JP4724972B2 - リチウム二次電池の検査方法 - Google Patents

リチウム二次電池の検査方法 Download PDF

Info

Publication number
JP4724972B2
JP4724972B2 JP2001222470A JP2001222470A JP4724972B2 JP 4724972 B2 JP4724972 B2 JP 4724972B2 JP 2001222470 A JP2001222470 A JP 2001222470A JP 2001222470 A JP2001222470 A JP 2001222470A JP 4724972 B2 JP4724972 B2 JP 4724972B2
Authority
JP
Japan
Prior art keywords
voltage
battery
secondary battery
lithium secondary
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001222470A
Other languages
English (en)
Other versions
JP2003036887A (ja
Inventor
晃二 東本
智博 井口
陽心 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2001222470A priority Critical patent/JP4724972B2/ja
Publication of JP2003036887A publication Critical patent/JP2003036887A/ja
Application granted granted Critical
Publication of JP4724972B2 publication Critical patent/JP4724972B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リチウム二次電池の検査方法に関し、特に、正極にリチウムマンガン複酸化物を用いたリチウム二次電池を充電して放置後の電圧変化を検査するリチウム二次電池の検査方法に関する。
【0002】
【従来の技術】
近年、マンガン酸リチウム等のリチウムと資源が豊富で安価なマンガンを含む複酸化物を正極とするリチウム二次電池の研究、開発が盛んに行われている。
【0003】
リチウム二次電池は、厚さ数十μmのセパレータを使用して正極と負極が直接接触することを防止しているが、大きさがμmオーダの導電性異物(金属粉)がリチウムマンガン複酸化物中に混入すると、混入した金属粉が電解液に溶解し析出してセパレータを貫通してしまい短絡を起こす恐れがある。また、混入した金属粉が電解液に溶解し電池の使用中に析出して、極端な短絡ではないが、僅かな電流がリークする微小短絡を起こす可能性がある。このような電池を組み電池の中に混用してしまうと、一つの電池のために組み電池全体が使えなくなり、電池製造の歩留まりが著しく低下する。また、このような電池を見逃して使用してしまうと、電源としての実際の使用中に電圧低下を起こし電池の寿命が縮まるため、信頼性が低下する。
【0004】
これを避けるために、電池製造においては、製造した電池を充電状態で放置して電圧低下の度合いを測定し、通常より電圧低下の大きい電池を選別して省く作業を実施している。
【0005】
【発明が解決しようとする課題】
しかしながら、上述のような金属粉の溶解・析出は徐々に進行するので、微小短絡により電圧低下を起こす電池を正確に選別するためには、長期間放置して僅かな電圧変化を測定する必要があり、検査の時間がかかり過ぎて製造期間が長くなるという問題があった。また、このような製造の長期化がコスト高の一因ともなるので、リチウム二次電池の信頼性を確保するためにも、確実な検査方法が必要である。
【0006】
本発明は、上記問題点に鑑みてなされたものであって、リチウム二次電池の信頼性を確保すると共に、検査所要時間を短縮することが可能なリチウム二次電池の検査方法を提供することを課題とする。
【0007】
【課題を解決するための手段】
上記課題を解決するため、本発明は、正極にリチウムマンガン複酸化物を用いたリチウム二次電池を充電して放置後の電圧変化を検査するリチウム二次電池の検査方法であって、4.0Vを超え4.3V以下の範囲である第一の電圧と、3.6V以上4.0V以下の範囲である第二の電圧とがあり、前記リチウム二次電池に、前記第一の電圧を印加し、前記第二の電圧よりも低い電圧まで放電させ、前記第二の電圧を印加する、ステップを含むことを特徴とする。
【0008】
本発明では、リチウム二次電池に第一の電圧を印加して金属粉の溶解を促進することで、電解液に溶解した金属粉の析出を促進し微小短絡を生じやすくする。次に、第二の電圧よりも低い電圧まで放電させた後、リチウム二次電池に第二の電圧を印加して充電する。放置前の充電電圧により電圧変化の大きさが異なるので、リチウム二次電池の放置後に電圧変化が大きくなる第二の電圧を印加する。そして、放置後の電圧変化を検査する。従って、本発明によれば、第一の電圧の印加により金属粉の溶解、析出が促進されるので、検査所要時間を短縮することができると共に、第二の電圧の印加により電圧変化が大きくなるので、微小短絡の影響が分かりやすくなるため、信頼性を確保することができる。
【0009】
この場合において、第二の電圧を印加した後、放置し微小短絡による電圧変化を測定することが好ましい。また、放電ステップでは、リチウム二次電池の自然な電圧低下により、第二の電圧よりも低い電圧まで放電させるようにしてもよい。
【0010】
【発明の実施の形態】
以下、図面を参照して、本発明の検査方法を密閉円筒形リチウムイオン二次電池(18650タイプ)に適用した実施の形態について説明する。
【0011】
<電池の作製>
(正極)
リチウムマンガン複酸化物としてのマンガン酸リチウム(LiMn)粉末86wt%と、導電剤として炭素粉末9wt%と、結着剤としてポリフッ化ビニリデン(PVDF)をN−メチル−2−ピロリドン(以下、NMPと略す。)で溶解した液を固形分濃度で5wt%となるように混練してスラリを得た。得られたスラリを、コンマロールを用いてアルミ箔(正極集電体)に塗布し、乾燥して正極活物質合剤層とした。この正極活物質合剤層を、80°C〜120°Cに加熱したロールを有するロールプレス機にて、プレス圧0.2〜0.7kg/cmで合剤かさ密度2.8g/mとなるまで圧縮して、50mm×450mmの帯状に裁断して正極とした。
【0012】
(負極)
リチウムイオンを挿入、脱挿入できる炭素粉末を負極活物質に用い、この炭素粉末90wt%と、PVDFとの混合物にNMPを加え、混練してスラリを得た。得られたスラリを銅箔(負極集電体)に塗布、乾燥して負極活物質合剤層とした。この負極活物質合剤層を、80°C〜120°Cに加熱したロールを有するロールプレス機にて、プレス圧0.2〜0.7kg/cmで合剤かさ密度1.04g/mとなるまで圧縮して、50mm×480mmの帯状に裁断して負極とした。
【0013】
(電池組立)
図1に示すように、上述のようにして得た帯状の正極と負極を、これら両極板が直接接触しないように帯状のセパレータを介して重ね、捲回して捲回電極体1を作製した。このとき、正極リード片と負極リード片とが、それぞれ捲回電極体1の互いに反対側の両端面に位置するようにした。
【0014】
正極リード片を変形させ、その全てを、捲回電極体1の軸芯のほぼ延長線上にある正極集電リング4の周囲から一体に張り出している鍔部周面付近に集合、接触させた後、正極リード片と鍔部周面とを超音波溶接して正極リード片を鍔部周面に接続した。一方、負極集電リング5と負極リード片との接続操作も、正極集電リング4と正極リード片との接続操作と同様に実施した。
【0015】
その後、正極集電リング4の鍔部周面全周に絶縁被覆を施し、作製した捲回電極体1を円筒状の電池缶2に挿入した。
【0016】
負極集電リング5には予め電気的導通のための負極リード板が溶接されており、電池缶2内に捲回電極体1を挿入後、電池缶2の底部と負極リード板とを溶接した。一方、正極集電リング4には、予め複数枚のアルミニウム製のリボンを重ね合わせて構成した正極リードを溶接しておき、正極リードの他端を、電池缶2を封口するための電池蓋3の下面に溶接した。電池蓋3は、蓋ケースと、気密を保つ弁押さえと、開裂弁とで構成されており、これらが積層されて蓋ケースの周縁をカシメることによって組立てられている。
【0017】
エチレンカーボネートとジメチルカーボネートを体積比で1:1に混合した溶液に6フッ化リン酸リチウム(LiPF)を1mol/lの濃度で溶解した電解液5mlを電池缶2に注入後、正極リードを折りたたむようにして電池蓋3で電池缶2に蓋をし、封口して18650タイプの密閉円筒形リチウムイオン二次電池10を完成した。
【0018】
<検査>
(第一の電圧)
上述した電解液にFe粉を添加し、3.8V、3.9V、4.0V、4.1V、4.2V、4.3V、4.4Vの各電圧を印加したときのFe粉の溶解速度を測定し、電圧3.8Vのときの溶解速度を1.0として各電圧のときの溶解速度比を求めた。溶解速度は、電解液中に溶解したFe量を時系測定して求めた。また、上述のように作製した密閉円筒形リチウムイオン二次電池10の初期容量を測定しておき、3.8V〜4.4Vの各電圧を印加して30日間放置した後の容量を測定して初期容量に対する割合を容量維持率として求めた。下表1に結果を示す。
【0019】
【表1】
Figure 0004724972
【0020】
表1に示すように、電池電圧で4.0Vを超えると溶解速度比は大きくなるが、4.3Vを超えると容量維持率が低下する。従って、第一の電圧は、容量維持率が低下せずに溶解速度比が大きい、4.0Vを超え4.3V以下の範囲が適正である。
【0021】
(第二の電圧)
上述のように作製した密閉円筒形リチウムイオン二次電池10について、3.5V、3.6V、3.7V、3.8V、3.9V、4.0V、4.1Vの各電池電圧における1Ah放電当りの電圧変化を測定し、また上述と同様にして電池の容量維持率を求めた。結果を下表2に示す。
【0022】
【表2】
Figure 0004724972
【0023】
表2に示すように、電圧変化は4.0V以下の電池電圧で大きくなることから、微小短絡を起こしている場合、つまり微小な電流で放電されたときには、電池電圧を4.0V以下とすれば、微小短絡の影響がわかりやすくなる。しかし、3.5V以下では容量維持率の低下が大きくなる。従って、第二の電圧は、容量維持率が低下せずに電圧変化が大きい、3.6V以上4.0V以下の範囲が適正である。
【0024】
(電池検査)
上述のように作製した密閉円筒形リチウムイオン二次電池10の100本に、上記した第一の電圧を所定期間印加した後、上記した第二の電圧を印加して放置し、電圧変化を測定する。電圧変化の大きさにより電池を分別する。
【0025】
【実施例】
次に、以上の実施形態に従って検査を行った実施例について説明する。なお、比較のために行った比較例についても併記する。
【0026】
(実施例)
第一の電圧として、4.2Vの定電圧を2週間印加し、第二の電圧として、3.9Vの定電圧で10時間充電した。
【0027】
(比較例1及び比較例2)
比較例1では、4.2Vの定電圧で5時間充電した。比較例2では、3.9Vの定電圧で5時間充電した。
【0028】
<評価>
実施例及び比較例の電池について、以下の測定を行い、検査方法の評価を行った。
【0029】
(電圧低下不良発生率)
電池を放置してから1週間経過ごとに電池100本の電圧を測定し、下記式(1)により電圧低下率(V/day)を算出し、電圧低下率の平均値と標準偏差(σ)を求めた。電圧低下率が平均値より標準偏差の3倍以上(つまり、3σ以上)大きい電池の本数の全100本に対する割合を電圧低下不良発生率とした。放置期間に対する電圧低下不良発生率の変化を図2に示す。
【0030】
【数1】
Figure 0004724972
【0031】
図2から判るように、実施例の検査方法では、短い放置期間で電圧低下不良発生率が上昇し、6週間後ではほぼ最大値に達しており、放置期間早期に電圧低下不良の電池を判別することができた。これに対して、比較例の検査方法では、7週間経過後でも電圧低下不良発生率は上昇する傾向を示しており、短期間で判別することはできなかった。
【0032】
また、4.2Vの充電のみの比較例1では、電圧低下率が小さいため電圧低下不良の電池の見分けがつけにくく、放置日数がかかり、また、3.9V充電のみの比較例2では、金属粉の溶解が遅いので、微小短絡による電圧低下の発生に時間がかかると考えられる。
【0033】
上述の評価結果から、本実施形態の検査方法によれば、第一の電圧を、活物質が崩壊したりストレスがあまりかからない範囲で高く設定し、第二の電圧を、電圧変化の大きな範囲で設定したため、金属粉の溶解を促進して、微小短絡による電圧低下が大きくなったので、電圧低下不良の電池を短期間で確実に判別することができた。従って、電池の信頼性を確保することができ、検査所要時間を短縮することができた。また、第一の電圧を4.2Vとし、第二の電圧を3.9Vとして、第一の電圧を第二の電圧より高くしたため、金属粉の溶解をより促進し、微小短絡による電圧低下が更に大きくなったので、検査所要時間をより短縮することができると共に、確実に検査を行うことができた。
【0034】
なお、本実施形態では、18650タイプの密閉円筒形リチウムイオン二次電池の検査について例示したが、本発明は、電池の大きさ、電池容量には限定されず、また、本発明の適用可能な電池の形状としては、上述した有底筒状容器(缶)が電池上蓋で封口されている構造の電池以外であっても構わない。このような構造の一例として正負外部端子が電池蓋を貫通し電池容器内で軸芯を介して正負外部端子が押し合っている状態の電池を挙げることができる。更に、本発明は、円筒形電池に限らず、例えば、正負極を三角形、四角形、角形又は多角形状に捲回して捲回電極体としたリチウム二次電池の検査にも適用が可能である。更に本発明は、正極及び負極を捲回式の構造とせず、積層式の構造としたリチウム二次電池にも適用可能である。
【0035】
また、本実施形態では、第一の電圧の印加及び第二の電圧の印加を定電圧で行う検査を例示したが、印加するときの電圧が、第一の電圧及び第二の電圧についてそれぞれ上述した範囲内で変動するようにしてもよい。
【0036】
更に、本実施形態では、第一の電圧を印加した後に放電して、第二の電圧を印加して充電するようにしてもよく、第一の電圧を印加した後に放電せずに、例えば、4.2Vから3.9Vとなるように、第一の電圧から第二の電圧に低下するようにしてもよい。
【0037】
また、本実施形態では、リチウムマンガン複酸化物としてマンガン酸リチウムを用いたが、本発明の正極に用いられるリチウムマンガン複酸化物は、結晶中のマンガンサイトまたはリチウムサイトをLi、V、Cr、Fe、Co、Ni、Mo、W、Zn、B、Mgから選ばれる少なくとも一種類以上の金属で置換したものでもよい。
【0038】
更に、本実施形態では、負極活物質に炭素粉末を用いたが、本発明は負極活物質には制限されず、ピッチコークス、石油コークス、黒鉛、炭素繊維、活性炭、等の炭素材料又はこれらの混合物でもよい。
【0039】
また更に、本実施形態では、活物質の結着剤としてPVDFを用いたが、結着剤は特に制限されず、例えば、イソブチルアクリレート、オクチルアクリレート、ノニルアクリレート、ブチルメタクリレートや2−エチルヘキシルメタクリレート等のアクリル酸又はメタクリル酸のC4〜C12アルキルエステルと、メタクリル酸、イタコン酸、マレイン酸、フマル酸、アクリルアミドやメタクリルアミド等のポリアクリル酸等のカルボキシル基又はアミド基を有する不飽和単量体と、の共重合体、ポリアミド、ポリアミドイミド、ポリアミドビスマレイミド、ポリブチレンテレフタレートやポリエチレンテレフタレート等のポリエステルなどが挙げられ、これら単独のほか併用してもかまわない。
【0040】
更にまた、本実施形態では、正極、負極の作製において、プレス工程での加熱処理にロールを加熱する方法を用いたが、加熱処理方法は特に制限されず、活物質の結着剤を溶融固化することができる方法であればよい。
【0041】
また、本発明は、本実施形態で用いた電解液には限定されず、電解液の有機溶媒としては、例えば、プロピレンカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、ジエチルカーボネート、γ−ブチルラクトン、テトラヒドロフラン、ジエチルエーテル、スルホラン、アセトニトリル等の単独もしくはこれらの二種類以上を混合した混合溶媒が使用でき、電解質としても、LiClO、LiPF、LiBF、LiCl、LiBr、CHSOLi、LiAsF等が使用できる。
【0042】
【発明の効果】
以上説明したように、本発明によれば、第一の電圧の印加により金属粉の溶解、析出が促進されるので、検査所要時間を短縮することができると共に、第二の電圧の印加により電圧変化が大きくなるので、微小短絡の影響が分かりやすくなるため、信頼性を確保することができる、という効果を得ることができる。
【図面の簡単な説明】
【図1】本発明が適用可能な実施形態の密閉円筒形リチウムイオン二次電池の断面図である。
【図2】本発明が適用可能な実施形態の密閉円筒形リチウムイオン二次電池の放置期間に対する電圧低下不良発生率を示したグラフである。
【符号の説明】
1 捲回電極体
2 電池缶
3 電池蓋
4 正極集電リング
5 負極集電リング
10 密閉円筒形リチウムイオン二次電池(リチウム二次電池)

Claims (3)

  1. 正極にリチウムマンガン複酸化物を用いたリチウム二次電池を充電して放置後の電圧変化を検査するリチウム二次電池の検査方法であって
    4.0Vを超え4.3V以下の範囲である第一の電圧と、3.6V以上4.0V以下の範囲である第二の電圧とがあり、
    前記リチウム二次電池に、前記第一の電圧を印加し、
    前記第二の電圧よりも低い電圧まで放電させ、
    前記第二の電圧を印加する、
    ステップを含むことを特徴とするリチウム二次電池の検査方法。
  2. 前記第二の電圧を印加した後、放置し微小短絡による電圧変化を測定することを特徴とする請求項1に記載のリチウム二次電池の検査方法。
  3. 前記放電ステップでは、前記リチウム二次電池の自然な電圧低下により、前記第二の電圧よりも低い電圧まで放電させることを特徴とする請求項1または請求項2に記載のリチウム二次電池の検査方法。
JP2001222470A 2001-07-24 2001-07-24 リチウム二次電池の検査方法 Expired - Fee Related JP4724972B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001222470A JP4724972B2 (ja) 2001-07-24 2001-07-24 リチウム二次電池の検査方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001222470A JP4724972B2 (ja) 2001-07-24 2001-07-24 リチウム二次電池の検査方法

Publications (2)

Publication Number Publication Date
JP2003036887A JP2003036887A (ja) 2003-02-07
JP4724972B2 true JP4724972B2 (ja) 2011-07-13

Family

ID=19055944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001222470A Expired - Fee Related JP4724972B2 (ja) 2001-07-24 2001-07-24 リチウム二次電池の検査方法

Country Status (1)

Country Link
JP (1) JP4724972B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008192495A (ja) * 2007-02-06 2008-08-21 Matsushita Electric Ind Co Ltd 電池の内部短絡評価方法および内部短絡評価装置並びに電池及び電池パックおよびそれらの製造法
WO2012117448A1 (ja) * 2011-03-02 2012-09-07 トヨタ自動車株式会社 二次電池の検査方法
WO2013061754A1 (ja) * 2011-10-24 2013-05-02 日産自動車株式会社 二次電池の検査方法
EP2835658B1 (en) * 2012-06-13 2016-10-19 LG Chem, Ltd. Apparatus and method for estimating voltage of secondary cell including mixed cathode material
JP2014002009A (ja) * 2012-06-18 2014-01-09 Toyota Motor Corp 二次電池の検査方法
JP6244623B2 (ja) * 2012-12-18 2017-12-13 株式会社Gsユアサ 非水電解質二次電池の製造方法及び非水電解質二次電池
CN103323785A (zh) * 2013-06-24 2013-09-25 深圳市迪比科电子科技有限公司 一种锂离子电池的老化方法
CN110133513B (zh) * 2018-02-09 2022-06-28 北京好风光储能技术有限公司 浆料电池电极材料电化学性能测试装置及检测方法
CN111175662B (zh) * 2018-11-13 2021-07-09 清华大学 锂离子电池评价方法与锂离子电池检测系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2841378B2 (ja) * 1988-08-25 1998-12-24 ソニー株式会社 非水電解液二次電池の充電方法
JPH06349524A (ja) * 1993-06-12 1994-12-22 Haibaru:Kk 二次電池
JPH09129264A (ja) * 1995-10-30 1997-05-16 Fuji Elelctrochem Co Ltd 非水電解液二次電池の製造方法
JPH1010212A (ja) * 1996-06-24 1998-01-16 Sony Corp 電池評価方法及び電池評価装置
JPH10289733A (ja) * 1997-02-14 1998-10-27 Fuji Film Selltec Kk 非水二次電池及びその製造方法
JP2002280077A (ja) * 2001-03-15 2002-09-27 Mitsubishi Cable Ind Ltd シート状リチウム二次電池の製造方法、およびそれで得られたシート状リチウム二次電池

Also Published As

Publication number Publication date
JP2003036887A (ja) 2003-02-07

Similar Documents

Publication Publication Date Title
JP5260838B2 (ja) 非水系二次電池
CN106797008B (zh) 非水电解质二次电池及其制造方法
US20100119940A1 (en) Secondary battery
CN100431203C (zh) 非水电解液二次电池
JP5166511B2 (ja) リチウムイオン二次電池およびその製造方法
CN101485034B (zh) 锂二次电池
JP2001325988A (ja) 非水電解質二次電池の充電方法
JP2009145137A (ja) 二次電池の検査方法
JP5465755B2 (ja) 非水系二次電池
JP4179528B2 (ja) 二次電池の検査方法
JP2011065929A (ja) 非水電解質二次電池用負極およびその製造方法
JP4724972B2 (ja) リチウム二次電池の検査方法
JP2008097857A (ja) 非水電解液二次電池の製造方法
JP2017059386A (ja) 電池パックおよび充電制御方法
WO2010146832A1 (ja) 非水電解質二次電池用負極の製造方法、負極、およびそれを用いた非水電解質二次電池
JPH11204148A (ja) 非水電解液二次電池の放電容量回復方法とそのための回路
JP2012089402A (ja) リチウムイオン二次電池
JP2007018963A (ja) 非水電解液二次電池の製造方法とその製造方法で作製した非水電解液二次電池
JP2014179248A (ja) 非水電解質二次電池
JP6057644B2 (ja) リチウムイオン電池
JP4784194B2 (ja) 非水電解液二次電池の製造法
JP2005158643A (ja) リチウム二次電池の検査方法
JP2005243537A (ja) 非水電解液二次電池の製造法
JP3306906B2 (ja) 非水電解質二次電池の製造方法
JP2730641B2 (ja) リチウム二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110328

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees