JP4759816B2 - 光ファイバの製造方法 - Google Patents

光ファイバの製造方法 Download PDF

Info

Publication number
JP4759816B2
JP4759816B2 JP2001045409A JP2001045409A JP4759816B2 JP 4759816 B2 JP4759816 B2 JP 4759816B2 JP 2001045409 A JP2001045409 A JP 2001045409A JP 2001045409 A JP2001045409 A JP 2001045409A JP 4759816 B2 JP4759816 B2 JP 4759816B2
Authority
JP
Japan
Prior art keywords
preform
optical fiber
hole
gas
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001045409A
Other languages
English (en)
Other versions
JP2002249335A (ja
Inventor
健美 長谷川
正志 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2001045409A priority Critical patent/JP4759816B2/ja
Priority to US10/076,603 priority patent/US20020118938A1/en
Priority to DE60217982T priority patent/DE60217982T2/de
Priority to EP02003258A priority patent/EP1234806B1/en
Priority to DK02003258T priority patent/DK1234806T3/da
Publication of JP2002249335A publication Critical patent/JP2002249335A/ja
Application granted granted Critical
Publication of JP4759816B2 publication Critical patent/JP4759816B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02319Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by core or core-cladding interface features
    • G02B6/02323Core having lower refractive index than cladding, e.g. photonic band gap guiding
    • G02B6/02328Hollow or gas filled core
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01208Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments for making preforms of microstructured, photonic crystal or holey optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/0122Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of photonic crystal, microstructured or holey optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/01228Removal of preform material
    • C03B37/01231Removal of preform material to form a longitudinal hole, e.g. by drilling
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02319Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by core or core-cladding interface features
    • G02B6/02333Core having higher refractive index than cladding, e.g. solid core, effective index guiding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02347Longitudinal structures arranged to form a regular periodic lattice, e.g. triangular, square, honeycomb unit cell repeated throughout cladding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02361Longitudinal structures forming multiple layers around the core, e.g. arranged in multiple rings with each ring having longitudinal elements at substantially the same radial distance from the core, having rotational symmetry about the fibre axis
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02366Single ring of structures, e.g. "air clad"
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29371Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating principle based on material dispersion
    • G02B6/29374Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating principle based on material dispersion in an optical light guide
    • G02B6/29376Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating principle based on material dispersion in an optical light guide coupling light guides for controlling wavelength dispersion, e.g. by concatenation of two light guides having different dispersion properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/10Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/28Doped silica-based glasses doped with non-metals other than boron or fluorine doped with phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/31Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/40Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
    • C03B2201/42Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn doped with titanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/14Non-solid, i.e. hollow products, e.g. hollow clad or with core-clad interface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/42Photonic crystal fibres, e.g. fibres using the photonic bandgap PBG effect, microstructured or holey optical fibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Description

【0001】
【発明の属する技術分野】
本発明は、軸方向に延びる空孔を有する光ファイバを製造する光ファイバの製造方法に関するものである。
【0002】
【従来の技術】
軸方向に延びる空孔を有する光ファイバとして、ホーリーファイバ(微細構造光ファイバ、フォトニッククリスタルファイバとも言う)と称されるファイバがある。このホーリーファイバは、シリカガラス等の主媒質と気体等の副媒質とで構成された光ファイバであり、主媒質と副媒質との間の大きな屈折率差を利用して、コアとクラッドとの実効的な屈折率差を大きくすることにより、絶対値の大きな波長分散や、小さなモードフィールド径を実現できる。前者は分散補償の応用に好適であり、後者は非線形光学効果の利用に適している。従って、ホーリーファイバは、光通信システムへの応用が期待される。このようなホーリーファイバについては、例えば、D.J.Richardson,et al.,Proc.ECOC 2000,vol.4,pp37-40,(Sep.2000)に記載されている。
【0003】
また、USP 5,802,236には、ホーリーファイバの製造方法が開示されている。この製造方法は、一端が封止された複数本のシリカ製の毛管を束ね、管束バンドルを形成する。その際、中心の毛管をシリカロッドで置換する。次いで、シリカ製のオーバークラッド管を管束バンドル上に置き、管束バンドルへコラプスする。ここで得られたプリフォームを線引炉の高温領域に入れて、毛管の非封止端を加熱し、ファイバに線引する。
【0004】
【発明が解決しようとする課題】
しかしながら、従来のホーリーファイバでは、伝送損失が高いという不具合がある。例えば、P.J.Bennett,et al.,Opt. Lett.,vol.24,pp.1203-1205,(1999)では、波長1550nmにおける伝送損失は0.24dB/mである。これは、光通信システムにおいて実用に供されている光ファイバの伝送損失の典型値である0.2〜0.3dB/kmに比べると非常に高い。
【0005】
光ファイバの伝送損失が高いと、光ファイバを光伝送路に用いた場合に伝送距離が制限される。また、光ファイバを分散補償器として用いた場合には、ファイバ長が制限されることによって補償分散量が制限される。さらに、分散補償器としての挿入損失が高いことにより、所定のSN比を実現するのに必要な入力光信号パワーが増大するため、SPM、XPM、FWMなどの非線形光学効果による伝送品質劣化が生じ、光スペクトル利用効率が制限される。
【0006】
本発明の目的は、軸方向に延びる空孔を有する光ファイバにおいて伝送損失を低減することができる光ファイバの製造方法を提供することである。
【0007】
【課題を解決するための手段】
軸方向に延びる空孔を有する光ファイバの伝送損失には、空孔におけるファイバの内壁表面部に存在する不純物による吸収損失が大きく寄与する。具体的には、波長1400nm〜1600nmにおけるシリカガラスの低損失波長帯は光通信システムの応用に好適であるが、この波長帯においてはOH基による吸収が伝送損失に最も大きく寄与する。従って、光通信システムへの応用のためには、空孔におけるファイバ内壁表面部に存在するOH基の濃度を低減することが重要である。本発明は、そのような知見に基づいてなされたものである。
【0010】
すなわち、本発明は、軸方向に延びる空孔を有する光ファイバを製造する光ファイバの製造方法であって、空孔となる凹状穴部を有するプリフォームを形成する第1の工程と、プリフォームを形成した後、乾燥性を有する気体を凹状穴部内に満たして、プリフォームを加熱する第2の工程と、プリフォームを光ファイバに線引きする第3の工程とを含み、第2の工程において、プリフォームにおける開口側端に、蓋体が取り付けられたガラス管を接続し、ガラス管に分岐配管を接続し、分岐配管に供給配管及び排気配管を分岐接続した状態で、供給配管を介して凹状穴部内に乾燥性を有する気体を供給すると共に、排気配管を介して凹状穴部内から乾燥性を有する気体を排出することを特徴とするものである。
【0011】
このように凹状穴部を有するプリフォームを形成した後に、乾燥性を有する気体を凹状穴部に満たし、プリフォームを加熱することにより、凹状穴部におけるプリフォームの内壁表面に存在するOH基がH2O分子として凹状穴部内の空間へと拡散する。そして、そのH2O分子は、拡散または対流によってプリフォームの外部に排出される。これにより、プリフォームの内壁表面のOH濃度が低下し、OH基に起因する光ファイバの伝送損失が低減される。また、乾燥性を有する気体の使用により、内壁表面へのOH基の再付着が抑制されるため、OH濃度の低下が早められる。従って、製造コストの削減を図ることもできる。
【0012】
このとき、第2の工程において、乾燥性を有する気体を凹状穴部内に注入する工程と、凹状穴部内から乾燥性を有する気体を排出する工程とを繰り返すことが好ましい。これにより、凹状穴部内の空間に拡散したH2O分子が効果的にプリフォームの外部に排出される。また、内壁表面へのOH基の再付着が効果的に抑制される。従って、光ファイバの伝送損失をより低減することができる。
【0016】
ましくは、乾燥性を有する気体として、露点が−50℃以下の気体を使用する。これにより、H2O濃度の十分に低い気体がプリフォームの穴部内に供給されることになるため、プリフォームの内壁表面へのOH基の再付着がより抑制され、その結果光ファイバの伝送損失をより低減することができる。
【0017】
このとき、好ましくは、乾燥性を有する気体として、不活性気体を85%以上のモル濃度で含む気体を使用する。これにより、シリカガラスからなるプリフォームを加熱したときに、乾燥性を有する気体がガラスと反応しにくくなる。従って、気体とガラスとの化学反応による光吸収や光散乱の発生を回避し、光ファイバの伝送損失の増大を抑制することができる。
【0018】
このとき、不活性気体として、N2、He、Arの1つ又は2つ以上の混合である気体を使用するのが好ましい。これらの気体は特に活性度が低いため、ガラスとの化学反応の抑制に効果的である。
【0019】
また、乾燥性を有する気体として、脱水作用を有する活性気体を含む気体を使用してもよい。この場合には、プリフォームの内壁表面におけるOH濃度の低下速度が速くなるため、プリフォームの内壁表面部に存在するOH基を除去する第2の工程に要する時間が短縮され、より製造コストを削減できる。また、活性気体の濃度を高く、例えばモル濃度で30%以上とすることにより、OH濃度の低下をより速めることができる。
【0020】
このとき、脱水作用を有する活性気体として、HF、F2、Cl2、COの少なくとも1つを含む気体を使用するのが好ましい。これらの気体は特に脱水作用に優れているため、第2の工程に要する時間の短縮に効果的である。
また、軸方向に延びる空孔を有する光ファイバを製造する光ファイバの製造方法であって、空孔となる凹状穴部を有するプリフォームを形成する第1の工程と、プリフォームを形成した後、凹状穴部内を減圧排気すると共に、プリフォームを加熱する第2の工程と、プリフォームを光ファイバに線引きする第3の工程とを含み、第2の工程において、プリフォームにおける開口側端に、蓋体が取り付けられたガラス管を接続し、ガラス管に排気配管を接続した状態で、排気配管を介して凹状穴部内を減圧排気することを特徴とするものである。
このように凹状穴部を有するプリフォームを形成した後に、凹状穴内を減圧排気すると共に、プリフォームを加熱することにより、凹状穴部におけるプリフォームの内壁表面に存在するOH基がH 2 O分子として凹状穴部内の空間へと拡散する。そして、そのH 2 O分子は、凹状穴内の減圧排気によってプリフォームの外部に排出される。これにより、プリフォームの内壁表面のOH濃度が低下し、OH基に起因するファイバの伝送損失が低減される。
上述した各光ファイバの製造方法において、好ましくは、第2の工程において、プリフォームを800℃以上の温度で加熱する。これにより、OH基がH 2 O分子となる反応が促進されるため、プリフォームの内壁表面に存在するOH基がH 2 O分子として穴部内の空間へと早く拡散するようになる。さらに、長時間、例えば30分以上にわたって加熱することにより、OH濃度をより低下させることができる。
【0021】
また、好ましくは、第2の工程の前に、穴部におけるプリフォームの内壁表面を平滑化する。これにより、プリフォームの内壁表面の表面積が小さくなるため、プリフォームの内壁表面部に存在するOH基の総量が減少する。従って、第2の工程においてOH基の除去に要する時間を短くし、より製造コストを削減できる。
【0022】
また、好ましくは、第2の工程の前に、穴部におけるプリフォームの内壁表面をドライエッチングする。これにより、プリフォームの内壁表面の平滑化の効果が得られると共に、OH基が含まれるプリフォームの内壁表面部のガラス層が直接的に除去される。このため、プリフォームの内壁表面部に存在するOH基の総量が減少する。従って、第2の工程においてOH基の除去に要する時間を短くし、より製造コストを削減できる。
【0023】
さらに、好ましくは、第3の工程において、穴部内の圧力を調整する。軸方向に延びる穴部を有するプリフォームをファイバに線引きする際、穴部を形成するプリフォームの内壁表面における表面張力によって、光ファイバにおける空孔占有率は減少しようとする。この空孔占有率は、プリフォームの穴部内とプリフォームの内壁との間に生じる圧力差にも依存する。そこで、プリフォームの穴部内の圧力を制御することによって、所望の空孔占有率を有する光ファイバを製造することができる。ここで、空孔占有率とは、ファイバ断面における所定の領域、例えば断面全体の断面積に対する空孔断面積の比である。また、第2の工程において乾燥性を有する気体を供給する手段にプリフォームを接続する手段と、第3の工程において圧力を調整する手段にプリフォームを接続する手段とは、一部または全部を共通とすることができる。これにより、工程間での接続変更に伴う汚染物質の侵入を防ぐことができる。
【0024】
また、好ましくは、第1の工程において、穿孔具を用いて円柱状のプリフォームを切削することにより、プリフォームに穴部を形成する。これにより、プリフォームに穴部を形成する作業が容易に行えるようになり、高い歩留まりを実現できる。また、この場合には、プリフォームにおける穴部間に微細な隙間が生じないため、その隙間に存在する不純物を取り除く必要がなく、これにより第2の工程においてOH基の除去に要する時間を短くし、より製造コストを削減できる。さらに、線引き時にプリフォームの穴部内の圧力を調整することによって、プリフォームの穴部と内壁との圧力差を容易に形成できるため、線引き時に光ファイバの空孔の収縮が生じにくくなる。
【0025】
また、第1の工程において、複数の筒状部材を束ねてバンドルを形成し、このバンドルをジャケット管内に挿入することにより、穴部を有するプリフォームを形成してもよい。この場合には、穴径の小さな穴部を有するプリフォームを容易に形成できるため、短い波長の光を導波させるのに適した光ファイバを容易に製造することが可能となる。
【0034】
【発明の実施の形態】
以下、本発明に係わる光ファイバの製造方法の好適な実施形態について図面を参照して説明する。
【0035】
図1は、本発明に係わる光ファイバの一実施形態を示す断面図である。同図において、光ファイバ1は、GeO2が添加されたシリカガラスからなるコア2と、このコア2を囲み純粋シリカガラスからなるクラッド3とから構成されている。クラッド3におけるコア2の周囲には、ファイバ軸方向に延びる複数本の空孔4が形成されている。このような光ファイバ1においては、全反射によって所定の波長の光がコア2に閉じ込められてファイバ軸方向に沿って導波される。
【0036】
なお、コア2を純粋シリカガラスで形成すると共にクラッド3をFが添加されたシリカガラスで形成したり、Ti、B、P等の添加物をコア2及びクラッド3の一方または両方に添加することによって、コア2の屈折率をクラッド3の屈折率よりも高くする構成をとっても良い。
【0037】
次に、上記の光ファイバ1を製造する方法について説明する。最初に、光ファイバ1の母材であるプリフォームを形成する。このプリフォームを作成する方法の一例を図2に示す。
【0038】
同図において、まず一体構造の円柱状のプリフォーム5を用意する。このプリフォーム5は、GeO2が添加されたシリカガラスからなるコア領域6と、このコア領域6を囲み純粋シリカガラスからなるクラッド領域7とで構成されている。コア領域6には、コア領域6とクラッド領域7との比屈折率差が所望の値(例えば0.3%)となるようにGeO2が添加されている。このような一体構造のプリフォーム5は、VAD法、MCVD法、OVD法などの方法により作成できる。
【0039】
そして、クラッド領域7におけるコア領域6の周囲を、ダイヤモンドの刃先を有する穿孔具8を用いて切削することにより、プリフォーム5にプリフォーム軸方向に延びる複数本の貫通穴部9を形成する。この貫通穴部9は、後述する線引後の光ファイバ1における空孔4を形成するものである。貫通穴部9の径(直径)は例えば3mmであり、貫通穴部9の長さ(プリフォーム5の高さ)は例えば300mmである。このように穿孔具8を用いてプリフォーム5に貫通穴部9を形成することにより、貫通穴部9の形成作業が容易に行えるようになり、高い歩留まりを実現できる。
【0040】
穿孔具としては、ダイヤモンドの刃先を有する工具の代わりに、ガラスを軟化させるための加熱手段とガラス軟化点以上の融点を有する器具とを使用することもできる。この場合、ガラスを加熱して軟化させた状態で高融点器具をガラスに挿入し、器具を引き抜く直前または直後にガラスを冷却して硬化させることによって、貫通穴部9を形成できる。
【0041】
なお、上記のプリフォーム5のコア領域6とクラッド領域7は、Ge,F,Ti,B,P等の添加物を添加したシリカガラスで形成することもでき、更に添加物濃度をプリフォーム5内で変化させることにより、屈折率をプリフォーム5内で変化させることも可能である。この場合には、波長分散やモードフィールド径などに関して、所望の特性を容易に得ることができる。また、貫通穴部9の位置やプリフォーム5の材料屈折率分布は、全反射またはブラッグ反射によって所定の波長の光が光ファイバ1中のコア2に閉じ込められてファイバ軸方向に沿って導波されるように選ばれる。
【0042】
また、光ファイバの空孔となる貫通穴部は、特に図2に示すような配置には限定されず、図3〜図5に示すような配置を採ることもできる。図3に示す構成では、シリカガラスからなるプリフォーム5Aに貫通穴部9Aが複数配置されており、その結果、空孔占有率が小さいコア領域6Aを空孔占有率が大きいクラッド領域7Aが包囲する。この構成では、光ファイバが生成された際に、全反射によってコアに光を閉じ込めてファイバ軸方向に導波させることができるが、コアとクラッドとの間で等価的に大きな屈折率差を実現し、絶対値の大きな波長分散や小さなモードフィールド径を実現できる。前者は分散補償への応用において好ましく、後者は非線形光学効果の利用において好ましい。
【0043】
図4に示す構成では、シリカガラスからなるプリフォーム5Bに貫通穴部9Bが複数配置されており、その結果、径方向に規則的な屈折率分布を有するクラッド領域7Bによって貫通穴部9Bを含むコア領域6Bが囲まれる。径方向に規則的な屈折率分布は、図4に示すように貫通穴部9Bをリング状に配置することによって実現できるほか、Ge,F,Ti,B,P等の添加物をリング状に添加することによっても実現できる。
【0044】
また、図5に示すように、シリカガラスからなるプリフォーム5Cに貫通穴部9Cを複数配置し、その結果、断面内で規則的な屈折率分布を有するクラッド領域7Cによって貫通穴部9Cを含むコア領域6Cが囲まれる構成も可能である。図4及び図5に示す構成により、光ファイバが生成された際には、ブラッグ反射によってコアに光を閉じ込めてファイバ軸方向に導波させることができる。また、コアが空孔を含むことにより、空孔を伝搬するパワーの全伝搬パワーに占める割合を大きく、例えば50%以上にすることができる。その結果、低い伝送損失や低い非線形性を実現できる。
【0045】
図2に戻り、上記のようにプリフォーム5に貫通穴部9を形成した後、この貫通穴部9におけるプリフォーム5の内壁5aの表面(図7参照)を平滑化することが好ましい。この内壁5a表面の平滑化は、ヤスリ状の器具を用いて内壁5a表面を直接削ったり、貫通穴部9内にダイヤモンド粉末と適当な溶媒を満たして超音波を照射することにより行う。これにより、プリフォーム5の内壁5a表面の表面積が小さくなるため、その分だけ内壁5a表面部に存在するOH基の総量が減少する。
【0046】
また、プリフォーム5に貫通穴部9を形成した後、プリフォーム5の内壁5a表面に、HF水溶液によるウェットエッチングを施すと共にSF6等によるドライエッチングを施すことが好ましい。SF6によるドライエッチングは、例えば1000℃以上に加熱されたプリフォーム5の貫通穴部9内にSF6を導入することにより行う。HFエッチングを行うことにより、切削時にプリフォーム5の内壁5a表面に付着した汚染物質が除去される。また、SF6エッチングを行うことにより、内壁5a表面が平滑化されると同時に、プリフォーム5の内壁5a表面部の層が直接除去されるため、内壁5a表面部に存在するOH基の総量が更に減少する。
【0047】
プリフォームを作成する他の方法を図6に示す。同図において、まずシリカガラス製のロッド10と複数本のシリカガラス製のキャピラリ11を束ねて、バンドル12を形成する。ロッド10は、光ファイバのコアを形成するものであり、キャピラリ11の径と同程度の径を有している。なお、キャピラリ11の径の半分以下の径を有する別のロッドを、スペーサとして更に設けることもできる。そして、バンドル12の径よりも僅かに大きい内径を有するシリカガラス製のジャケット管13の中に、バンドル12を挿入することによって、プリフォーム14を形成する。このような構造では、キャピラリ11の中空部分がプリフォーム14の貫通穴部15を構成することになる。ロッド10及びキャピラリ11の径の典型値は1mm程度であり、キャピラリ11の外径に対する内径の比は、例えば0.4ないし0.8である。ジャケット管13としては、外径20mm程度、内径18mm程度のものが用いられる。
【0048】
このように複数本のキャピラリを束ねてプリフォームが形成する方法では、径の小さな貫通穴部を含むプリフォームの形成が容易に行えるため、光ファイバに形成される空孔の径を小さくできる。このように光ファイバの空孔の径を小さくすることで、比較的短い波長の光に対しても低い実効屈折率を実現できる。従って、この方法は、短い波長の光を導波させるのに適した光ファイバの製造に有利である。
【0049】
以上のように複数の貫通穴部を有するプリフォームを形成した後、貫通穴部を形成するプリフォームの内壁表面部に存在するOH基の除去処理を行う。このOH基の除去処理を実施するための構成を図7に示す。
【0050】
同図において、貫通穴部9を有するプリフォーム5は線引機の炉内にセットされる。プリフォーム5の両端にはガラス管21a,21bの一端が接続され、各ガラス管21a,21bの他端には蓋体22a,22bが固定されている。これにより、プリフォーム5の貫通穴部9内に汚染物質が侵入するのを防ぐことができる。ガラス管21a,21bの長さは、線引機の構成に依存して調整される。ガラス管21aには、プリフォーム5の貫通穴部9内に乾燥性を有する気体を供給するための供給配管23aが接続されている。また、ガラス管21bには、乾燥性を有する気体をプリフォーム5の外部に排出するための排気配管23bが接続されている。ここで、乾燥性を有する気体(以下、乾燥気体という)とは、完全に乾燥した気体のみならず、わずかな水分を含んでいる実質的に乾燥している気体をも含む概念である。なお、ガラス管21a,21bは、プリフォーム5におけるプリフォーム有効部つまり線引後に光ファイバとなる部分を、供給配管23a、排気配管23b及び把持手段(図示せず)に接続するために設けたものである。
【0051】
以上において、プリフォーム5の貫通穴部9内に、プリフォーム5の一端から他端に向けて乾燥気体を例えば5リットル/分程度の流速で流すと共に、炉内の加熱部24によりプリフォーム5を加熱する。このとき、プリフォーム5を800℃以上で30分以上加熱することが好ましく、1200℃以上で1時間以上加熱することがより好ましい。また、プリフォーム5のプリフォーム有効部の長さに比べて加熱部24が小さい場合には、プリフォーム5を適時上下動させてプリフォーム有効部全体が適切に加熱されるようにする。
【0052】
このように乾燥気体をプリフォーム5の貫通穴部9に流しながら、プリフォーム5を加熱することにより、貫通穴部9を形成するプリフォーム5の内壁5a表面に存在するOH基がH2O分子となる反応が促進され、OH基がH2O分子として貫通穴部9の空間へと拡散する。そして、その拡散したH2O分子は、貫通穴部9内にとどまることなく、乾燥気体の流れによって排気配管23bを介して排出される。これにより、内壁5a表面におけるOH濃度が低下する。また、貫通穴部9内に乾燥気体を流すことで、内壁5a表面へのOH基の再付着が抑制されるため、内壁5a表面部におけるOH濃度の低下が早くなる。このように内壁5a表面部に存在するOH基が除去されるため、OH基に起因する光ファイバの伝送損失を低減することが可能となる。
【0053】
ここで、内壁5a表面部に存在するOH基を効果的に除去するためには、H2O濃度が十分に低い乾燥気体を使用するのが望ましい。このような乾燥気体としては、具体的には、露点が−50℃以下、より好ましくは露点が−70℃以下の気体を使用する。
【0054】
ところで、シリカガラス製のプリフォーム5を加熱したときには、プリフォーム5の貫通穴部9内の気体分子はガラスと反応しやすくなる。このような気体とガラスとの化学反応の中には、光吸収や光散乱を増大させて伝送特性を劣化させる反応もある。そこで、乾燥気体としては、不活性気体を85%以上のモル濃度で含む気体を使用するのが好ましい。乾燥気体が化学的に不活性であると、シリカガラスとの反応が生じにくくなるため、貫通穴部9内の気体とガラスとの化学反応が抑制され、これにより光ファイバの伝送特性の劣化を防止することができる。なお、乾燥気体としては、N2、He、Arの1つ又は2つ以上の混合である不活性気体を85%以上のモル濃度で含む気体を使用する。これらの気体は特に活性度が低く、ガラスとの化学反応の抑制に効果的である。
【0055】
また、乾燥気体としては、脱水作用を有する活性気体を含む気体を使用することもできる。この場合には、プリフォーム5の内壁5a表面のOH濃度の低下速度を速めることができるため、その分OH基の除去処理時間が短縮される。なお、脱水作用を有する活性気体としては、HF、F2、Cl2、COの少なくとも1つを含む気体を使用する。これらの気体は特に脱水作用に優れており、OH基の除去処理時間の短縮に効果的である。また、活性気体の濃度を高く、例えば30%以上にすると、脱水にとって効果的である。
【0056】
なお、以上のようなプリフォーム5の内壁5a表面部に存するOH基の除去処理は、必ずしも線引機において行う必要はなく、この工程に適した構成を適宜用いることができる。
【0057】
以上のようにOH基の除去処理を行った後、プリフォーム5を線引機の加熱部24により例えば1800℃程度に加熱し、プリフォーム5の加熱側端から光ファイバに線引する。これにより、図1に示すような複数本の空孔4を有すると共に125μmの径をもった光ファイバ1が生成される。このとき、上述した蓋体22aを用いて線引を行うと、プリフォーム5の貫通穴部9内に水蒸気等の汚染物質が侵入することが防止され、その結果歩留まりが向上する。
【0058】
このようなプリフォーム5の線引時には、貫通穴部9を形成するプリフォーム5の内壁5a表面における表面張力によって光ファイバ1における空孔占有率は減少しようとする。ここで、空孔占有率は、ファイバにおける空孔断面積をファイバ断面積で割った値、またはプリフォーム5の貫通穴部9の断面積をプリフォーム5の断面積で割った値である。この線引時の空孔占有率は、プリフォーム5の貫通穴部9内と内壁5aとの間に生じる圧力差にも依存する。そこで、貫通穴部9内の圧力を制御することによって、光ファイバ1において所望の空孔占有率が得られるようにする。
【0059】
具体的には、乾燥気体の供給圧力を調整するための圧力調整部25を供給配管23aに介設させると共に、プリフォーム5の貫通穴部9内の圧力を検出するための圧力センサ26を設ける。圧力センサ26は、供給配管23aにおける圧力を検出してもよく、この検出値に基づいて貫通穴部9における圧力を求めることができる。そして、圧力調整部25は、圧力センサ26の検出値に基づいて、貫通穴部9内の圧力が所望値となるように乾燥気体の供給圧力を制御する。これにより、プリフォーム5の内壁5a表面における表面張力による貫通穴部9の収縮が抑制され、所望の空孔占有率を有する光ファイバが線引されるようになる。また、乾燥気体の供給圧力を調整することにより、光ファイバ1の空孔占有率を適宜調節することができる。この場合には、波長分散やモードフィールド径といったファイバ特性を容易に調整することが可能となる。
【0060】
以上のように本実施形態にあっては、貫通穴部9を有するプリフォーム5を形成した後に、乾燥気体を貫通穴部9内に流しながらプリフォーム5を加熱するようにしたので、貫通穴部9を形成するプリフォーム5の内壁5a表面部に存在するOH基が除去され、これにより伝送損失の低い光ファイバ1を得ることができる。
【0061】
また、乾燥気体を貫通穴部9内に流すことで、プリフォーム5の内壁5a表面へのOH基の再付着も抑制されるため、内壁5a表面部におけるOH濃度が速く低下する。また、乾燥気体を貫通穴部9内に流しながらプリフォーム5を加熱する前に、プリフォーム5の内壁5a表面を平滑化し、更にプリフォーム5の内壁5a表面をドライエッチングするので、内壁5a表面部に存在するOH基の総量が減少する。これにより、OH基の除去に要する時間が短くなり、製造コストの削減を図ることができる。
【0062】
さらに、プリフォーム5を光ファイバ1に線引する際、プリフォーム5の貫通穴部9内の圧力を調整するので、所望の空孔占有率を有する光ファイバ1を得ることができる。
【0063】
図1に示す光ファイバ1を製造する他の方法について図8により説明する。なお、上述した製造方法と同様の内容については、その説明を省略する。
【0064】
本製造方法では、光ファイバ1の母材であるプリフォーム30として、軸方向に延び一端側が閉じられた複数本の凹状穴部31を有するものを使用する。このプリフォーム30は、上述した実施形態と同じ方法で作成される。プリフォーム30を形成した後、図5に示す構成によって、凹状穴部31を形成するプリフォーム30の内壁30a表面部に存在するOH基の除去処理を行う。
【0065】
において、プリフォーム30における開口側端にはガラス管32の一端が接続され、このガラス管32の他端には蓋体33が取り付けられている。ガラス管32には分岐配管34が接続され、この分岐配管34には、乾燥気体をプリフォーム30の凹状穴部31内に供給するための供給配管35と、凹状穴部31内の乾燥気体を排出するための排気配管36とが分岐接続されている。排気配管36は、真空ポンプ37と接続されている。また、配管35,36には開閉弁38,39がそれぞれ設けられている。
【0066】
以上において、開閉弁39を閉じ、開閉弁38を開いた状態で、乾燥気体を流し、プリフォーム30の凹状穴部31内に乾燥気体を満たす。その状態で、炉内の加熱部24によりプリフォーム30を800℃以上の温度で30分以上加熱する。そして、所定時間経過後、開閉弁38を閉じ、開閉弁39を開いた状態で、真空ポンプ37により凹状穴部31内の気体を排気する。このような乾燥気体の注入及び排気は、複数回繰り返して行うのが好ましい。
【0067】
これにより、プリフォーム30の内壁30a表面や内壁30a中のOH基がH2O分子として凹状穴部31の空間へと拡散する。そして、そのH2O分子は、拡散または対流によってプリフォーム30の外部に送られ、更に真空ポンプ37により排出される。従って、プリフォーム30の内壁30a表面部に存在するOH基が効果的に除去されると共に、内壁30a表面へのOH基の再付着が抑制される。
【0068】
このとき、プリフォーム30のプリフォーム非有効部からプリフォーム有効部へのH2O分子の拡散を低減することにより、プリフォーム有効部における内壁30a表面部のOH濃度の低下を速めることができる。ここで、プリフォーム非有効部からプリフォーム有効部へのH2O分子の拡散を低減する方法としては、プリフォーム有効部をプリフォーム非有効部よりも高温にしたり、プリフォーム非有効部に吸湿性媒質を設けたり、プリフォーム非有効部における凹状穴部31の容積をプリフォーム有効部における凹状穴部31よりも大きくする等があげられる。
【0069】
以上のようにOH基の除去処理を行った後、プリフォーム30を線引機の加熱部24により加熱し、プリフォーム30の加熱側端からファイバに線引する。このとき、供給配管35に介設した圧力調整部24と圧力センサ25によって、プリフォーム30の凹状穴部31内の圧力が所望値となるように乾燥気体の供給圧力を制御する。これにより、プリフォーム30の内壁30a表面における表面張力による凹状穴部31の収縮が抑制され、所望の空孔占有率を有する光ファイバが線引される。
【0070】
以上のような実施形態においても、凹状穴部31を形成するプリフォーム30の内壁30a表面部に存在するOH基が確実に除去されるので、OH基に起因する光ファイバの伝送損失を低減することができる。
【0071】
図1に示す光ファイバ1を製造する更に他の方法について説明する。なお、上述した製造方法と同様の内容については、その説明を省略する。また、本製造方法では、図に示すプリフォーム30を使用する。
【0072】
まず、凹状穴部31を有するプリフォーム30を形成する。続いて、開閉弁38を閉じ、開閉弁39を開いた状態で、真空ポンプ37により凹状穴部31内を減圧排気すると共に、炉内の加熱部24によりプリフォーム30を800℃以上の温度で30分以上加熱する。これにより、凹状穴部31を形成するプリフォーム30の内壁30a表面や内壁30a中に存在するOH基がH2O分子として凹状穴部31の空間へと拡散し、そのH2O分子が減圧排気によってプリフォーム30の外部に排出される。
【0073】
続いて、開閉弁39を閉じ、開閉弁38を開いた状態で、乾燥気体を流し、プリフォーム30の凹状穴部31内に乾燥気体を満たす。そして、線引機の加熱部24によりプリフォーム30を加熱し、プリフォーム30の加熱側端からファイバに線引する。
【0074】
このような実施形態においても、凹状穴部31を形成するプリフォーム30の内壁30a表面部に存在するOH基を除去することができるので、OH基に起因する光ファイバの伝送損失を低減することが可能となる。
【0075】
図9に、線引された光ファイバの伝送損失に関する一実験例を示す。同図において、実線Pは、プリフォームの内壁表面部に存在するOH基の除去処理を行った場合の伝送損失であり、点線Qは、OH基の除去処理を行わなかった場合の伝送損失である。なお、OH基の除去処理においては、乾燥気体として露点が−70℃以下のN2を使用し、これをプリフォームの穴部内に流しながら、プリフォームを1200℃の温度で3時間加熱した。
【0076】
図9から分かるように、OH基の除去処理を行った場合には、OH基の吸収による損失が低く抑えられることで、約1100〜1700nmの波長帯域における伝送損失が低減される。このとき、波長1550nmにおける伝送損失は、6.7dB/kmから1.1dB/kmに低減されている。なお、8.5dB/km以上の伝送損失については、測定器の測定可能範囲を超えているため、正確には測れていない。
【0077】
図10は、上記のOH基の除去処理工程に先立って、プリフォームの内壁表面を平滑化した場合の伝送損失に関する一実験例を示したものである。図10から分かるように、OH基の吸収ピーク波長である1380nmにおける伝送損失は約24dB/kmであり、波長1550nmにおいては伝送損失が0.68dB/kmにまで低減されている。
【0078】
以上のような種々の製造方法によって得られた空孔4を有する光ファイバ1においては、OH基の吸収ピーク波長である1380nmにおける伝送損失を約200dB/km以下とすることにより、1550nm付近の波長帯域において10dB/km以下、好ましくは3dB/km以下の低い伝送損失が実現可能となる。このとき、光ファイバ1の空孔4内部に存在する水の密度が好ましくは1mg/リットル以下であれば、空孔4内に含まれる水が、空孔4を形成するファイバ内壁表面に付着することが抑えられるため、そのような低い伝送損失を確実に達成できる。伝送損失の低い光ファイバは、分散補償器としての使用に好適である。
【0079】
具体的には、空孔4を有する光ファイバ1を分散補償器として使用する場合、長尺の光ファイバ1を使用できるため、補償できる分散量が大きくなる。その結果、分散補償対象の伝送路長を長くして、伝送距離を増大させることができる。また、所定のSN比を実現するための分散補償器の入力光信号パワーを低減できるため、SPM、XPM、FWMなどの非線形光学効果による伝送品質劣化が抑制され、スペクトル利用効率つまり周波数帯域当たりの伝送容量を増大させることができる。
【0080】
このとき、1380nmの波長における伝送損失を30dB/km以下とすることにより、1550nm付近の波長帯域において1dB/km以下の極めて低い伝送損失を実現できるようになる。これにより、光ファイバ1を分散補償器として更に有効的に使用できる。また、この場合には、数十kmオーダーでの伝送が可能となるため、分散補償器としてのみならず、光伝送路としても好適に応用でき、伝送距離を更に増大させることができる。
【0081】
このような伝送損失の低い光ファイバを使用して構築した光通信システムについて、以下に説明する。
【0082】
図11は、図1に示す光ファイバ1を含む分散補償器を備えた光通信システムの一例を示したものである。この光通信システム40においては、光送信機41と光受信機42とが、光伝送路43及び分散補償器44を介して接続されている。光伝送路43は、1種類または2種類以上の光ファイバで構成され、通常は正の波長分散を有している。この光伝送路43の後段に分散補償器44が接続されている。この分散補償器44は、光伝送路43の分散と逆符号の波長分散を有する光ファイバ1からなるコイル45と、このコイル45の前段および後段に設けられた光アンプ46とによって構成されている。このような構成では、分散補償器44によって光伝送路43の波長分散が補償され、パルス波形劣化が抑制されることにより、大きな伝送容量が得られる。また、光伝送路43の後段に分散補償器44を挿入することにより、分散補償器44への入力光信号パワーが低減され、FWM等の非線形光学効果による伝送品質劣化が抑制され、スペクトル利用効率が向上する。
【0083】
図12は、図1に示す光ファイバ1を含む光伝送路を備えた光通信システムの一例を示したものである。この光通信システム50においては、光送信機51と光受信機52とが、光伝送路53及び光アンプ54を介して接続されている。光伝送路53に使用される光ファイバ1は、50nm以上の広い波長帯域にわたって絶対値が1〜10ps/nm/kmの波長分散を有すると共に、30km以上の長さを有している。なお、光増幅器を挟んで複数の光伝送路を接続し、伝送距離を更に長くすることができる。このように広い帯域にわたって絶対値の小さな波長分散を有することにより、1波長当たりの伝送容量を大きく且つ波長数の大きな波長多重伝送を行うことができ、大きな伝送容量が得られる。
【0084】
図13は、図1に示す光ファイバ1を含む光伝送路を備えた他の光通信システムの一例を示したものである。この光通信システム60においては、光送信機61と光受信機62とが、光伝送路63及び光アンプ64を介して接続されている。光伝送路63は、空孔を有しない通常の光ファイバで構成された伝送路65と、図1に示すような空孔4を有する光ファイバ1で構成された伝送路66とを含んでいる。伝送路65に使用される通常の光ファイバは、+1ps/nm/kmの波長分散を有すると共に、30km以上の長さを有している。伝送路66に使用される光ファイバ1は、−3ps/nm/kmの波長分散を有すると共に、10km以上の長さを有している。各々の光ファイバの長さは、累積波長分散が所定の範囲内の値となるように選ばれる。なお、光増幅器を挟んで複数の光伝送路を接続し、伝送距離を更に長くすることができる。このように絶対波長分散が所定値以上の光ファイバを用いることにより、FWM等の非線形光学効果による伝送品質劣化が抑制され、伝送速度やスペクトル利用効率が向上する。
【0085】
なお、本発明は、上記実施形態に限定されるものではない。例えば、上記実施形態の光ファイバは、クラッドのみに空孔を形成したものであるが、本発明は、コアに空孔が形成された光ファイバにも適用可能である。
【0086】
【発明の効果】
本発明によれば、乾燥性を有する気体をプリフォームの貫通穴部内に流しながらプリフォームを加熱するので、貫通穴部におけるプリフォームの内壁表面部に存在するOH基が除去され、これにより伝送損失の低い光ファイバを得ることができる。
【0087】
また、乾燥性を有する気体をプリフォームの凹状穴部内に満たして、プリフォームを加熱するので、凹状穴部におけるプリフォームの内壁表面部に存在するOH基が除去され、これにより伝送損失の低い光ファイバを得ることができる。
【0088】
さらに、プリフォームの凹状穴部内を減圧排気すると共に、プリフォームを加熱するので、凹状穴部におけるプリフォームの内壁表面部に存在するOH基が除去され、これにより伝送損失の低い光ファイバを得ることができる。
【図面の簡単な説明】
【図1】本発明に係わる光ファイバの一実施形態を示す断面図である。
【図2】プリフォームを作成する方法の一例を示す図である。
【図3】他のプリフォームを示す断面図である。
【図4】更に他のプリフォームを示す断面図である。
【図5】更に他のプリフォームを示す断面図である。
【図6】プリフォームを作成する方法の他の例を示す図である。
【図7】プリフォームの内壁表面部に存在するOH基の除去処理を行う方法を示す図である。
【図8】プリフォームの内壁表面部に存在するOH基の除去処理を行う他の方法を示す図である。
【図9】空孔を有する光ファイバの伝送損失に関する一実験例を示したものである。
【図10】プリフォームの内壁表面部に存在するOH基の除去処理に先立って、プリフォームの内壁表面を平滑化した場合の光ファイバの伝送損失に関する一実験例を示したものである。
【図11】図1に示す光ファイバを含む分散補償器を備えた光通信システムの一例を示したものである。
【図12】図1に示す光ファイバを含む光伝送路を備えた光通信システムの一例を示したものである。
【図13】図1に示す光ファイバを含む他の光伝送路を備えた光通信システムの一例を示したものである。
【符号の説明】
1…光ファイバ、2…コア、3…クラッド、4…空孔、5…プリフォーム、5a…内壁、8…穿孔具、9…貫通穴部、11…キャピラリ(筒状部材)、12…バンドル、13…ジャケット管、14…プリフォーム、15…貫通穴部、25…圧力調整部、26…圧力センサ、30…プリフォーム、30a…内壁、31…凹状穴部、37…真空ポンプ。

Claims (14)

  1. 軸方向に延びる空孔を有する光ファイバを製造する光ファイバの製造方法であって、
    前記空孔となる凹状穴部を有するプリフォームを形成する第1の工程と、
    前記プリフォームを形成した後、乾燥性を有する気体を前記凹状穴部内に満たして、前記プリフォームを加熱する第2の工程と、
    前記プリフォームを光ファイバに線引きする第3の工程とを含み、
    前記第2の工程において、前記プリフォームにおける開口側端に、蓋体が取り付けられたガラス管を接続し、前記ガラス管に分岐配管を接続し、前記分岐配管に供給配管及び排気配管を分岐接続した状態で、前記供給配管を介して前記凹状穴部内に前記乾燥性を有する気体を供給すると共に、前記排気配管を介して前記凹状穴部内から前記乾燥性を有する気体を排出することを特徴とする光ファイバの製造方法。
  2. 前記第2の工程において、前記乾燥性を有する気体を前記凹状穴部内に注入する工程と、前記凹状穴部内から前記乾燥性を有する気体を排出する工程とを繰り返すことを特徴とする請求項1記載の光ファイバの製造方法。
  3. 前記乾燥性を有する気体として、露点が−50℃以下の気体を使用することを特徴とする請求項1または2記載の光ファイバの製造方法。
  4. 前記乾燥性を有する気体として、不活性気体を85%以上のモル濃度で含む気体を使用することを特徴とする請求項3記載の光ファイバの製造方法。
  5. 前記不活性気体として、N 2 、He、Arの1つ又は2つ以上の混合である気体を使用することを特徴とする請求項4記載の光ファイバの製造方法。
  6. 前記乾燥性を有する気体として、脱水作用を有する活性気体を含む気体を使用することを特徴とする請求項記載の光ファイバの製造方法。
  7. 前記脱水作用を有する活性気体として、HF、F 2 、Cl 2 、COの少なくとも1つを含む気体を使用することを特徴とする請求項6記載の光ファイバの製造方法。
  8. 軸方向に延びる空孔を有する光ファイバを製造する光ファイバの製造方法であって、
    前記空孔となる凹状穴部を有するプリフォームを形成する第1の工程と、
    前記プリフォームを形成した後、前記凹状穴部内を減圧排気すると共に、前記プリフォームを加熱する第2の工程と、
    前記プリフォームを光ファイバに線引きする第3の工程とを含み、
    前記第2の工程において、前記プリフォームにおける開口側端に、蓋体が取り付けられたガラス管を接続し、前記ガラス管に排気配管を接続した状態で、前記排気配管を介して前記凹状穴部内を減圧排気することを特徴とする光ファイバの製造方法。
  9. 前記第2の工程において、前記プリフォームを800℃以上の温度で加熱することを特徴とする請求項1〜8のいずれか一項記載の光ファイバの製造方法。
  10. 前記第2の工程の前に、前記穴部における前記プリフォームの内壁表面を平滑化することを特徴とする請求項1〜9のいずれか一項記載の光ファイバの製造方法。
  11. 前記第2の工程の前に、前記穴部における前記プリフォームの内壁表面をドライエッチングすることを特徴とする請求項1〜10のいずれか一項記載の光ファイバの製造方法。
  12. 前記第3の工程において、前記穴部内の圧力を調整することを特徴とする請求項1〜11のいずれか一項記載の光ファイバの製造方法。
  13. 前記第1の工程において、穿孔具を用いて円柱状の前記プリフォームを切削することにより、前記プリフォームに前記穴部を形成することを特徴とする請求項1〜12のいずれか一項記載の光ファイバの製造方法。
  14. 前記第1の工程において、複数の筒状部材を束ねてバンドルを形成し、このバンドルをジャケット管内に挿入することにより、前記穴部を有するプリフォームを形成することを特徴とする請求項1〜12のいずれか一項記載の光ファイバの製造方法
JP2001045409A 2001-02-21 2001-02-21 光ファイバの製造方法 Expired - Fee Related JP4759816B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2001045409A JP4759816B2 (ja) 2001-02-21 2001-02-21 光ファイバの製造方法
US10/076,603 US20020118938A1 (en) 2001-02-21 2002-02-19 Optical fiber and optical fiber transmission line, and manufacturing method therefor
DE60217982T DE60217982T2 (de) 2001-02-21 2002-02-21 Verfahren zur Herstellung einer optischen Faser
EP02003258A EP1234806B1 (en) 2001-02-21 2002-02-21 Manufacturing method thereof of an optical fibre
DK02003258T DK1234806T3 (da) 2001-02-21 2002-02-21 Fremgangsmåde til fremstilling af en optisk fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001045409A JP4759816B2 (ja) 2001-02-21 2001-02-21 光ファイバの製造方法

Publications (2)

Publication Number Publication Date
JP2002249335A JP2002249335A (ja) 2002-09-06
JP4759816B2 true JP4759816B2 (ja) 2011-08-31

Family

ID=18907207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001045409A Expired - Fee Related JP4759816B2 (ja) 2001-02-21 2001-02-21 光ファイバの製造方法

Country Status (5)

Country Link
US (1) US20020118938A1 (ja)
EP (1) EP1234806B1 (ja)
JP (1) JP4759816B2 (ja)
DE (1) DE60217982T2 (ja)
DK (1) DK1234806T3 (ja)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2822242B1 (fr) * 2001-03-16 2003-08-15 Cit Alcatel Fibre optique photonique a forte surface effective
JP5057639B2 (ja) * 2001-07-06 2012-10-24 コーニング インコーポレイテッド フォトニックバンドギャップファイバの製造方法
US6661957B1 (en) * 2001-07-17 2003-12-09 Marc David Levenson Diffusion barriers for holey fibers
US6496634B1 (en) * 2001-07-17 2002-12-17 Marc David Levenson Holey fibers filled with raman active fluid
GB0201492D0 (en) * 2002-01-23 2002-03-13 Blazephotonics Ltd A method and apparatus relating to optical fibres
JP4466813B2 (ja) * 2002-03-14 2010-05-26 日本電気硝子株式会社 ガラスプリフォームおよびその製造方法
JP3978071B2 (ja) * 2002-04-17 2007-09-19 正隆 中沢 ホーリーファイバ製造方法
JP3962277B2 (ja) * 2002-04-17 2007-08-22 正隆 中沢 フォトニッククリスタル光ファイバ母材の製造方法
FR2843746B1 (fr) * 2002-08-22 2004-11-19 Cit Alcatel Procede de fabrication d'une fibre optique a microstructure
JP3870885B2 (ja) * 2002-09-24 2007-01-24 日立電線株式会社 光ファイバコード及びその曲げ配線方法
JP2004191947A (ja) * 2002-11-25 2004-07-08 Shin Etsu Chem Co Ltd 空孔ファイバの線引き方法
JP2004191400A (ja) * 2002-12-06 2004-07-08 Hitachi Cable Ltd 単一モード紫外線伝送ファイバ及びそれを用いた紫外線照射装置
JP2004191399A (ja) * 2002-12-06 2004-07-08 Hitachi Cable Ltd 低損失紫外線伝送ファイバ及びそれを用いた紫外線照射装置
JP4220261B2 (ja) 2003-02-12 2009-02-04 三菱電線工業株式会社 フォトニッククリスタルファイバの製造方法
US7228040B2 (en) * 2003-04-17 2007-06-05 Nippon Telegraph And Telephone Corporation Hole-assisted single mode optical fiber
DE60336510D1 (de) * 2003-06-30 2011-05-05 Prysmian Spa Verfahren und vorrichtung zum bohren von vorformen für loch-lichtleitfasern
JP2005055626A (ja) * 2003-08-04 2005-03-03 Nippon Telegr & Teleph Corp <Ntt> 光ファイバ及びその製造方法
JP4046054B2 (ja) * 2003-09-05 2008-02-13 日立電線株式会社 フォトニッククリスタルファイバ及びその製造方法
JP2005247620A (ja) * 2004-03-03 2005-09-15 Masataka Nakazawa フォトニッククリスタルファイバの製造方法
JP4172440B2 (ja) * 2004-09-15 2008-10-29 住友電気工業株式会社 光ファイバの製造方法
JP2006177780A (ja) * 2004-12-22 2006-07-06 Hitachi Cable Ltd 光ファイバ温度センサ、温度センサシート及び温度測定方法
US7715674B2 (en) * 2005-03-18 2010-05-11 The Furukawa Electric Co., Ltd. Optical fiber and waveguide
US20070201793A1 (en) * 2006-02-17 2007-08-30 Charles Askins Multi-core optical fiber and method of making and using same
US7793521B2 (en) * 2006-03-01 2010-09-14 Corning Incorporated Method enabling dual pressure control within fiber preform during fiber fabrication
DE102006019333A1 (de) * 2006-04-24 2007-10-25 Heraeus Tenevo Gmbh Verfahren und Vorform zur Herstellung einer mikrostrukturierten optischen Faser sowie nach dem Verfahren erhaltene Faser
WO2008062834A1 (fr) * 2006-11-21 2008-05-29 The Furukawa Electric Co., Ltd. Fibre optique et guide de lumière
US7346250B1 (en) * 2007-03-30 2008-03-18 Corning Incorporated Preferential etching method of forming microstructure for an optical waveguide
US8945669B2 (en) * 2009-03-23 2015-02-03 Sekisui Chemical Co., Ltd. Extrusion material supply device and optical transmission body manufacturing method using the same
JP5457089B2 (ja) * 2009-06-29 2014-04-02 株式会社フジクラ フォトニックバンドギャップファイバ用母材の製造方法、及び、フォトニックバンドギャップファイバの製造方法
JP5603286B2 (ja) * 2011-04-25 2014-10-08 湖北工業株式会社 ファイバ
JP5551657B2 (ja) 2011-07-26 2014-07-16 株式会社フジクラ 検査装置、検査方法、および光ファイバの製造方法
JP5705758B2 (ja) * 2012-01-25 2015-04-22 コーニング インコーポレイテッド フォトニックバンドギャップファイバの製造方法
EP3047319B8 (en) * 2013-09-20 2021-06-30 University Of Southampton Methods of manufacturing hollow-core photonic bandgap fibers
FR3036110A1 (fr) * 2015-05-15 2016-11-18 Centre Nat De La Rech Scient - Cnrs Fibre optique ruban en verre photosensible
US11072554B2 (en) 2015-11-10 2021-07-27 Nkt Photonics A/S Element for a preform, a fiber production method and an optical fiber drawn from the preform
JP7107840B2 (ja) 2015-12-23 2022-07-27 エヌケイティー フォトニクス アクティーゼルスカブ 中空コア光ファイバおよびレーザシステム
US10551574B2 (en) 2015-12-23 2020-02-04 Nkt Photonics A/S Photonic crystal fiber assembly
CN109581580A (zh) * 2018-12-12 2019-04-05 桂林电子科技大学 一种基于空芯光子晶体光纤的光纤光栅器件
US20220315474A1 (en) * 2021-03-31 2022-10-06 Sterlite Technologies Limited Preform assembly for drawing multicore or holey optical fibre and method of manufacturing thereof

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3622291A (en) * 1969-06-03 1971-11-23 Weston Instruments Inc Tube uniting with end fractures
US3711262A (en) * 1970-05-11 1973-01-16 Corning Glass Works Method of producing optical waveguide fibers
US3823995A (en) * 1972-03-30 1974-07-16 Corning Glass Works Method of forming light focusing fiber waveguide
US4157906A (en) * 1978-02-21 1979-06-12 Corning Glass Works Method of drawing glass optical waveguides
US4251251A (en) * 1979-05-31 1981-02-17 Corning Glass Works Method of making optical devices
US4693551A (en) * 1983-10-05 1987-09-15 U.S. Holding Company, Inc. Dielectric strength elements for loose tube optical fiber cable
US4561871A (en) * 1983-12-27 1985-12-31 Corning Glass Works Method of making polarization preserving optical fiber
JPS61227938A (ja) * 1985-04-03 1986-10-11 Sumitomo Electric Ind Ltd 光フアイバ用母材の製造方法
JP2584619B2 (ja) * 1986-07-03 1997-02-26 株式会社フジクラ 非軸対称光フアイバ母材の製造方法
JPH064490B2 (ja) * 1987-12-09 1994-01-19 住友電気工業株式会社 定偏波光フアイバの製造方法
FR2655326B1 (fr) * 1989-12-01 1992-02-21 Thomson Csf Procede de realisation d'une fibre optique creuse et dispositif de realisation d'une fibre optique creuse.
AU639125B2 (en) * 1990-08-09 1993-07-15 Sumitomo Electric Industries, Ltd. Method for producing preform for polarization retaining optical fiber
US5152818A (en) * 1990-11-09 1992-10-06 Corning Incorporated Method of making polarization retaining fiber
FR2683053B1 (fr) * 1991-10-29 1994-10-07 Thomson Csf Fibre optique et procede de fabrication.
ES2120467T3 (es) * 1992-11-19 1998-11-01 Shinetsu Quartz Prod Procedimiento para fabricar un tubo de vidrio de cuarzo de gran tamaño, una preforma y una fibra optica.
US5802236A (en) * 1997-02-14 1998-09-01 Lucent Technologies Inc. Article comprising a micro-structured optical fiber, and method of making such fiber
DE69707201T2 (de) * 1996-05-31 2002-06-06 Lucent Technologies Inc Artikel mit einer mikrostrukturierten optischen Faser und Verfahren zur Herstellung einer solchen Faser
JP4495344B2 (ja) * 1998-09-15 2010-07-07 コーニング インコーポレイテッド 軸方向に変化する構造を有する導波路
US6954574B1 (en) * 1999-02-19 2005-10-11 Crystal Fibre A/S Photonic crystal fibres
US6097870A (en) * 1999-05-17 2000-08-01 Lucent Technologies Inc. Article utilizing optical waveguides with anomalous dispersion at vis-nir wavelenghts
JP2001020165A (ja) * 1999-07-08 2001-01-23 Oji Paper Co Ltd 石膏ボード補強材用不織布及び石膏ボード
JP3815170B2 (ja) * 2000-02-14 2006-08-30 住友電気工業株式会社 微細構造光ファイバ用母材及び微細構造光ファイバの製造方法
US6526209B1 (en) * 2000-04-17 2003-02-25 Sumitomo Electric Industries, Ltd. Optical fiber having improved optics and structure
JP2002145634A (ja) * 2000-08-30 2002-05-22 Sumitomo Electric Ind Ltd 光ファイバの製造方法、及び、光ファイバ
JP3556908B2 (ja) * 2001-01-15 2004-08-25 三菱電線工業株式会社 フォトニッククリスタルファイバの製造方法
JP3576947B2 (ja) * 2000-09-21 2004-10-13 三菱電線工業株式会社 フォトニッククリスタルファイバの製造方法
US7314751B2 (en) * 2000-10-30 2008-01-01 The Charles Stark Draper Laboratory, Inc. Fluorescence detection system including a photonic band gap structure
JP3513101B2 (ja) * 2000-10-30 2004-03-31 三菱電線工業株式会社 フォトニッククリスタルファイバの製造方法

Also Published As

Publication number Publication date
DE60217982T2 (de) 2007-10-25
EP1234806A2 (en) 2002-08-28
EP1234806B1 (en) 2007-02-07
JP2002249335A (ja) 2002-09-06
US20020118938A1 (en) 2002-08-29
DE60217982D1 (de) 2007-03-22
DK1234806T3 (da) 2007-05-21
EP1234806A3 (en) 2004-06-30

Similar Documents

Publication Publication Date Title
JP4759816B2 (ja) 光ファイバの製造方法
DK1975655T3 (en) Optical fibers, ultra high numerical aperture
US6944382B2 (en) Low water peak optical waveguide fiber
US6847771B2 (en) Microstructured optical fibers and preforms and methods for fabricating microstructured optical fibers
EP1426795B1 (en) Microstructured optical fiber and optical module
JP3786010B2 (ja) 光ファイバ
JP2007536580A (ja) 長波長用純シリカ製コアシングルモードファイバ及び該ファイバを形成する方法
JP5612654B2 (ja) ファイバ・レーザおよびファイバ増幅器用の希土類がドープされ有効区域が大きい光ファイバ
JP4158391B2 (ja) 光ファイバおよびその製造方法
US6563989B2 (en) Optical fiber coupler and optical fiber for optical fiber coupler
JP3798984B2 (ja) フォトニッククリスタル光ファイバの製造方法
JP4539006B2 (ja) 光ファイバおよびその製造方法
JP4015959B2 (ja) 高耐応力光ファイバ
JP3802875B2 (ja) 高耐応力光ファイバ
US6952515B2 (en) Non-linear positive dispersion optical fiber
JP2005247620A (ja) フォトニッククリスタルファイバの製造方法
JP2004226539A (ja) 光ファイバ及びその製造方法
JP2005250025A (ja) フォトニッククリスタル光ファイバの製造方法
JP3978071B2 (ja) ホーリーファイバ製造方法
JP2003313044A (ja) フォトニッククリスタルファイバの製造方法
JP2005250024A (ja) フォトニッククリスタル光ファイバの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110411

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees