の電極と前記第2の電極との間に設けられたEL層とをそれぞれ有しており、
前記スイッチング用TFTのゲート電極は、前記複数のゲート信号線の1つと接続されており、
前記スイッチング用TFTのソース領域とドレイン領域とは、一方は前記複数のソース信号線の1つと、もう一方は前記駆動用TFTのゲート電極とそれぞれ接続されており、
前記駆動用TFTのソース領域とドレイン領域とは、一方は、前記複数の電源供給線の一つと、もう一方は、前記EL素子が有する第1の電極と接続されており、
前記保持容量の電極の一方は、前記複数の電源供給線の一つと、もう一方は駆動用TFTのゲート電極と接続されており、
前記モニター用EL素子の第1の電極と前記定電流源とは接続されており、
前記モニター用EL素子の第1の電極と前記バッファアンプの非反転入力端子が接続されており、
前記バッファアンプの出力端子は加算回路の入力端子に接続されており、
前記加算回路の出力端子は前記電源供給線に接続されており、
前記加算回路の入力端子と出力端子とは、常に一定の電位差を有しており、
前記電源供給線の電位は前記駆動用TFTを介して前記EL素子の第1の電極に与えられていることを特徴とする表示装置が提供される。
【0069】
前記モニター用EL素子及び前記EL素子の、第1の電極は陽極であり、第2の電極は陰極であることを特徴とする表示装置であってもよい。
【0070】
前記モニター用EL素子及び前記EL素子の、第1の電極は陰極であり、第2の電極は陽極であることを特徴とする表示装置であってもよい。
【0071】
前記バッファアンプ、前記定電流源のうち少なくとも1つは、前記薄膜トランジスタと同一基板上の薄膜トランジスタにより構成されていることを特徴とする表示装置であってもよい。
【0072】
前記バッファアンプ、前記定電流源、前記加算回路のうち少なくとも1つは、前記薄膜トランジスタと同一基板上の薄膜トランジスタにより構成されていることを特徴とする表示装置であってもよい。
【0073】
前記バッファアンプ、前記定電流源のうち少なくとも1つは、前記スイッチング用TFT及び前記駆動用TFTと同一基板上のTFTにより構成されていることを特徴とする表示装置であってもよい。
【0074】
前記バッファアンプ、前記定電流源、前記加算回路のうち少なくとも1つは、前記スイッチング用TFT及び前記駆動用TFTと同一基板上のTFTにより構成されていることを特徴とする表示装置であってもよい。
【0075】
本発明によって、
絶縁基板上に、複数のEL素子を有する複数の画素と、画素を構成する複数の画素TFTと、前記画素TFTを駆動する、ソース信号線駆動回路とゲート信号線駆動回路とを有する表示装置において、
前記ソース信号線駆動回路は、デジタルの映像信号を順次サンプリングする手段を有し、且つ前記サンプリングは、複数の信号を同時にサンプリングすることを特徴とする表示装置が提供される。
【0076】
本発明によって、
絶縁基板上に、複数のEL素子を有する複数の画素と、画素を構成する複数の画素TFTと、前記画素TFTを駆動する、ソース信号線駆動回路とゲート信号線駆動回路とを有する表示装置において、
前記ソース信号線駆動回路は、k倍(kは自然数)に時間伸張されたデジタルの信号を順次サンプリングする手法を有し、且つ前記サンプリングは、k個の映像信号を同時にサンプリングすることを特徴とする表示装置が提供される。
【0077】
本発明によって、
絶縁基板上に、複数のEL素子を有する複数の画素と、画素を構成する複数の画素TFTと、前記画素TFTを駆動する、ソース信号線駆動回路とゲート信号線駆動回路とを有する表示装置において、
前記ソース信号線駆動回路は、アナログの映像信号を順次サンプリングする手段を有し、且つ前記サンプリングは、複数の信号を同時にサンプリングすることを特徴とする表示装置が提供される。
【0078】
本発明によって、
絶縁基板上に、複数のEL素子を有する複数の画素と、画素を構成する複数の画素TFTと、前記画素TFTを駆動するソース信号線駆動回路とゲート信号線駆動回路とを有する表示装置において、
前記ソース信号線駆動回路は、k倍(kは自然数)に時間伸張されたアナログの信号を順次サンプリングする手法を有し、且つ前記サンプリングは、k個の映像信号を同時にサンプリングすることを特徴とする表示装置が提供される。
【0079】
前記ソース信号線駆動回路を構成するTFTは、ボトムゲート型TFTであることを特徴とする表示装置であってもよい。
【0080】
前記EL素子は、単色発光するEL層を用い、色変換層と組み合わせて、カラー表示を可能にすることを特徴とする表示装置であってもよい。
【0081】
前記EL素子は、白色発光するEL層を用い、カラーフィルタと組み合わせて、カラー表示を可能にすることを特徴とする表示装置であってもよい。
【0082】
前記EL素子のEL層は、低分子系有機物質またはポリマー系有機物質であることを特徴とする表示装置であってもよい。
【0083】
前記低分子系有機物質は、Alq3(トリス−8−キノリライト−アルミニウム)またはTPD(トリフェニルアミン誘導体)からなることを特徴とする表示装置であってもよい。
【0084】
前記ポリマー系有機物質は、PPV(ポリフェニレンビニレン)、PVK(ポリビニルカルバゾール)またはポリカーボネートからなることを特徴とする表示装置であってもよい。
【0085】
前記EL素子のEL層は、無機物質であることを特徴とする表示装置であってもよい。
【0086】
前記表示装置を用いることを特徴とするコンピュータ、テレビ受像機、電話機、モニター装置、カーナビゲーション装置であってもよい。
【発明の実施の形態】
【0087】
(実施の形態1)
【0088】
本発明の構成について図1を用いて説明する。
【0089】
501は電源供給線を示している。なお本明細書において電源供給線は、ソース信号線に入力されるデジタルデータ信号によって、画素部のEL素子(図示せず)が有する電極の一方に所定の電位を与えるための配線である。本明細書では電源供給線の電位を電源電位と呼ぶ。
【0090】
502はバッファアンプ(緩衝増幅器)であり、503はモニター用EL素子、504は定電流源である。モニター用EL素子503の一方の電極は定電流源504に接続されており、モニター用EL素子503には常に一定の電流が流れている。そしてEL素子が有するEL層の温度が変化すると、モニター用EL素子503を流れる電流の大きさが変化しないかわりに、定電流源504に接続されているモニター用EL素子503の電極の電位が変化する。
【0091】
ここで、モニター用EL素子503と画素のEL素子との、同じ温度による両電極間の印加電圧と素子を流れる電流との関係が同じになるよう、各EL素子(モニター用EL素子503及び各画素のEL素子)は、作製されている。
【0092】
ここで、モニター用EL素子503のバッファアンプ502に接続されている側が陽極の場合、電源供給線501に接続されている画素のEL素子の電極(画素電極)も陽極であるとする。一方、モニター用EL素子503のバッファアンプ502に接続されている側の電極が、陰極の場合、電源供給線501に接続されている画素のEL素子の電極(画素電極)も、陰極であるとする。
【0093】
また、モニター用EL素子503の、バッファアンプ502に接続されていない側の電極と、画素部のEL素子の対向電極には、ほぼ等しい電位が与えられているものとする。
【0094】
一方バッファアンプ502は、2つの入力端子と1つの出力端子とを有しており、2つの入力端子のうち一方は非反転入力端子(+)、もう一方は反転入力端子(−)である。モニター用EL素子503の一方の電極の電位は、バッファアンプ502の非反転入力端子に与えられる。バッファアンプに出力端子は、電源供給線501に接続されている。また、バッファアンプの反転入力端子は、バッファアンプの出力端子と接続されている。
【0095】
バッファアンプは、定電流源504に接続されたモニター用EL素子503の電極の電位が、電源供給線501の配線容量等の負荷によって変化するのを防ぐ回路である。よってバッファアンプ502の非反転入力端子に与えられた電位は、電源供給線501の配線容量等の負荷によって変化することなく出力端子から出力され、電源電位として電源供給線501に与えられる。
【0096】
よって、環境温度の変化により、モニター用EL素子503及び画素部のEL素子のEL層の温度が変化しても、EL素子に一定の電流が流れるように電源電位が変化する。これにより、環境温度の変化による輝度変化、及び消費電流の増大を抑えることができる。
【0097】
なお本実施の形態において、バッファアンプ502、モニター用EL素子503、定電流源504は、それぞれ、画素部と同じ基板上に形成されていても良いし、ICチップ上に形成されていても良い。
【0098】
またモニター用EL素子503は、画素部の中に含まれていても良いし、画素部とは別に設けても良い。
【0099】
(実施の形態2)
【0100】
ボトムゲート型TFTの周波数特性対策として、高速動作が必要となる場合、ソース信号線駆動回路をいくつかのブロックに分割し、それぞれのブロックが、同時に何本かのソース信号線に対応する信号を処理することによって、ソース信号線駆動回路の処理速度を上げる。
【0101】
まず、従来例において説明した時分割階調方式を用いる場合のソース信号線駆動回路を、いくつかのブロックに分けて駆動させる例について説明する。図17に、ソース信号線駆動回路の略図を示す。
【0102】
ソース信号線駆動回路は、k本のソース信号線への出力に対応するブロックに分割されている。具体的には、ラッチ(A)及びラッチ(B)は、それぞれm個のブロック(ラッチ(A),1〜ラッチ(A),m)、(ラッチ(B),1〜ラッチ(B),m)から構成され、このそれぞれのブロックは、k個のラッチ回路を有している。
【0103】
外部から入力されるデジタルデータ信号VDはk分割されている。
【0104】
なお、このK分割されたデジタルデータ信号VDとは、外部の時分割信号発生回路によって、デジタルのビデオ信号を、前述した時分割階調表示を行うための信号に変換し、それらの信号の各サブフレーム期間における書き込み期間の信号を時間軸伸張し、k本のソース信号線に対応する信号毎に並列な信号に変換したものである。
【0105】
この時間軸伸張するための回路は、表示装置の外部などに個別に設ければよい。
【0106】
シフトレジスタからの信号により、ブロックラッチ(A)、1において、k本のソース信号線への出力に対応するデジタルデータ信号VDが、同時にサンプリングされる。同様にして、順にラッチ(A)のブロック(ラッチ(A),2〜ラッチ(A),m)が選択され、すべてのソース信号線S_1〜S_mkへの出力に対応するデジタルデータ信号VDが、ラッチ(A)に保持される。その後ラッチ(B)において、ラッチパルスが入力されると、ラッチ(A)のそれぞれのブロックにおいて保持された信号は、一斉にラッチ(B)に入力され、ソース信号線S_1〜S_mkに出力される。
【0107】
上記のように、ソース信号線駆動回路を分割することによって、ソース信号線駆動回路のシフトレジスタの動作速度は、分割しない場合と比較して約1/kでよい。
【0108】
また、時分割階調方式以外の駆動方法においても、ソース信号線駆動回路にデジタルビデオ信号を入力する前に、k本のソース信号線に対応する信号毎に、パラレル信号に変換し、k本のソース信号線に対応する信号を同時に処理することによって、ソース信号線駆動回路の動作に余裕を持たせることができる。
【0109】
こうして、ボトムゲート型TFTを用いて構成されたソース信号線駆動回路を有する表示装置においても、大型化、高精細化及び高階調化が可能な表示装置を提供することができる。
【0110】
実施の形態1と実施の形態2は、自由に組み合わせて実施することができる。
【0111】
【実施例】
以下に、本発明の実施例について説明する。
【0112】
(実施例1)
本実施例では、実施の形態1で、図1により示した構成とは異なる温度補正回路を用いた例について説明する。
【0113】
図2に、本実施例の温度補正回路の構成を示す。
【0114】
501は電源供給線であり、502はバッファアンプ(緩衝増幅器)、503はモニター用EL素子、504は定電流源、505は加算回路である。モニター用EL素子503の一方の電極は、定電流源504に接続されており、モニター用EL素子503には常に一定の電流が流れている。そしてEL素子が有するEL層の温度が変化すると、モニター用EL素子503を流れる電流の大きさが変化しないかわりに、定電流源504に接続されているモニター用EL素子503の電極の電位が変化する。
【0115】
ここで、モニター用EL素子503と画素のEL素子(図示せず)との、同じ温度による両電極間の印加電圧と素子を流れる電流との関係が同じになるよう、各EL素子(モニター用EL素子503及び各画素のEL素子)は、作製されている。
【0116】
ここで、モニター用EL素子503のバッファアンプ502に接続されている側が陽極の場合、電源供給線501に接続されている画素のEL素子の電極(画素電極)も陽極であるとする。一方、モニター用EL素子503のバッファアンプ502に接続されている側の電極が、陰極の場合、電源供給線501に接続されている画素のEL素子の電極(画素電極)も、陰極であるとする。
【0117】
また、モニター用EL素子503の、バッファアンプ502に接続されていない側の電極と、画素部のEL素子の対向電極には、ほぼ等しい電位が与えられているものとする。
【0118】
一方バッファアンプ502は2つの入力端子と1つの出力端子とを有しており、2つの入力端子のうち一方は非反転入力端子(+)、もう一方は反転入力端子(−)である。モニター用EL素子503の一方の電極の電位は、バッファアンプ502の非反転入力端子に与えられる。
【0119】
バッファアンプは、定電流源504に接続されたモニター用EL素子503の電極の電位が、電源供給線501の配線容量等の負荷によって変化するのを防ぐ回路である。よってバッファアンプ502の非反転入力端子に与えられた電位は、電源供給線501や加算回路505の配線容量等の負荷によって変化することなく出力端子から出力され、加算回路505に与えられる。
【0120】
加算回路505に与えられたバッファアンプ502の出力端子の電位は、ある一定の電位差が加えられるか差し引かれたり、数倍に増幅される等した後、電源電位として電源供給線501に与えられる。
【0121】
図3に本実施例の加算回路の詳しい回路図を示す。加算回路505は第1の抵抗521と、第2の抵抗522と、加算回路用電源525と、非反転増幅回路520とを有している。非反転増幅回路520は第3の抵抗523と、第4の抵抗524と、非反転増幅回路用電源526と、アンプ527とを有している。
【0122】
第1の抵抗521の一方の端子は、加算回路の入力端子(IN)である。そして、第1の抵抗521のもう一方の端子は、第2の抵抗522の一方の端子に接続されている。第2の抵抗522のもう一方の端子は、加算回路用電源525に接続されている。第1の抵抗521と第2の抵抗522との間からの出力は、非反転増幅回路520のアンプ527の非反転入力端子(+)に入力される。
【0123】
第3の抵抗523の一方の端子は、アンプ527の出力端子に、第3の抵抗523のもう一方の端子は、アンプ527の反転入力端子に接続されている。第3の抵抗523とアンプ527の反転入力端子との間からの出力は、第4の抵抗524の一方の端子に入力されている。第4の抵抗524のもう一方の端子は、非反転増幅回路用電源526と接続されている。第3の抵抗523とアンプ527の出力端子との間からの出力は加算回路505の出力端子(OUT)から出力される。
【0124】
上記構成によって、環境温度の変化により、モニター用EL素子503または画素部のEL素子のEL層の温度が変化しても、画素部のEL素子に一定の電流が流れるように電源電位が変化する。よってEL表示装置の環境温度が変化した場合でも、画素部のEL素子の輝度を一定に保つことができる。
【0125】
そして、なおかつ加算回路505を設けることで、電源供給線501の電位(電源電位)を、モニター用EL素子503の定電流源504に接続されている電極の電位と同じにする必要がなくなる。
【0126】
よってバッファアンプ502、モニター用EL素子503、定電流源504に流れる電流の大きさを抑えることができ、その結果、消費電力を抑えることができる。
【0127】
なお、加算回路505は図3に示した構成に限定されない。
【0128】
なお本実施例おいて、バッファアンプ502、モニター用EL素子503、定電流源504、加算回路505は、それぞれ、画素部と同じ基板上に形成されていても良いし、ICチップ上に形成されていても良い。
【0129】
またモニター用EL素子503は、画素部の中に含まれていても良いし、画素部とは別に設けても良い。
【0130】
(実施例2)
本実施例では、本発明の表示装置の温度補正回路が有するバッファアンプの構造の例について説明する。
【0131】
画素に含まれるTFTと同じ構成のTFTでバッファアンプを作製した例を、図8に示す。
【0132】
バッファアンプは、TFT1901〜1909、コンデンサ1910、定電流源1911、1912、電源線1930、1931により構成される。
【0133】
ここで、TFT1901、1902、1906、1909は、nチャネル型TFTであり、TFT1903〜1905、1907、1908は、pチャネル型TFTの場合を例に説明する。
【0134】
このとき、電源線1930の電位は、電源線1931の電位より高く設定されている。なお、図8では、電源線1931の電位は0Vとなっているがこれに限定されない。
【0135】
しかし、本実施例のTFTの極性はこれに限定されない。つまり、TFT1901〜TFT1909は、nチャネル型TFTでもPチャネル型TFTでもどちらでも構わない。しかし、差動増幅器1921を構成するTFT1901及び1902は同じ極性で、ほぼ同じ特性を有するものでなくてはならない。また、カレントミラー回路1922を構成するTFT1903及び1904は同じ極性で、ほぼ同じ特性を有するものでなければならない。
【0136】
このバッファアンプの動作について以下に詳しく説明する。
【0137】
TFT1901及び1902によって構成される差動増幅器1921について説明する。
【0138】
TFT1901とTFT1902のソース領域は接続され、定電流源1911と接続されている。
【0139】
オペアンプの非反転入力端子に相当するTFT1901のゲート電極と、バッファアンプの反転入力端子に相当するTFT1902のゲート電極に入力された電位の差により、それぞれのTFTのドレイン・ソース間に流れる電流量が異なる。この電流をそれぞれi1とi2とする。
【0140】
ここで、カレントミラー回路1922は、TFT1903及び1904によって構成される。TFT1903及びTFT1904のソース領域は、共に電源線1930に接続されている。また、TFT1904のドレイン領域とゲート電極は接続されている。TFT1903のゲート電極とTFT1904のゲート電極は、接続されているため、この2つのTFTのゲート電極の電位は等しい。そのため、TFT1903とTFT1904のそれぞれのソース・ドレイン間を流れる電流量は、等しくなる。それ故、差分増幅器1921のTFT1901とTFT1902を流れる電流i1とi2の差分に相当する電流i3が、カレントミラー回路1922に入力されなくてはならない。
【0141】
電流i3は、コンデンサ1910から供給される。これにより、コンデンサ1910の電極間の電位差V1が増大する。電位差V1は、ソース接地増幅回路1923に入力される。
【0142】
ソース接地増幅回路1923は、TFT1905によって構成される。入力された電位差V1は、TFT1905のゲート・ソース間の電位差となる。この電位差V1に対応して、電源線1930より電流i4が流れ込む。ここで、定電流源1912は、一定電流i0しか流さない。そのため、電流i4とi0の差分i5は、ソースフォロウバッファ回路1924に入力される。この電流i5は、増幅された電位差V1に対応して増大している。
【0143】
ソースフォロウバッファ回路1924は、TFT1906及び1907によって構成されている。ソース接地増幅回路1923からの入力i5は、TFT1906のゲート電極に入力される。この入力電流i5により、TFT1906のゲート電位が大きくなり、TFT1906のソース・ドレイン間を流れる電流i6の量は大きくなる。すなわち、バッファアンプより、大きな電流が出力される。
【0144】
ここで、バッファアンプの出力端子と反転入力端子が接続されると、出力端子の電位は、非反転入力端子の電位と同じになるように動作する。こうして、バッファアンプは、非反転入力端子に入力された信号電圧と同じ電圧を出力端子から出力する。
【0145】
なお、本発明の表示装置のバッファアンプの構成は、図8に示した構成に限らず、公知のあらゆる構成のバッファアンプを用いることができる。
【0146】
本実施例は、実施例1と自由に組み合わせて実施することが可能である。
【0147】
(実施例3)
本実施例では、本発明の表示装置の画素部とその周辺に設けられる駆動回路部のTFTとを同時に作製する方法について説明する。但し、説明を簡単にするために、駆動回路に関しては、基本単位であるCMOS回路を図示することとする。
【0148】
まず、図19に示すように、ガラス基板501上にクロム膜からなるゲート電極502〜505を形成し、その上に窒化酸化珪素膜(SiOxNyで表される絶縁膜)からなるゲート絶縁膜507を形成する。次に、ゲート絶縁膜507の上に非晶質珪素膜を形成し、レーザーアニールにより結晶化した後にパターニングして結晶質珪素膜からなる半導体膜508〜511を形成する。ここまでの工程は公知の材料および公知の技術を用いれば良い。(図19(A))
【0149】
次に、半導体膜508〜511上に酸化珪素膜からなる絶縁膜512〜515が形成され、その上からリンもしくは砒素を添加する。このとき添加方法は公知の技術を用いれば良い。こうしてn型不純物領域516〜519が形成される。n型不純物領域516〜519にはリンもしくは砒素が1×1020〜1×1021atoms/cm3の濃度で含まれる。(図19(B))
【0150】
次に、絶縁膜512〜515をゲート電極502〜505をマスクとして裏面露光によりパターニングし、絶縁膜(チャネル保護膜)520〜523を形成する。そして、その状態で再びリンもしくは砒素を公知の技術を用いて添加する。こうしてn型不純物領域524〜531が形成される。n型不純物領域524〜531にはリンもしくは砒素が1×1017〜1×1019atoms/cm3の濃度で含まれる。(図19(C))
【0151】
次に、レジストマスク532、533を設け、ボロンを公知の技術により添加する。こうしてp型不純物領域534〜537が形成される。p型不純物領域534〜537にはボロンが3×1020〜5×1021atoms/cm3の濃度で含まれる。なお、p型不純物領域534〜537には既にリンもしくは砒素が添加されているが、ボロンが3倍以上の濃度で添加されるため、完全にn型からp型に反転する。(図19(D))
【0152】
次に、レジストマスク532,533を除去し、酸化珪素膜と窒化酸化珪素膜との積層構造からなる第1層間絶縁膜538を形成する。そして、第1層間絶縁膜538にコンタクトホールを形成し、モリブデンとタングステンとの積層構造からなる配線539〜544を形成する。(図19(E))
【0153】
この後は、図20に示すように、第2層間絶縁膜545、画素電極546、バンク547a,547b、EL層548、陰極549および保護膜550を形成して、図20に示す断面構造の発光装置が完成する。
【0154】
本実施例は、実施例1〜実施例2のいずれとも自由に組み合わせて実施することが可能である。
【0155】
(実施例4)
図9(A)は本発明のEL表示装置の上面図である。また、図9(A)をA-A'で切断した断面図を図9(B)に示す。
【0156】
図9(A)において、4010は基板、4011は画素部、4012はソース信号線駆動回路、4013はゲート信号線駆動回路であり、それぞれの駆動回路は配線4014、4016を経てFPC4017に至り、外部機器へと接続される。また、4015は電源供給線等の配線である。
【0157】
このとき、少なくとも画素部、好ましくは駆動回路及び画素部を囲むようにしてカバー材6000、シーリング材(ハウジング材ともいう)7000、密封材(第2のシーリング材)7001が設けられている。
【0158】
また、図9(B)は本実施例のEL表示装置の断面構造であり、基板4010、下地膜4021の上に駆動回路用TFT(但し、ここではnチャネル型TFTとpチャネル型TFTを組み合わせたCMOS回路を図示している。)4022及び画素部用TFT4023(但し、ここではEL素子への電流を制御する駆動用TFTだけ図示している。)が形成されている。これらのTFTは公知の構造(トップゲート構造またはボトムゲート構造)を用いれば良い。
【0159】
駆動回路用TFT4022、画素部用TFT4023が完成したら、樹脂材料でなる層間絶縁膜(平坦化膜)4026の上に画素部用TFT4023のドレイン領域と電気的に接続する透明導電膜でなる画素電極4027を形成する。透明導電膜としては、酸化インジウムと酸化スズとの化合物(ITOと呼ばれる)または酸化インジウムと酸化亜鉛との化合物を用いることができる。そして、画素電極4027を形成したら、絶縁膜4028を形成し、画素電極4027上に開口部を形成する。
【0160】
次に、EL層4029を形成する。EL層4029は公知のEL材料(正孔注入層、正孔輸送層、発光層、電子輸送層または電子注入層)を自由に組み合わせて積層構造または単層構造とすれば良い。どのような構造とするかは公知の技術を用いれば良い。また、EL材料には低分子系材料と高分子系(ポリマー系)材料がある。低分子系材料を用いる場合は蒸着法を用いるが、高分子系材料を用いる場合には、スピンコート法、印刷法またはインクジェット法等の簡易な方法を用いることが可能である。
【0161】
本実施例では、シャドーマスクを用いて蒸着法によりEL層を形成する。シャドーマスクを用いて画素毎に波長の異なる発光が可能な発光層(赤色発光層、緑色発光層及び青色発光層)を形成することで、カラー表示が可能となる。その他にも、色変換層(CCM)とカラーフィルターを組み合わせた方式、白色発光層とカラーフィルターを組み合わせた方式があるがいずれの方法を用いても良い。勿論、単色発光のEL表示装置とすることもできる。
【0162】
EL層4029を形成したら、その上に陰極4030を形成する。陰極4030とEL層4029の界面に存在する水分や酸素は極力排除しておくことが望ましい。従って、真空中でEL層4029と陰極4030を連続成膜するか、EL層4029を不活性雰囲気で形成し、大気解放しないで陰極4030を形成するといった工夫が必要である。本実施例ではマルチチャンバー方式(クラスターツール方式)の成膜装置を用いることで上述のような成膜を可能とする。
【0163】
なお、本実施例では陰極4030として、LiF(フッ化リチウム)膜とAl(アルミニウム)膜の積層構造を用いる。具体的にはEL層4029上に蒸着法で1nm厚のLiF(フッ化リチウム)膜を形成し、その上に300nm厚のアルミニウム膜を形成する。勿論、公知の陰極材料であるMgAg電極を用いても良い。そして陰極4030は4031で示される領域において配線4016に接続される。配線4016は陰極4030に所定の電圧を与えるための電源供給線であり、導電性ペースト材料4032を介してFPC4017に接続される。
【0164】
4031に示された領域において、陰極4030と配線4016とを電気的に接続するために、層間絶縁膜4026及び絶縁膜4028にコンタクトホールを形成する必要がある。これらは層間絶縁膜4026のエッチング時(画素電極用コンタクトホールの形成時)や絶縁膜4028のエッチング時(EL層形成前の開口部の形成時)に形成しておけば良い。また、絶縁膜4028をエッチングする際に、層間絶縁膜4026まで一括でエッチングしても良い。この場合、層間絶縁膜4026と絶縁膜4028が同じ樹脂材料であれば、コンタクトホールの形状を良好なものとすることができる。
【0165】
このようにして形成されたEL素子の表面を覆って、パッシベーション膜6003、充填材6004、カバー材6000が形成される。
【0166】
さらに、EL素子部を囲むようにして、カバー材6000と基板4010の間にシーリング材7000が設けられ、さらにシーリング材7000の外側には密封材(第2のシーリング材)7001が形成される。
【0167】
このとき、この充填材6004は、カバー材6000を接着するための接着剤としても機能する。充填材6004としては、PVC(ポリビニルクロライド)、エポキシ樹脂、シリコーン樹脂、PVB(ポリビニルブチラル)またはEVA(エチレンビニルアセテート)を用いることができる。この充填材6004の内部に乾燥剤を設けておくと、吸湿効果を保持できるので好ましい。
【0168】
また、充填材6004の中にスペーサーを含有させてもよい。このとき、スペーサーをBaOなどからなる粒状物質とし、スペーサー自体に吸湿性をもたせてもよい。
【0169】
スペーサーを設けた場合、パッシベーション膜6003はスペーサー圧を緩和することができる。また、パッシベーション膜6003とは別に、スペーサー圧を緩和する樹脂膜などを設けてもよい。
【0170】
また、カバー材6000としては、ガラス板、アルミニウム板、ステンレス板、FRP(Fiberglass−Reinforced Plastics)板、PVF(ポリビニルフルオライド)フィルム、マイラーフィルム、ポリエステルフィルムまたはアクリルフィルムを用いることができる。なお、充填材6004としてPVBやEVAを用いる場合、数十μmのアルミニウムホイルをPVFフィルムやマイラーフィルムで挟んだ構造のシートを用いることが好ましい。
【0171】
但し、EL素子からの発光方向(光の放射方向)によっては、カバー材6000が透光性を有する必要がある。
【0172】
また、配線4016はシーリング材7000および密封材7001と基板4010との隙間を通ってFPC4017に電気的に接続される。なお、ここでは配線4016について説明したが、他の配線4014、4015も同様にしてシーリング材7000および密封材7001の下を通ってFPC4017に電気的に接続される。
【0173】
なお図9では、充填材6004を設けてからカバー材6000を接着し、充填材6004の側面(露呈面)を覆うようにシーリング材7000を取り付けているが、カバー材6000及びシーリング材7000を取り付けてから、充填材6004を設けても良い。この場合、基板4010、カバー材6000及びシーリング材7000で形成されている空隙に通じる充填材の注入口を設ける。そして前記空隙を真空状態(10-2Torr以下)にし、充填材の入っている水槽に注入口を浸してから、空隙の外の気圧を空隙の中の気圧よりも高くして、充填材を空隙の中に充填する。
【0174】
本実施例は、実施例1〜実施例3のいずれとも自由に組み合わせて実施することが可能である。
【0175】
(実施例5)
次に、図9(A)、(B)とは異なる形態のEL表示装置を作製した例について、図10(A)、(B)を用いて説明する。図9(A)、(B)と同じ番号のものは同じ部分を指しているので説明は省略する。
【0176】
図10(A)は本実施例のEL表示装置の上面図であり、図10(A)をA-A'で切断した断面図を図10(B)に示す。
【0177】
図9に従って、EL素子の表面を覆ってパッシベーション膜6003までを形成する。
【0178】
さらに、EL素子を覆うようにして充填材6004を設ける。この充填材6004は、カバー材6000を接着するための接着剤としても機能する。充填材6004としては、PVC(ポリビニルクロライド)、エポキシ樹脂、シリコーン樹脂、PVB(ポリビニルブチラル)またはEVA(エチレンビニルアセテート)を用いることができる。この充填材6004の内部に乾燥剤を設けておくと、吸湿効果を保持できるので好ましい。
【0179】
また、充填材6004の中にスペーサーを含有させてもよい。このとき、スペーサーをBaOなどからなる粒状物質とし、スペーサー自体に吸湿性をもたせてもよい。
【0180】
スペーサーを設けた場合、パッシベーション膜6003はスペーサー圧を緩和することができる。また、パッシベーション膜とは別に、スペーサー圧を緩和する樹脂膜などを設けてもよい。
【0181】
また、カバー材6000としては、ガラス板、アルミニウム板、ステンレス板、FRP(Fiberglass−Reinforced Plastics)板、PVF(ポリビニルフルオライド)フィルム、マイラーフィルム、ポリエステルフィルムまたはアクリルフィルムを用いることができる。なお、充填材6004としてPVBやEVAを用いる場合、数十μmのアルミニウムホイルをPVFフィルムやマイラーフィルムで挟んだ構造のシートを用いることが好ましい。
【0182】
但し、EL素子からの発光方向(光の放射方向)によっては、カバー材6000が透光性を有する必要がある。
【0183】
次に、充填材6004を用いてカバー材6000を接着した後、充填材6004の側面(露呈面)を覆うようにフレーム材6001を取り付ける。フレーム材6001はシーリング材(接着剤として機能する)6002によって接着される。このとき、シーリング材6002としては、光硬化性樹脂を用いるのが好ましいが、EL層の耐熱性が許せば熱硬化性樹脂を用いても良い。なお、シーリング材6002は、できるだけ水分や酸素を透過しない材料であることが望ましい。また、シーリング材6002の内部に乾燥剤を添加してあっても良い。
【0184】
また、配線4016はシーリング材6002と基板4010との隙間を通ってFPC4017に電気的に接続される。なお、ここでは配線4016について説明したが、他の配線4014、4015も同様にしてシーリング材6002の下を通ってFPC4017に電気的に接続される。
【0185】
なお図10では、充填材6004を設けてからカバー材6000を接着し、充填材6004の側面(露呈面)を覆うようにフレーム材6001を取り付けているが、カバー材6000及びフレーム材6001を取り付けてから、充填材6004を設けても良い。この場合、基板4010、カバー材6000及びフレーム材6001で形成されている空隙に通じる充填材の注入口を設ける。そして前記空隙を真空状態(10-2Torr以下)にし、充填材の入っている水槽に注入口を浸してから、空隙の外の気圧を空隙の中の気圧よりも高くして、充填材を空隙の中に充填する。
【0186】
本実施例は、実施例1〜実施例3のいずれとも自由に組み合わせて実施することが可能である。
【0187】
(実施例6)
本発明の表示装置の画素部のさらに詳細な断面構造を図11に示す。
【0188】
図11において、基板3501上に設けられたスイッチング用TFT3502は、公知の方法を用いて作製される。本実施例ではシングルゲート構造としている。なお、本実施例ではシングルゲート構造としているが、ダブルゲート構造でも構わないし、トリプルゲート構造やそれ以上のゲート本数を持つマルチゲート構造でも構わない。
【0189】
本実施例では、駆動用TFT3503をシングルゲート構造で図示しているが、複数のTFTを直列につなげたマルチゲート構造としても良い。さらに、複数のTFTを並列につなげて実質的にチャネル形成領域を複数に分割し、熱の放射を高い効率で行えるようにした構造としても良い。このような構造は熱による劣化対策として有効である。
【0190】
本実施例では、スイッチング用TFTと駆動用TFTは、どちらもnチャネル型TFTの場合について説明する。
【0191】
また、駆動用TFT3503は、公知の方法を用いて作製される。このとき、スイッチング用TFT3502のドレイン配線35は、駆動用TFT3503のゲート電極37に電気的に接続されている。駆動用TFT3503のドレイン配線40をEL素子の陰極43に接続している。また、駆動用TFT3503のソース領域34は電源供給線(図示せず)に接続され、常に一定の電圧が加えられている。
【0192】
スイッチング用TFT3502及び駆動用TFT3503の上には、樹脂絶縁膜でなる平坦化膜42が形成される。平坦化膜42を用いてTFTによる段差を平坦化することは非常に重要である。後に形成されるEL層は非常に薄いため、段差が存在することによって発光不良を起こす場合がある。従って、EL層をできるだけ平坦面に形成しうるように画素電極を形成する前に平坦化しておくことが望ましい。
【0193】
また、43は反射性の高い導電膜でなる画素電極(EL素子の陰極)であり、駆動用TFT3503のドレイン領域40に電気的に接続される。画素電極43としてはアルミニウム合金膜、銅合金膜または銀合金膜など低抵抗な導電膜またはそれらの積層膜を用いることが好ましい。勿論、他の導電膜との積層構造としても良い。
【0194】
また、絶縁膜(好ましくは樹脂)で形成されたバンク44a、44bにより形成された溝(画素に相当する)の中に発光層45が形成される。なお、ここでは一画素しか図示していないが、R(赤)、G(緑)、B(青)の各色に対応した発光層を作り分けても良い。発光層とする有機EL材料としてはπ共役ポリマー系材料を用いる。代表的なポリマー系材料としては、ポリパラフェニレンビニレン(PPV)系、ポリビニルカルバゾール(PVK)系、ポリフルオレン系などが挙げられる。
【0195】
なお、PPV系有機EL材料としては様々な型のものがあるが、例えば「H. Shenk,H.Becker,O.Gelsen,E.Kluge,W.Kreuder,and H.Spreitzer,“Polymers for Light Emitting Diodes”,Euro Display,Proceedings,1999,p.33-37」や特開平10−92576号公報に記載されたような材料を用いれば良い。
【0196】
具体的な発光層としては、赤色に発光する発光層にはシアノポリフェニレンビニレン、緑色に発光する発光層にはポリフェニレンビニレン、青色に発光する発光層には、ポリフェニレンビニレン若しくはポリアルキルフェニレンを用いれば良い。膜厚は30〜150nm(好ましくは40〜100nm)とすれば良い。
【0197】
但し、以上の例は発光層として用いることのできる有機EL材料の一例であって、これに限定する必要はまったくない。発光層、電荷輸送層または電荷注入層を自由に組み合わせてEL層(発光及びそのためのキャリアの移動を行わせるための層)を形成すれば良い。
【0198】
例えば、本実施例ではポリマー系材料を発光層として用いる例を示したが、低分子系有機EL材料を用いても良い。また、電荷輸送層や電荷注入層として炭化珪素等の無機材料を用いることも可能である。これらの有機EL材料や無機材料は公知の材料を用いることができる。
【0199】
本実施例では発光層45の上に、透明導電膜でなる陽極47が設けられる。本実施例の場合、発光層45で生成された光は上面側に向かって(TFTが形成された基板とは反対の方向に向かって)放射されるため、陽極は透光性でなければならない。透明導電膜としては酸化インジウムと酸化スズとの化合物や酸化インジウムと酸化亜鉛との化合物を用いることができるが、耐熱性の低い発光層や正孔注入層を形成した後で形成するため、可能な限り低温で成膜できるものが好ましい。
【0200】
陽極47まで形成された時点で、EL素子3505が完成する。なお、ここでいうEL素子3505は、画素電極(陰極)43、発光層45及び陽極47とによって形成されている。画素電極43は画素の面積にほぼ一致するため、画素全体がEL素子として機能する。従って、発光の利用効率が非常に高く、明るい画像表示が可能となる。
【0201】
本実施例では、陽極47の上にさらに第2パッシベーション膜48を設けている。第2パッシベーション膜48としては窒化珪素膜または窒化酸化珪素膜が好ましい。この目的は、外部とEL素子とを遮断することであり、有機EL材料の酸化による劣化を防ぐ意味と、有機EL材料からの脱ガスを抑える意味との両方を併せ持つ。これによりEL表示装置の信頼性が高められる。
【0202】
なお、駆動用TFTは、nチャネル型TFTでもpチャネル型TFTでもどちらでもよいが、本実施例のように、EL素子の陽極が対向電極、EL素子の陰極が画素電極となっている場合、駆動用TFTは、nチャネル型TFTであることが望ましい。
【0203】
本実施例は、実施例1〜実施例5のいずれとも自由に組み合わせて実施することが可能である。
【0204】
(実施例7)
本実施例では、実施例6に示した画素部において、EL素子3505の構造を反転させた構造について説明する。説明には図12を用いる。なお、実施例6で示した、図11の構造と異なる点はEL素子の部分と駆動用TFTだけである。図11と同じ部分は同じ符号を用いて示し、説明は省略する。
【0205】
本実施例において、スイッチング用TFT及び駆動用TFTは、nチャネル型TFTでもpチャネル型TFTでもどちらでもかまわないが、EL素子の画素電極が、陽極となっている場合、駆動用TFTはpチャネル型TFTであることが望ましい。
【0206】
図12において、駆動用TFT3703はpチャネル型TFTであり、公知の方法を用いて作製することができる。本実施例では、駆動用TFT3703のドレイン配線55をEL素子3701の陽極50に接続し、駆動用TFT3703のソース領域56を電源供給線(図示せず)に接続する構造としている。
【0207】
また、スイッチング用TFTは、nチャネル型TFTであるとする。駆動用TFT3703のゲート電極57は、スイッチング用TFT3502のドレイン配線35と電気的に接続されている。
【0208】
本実施例では、画素電極(陽極)50として透明導電膜を用いる。具体的には酸化インジウムと酸化亜鉛との化合物でなる導電膜を用いる。勿論、酸化インジウムと酸化スズとの化合物でなる導電膜を用いても良い。
【0209】
そして、絶縁膜でなるバンク51a、51bが形成された後、溶液塗布によりポリビニルカルバゾールでなる発光層52が形成される。その上には、アルミニウム合金でなる陰極54が形成される。この場合、陰極54がパッシベーション膜としても機能する。こうしてEL素子3701が形成される。
【0210】
本実施例の場合、発光層52で発生した光は、矢印で示されるようにTFTが形成された基板の方に向かって放射される。
【0211】
本実施例は、実施例1〜実施例5のいずれとも自由に組み合わせて実施することが可能である。
【0212】
(実施例8)
本実施例では、ソース信号線駆動回路の構成について説明する。
【0213】
ソース信号線駆動回路は、実施例3等の工程により絶縁基板上にボトムゲート型TFTを用いて形成される。
【0214】
始めに、図15において、発明の実施の形態2において図17で示した、分割したソース信号線駆動回路を実際に素子を用いて構成した例を、回路図で示す。
【0215】
なお、これは、外部よりソース信号線駆動回路にデジタルの映像信号を入力し、ソース信号線にデジタルの信号を出力する場合の例である。
【0216】
図15では、1ブロックのラッチ(A)及びラッチ(B)に注目する。
【0217】
シフトレジスタ8801、ラッチ(A)(8802)、ラッチ(B)(8803)、が図に示すように配置されている。1組のラッチ(A)(8802)と1組のラッチ(B)(8803)が、4本のソース信号線S_a〜S_dに対応している。
【0218】
なお、本実施例では、デジタル映像信号を4分割して入力し、4つの信号を同時にサンプリングする場合について説明するが、本発明はこれに限らず、任意の分割数k(kは、2以上の整数とする)で信号をサンプリングする構成でもよい。
【0219】
なお、本実施例では信号が有する電圧の振幅の幅を変えるレベルシフタやバッファ等を設けなかったが、設計者が適宜設けるようにしても良い。
【0220】
クロック信号CLK、CLKの極性が反転したクロック信号CLKB、スタートパルス信号SP、駆動方向切り替え信号SL/Rはそれぞれ図に示した配線からシフトレジスタ8801に入力される。また外部から入力されるデジタルデータ信号VDは、時間軸伸張され4分割されて、図に示した配線からラッチ(A)(8802)に入力される。ラッチ信号S_LAT、S_LATの極性が反転した信号S_LATbはそれぞれ図に示した配線からラッチ(B)(8803)に入力される。
【0221】
シフトレジスタ8801からの信号が入力されると、4分割されたデジタルデータ信号線より、ラッチ(A)(8802)は4つのデジタルデータ信号VDを同時にサンプリングし、保持する。ラッチ信号S_LAT及びS_LATbが入力されると、ラッチ(A)に保持された信号は、ラッチ(B)(8803)に一斉に送られて、ソース信号線S_a〜S_dに出力される。
【0222】
ラッチ(A)(8802)の詳しい構成について、ソース信号線S_aに対応するラッチ(A)(8802)の一部8804を例にとって説明する。ラッチ(A)(8802)の一部8804は、2つのクロックドインバータと2つのインバータを有している。
【0223】
ラッチ(A)(8802)の一部8804の上面図を図16に示す。831a、831bはそれぞれ、ラッチ(A)(8802)の一部8804が有するインバータの1つを形成するTFTの活性層であり、836は該インバータの1つを形成するTFTの共通のゲート電極である。また832a、832bはそれぞれ、ラッチ(A)(8802)の一部8804が有するもう1つのインバータを形成するTFTの活性層であり、837a、837bは活性層832a、832b上にそれぞれ設けられたゲート電極である。なおゲート電極837a、837bは電気的に接続されている。
【0224】
833a、833bはそれぞれ、ラッチ(A)(8802)の一部8804が有するクロックドインバータの1つを形成するTFTの活性層である。活性層833a上にはゲート電極838a、838bが設けられており、ダブルゲート構造となっている。また活性層833b上にはゲート電極838b、839が設けられており、ダブルゲート構造となっている。
【0225】
834a、834bはそれぞれ、ラッチ(A)(8802)の一部8804が有するもう1つのクロックドインバータを形成するTFTの活性層である。活性層834a上にはゲート電極839、840が設けられており、ダブルゲート構造となっている。また活性層834b上にはゲート電極840、841が設けられており、ダブルゲート構造となっている。
【0226】
次に、アナログ方式を用いた場合の、分割されたソース信号線駆動回路の構成について説明する。
【0227】
なお、アナログ方式とは、表示装置において、ソース信号線にアナログの信号を入力することによって画素の輝度を表現する方式を示す。また、ここでは、ソース信号線駆動回路にアナログの信号を入力して、ソース信号線にアナログの信号を出力する場合について説明する。
【0228】
図21にアナログ方式を用いたソース信号線駆動回路の例を示す。
【0229】
前述したデジタルデータ信号のサンプリングの場合と同様に、複数の時間伸張されたアナログデータ信号VAが、図の4本の配線より入力される。
【0230】
図21では、信号線S_a〜S_dへの出力に対応するソース信号線駆動回路の1ブロックに注目している。
【0231】
シフトレジスタ8801からの信号によって、TFT2101a〜2101dが同時にオンの状態となると、4分割されたアナログデータ信号VAが、同時にサンプリングされる。
【0232】
なお、本実施例では、4本のソース信号線へのアナログデータ信号VAを同時にサンプリングする例について説明しているが、本発明の表示装置のソース信号線駆動回路は、この構成に限らない。つまり、任意の本数のソース信号線へのアナログデータ信号VAを同時にサンプリングする構成のソース信号線駆動回路を用いることができる。
【0233】
図22(A)は、アナログのビデオ信号を、時間伸張しアナログデータ信号VAを作成する回路(以下、時間軸伸張回路という)の例である。
【0234】
スイッチSW1〜SW4は、図22(B)のタイミングチャートで示したような開閉信号により、順に開閉し、アナログビデオ信号をサンプリングし、保持容量2201〜2204に保持する。保持された信号は、バッファ2211〜2214を介して出力される。こうして4分割されたアナログデータ信号VAが作成される。
【0235】
なお、本実施例では、アナログビデオ信号を、4本のソース信号線に対応するアナログデータ信号VAに変換する時間軸伸張回路を例に説明しているが、本発明の表示装置の時間軸伸張回路は、この構成に限らない。つまり、アナログビデオ信号を、任意の数のソース信号線に対応するアナログデータ信号に変換する構成の時間軸伸張回路を用いることができる。
【0236】
本実施例は、実施例1〜実施例7のいずれとも自由に組み合わせて実施することが可能である。
【0237】
(実施例9)
本発明のEL表示装置において、EL素子が有するEL層に用いられる材料は、有機EL材料に限定されず、無機EL材料を用いても実施できる。但し、現在の無機EL材料は非常に駆動電圧が高いため、そのような駆動電圧に耐えうる耐圧特性を有するTFTを用いなければならない。
【0238】
または、将来的にさらに駆動電圧の低い無機EL材料が開発されれば、本発明に適用することは可能である。
【0239】
本実施例は、実施例1〜実施例8のいずれとも自由に組み合わせて実施することが可能である。
【0240】
(実施例10)
本発明において、EL層として用いる有機物質は低分子系有機物質であってもポリマー系(高分子系)有機物質であっても良い。低分子系有機物質はAlq3(トリス−8−キノリライト−アルミニウム)、TPD(トリフェニルアミン誘導体)等を中心とした材料が知られている。ポリマー系有機物質として、π共役ポリマー系の物質が挙げられる。代表的には、PPV(ポリフェニレンビニレン)、PVK(ポリビニルカルバゾール)、ポリカーボネート等が挙げられる。
【0241】
ポリマー系(高分子系)有機物質は、スピンコーティング法(溶液塗布法ともいう)、ディッピング法、ディスペンス法、印刷法またはインクジェット法など簡易な薄膜形成方法で形成でき、低分子系有機物質に比べて耐熱性が高い。
【0242】
また本発明のEL表示装置が有するEL素子において、そのEL素子が有するEL層が、電子輸送層と正孔輸送層とを有している場合、電子輸送層と正孔輸送層とを無機の材料、例えば非晶質のSiまたは非晶質のSi1-xx等の非晶質半導体で構成しても良い。
【0243】
非晶質半導体には、多量のトラップ準位が存在し、かつ非晶質半導体が他の層と接する界面において多量の界面準位を形成する。そのため、EL素子は低い電圧で発光させることができるとともに、高輝度化を図ることもできる。
【0244】
また有機EL層にドーパント(不純物)を添加し、有機EL層の発光の色を変化させても良い。ドーパントとして、DCM1、ナイルレッド、ルブレン、クマリン6、TPB、キナクリドン等が挙げられる。
【0245】
本実施例は、実施例1〜実施例8のいずれとも自由に組み合わせて実施することが可能である。
【0246】
(実施例11)
本実施例では、本発明を用いてEL表示装置を作製した例について図13(A)、(B)を用いて説明する。
【0247】
図13(A)は、EL素子の形成されたアクティブマトリクス基板において、EL素子の封入まで行った状態を示す上面図である。点線で示された801はソース信号線駆動回路、802はゲート信号線駆動回路、803は画素部である。また、804はカバー材、805は第1シール材、806は第2シール材であり、第1シール材805で囲まれた内側のカバー材とアクティブマトリクス基板との間には充填材807(図13(B)参照)が設けられる。
【0248】
なお、808はソース信号線駆動回路801、ゲート信号線駆動回路802及び画素部803に入力される信号を伝達するための接続配線であり、外部機器との接続端子となるFPC(フレキシブルプリントサーキット)809からビデオ信号やクロック信号等を受け取る。
【0249】
ここで、図13(A)をA−A’で切断した断面に相当する断面図を図13(B)に示す。なお、図13(A)、(B)では同一の部位に同一の符号を用いている。
【0250】
図13(B)に示すように、基板800上には画素部803、ソース信号線駆動回路801が形成されており、画素部803はEL素子に流れる電流を制御するためのTFT851(駆動用TFT)及びそのドレイン領域に電気的に接続された画素電極852等を含む複数の画素により形成される。
【0251】
本実施例では駆動用TFT851をpチャネル型TFTとする。画素部を構成するTFTとして、駆動用TFTを代表で示す。また、ソース信号線駆動回路801を構成するTFTとして、nチャネル型TFT853とpチャネル型TFT854とを相補的に組み合わせたCMOS回路を代表で示す。
【0252】
各画素は画素電極852の下にカラーフィルタ(R)855、カラーフィルタ(G)856及びカラーフィルタ(B)(図示せず)のうちいずれか1つを有している。ここでカラーフィルタ(R)とは赤色光を抽出するカラーフィルタであり、カラーフィルタ(G)は緑色光を抽出するカラーフィルタ、カラーフィルタ(B)は青色光を抽出するカラーフィルタである。なお、カラーフィルタ(R)855は赤色発光の画素に、カラーフィルタ(G)856は緑色発光の画素に、カラーフィルタ(B)は青色発光の画素に設けられる。
【0253】
これらのカラーフィルタを設けた場合の効果としては、まず発光色の色純度が向上する点が挙げられる。例えば赤色発光の画素からはEL素子から赤色光が放射される(本実施例では画素電極側に向かって放射される)が、この赤色光を、赤色光を抽出するカラーフィルタに通すことにより赤色の純度を向上させることができる。このことは、他の緑色光、青色光の場合においても同様である。
【0254】
また、従来のカラーフィルタを用いない構造ではEL表示装置の外部から侵入した可視光がEL素子の発光層を励起させてしまい、所望の発色が得られない問題が起こりうる。しかしながら、本実施例のようにカラーフィルタを設けることでEL素子には特定の波長の光しか入らないようになる。即ち、外部からの光によりEL素子が励起されてしまうような不具合を防ぐことが可能である。
【0255】
なお、カラーフィルタを設ける構造は従来提案されているが、EL素子は白色発光のものを用いていた。この場合、赤色光を抽出するには他の波長の光をカットしていたため、輝度の低下を招いていた。しかしながら、本実施例では、EL素子から発した赤色光を、赤色光を抽出するカラーフィルタに通すため、輝度の低下を招くようなことがない。
【0256】
次に、画素電極852は透明導電膜で形成され、EL素子の陽極として機能する。また、画素電極852の両端には絶縁膜857が形成され、さらに赤色に発光する発光層858、緑色に発光する発光層859が形成される。なお、図示しないが隣接する画素には青色に発光する発光層が設けられ、赤、緑及び青に対応した画素によりカラー表示が行われる。勿論、青色の発光層が設けられた画素は青色を抽出するカラーフィルタが設けられている。
【0257】
なお、EL材料として有機材料だけでなく無機材料を用いることができる。また、発光層だけでなく電子注入層、電子輸送層、正孔輸送層または正孔注入層を組み合わせた積層構造としても良い。
【0258】
また、各発光層の上には、EL素子の陰極860が遮光性を有する導電膜でもって形成される。この陰極860は全ての画素に共通であり、接続配線808を経由してFPC809に電気的に接続されている。
【0259】
次に、第1シール材805をディスペンサー等で形成し、スペーサ(図示せず)を撒布してカバー材804を貼り合わせる。そして、アクティブマトリクス基板、カバー材804及び第1シール材805で囲まれた領域内に充填材807を真空注入法により充填する。
【0260】
また、本実施例では充填材807に予め吸湿性物質861として酸化バリウムを添加しておく。なお、本実施例では吸湿性物質を充填材に添加して用いるが、塊状に分散させて充填材中に封入することもできる。また、図示されていないがスペーサの材料として吸湿性物質を用いることも可能である。
【0261】
次に、充填材807を紫外線照射または加熱により硬化させた後、第1シール材805に形成された開口部(図示せず)を塞ぐ。第1シール材805の開口部を塞いだら、導電性材料862を用いて接続配線808及びFPC809を電気的に接続させる。さらに、第1シール材805の露呈部及びFPC809の一部を覆うように第2シール材806を設ける。第2シール材806は第1シール材805と同様の材料を用いれば良い。
【0262】
以上のような方式を用いてEL素子を充填材807に封入することにより、EL素子を外部から完全に遮断することができ、外部から水分や酸素等の有機材料の酸化を促す物質が侵入することを防ぐことができる。従って、信頼性の高いEL表示装置を作製することができる。
【0263】
本実施例は、実施例1〜実施例10のいずれとも自由に組み合わせて実施することが可能である。
【0264】
(実施例12)
本実施例では、実施例11に示したEL表示装置において、EL素子から発する光の放射方向とカラーフィルタの配置を異ならせた場合の例について示す。説明には図14を用いるが、基本的な構造は図13(B)と同様であるので変更部分に新しい符号を付して説明する。
【0265】
画素部901はEL素子に流れる電流を制御するためのTFT902(駆動用TFT)及びそのドレイン領域に電気的に接続された画素電極903等を含む複数の画素により形成される
【0266】
本実施例では画素部901には駆動用TFT902としてnチャネル型TFTが用いられている。また、駆動用TFT902のドレインには画素電極903が電気的に接続され、この画素電極903は遮光性を有する導電膜で形成されている。本実施例では画素電極903がEL素子の陰極となる。
【0267】
また、赤色に発光する発光層858、緑色に発光する発光層859の上には各画素に共通な透明導電膜904が形成される。この透明導電膜904はEL素子の陽極となる。
【0268】
さらに、本実施例ではカラーフィルタ(R)905、カラーフィルタ(G)906及びカラーフィルタ(B)(図示せず)がカバー材804に形成されている点に特徴がある。本実施例のEL素子の構造とした場合、発光層から発した光の放射方向がカバー材側に向かうため、図14の構造とすればその光の経路にカラーフィルタを設置することができる。
【0269】
本実施例のようにカラーフィルタ(R)905、カラーフィルタ(G)906及びカラーフィルタ(B)(図示せず)をカバー材804に設けると、アクティブマトリクス基板の工程を少なくすることができ、歩留まり及びスループットの向上を図ることができるという利点がある。
【0270】
本実施例は、実施例1〜実施例10のいずれとも自由に組み合わせて実施することが可能である。
【0271】
(実施例13)
本実施例では、実施例の形態1において図1で示した構造の温度補正回路の定電流源を、実際に素子を用いて構成した例について説明する。
【0272】
図23に本実施例の温度補正回路の構造を示す回路図を示す。
【0273】
図23において、温度補正回路701は、定電流源704、モニター用EL素子703、バッファアンプ702によって構成されている。
【0274】
定電流源704の出力は、モニター用EL素子703の一方の電極及びバッファアンプ702の入力端子に接続されている。このバッファアンプ702の出力が、温度補正回路701の出力となる。
【0275】
温度補正回路701の出力は、電源供給線705に接続され、駆動用TFT(図示せず)のソース・ドレイン間を介して、画素のEL素子(図示せず)の画素電極に電位を与えられる。
【0276】
ここで、定電流源704は、アンプ706、可変抵抗707、トランジスタ708とによって構成されている。
【0277】
本実施例では、トランジスタ708を、pチャネル型TFTとして説明するが、これに限定されない。トランジスタの極性は、nチャネル型でもpチャネル型でもよい。またトランジスタは、バイポーラ型トランジスタであってもよい。
【0278】
トランジスタ708のソース領域は、アンプ706の反転入力端子(−)及び可変抵抗707に接続され、ドレイン領域は、定電流源704の出力端子に接続されている。トランジスタ708のゲート電極は、アンプ706の出力端子に接続されている。
【0279】
アンプ706の非反転入力端子(+)には、一定の電圧V2が入力されている。
【0280】
なお、定電流源を構成するアンプ706、可変抵抗707、トランジスタ708は、ICチップ上に形成されていてもよいし、画素が形成された絶縁表面を有する基板と同一基板上に形成されていてもよい。
【0281】
定電流源701が接続されたモニター用EL素子703は、定電流源701によって定められた、一定の電流を流すように動作する。ここで、表示装置の使用する環境温度が変化しても、このモニター用EL素子703に流れる電流は変化しない。そのかわりに、このモニター用EL素子703の定電流源704に接続された側の電極の電位が変化する。
【0282】
ここで、モニター用EL素子703と画素のEL素子との、同じ温度による両電極間の印加電圧と素子を流れる電流との関係が同じになるよう、各EL素子(モニター用EL素子703及び各画素のEL素子)は、作製されている。
【0283】
また、モニター用EL素子703の、定電流源704及びバッファアンプ702の非反転入力端子に接続されていない側の電極の電位と、各画素のEL素子の対向電極の電位とは同じに設定されている。
【0284】
ここで、温度補正回路において、モニター用EL素子のバッファアンプの出力及び定電流源に接続された側の電極が、陽極の場合、バッファアンプの出力端子に接続された画素のEL素子の電極(画素電極)も、陽極である必要がある。一方、温度補正回路において、モニター用EL素子のバッファアンプの出力及び定電流源に接続された側の電極が、陰極の場合、バッファアンプの出力端子に接続された画素のEL素子の電極(画素電極)も、陰極である必要がある。
【0285】
ここで、本実施例では、モニター用EL素子の陽極が、定電流源704及びバッファアンプ702に接続されている場合を考える。このとき画素のEL素子の画素電極は、陽極である。
【0286】
このとき、モニター用EL素子に電流を流すため、可変抵抗707の、トランジスタ708及びアンプ706の反転入力端子に接続されていない側の端子の電位V1と、アンプ706の非反転入力端子の入力電位V2とは、V2よりもV1の方が大きく設定される。また、モニター用EL素子703の陽極の電位V3は、V2の電位より低く設定される。
【0287】
モニター用EL素子703の陽極の電位V3が変化し両電極間の電圧が変化すると、同じように、画素のEL素子の陽極の電位も変化し両電極間の電圧も変化する。この変化した電圧は、その環境温度において、定電流源704によって定められた電流を画素部のEL素子にも流すように働く。こうして、画素部のEL素子は、環境温度の変化に依存無く、常に一定の電流を流すように動作し、一定の輝度で発光する。
【0288】
なお、定電流源の構成は、704で示したものに限定されず、公知の構成の回路を自由に用いることができる。
【0289】
本実施例は、実施例1〜実施例12のいずれとも自由に組み合わせて実施することが可能である。
【0290】
(実施例14)
本実施例では、本発明の表示装置の画素のEL素子の、温度による輝度の変化の測定を行った結果を示す。
【0291】
図24に、その測定結果のグラフを示す。このグラフにおいて、縦軸は輝度(cd/m2)を示す。また横軸は温度(℃)を示す。
【0292】
なお、温度補正回路の構成としては、図23で示したものを用いた場合の結果である。
【0293】
また、温度補正回路を用いない場合の表示装置の、画素のEL素子の温度による輝度の変化の測定を行った結果も示す。
【0294】
温度補正回路を設けない場合、温度が上昇するにしたがって、EL素子の輝度も上昇している。一方、温度補正回路を用いた場合、温度によらずEL素子の輝度はほぼ一定である。
【0295】
このようにして、本発明では、温度補正回路を用いることによって、表示装置の画素部のEL素子の、温度による輝度の変化を抑えることができる。
【0296】
加えて、EL素子を構成するEL層には、主に有機化合物などの物質が用いられているため、その劣化が問題となる。一定の電流を画素のEL素子の両電極間に流すことによって素子を発光させる場合と、一定の電圧を画素のEL素子の両電極間に印加して素子を発光させる場合とでは、前者の方が、EL素子の劣化による輝度の低下が少ないと言われている。そのため、本発明のように、一定の電流を画素のEL素子に入力し発光させる手法は、EL層の劣化による輝度の低下を少なくすることができる。
【0297】
こうして、環境温度の変化に対して、画素のEL素子の輝度が変化せず、またEL素子の劣化に対しても輝度の低下が少ない表示装置を得ることができる。
【0298】
(実施例15)
本発明を用いて形成されたEL表示装置は様々な電子機器に用いることができる。以下に、本発明を用いて形成されたEL表示装置を表示媒体として組み込んだ電子機器について説明する。
【0299】
その様な電子機器としては、パーソナルコンピュータ、携帯情報端末(モバイルコンピュータ、携帯電話または電子書籍等)、ゲーム機、テレビ受像機、ビデオカメラ、デジタルカメラ、電話機、ヘッドマウントディスプレイ(ゴーグル型ディスプレイ)、画像再生装置、カーナビゲーションなどが挙げられる。それらの一例を図9に示す。
【0300】
図25(A)はパーソナルコンピュータであり、本体2001、筐体2002、表示部2003、キーボード2004等を含む。本発明のEL表示装置はパーソナルコンピュータの表示部2003に用いることができる。
【0301】
図25(B)はビデオカメラであり、本体2100、表示部2102、音声入力部2103、操作スイッチ2104、バッテリー2105、受像部2106等を含む。本発明のEL表示装置はビデオカメラの表示部2102に用いることができる。
【0302】
図25(C)はヘッドマウントディスプレイの一部(右片側)であり、本体2301、信号ケーブル2302、頭部固定バンド2303、表示モニタ2304、光学系2305、表示部2306等を含む。本発明のEL表示装置はヘッドマウントディスプレイの表示部2306に用いることができる。
【0303】
図25(D)は記録媒体を備えた画像再生装置(具体的にはDVD再生装置)であり、本体2401、記録媒体(CD、LDまたはDVD等)2402、操作スイッチ2403、表示部(a)2404、表示部(b)2405等を含む。表示部(a)は主として画像情報を表示し、表示部(b)は主として文字情報を表示するが、本発明のEL表示装置は記録媒体を備えた画像再生装置の表示部(a)、(b)に用いることができる。なお、記録媒体を備えた画像再生装置としては、CD再生装置、ゲーム機器などに本発明を用いることができる。
【0304】
図25(E)は携帯型(モバイル)コンピュータであり、本体2501、カメラ部2502、受像部2503、操作スイッチ2504、表示部2505等を含む。本発明のEL表示装置は携帯型(モバイル)コンピュータの表示部2505に用いることができる。
【0305】
また、将来的にEL材料の発光輝度が高くなれば、フロント型若しくはリア型のプロジェクターに用いることも可能となる。
【0306】
本実施例の電子機器は、実施例1〜14のどのような組み合わせからなる構成を用いても実現することができる。
【0307】
【発明の効果】
従来のEL表示装置では、使用する際の環境温度が変化すると、EL素子の温度特性によって、同じ電圧をEL素子に印加していても、EL素子に流れる電流量が変化してしまい、輝度のバラつきが起きたり、消費電流が増大するといった問題があった。
【0308】
また、ボトムゲート型TFTを用いて構成されたソース信号線駆動回路では、その周波数特性が悪いため、高速動作ができず、表示装置の大型化及び高階調化等が難しいという問題があった。
【0309】
本発明は、上記構成によって、画素部EL素子に流れる電流を温度変化に対して一定に保つ。また、映像信号を時間軸伸張して、ソース信号線駆動回路における映像信号のサンプリングにマージンを持たせる。
【0310】
これにより、環境温度の変化によるEL素子の輝度の変化及び消費電流の増大を抑制可能で、また、ボトムゲート型TFTを用いて構成した回路においても、そのソース信号線駆動回路の周波数特性を補い、大型化、高精細化及び高階調化が可能な表示装置を提供することができる。
【0311】
【図面の簡単な説明】
【図1】 本発明のEL表示装置の温度補正回路の構成を示す図。
【図2】 本発明のEL表示装置の温度補正回路の構成を示す図。
【図3】 本発明のEL表示装置の加算回路の構成を示す図。
【図4】 EL表示装置の構成を示すブロック図。
【図5】 EL表示装置の画素部の構成を示す図。
【図6】 EL表示装置の画素の構成を示す図。
【図7】 EL表示装置の駆動方法を示すタイミングチャートを示す図。
【図8】 本発明のEL表示装置のバッファアンプの回路図。
【図9】 本発明のEL表示装置の上面図及び断面図。
【図10】 本発明のEL表示装置の上面図及び断面図。
【図11】 本発明のEL表示装置の断面図。
【図12】 本発明のEL表示装置の断面図。
【図13】 本発明のEL表示装置の上面図及び断面図。
【図14】 本発明のEL表示装置の断面図。
【図15】 本発明のEL表示装置のソース信号線駆動回路の回路図。
【図16】 本発明のEL表示装置のラッチの上面図。
【図17】 本発明のEL表示装置のソース信号線駆動回路のブロック図。
【図18】 EL素子の温度特性を示す図。
【図19】 本発明のEL表示装置の作製行程を示す図。
【図20】 本発明のEL表示装置の作製行程を示す図。
【図21】 本発明のEL表示装置のソース信号線駆動回路の回路図。
【図22】 本発明のEL表示装置の時間軸伸張信号回路の回路図。
【図23】 本発明のEL表示装置の温度補正回路の定電流源の構成を示す図。
【図24】 本発明のEL表示装置の温度による輝度の変化を示す図。
【図25】 本発明のEL表示装置を応用した電子機器を示す図。

Claims (17)

  1. 定電流源と、一対の電極を有するモニター用発光素子と、入力された電位と等しい電位を出力する回路と、複数の画素と、ソース信号線駆動回路と、を有し、
    前記ソース信号線駆動回路は、k(kは2以上の自然数)個のビデオ信号を同時にサンプリングし、且つ前記サンプリングした前記k個のビデオ信号を対応する第2の配線に出力し、
    前記複数の画素は、それぞれ、一対の電極を有する発光素子と、第1の薄膜トランジスタ及び第2の薄膜トランジスタと、を有し、
    前記第1の薄膜トランジスタは、ボトムゲート型の薄膜トランジスタであって、ゲートが第1の配線に電気的に接続され、ソース又はドレインの一方が前記第2の配線に電気的に接続され、ソース又はドレインの他方が前記第2の薄膜トランジスタのゲートに電気的に接続され、
    前記第2の薄膜トランジスタは、ボトムゲート型の薄膜トランジスタであって、ソース又はドレインの一方が前記発光素子の一方の電極に電気的に接続され、
    前記ソース信号線駆動回路は、前記第2の配線と電気的に接続され、
    前記定電流源と、前記モニター用発光素子の一方の電極と、前記入力された電位と等しい電位を出力する回路の入力とが互いに電気的に接続され、
    前記入力された電位と等しい電位を出力する回路の出力に、前記第2の薄膜トランジスタのソース又はドレインの他方が電気的に接続されていることを特徴とするアクティブマトリクス型の発光装置。
  2. 定電流源と、一対の電極を有するモニター用発光素子と、入力された電位と等しい電位を出力する回路と、加算回路と、複数の画素と、ソース信号線駆動回路と、を有し、
    前記ソース信号線駆動回路は、k(kは2以上の自然数)個のビデオ信号を同時にサンプリングし、且つ前記サンプリングした前記k個のビデオ信号を対応する第2の配線に出力し、
    前記複数の画素は、それぞれ、一対の電極を有する発光素子と、第1の薄膜トランジスタ及び第2の薄膜トランジスタと、を有し、
    前記第1の薄膜トランジスタは、ボトムゲート型の薄膜トランジスタであって、ゲートが第1の配線に電気的に接続され、ソース又はドレインの一方が前記第2の配線に電気的に接続され、ソース又はドレインの他方が前記第2の薄膜トランジスタのゲートに電気的に接続され、
    前記第2の薄膜トランジスタは、ボトムゲート型の薄膜トランジスタであって、ソース又はドレインの一方が前記発光素子の一方の電極に電気的に接続され、
    前記ソース信号線駆動回路は、前記第2の配線と電気的に接続され、
    前記定電流源と、前記モニター用発光素子の一方の電極と、前記入力された電位と等しい電位を出力する回路の入力とが互いに電気的に接続され、
    前記入力された電位と等しい電位を出力する回路の出力に、前記加算回路の入力が電気的に接続され、
    前記加算回路の出力に、前記第2の薄膜トランジスタのソース又はドレインの他方が電気的に接続されていることを特徴とするアクティブマトリクス型の発光装置。
  3. 請求項2において、
    前記加算回路の入力と出力は、常に一定の電位差を有していることを特徴とするアクティブマトリクス型の発光装置。
  4. 請求項1乃至請求項3のいずれか一において、
    ゲート信号線駆動回路を有し、
    前記ゲート信号線駆動回路は、前記第1の配線と電気的に接続されていることを特徴とするアクティブマトリクス型の発光装置。
  5. 請求項1乃至請求項4のいずれか一において、
    前記ソース信号線駆動回路は、第1のラッチ回路と、第2のラッチ回路と、を有し、
    前記k個のビデオ信号は、前記第1のラッチ回路に同時にサンプリングされ、
    前記第1のラッチ回路にサンプリングされた前記k個のビデオ信号は、前記第2のラッチ回路に同時に入力されることを特徴とするアクティブマトリクス型の発光装置。
  6. 請求項1乃至請求項5のいずれか一において、
    前記入力された電位と等しい電位を出力する回路は、ICチップに形成されていることを特徴とするアクティブマトリクス型の発光装置。
  7. 請求項1乃至請求項5のいずれか一において、
    前記入力された電位と等しい電位を出力する回路は、前記複数の画素が形成された基板と同じ基板上に形成されていることを特徴とするアクティブマトリクス型の発光装置。
  8. 請求項1乃至請求項7のいずれか一において、
    前記定電流源は、ICチップに形成されていることを特徴とするアクティブマトリクス型の発光装置。
  9. 請求項1乃至請求項7のいずれか一において、
    前記定電流源は、前記複数の画素が形成された基板と同じ基板上に形成されていることを特徴とするアクティブマトリクス型の発光装置。
  10. 請求項1乃至請求項9のいずれか一において、
    前記モニター用発光素子は、前記複数の画素が形成された基板と同じ基板上に形成されていることを特徴とするアクティブマトリクス型の発光装置。
  11. 請求項10において、
    前記モニター用発光素子は、前記複数の画素が形成された領域と異なる領域に設けられていることを特徴とするアクティブマトリクス型の発光装置。
  12. 請求項10において、
    前記モニター用発光素子は、前記複数の画素が形成された領域に設けられていることを特徴とするアクティブマトリクス型の発光装置。
  13. 請求項1乃至請求項12のいずれか一において、
    前記入力された電位と等しい電位を出力する回路はバッファアンプであることを特徴とするアクティブマトリクス型の発光装置。
  14. 請求項13において、
    前記バッファアンプは、ICチップに形成されていることを特徴とするアクティブマトリクス型の発光装置。
  15. 請求項13において、
    前記バッファアンプは、前記複数の画素が形成された基板と同じ基板上に形成されていることを特徴とするアクティブマトリクス型の発光装置。
  16. 請求項1乃至請求項15のいずれか一において、
    前記発光素子はEL素子であることを特徴とするアクティブマトリクス型の発光装置。
  17. 請求項1乃至請求項16のいずれか一において、
    前記アクティブマトリクス型の発光装置を用いたことを特徴とする電子機器。
JP2001172033A 2000-06-13 2001-06-07 アクティブマトリクス型の発光装置、及び電子機器 Expired - Fee Related JP4841754B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001172033A JP4841754B2 (ja) 2000-06-13 2001-06-07 アクティブマトリクス型の発光装置、及び電子機器

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000-176246 2000-06-13
JP2000176246 2000-06-13
JP2000176246 2000-06-13
JP2001172033A JP4841754B2 (ja) 2000-06-13 2001-06-07 アクティブマトリクス型の発光装置、及び電子機器

Publications (3)

Publication Number Publication Date
JP2002072964A JP2002072964A (ja) 2002-03-12
JP2002072964A5 JP2002072964A5 (ja) 2008-06-26
JP4841754B2 true JP4841754B2 (ja) 2011-12-21

Family

ID=26593786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001172033A Expired - Fee Related JP4841754B2 (ja) 2000-06-13 2001-06-07 アクティブマトリクス型の発光装置、及び電子機器

Country Status (1)

Country Link
JP (1) JP4841754B2 (ja)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW468283B (en) 1999-10-12 2001-12-11 Semiconductor Energy Lab EL display device and a method of manufacturing the same
JP2003043998A (ja) * 2001-07-30 2003-02-14 Pioneer Electronic Corp ディスプレイ装置
JP2003282273A (ja) * 2002-03-20 2003-10-03 Seiko Epson Corp 表示装置とその製造方法及び電子機器
JP2003330419A (ja) 2002-05-15 2003-11-19 Semiconductor Energy Lab Co Ltd 表示装置
KR101040581B1 (ko) * 2002-10-31 2011-06-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시소자 및 그 제어 방법
JP4571375B2 (ja) * 2003-02-19 2010-10-27 東北パイオニア株式会社 アクティブ駆動型発光表示装置およびその駆動制御方法
WO2004097543A1 (ja) * 2003-04-25 2004-11-11 Semiconductor Energy Laboratory Co. Ltd. 半導体装置
JP2005321526A (ja) * 2004-05-07 2005-11-17 Renesas Technology Corp 半導体集積回路装置、表示装置及びシステム
JP4850436B2 (ja) * 2004-05-21 2012-01-11 株式会社半導体エネルギー研究所 表示装置及びそれを用いた電子機器
US8681140B2 (en) * 2004-05-21 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic apparatus having the same
US7482629B2 (en) 2004-05-21 2009-01-27 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US7245297B2 (en) 2004-05-22 2007-07-17 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
JP4539963B2 (ja) * 2004-06-10 2010-09-08 東北パイオニア株式会社 アクティブ駆動型発光表示装置および同表示装置を搭載した電子機器
JP4754897B2 (ja) * 2004-07-23 2011-08-24 株式会社半導体エネルギー研究所 表示装置及びその駆動方法
US8134546B2 (en) 2004-07-23 2012-03-13 Semiconductor Energy Laboratory Co., Ltd. Display device and driving method thereof
US8154541B2 (en) 2004-07-30 2012-04-10 Semiconductor Energy Laboratory Co., Ltd. Display device, driving method thereof and electronic appliance
JP4877872B2 (ja) * 2004-07-30 2012-02-15 株式会社半導体エネルギー研究所 表示装置及びアクティブマトリクス型表示装置
JP2006091860A (ja) * 2004-08-23 2006-04-06 Semiconductor Energy Lab Co Ltd 表示装置及びその駆動方法並びに電子機器
US8194006B2 (en) 2004-08-23 2012-06-05 Semiconductor Energy Laboratory Co., Ltd. Display device, driving method of the same, and electronic device comprising monitoring elements
JP2006091462A (ja) * 2004-09-24 2006-04-06 Semiconductor Energy Lab Co Ltd 表示装置
JP2006189806A (ja) * 2004-12-06 2006-07-20 Semiconductor Energy Lab Co Ltd 表示装置及びその駆動方法
JP4974514B2 (ja) * 2004-12-06 2012-07-11 株式会社半導体エネルギー研究所 発光装置、及び発光装置を用いた電子機器
US7812794B2 (en) * 2004-12-06 2010-10-12 Semiconductor Energy Laboratory Co., Ltd. Display device and driving method thereof
US7531209B2 (en) 2005-02-24 2009-05-12 Michael Raymond Ayers Porous films and bodies with enhanced mechanical strength
JP5177960B2 (ja) * 2005-04-11 2013-04-10 株式会社半導体エネルギー研究所 表示装置及びそれを用いた電子機器
JP5238140B2 (ja) * 2005-05-02 2013-07-17 株式会社半導体エネルギー研究所 発光装置
JP4757767B2 (ja) * 2005-10-18 2011-08-24 株式会社半導体エネルギー研究所 表示装置及び当該表示装置を具備する電子機器
US7635863B2 (en) 2005-10-18 2009-12-22 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic apparatus having the display device
US7875315B2 (en) 2006-05-31 2011-01-25 Roskilde Semiconductor Llc Porous inorganic solids for use as low dielectric constant materials
US7790234B2 (en) 2006-05-31 2010-09-07 Michael Raymond Ayers Low dielectric constant materials prepared from soluble fullerene clusters
JP2009031711A (ja) * 2007-07-27 2009-02-12 Samsung Sdi Co Ltd 有機電界発光表示装置及びその駆動方法
KR20090011702A (ko) * 2007-07-27 2009-02-02 삼성모바일디스플레이주식회사 유기전계발광 표시장치
US8487844B2 (en) * 2010-09-08 2013-07-16 Semiconductor Energy Laboratory Co., Ltd. EL display device and electronic device including the same
JPWO2013080261A1 (ja) * 2011-11-30 2015-04-27 パナソニック株式会社 表示パネル及び表示パネルの製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10319872A (ja) * 1997-01-17 1998-12-04 Xerox Corp アクティブマトリクス有機発光ダイオード表示装置
JPH11272223A (ja) * 1998-03-26 1999-10-08 Toyota Motor Corp 発光ディスプレイ用電源装置
JP3696116B2 (ja) * 2000-04-18 2005-09-14 株式会社半導体エネルギー研究所 発光装置

Also Published As

Publication number Publication date
JP2002072964A (ja) 2002-03-12

Similar Documents

Publication Publication Date Title
JP4841754B2 (ja) アクティブマトリクス型の発光装置、及び電子機器
KR100813082B1 (ko) 디스플레이 장치
JP6419229B2 (ja) 表示装置
JP6393009B1 (ja) El表示装置
JP4831862B2 (ja) 電子装置
KR100678703B1 (ko) 발광 표시장치를 구비한 전기 장치
KR100773823B1 (ko) 발광장치
JP4932079B2 (ja) 電子装置
KR100786545B1 (ko) 전자 장치
JP4884609B2 (ja) 表示装置及びその駆動方法、並びに電子機器
JP2011100140A (ja) 発光装置
JP2002108285A (ja) 表示装置の駆動方法
JP2001222256A (ja) 発光装置
JP4869491B2 (ja) 発光装置
JP4637873B2 (ja) 表示装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080514

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20110517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111005

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees