WO2010146832A1 - 非水電解質二次電池用負極の製造方法、負極、およびそれを用いた非水電解質二次電池 - Google Patents

非水電解質二次電池用負極の製造方法、負極、およびそれを用いた非水電解質二次電池 Download PDF

Info

Publication number
WO2010146832A1
WO2010146832A1 PCT/JP2010/003963 JP2010003963W WO2010146832A1 WO 2010146832 A1 WO2010146832 A1 WO 2010146832A1 JP 2010003963 W JP2010003963 W JP 2010003963W WO 2010146832 A1 WO2010146832 A1 WO 2010146832A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
graphite particles
mixture layer
secondary battery
electrolyte secondary
Prior art date
Application number
PCT/JP2010/003963
Other languages
English (en)
French (fr)
Inventor
菅谷純一
村岡芳幸
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2011519551A priority Critical patent/JPWO2010146832A1/ja
Priority to US13/058,426 priority patent/US20110136015A1/en
Priority to CN2010800025598A priority patent/CN102150304A/zh
Publication of WO2010146832A1 publication Critical patent/WO2010146832A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a method for producing a negative electrode containing graphite particles as a negative electrode active material.
  • a negative electrode of a nonaqueous electrolyte secondary battery represented by a lithium ion secondary battery generally contains graphite particles as a negative electrode active material.
  • This negative electrode is produced as follows.
  • the negative electrode slurry is prepared by mixing graphite particles, a binder, and a conductive agent added as necessary in the presence of a predetermined dispersion medium. After apply
  • Patent Document 1 proposes to use graphite particles having an average circularity of 0.93 or more for the purpose of improving cycle characteristics. According to this proposal, the adhesive strength between the negative electrode mixture layer and the negative electrode core material can be increased.
  • an object of the present invention is to provide a method for producing a negative electrode capable of suppressing the deformation of graphite particles during compression of the negative electrode precursor in order to solve the above-described conventional problems.
  • Another object of the present invention is to provide a high-capacity non-aqueous electrolyte secondary battery excellent in charge / discharge cycle characteristics by using the negative electrode obtained by the above-described production method.
  • the negative electrode for a non-aqueous electrolyte secondary battery comprises: (1) applying a negative electrode slurry containing graphite particles and a binder to a negative electrode core material, and drying to form a negative electrode mixture layer; And (2) compressing the negative electrode precursor while heating at a temperature at which the binder is softened to obtain a negative electrode,
  • the compressed negative electrode mixture layer of the negative electrode contains 1.5 g or more of the graphite particles per 1 cm 3 of the negative electrode mixture layer, and the average circularity of the graphite particles is determined by the negative electrode
  • the temperature for heating the negative electrode precursor and the force for compressing the negative electrode precursor are controlled so as to maintain 70% or more of the average circularity of the graphite particles of the precursor.
  • the present invention also relates to a negative electrode core material, and a negative electrode for a non-aqueous electrolyte secondary battery including a graphite particle and a binder, and including a negative electrode mixture layer compressed on the negative electrode core material.
  • the negative electrode mixture layer contains 1.5 g or more of the graphite particles per 1 cm 3 of the negative electrode mixture layer, and the average circularity of the graphite particles holds 70% or more of that before compression.
  • the present invention since the deformation of the graphite particles is suppressed during the compression of the negative electrode precursor, the deterioration of the charge / discharge cycle characteristics due to the deformation of the graphite particles is suppressed.
  • the binder By heating the negative electrode precursor during compression of the negative electrode precursor, the binder can be softened and deformed, which makes it easier for the binder to enter between the graphite particles even at a low pressure (improves slipperiness).
  • the binding property between the graphite particles is greatly improved.
  • the method for producing a negative electrode for a non-aqueous electrolyte secondary battery comprises: (1) applying a negative electrode slurry containing graphite particles as a negative electrode active material and a binder to a negative electrode core; Forming an agent layer and obtaining a negative electrode precursor, and (2) compressing the negative electrode precursor while heating at a temperature at which the binder softens to obtain a negative electrode.
  • the negative electrode mixture layer having a compressed negative electrode contains 1.5 g or more of graphite particles per 1 cm 3 of the negative electrode mixture layer, and the average circularity of the graphite particles is the graphite of the negative electrode precursor.
  • the temperature for heating the negative electrode precursor and the force for compressing the negative electrode precursor are controlled so as to maintain 70% or more of the average circularity of the particles. That is, after the step (2), the weight of the graphite particles contained per 1 cm 3 of the negative electrode mixture layer is 1.5 g or more, and the step (2) for the average circularity of the graphite particles before the step (2)
  • the temperature at which the negative electrode precursor is heated and the negative electrode precursor are compressed so that the reduction rate of the average circularity of the graphite particles after (the reduction rate of the average circularity of the graphite particles during compression) is 30% or less.
  • the graphite particles are particles including a layered structure in which six carbon rings are linked, and examples thereof include particles such as natural graphite, artificial graphite, and graphitized mesophase carbon.
  • the negative electrode precursor In the conventional method in which the negative electrode precursor is compressed only once without heating, it is necessary to compress the negative electrode mixture layer with a large linear pressure in order to ensure the binding property of the negative electrode mixture layer.
  • the negative electrode mixture layer When the negative electrode mixture layer is compressed at a high density until the weight of the graphite particles contained in 1 cm 3 of the negative electrode mixture layer is about 1.5 g, the reduction rate of the average circularity of the graphite particles exceeds 30%. Graphite particles are greatly deformed. As a result, the internal stress of the graphite particles increases. Therefore, the particle shape changes greatly upon repeated expansion / contraction associated with charge / discharge, and the graphite particles easily fall off from the negative electrode core, resulting in a significant reduction in charge / discharge cycle characteristics.
  • the pressure applied to the negative electrode precursor during compression can be reduced and the binder is easily deformed. It becomes easy for the binder to enter between the graphite particles. For this reason, the binding property between the graphite particles is greatly improved, and the negative electrode mixture layer can be firmly integrated with the negative electrode core material. Therefore, a negative electrode mixture layer having a desired negative electrode thickness and graphite particle density and excellent binding property between graphite particles can be easily and reliably obtained in a single compression step.
  • the weight of the graphite particles contained per 1 cm 3 of the negative electrode mixture layer is 1.5 g or more, the deformation of the graphite particles is suppressed, and the reduction rate of the average circularity of the graphite particles can be suppressed to 30% or less. it can.
  • a high capacity and high energy density negative electrode in which the weight of graphite particles contained per 1 cm 3 of the negative electrode mixture layer is 1.5 g or more can be obtained without impairing charge / discharge cycle characteristics.
  • an extremely high packing density of graphite particles is achieved, in which the weight of graphite particles contained in 1 cm 3 of the negative electrode mixture layer is 1.6 g or more, which could not be obtained by the conventional method. be able to.
  • the reduction rate of the average circularity of the graphite particles during compression is preferably 20% or less. When the reduction rate of the average circularity of the graphite particles during compression is 20% or less, the charge / discharge cycle characteristics can be greatly improved.
  • the weight of the graphite particles contained per 1 cm 3 of the negative electrode mixture layer is preferably 1.7 g or less. When the weight of the graphite particles contained per 1 cm 3 of the negative electrode mixture layer exceeds 1.7 g, Li acceptability of the negative electrode is lowered, so that Li may precipitate on the negative electrode surface during charging.
  • the average circularity can be measured, for example, by image processing of the negative electrode cross section with a scanning electron microscope (SEM). At this time, the circularity of any 100 particles having an equivalent circle diameter that matches the average particle diameter is obtained, and the average value is obtained.
  • the equivalent circle diameter is the diameter of a circle having the same area as the area of the two-dimensional projection image of the particles.
  • the average particle size of the graphite particles after compression is preferably 10 to 30 ⁇ m. If the average particle size of the graphite particles exceeds 30 ⁇ m, the reactivity of the graphite particles with lithium during charging may be reduced. If the average particle size of the graphite particles is less than 10 ⁇ m, the specific surface area becomes too large, and the irreversible capacity may increase. More preferably, the average particle diameter of the graphite particles is 15 to 25 ⁇ m.
  • an average particle diameter means the median diameter (D50) in the volume particle size distribution of a negative electrode active material.
  • the volume particle size distribution of the negative electrode active material can be measured by a commercially available laser diffraction particle size distribution analyzer (for example, LA-920 manufactured by HORIBA Ltd.).
  • the average circularity of the graphite particles after compression is preferably 0.5 or more. If the average circularity of the graphite particles after compression is less than 0.5, the orientation of the graphite particles generated by the compression increases, and the reactivity of the graphite particles with lithium may decrease. More preferably, the average circularity of the graphite particles after compression is 0.7 or more. In order to set the average circularity of the graphite particles after compression to 0.5 or more, the average circularity of the graphite particles before compression is 0.7 or more from the viewpoint of the degree of decrease in the average circularity of the graphite particles during compression. Is preferred.
  • Step (2) is, for example, a step of pressing the negative electrode precursor using a hot plate or a step of passing the negative electrode precursor between a pair of heat rolls. By carrying out this step once, the negative electrode mixture layer and the negative electrode core material can be brought into close contact and integrated.
  • the negative electrode obtained in the step (2) includes a negative electrode core material made of a metal foil and a negative electrode mixture layer formed on both surfaces of the negative electrode core material
  • the total thickness of the negative electrode is, for example, 100 to 300 ⁇ m.
  • the thickness per side of the negative electrode mixture layer is, for example, 46 to 146 ⁇ m, and preferably 60 to 80 ⁇ m.
  • the compression ratio in step (2) (ratio of the thickness of the negative electrode mixture layer in the negative electrode after compression to the thickness of the negative electrode mixture layer in the negative electrode precursor before compression) Is preferably 50 to 70%.
  • the force (linear pressure) for compressing the negative electrode precursor in the step (2) is preferably 1 ⁇ 10 2 to 3 ⁇ 10 2 kgf / cm.
  • the linear pressure is 1 ⁇ 10 2 kgf / cm or more, excellent binding properties can be obtained between the graphite particles and between the negative electrode mixture layer and the negative electrode core material even after one compression.
  • the linear pressure is 3 ⁇ 10 2 kgf / cm or less, the deformation of the graphite particles is significantly suppressed.
  • the linear pressure is more preferably 1 ⁇ 10 2 to 2 ⁇ 10 2 kgf / cm.
  • the temperature at which the negative electrode precursor is heated in the step (2) is preferably a temperature at which the elastic modulus of the binder is 30% or less of the elastic modulus at 25 ° C. of the binder.
  • the binder preferably has an elastic modulus at 25 ° C. of 0.5 ⁇ 10 3 to 3 ⁇ 10 3 MPa.
  • the elastic modulus of styrene butadiene rubber (SBR) at 25 ° C. is 1.7 ⁇ 10 3 MPa.
  • the elastic modulus is an index indicating the difficulty of deformation. When the elastic modulus decreases, the elastic modulus is easily deformed.
  • the heating temperature in the step (2) is such that the elastic modulus of the binder is 0.05% or more of the elastic modulus of the binder at 25 ° C. Is more preferable.
  • the heating temperature in the step (2) is a temperature at which the elastic modulus of the binder is less than 0.05% of the elastic modulus at 25 ° C. of the binder, the negative electrode capacity may decrease. This is presumably because the portion of the negative electrode mixture layer in which the entire surface of the graphite particles is densely covered with the binder increases, and the lithium acceptability of the graphite particles decreases.
  • the temperature at which the elastic modulus of the binder is 30% or less of the elastic modulus at 25 ° C. of the binder is, for example, 50 to 100 ° C.
  • the heating temperature in the step (2) is preferably 50 to 100 ° C.
  • the binder that has an elastic modulus at 50 to 100 ° C. of 30% or less of an elastic modulus at 25 ° C. include SBR.
  • the content of the binder in the negative electrode mixture layer is preferably 0.5 to 3 parts by weight per 100 parts by weight of the graphite particles. More preferably, the content of the binder in the negative electrode mixture layer is 0.5 to 2 parts by weight per 100 parts by weight of the graphite particles.
  • the binder for example, a material that can be used in a non-aqueous electrolyte secondary battery, and a material whose elastic modulus satisfies the above conditions, that is, an elastic modulus at 25 ° C. of 0.5 ⁇ 10 3 to 3 ⁇
  • a material having a viscosity of 10 3 MPa and an elastic modulus at 50 to 100 ° C. being 0.05 to 30% of the elastic modulus at 25 ° C. is used.
  • binder examples include polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), styrene butadiene rubber (SBR), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), Tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer (ETFE resin) , Polychlorotrifluoroethylene (PCTFE), vinylidene fluoride-pentafluoropropylene copolymer, propylene-tetrafluoroethylene copolymer, ethylene-chlorotrifluoroethylene copolymer ( CTFE), vinylidene fluoride - hexafluor
  • the negative electrode mixture layer may further contain an optional component such as a conductive agent, but the amount of the optional component in the entire negative electrode mixture is desirably 3% by weight or less.
  • the negative electrode mixture layer can contain 0.5 to 2 parts by weight, preferably 0.5 to 1 part by weight of a conductive agent per 100 parts by weight of graphite particles.
  • the conductive agent carbon black, carbon nanofiber, and the like are preferable.
  • the negative electrode core material for example, metal foil such as copper foil and copper alloy foil is used. Of these, copper foil (which may contain 1% or less of trace components other than copper) is preferable, and electrolytic copper foil is particularly preferable. From the viewpoint of the strength of the negative electrode core material and the high energy density of the battery, the thickness of the metal foil is preferably 5 to 15 ⁇ m.
  • the nonaqueous electrolyte secondary battery of the present invention includes a negative electrode obtained by the above production method, a positive electrode capable of electrochemically inserting and extracting Li, a separator interposed between the negative electrode and the positive electrode, a nonaqueous electrolyte, It comprises.
  • the present invention can be applied to non-aqueous electrolyte secondary batteries having various shapes such as a cylindrical shape, a flat shape, a coin shape, and a square shape, and the shape of the battery is not particularly limited.
  • the strain stress of the graphite particles generated when the negative electrode mixture layer is compressed is gradually eliminated, and the average circularity of the graphite particles reduced by the compression increases.
  • the strain stress is small, and the degree to which the average circularity of the graphite particles increases with repeated charge / discharge is small. Therefore, the shape change of the graphite particles is small. Therefore, the graphite particles in the negative electrode mixture layer are prevented from dropping from the negative electrode core material due to excessive increase in the average circularity of the graphite particles with repeated charge / discharge, and good charge / discharge cycle characteristics are obtained. .
  • the increase rate of the average circularity of the graphite particles at 100 cycles relative to the average circularity of the graphite particles at the initial time (for example, at one cycle) (hereinafter, the average at 100 cycles)
  • the circularity increase rate is preferably 20% or less. That is, the average circularity of the graphite particles at 100 cycles is preferably 120% or less of the average circularity of the initial graphite particles.
  • the increase rate of the average circularity at 100 cycles is expressed by the following formula.
  • Increase rate (%) of average circularity at 100 cycles (average circularity of graphite particles at 100 cycles ⁇ average circularity of initial graphite particles) / average circularity of initial graphite particles ⁇ 100
  • dropping of the graphite particles from the negative electrode core material accompanying the charge / discharge cycle is suppressed, and the ratio of the discharge capacity at the 100th cycle to the initial capacity (for example, the discharge capacity at the first cycle) (hereinafter, the capacity at the 100th cycle).
  • the maintenance ratio is 95% or more, and excellent cycle characteristics are obtained.
  • the strain stress of the graphite particles generated during compression of the negative electrode mixture layer is gradually eliminated, and the average circularity of the graphite particles reduced by compression increases, thereby increasing the negative electrode The thickness of the mixture layer increases.
  • the strain stress is small, and the degree of increase in the thickness of the negative electrode mixture layer with charge / discharge repetition is small. Therefore, the average circularity of the graphite particles excessively increases with repeated charging and discharging, so that the thickness of the negative electrode mixture layer increases excessively, and the graphite particles in the negative electrode mixture layer may fall off the negative electrode core material.
  • the rate of increase in the thickness of the negative electrode mixture layer at 100 cycles relative to the thickness of the negative electrode mixture layer at 1 cycle Is preferably 5% or less. That is, the thickness of the negative electrode mixture layer at 100 cycles is preferably 105% or less of the thickness of the negative electrode mixture layer at one cycle.
  • the rate of increase in thickness at 100 cycles is represented by the following formula.
  • Thickness increase rate at 100 cycles (%) (thickness of negative electrode mixture layer at 100 cycles ⁇ 1 thickness of negative electrode mixture layer at cycle) / thickness of negative electrode mixture layer at one cycle ⁇ 100 In this case, falling off of the graphite particles from the negative electrode core material accompanying the charge / discharge cycle is suppressed, the capacity retention rate at 100 cycles is 95% or more, and excellent cycle characteristics are obtained.
  • a positive electrode will not be specifically limited if it can be used as a positive electrode of a nonaqueous electrolyte secondary battery.
  • the positive electrode for example, after applying a positive electrode mixture slurry containing a positive electrode active material, a conductive agent such as carbon black, and a binder such as polyvinylidene fluoride to a positive electrode core material such as an aluminum foil, is dried, Obtained by compression.
  • a positive electrode active material a lithium-containing transition metal oxide is preferable.
  • lithium-containing transition metal compounds include LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiMnO 2 , LiNi 1-y Co y O 2 (0 ⁇ y ⁇ 1), LiNi 1-yz Co y Mn and z O 2 (0 ⁇ y + z ⁇ 1).
  • a liquid electrolyte comprising a non-aqueous solvent and a lithium salt dissolved therein is preferable.
  • a non-aqueous solvent a mixed solvent of cyclic carbonates such as ethylene carbonate and propylene carbonate and chain carbonates such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate is generally used. Further, ⁇ -butyrolactone, dimethoxyethane and the like are also used.
  • lithium salts include inorganic lithium fluorides and lithium imide compounds. Examples of the inorganic lithium fluoride include LiPF 6 and LiBF 4 , and examples of the lithium imide compound include LiN (CF 3 SO 2 ) 2 .
  • a microporous film made of polyethylene, polypropylene or the like is generally used as the separator.
  • the thickness of the separator is, for example, 10 to 30 ⁇ m.
  • Example 1 Production of negative electrode 3 kg of artificial graphite (manufactured by Mitsubishi Chemical Corporation, average particle diameter 20 ⁇ m, average circularity 0.72) as negative electrode active material, and BM-400B (styrene butadiene rubber) manufactured by Nippon Zeon Co., Ltd. 75 g of an aqueous dispersion containing 40% by weight of (SBR), 30 g of carboxymethyl cellulose (CMC), and an appropriate amount of water were stirred with a double-arm kneader to prepare a negative electrode slurry. This negative electrode slurry was applied to both surfaces of a negative electrode core material made of a copper foil having a thickness of 10 ⁇ m, and then dried to form a negative electrode mixture layer. In this way, a negative electrode precursor was obtained.
  • SBR aqueous dispersion containing 40% by weight of
  • CMC carboxymethyl cellulose
  • the negative electrode precursor was passed between a pair of heat rollers and compressed.
  • the number of times of compression was one. More specifically, the negative electrode precursor was compressed at a linear pressure of 1.5 ⁇ 10 2 kgf / cm while being heated to 80 ° C. with a heat roller. At this time, the thickness of the negative electrode mixture layer (one side) decreased from 120 ⁇ m to 67 ⁇ m. In this way, a negative electrode having a total thickness of 144 ⁇ m was obtained.
  • the negative electrode was cut into a 45 mm wide strip.
  • Table 1 shows the elastic modulus at each temperature of SBR, which is a binder, and the ratio of the elastic modulus at each temperature to the elastic modulus at 25 ° C.
  • the elastic modulus here refers to a storage elastic modulus.
  • nonaqueous electrolyte LiPF LiPF at a concentration of 1 mol / liter in a mixed solvent of ethylene carbonate (EC), dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC) in a volume ratio of 1: 1: 1. 6 was dissolved to prepare a non-aqueous electrolyte.
  • the non-aqueous electrolyte contained 3% by weight of vinylene carbonate.
  • Battery assembly A square lithium ion secondary battery as shown in FIG. 1 was produced.
  • a group of electrodes having a substantially elliptical cross section wound around a separator (A089 (trade name) manufactured by Celgard Co., Ltd.) made of a polyethylene microporous film having a thickness of 20 ⁇ m interposed between the negative electrode and the positive electrode 1 was configured.
  • the electrode group 1 was accommodated in a square battery can 2 made of aluminum.
  • the battery can 2 has a bottom part and a side wall, the top part is opened, and the shape thereof is substantially rectangular. Thereafter, an insulator 7 for preventing a short circuit between the battery can 2 and the positive electrode lead 3 or the negative electrode lead 4 was disposed on the upper part of the electrode group 1.
  • a rectangular sealing plate 5 having a negative electrode terminal 6 surrounded by an insulating gasket 8 and a safety valve 10 was disposed in the opening of the battery can 2.
  • the negative electrode lead 4 was connected to the negative electrode terminal 6.
  • the positive electrode lead 3 was connected to the lower surface of the sealing plate 5.
  • the end of the opening of the battery can 2 and the sealing plate 5 were welded with a laser to seal the opening of the battery can 2. Thereafter, 2.5 g of nonaqueous electrolyte was injected into the battery can 2 from the injection hole of the sealing plate 5.
  • liquid injection hole was closed with a plug 9 by welding to complete a prismatic lithium ion secondary battery having a height of 50 mm, a width of 34 mm, a thickness of about 5.4 mm, and a design capacity of 850 mAh.
  • step (2) the negative electrode precursor was compressed at a linear pressure of 4 ⁇ 10 2 kgf / cm without heating so that the total thickness (density of graphite particles) was the same as that of the negative electrode of Example 1, A negative electrode was produced in the same manner as in Example 1. Using this negative electrode, a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1.
  • step (2) a negative electrode was produced in the same manner as in Example 1, except that the negative electrode precursor was compressed without heating. At this time, the total thickness of the negative electrode was 159 ⁇ m. Using this negative electrode, a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1.
  • the average particle size of the above graphite particles was obtained as an average value of the particle sizes of 100 arbitrary graphite particles extracted from the negative electrode mixture layer by SEM image processing.
  • the graphite particles having a particle size of 1 ⁇ m or less were excluded.
  • the negative electrode of Comparative Examples 1 and 2 Compared to a battery using the battery, excellent charge / discharge cycle characteristics were obtained.
  • Comparative Example 1 since the negative electrode precursor is not heated during compression, the linear pressure during compression is higher than that in Example 1 when compressed to have the same negative electrode thickness (density of graphite particles) as in Example 1. became. As a result, the deformation of the graphite particles increased, the reduction rate of the average circularity of the graphite particles during compression increased, and the charge / discharge cycle characteristics deteriorated.
  • Example 2 A negative electrode was produced in the same manner as in Example 1 except that the linear pressure was 2.0 ⁇ 10 2 kgf / cm and the heating temperature was changed to the values shown in Table 3 in the step (2). Using this negative electrode, a battery was produced in the same manner as in Example 1. The negative electrode and the battery were evaluated by the above method. The evaluation results are shown in Table 3.
  • the density of the graphite particles in the negative electrode mixture layer was 1.5 g / cm 3 or more, and the reduction rate of the average particle circularity of the graphite particles during compression was 20% or less.
  • the heating temperature in the step (2) was 50 to 100 ° C.
  • a negative electrode having a high density of graphite particles in the negative electrode mixture layer was obtained, and excellent charge / discharge cycle characteristics were obtained.
  • Example 3 A negative electrode was produced in the same manner as in Example 1, except that the heating temperature in the step (2) was 80 ° C. and the linear pressure was changed to the values shown in Table 4. Using this negative electrode, a battery was produced in the same manner as in Example 1. The negative electrode and the battery were evaluated by the above method. The evaluation results are shown in Table 4.
  • the density of the graphite particles in the negative electrode mixture layer was 1.5 g / cm 3 or more, and the reduction rate of the average circularity of the graphite particles during compression was 30% or less.
  • the linear pressure in the step (2) is 1.0 ⁇ 10 2 to 3.0 ⁇ 10 2 kgf / cm, a negative electrode having a high density of graphite particles in the negative electrode mixture layer is obtained and excellent. The charge / discharge cycle characteristics were obtained.
  • the negative electrode of the present invention is suitably used for a non-aqueous electrolyte secondary battery such as a square type. Since the nonaqueous electrolyte secondary battery of the present invention has excellent initial characteristics and charge / discharge cycle characteristics, it is suitably used as a power source for electronic equipment such as information equipment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 本発明の非水電解質二次電池用負極の製造方法は、(1)負極芯材に、黒鉛粒子および結着剤を含む負極スラリーを塗布し、乾燥して負極合剤層を形成し、負極前駆体を得る工程と、(2)負極前駆体を結着剤が軟化する温度で加熱しながら圧縮し、負極を得る工程と、を含む。工程(2)において、負極の圧縮された負極合剤層が、黒鉛粒子を負極合剤層1cmあたり1.5g以上含み、かつ黒鉛粒子の平均円形度が、負極前駆体の黒鉛粒子の平均円形度の70%以上を保持するように、負極前駆体を加熱する温度および負極前駆体を圧縮する力を制御する。

Description

非水電解質二次電池用負極の製造方法、負極、およびそれを用いた非水電解質二次電池
 本発明は、非水電解質二次電池に関し、特に、黒鉛粒子を負極活物質として含む負極の製造方法に関する。
 リチウムイオン二次電池に代表される非水電解質二次電池の負極は、一般に、黒鉛粒子を負極活物質として含む。
 この負極は、以下のように作製される。黒鉛粒子、結着剤、および必要に応じて加える導電剤を、所定の分散媒の存在下で混合して、負極スラリーを調製する。この負極スラリーを、銅箔などからなる負極芯材に塗布した後、乾燥して負極合剤層を形成し、負極前駆体を得る。その後、負極前駆体をロールで圧縮することにより、負極合剤層の密度を高めるとともに、負極合剤層を負極芯材に密着させる。大判の負極芯材と一体化された負極合剤層は、複数の負極分の材料を含む原板であるため、これを、所定形状に裁断する。このようにして、個々の電池用の負極を得る。
 上記のような負極を含む電池の充放電を繰り返すと、黒鉛粒子は膨張と収縮を繰り返す。そのため、負極芯材から負極合剤層が剥離して、サイクル特性が低下する場合がある。
 そこで、特許文献1では、サイクル特性を改善する目的で、平均円形度が0.93以上の黒鉛粒子を用いることを提案している。この提案によると、負極合剤層と負極芯材との接着強度を高めることができる。
特開2002-216757号公報
 近年、電池の高性能化が要求され、電池の高容量化および高エネルギー密度化が検討されている。これに対しては、圧縮時のロールの線圧を上げて、負極合剤層中の黒鉛粒子の密度を上げることが考えられる。
 しかし、圧縮時のロールの線圧を大きくすると、特許文献1の平均円形度の大きな黒鉛粒子を用いても、圧縮時に黒鉛粒子が大きく変形して、平均円形度が大幅に減少するため、内部応力(歪み)の大きい、扁平形状の黒鉛粒子となる。このような黒鉛粒子を含む負極を備える電池を充放電すると、黒鉛粒子は、膨張および収縮による形状変化だけでなく、大きな内部応力(歪み)を解消するために大きな形状変化を生じる。このため、黒鉛粒子は負極芯材から脱落し易くなり、充放電サイクル特性が低下する。
 そこで、本発明は、上記従来の問題を解決するため、負極前駆体の圧縮時における黒鉛粒子の変形を抑制することが可能な負極の製造方法を提供することを目的とする。本発明は、また、上記製造方法で得られた負極を用いることにより、充放電サイクル特性に優れた、高容量の非水電解質二次電池を提供することを目的とする。
 本発明の非水電解質二次電池用負極は、(1)負極芯材に、黒鉛粒子および結着剤を含む負極スラリーを塗布し、乾燥して負極合剤層を形成し、負極前駆体を得る工程と、(2)前記負極前駆体を前記結着剤が軟化する温度で加熱しながら圧縮し、負極を得る工程と、を含み、
 前記工程(2)において、前記負極の圧縮された前記負極合剤層が、前記黒鉛粒子を当該負極合剤層1cmあたり1.5g以上含み、かつ前記黒鉛粒子の平均円形度が、前記負極前駆体の黒鉛粒子の平均円形度の70%以上を保持するように、前記負極前駆体を加熱する温度および前記負極前駆体を圧縮する力を制御することを特徴とする。
 また、本発明は、負極芯材、ならびに黒鉛粒子および結着剤を含み、前記負極芯材上に圧縮された負極合剤層を含む非水電解質二次電池用負極に関し、
 前記負極合剤層は、前記黒鉛粒子を当該負極合剤層1cm3あたり1.5g以上含み、かつ前記黒鉛粒子の平均円形度は、圧縮前のそれの70%以上を保持していることを特徴とする。
 本発明によれば、負極前駆体の圧縮時において黒鉛粒子の変形が抑制されるため、黒鉛粒子の変形に起因する充放電サイクル特性の低下が抑制される。
 負極前駆体の圧縮時において負極前駆体を加熱することにより、結着剤を軟化させ変形させることができるため、低い圧力でも黒鉛粒子間に結着剤が入り込み易くなり(すべり性が改善し)、黒鉛粒子間の結着性が大幅に向上する。
 本発明の負極を用いることにより、優れた充放電サイクル特性を有し、信頼性の高い非水電解質二次電池が得られる。
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本発明の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。
本発明の実施例に係る角型リチウムイオン二次電池の要部を欠裁した斜視図である。
 本発明の非水電解質二次電池用負極の製造方法は、(1)負極芯材に、負極活物質である黒鉛粒子、および結着剤を含む負極スラリーを塗布した後、乾燥させて負極合剤層を形成し、負極前駆体を得る工程と、(2)前記負極前駆体を前記結着剤が軟化する温度で加熱しながら圧縮し、負極を得る工程と、を含む。そして、工程(2)において、負極の圧縮された負極合剤層が、黒鉛粒子を当該負極合剤層1cmあたり1.5g以上含み、かつ黒鉛粒子の平均円形度が、負極前駆体の黒鉛粒子の平均円形度の70%以上を保持するように、負極前駆体を加熱する温度および負極前駆体を圧縮する力を制御する。すなわち、工程(2)の後において、負極合剤層1cm3あたりに含まれる黒鉛粒子の重量が1.5g以上となり、かつ工程(2)の前の黒鉛粒子の平均円形度に対する工程(2)の後の黒鉛粒子の平均円形度の減少率(以下、圧縮時の黒鉛粒子の平均円形度の減少率)が30%以下となるように、負極前駆体を加熱する温度および負極前駆体を圧縮する力を制御する。
 ここでいう黒鉛粒子とは、六炭素環が連なった層状の構造を含む粒子であり、例えば、天然黒鉛、人造黒鉛、黒鉛化メソフェーズカーボンなどの粒子が挙げられる。
 負極前駆体を加熱せずに一度だけ圧縮する従来の方法では、負極合剤層の結着性を確保するため、大きな線圧で圧縮する必要がある。負極合剤層を、当該負極合剤層1cm3あたりに含まれる黒鉛粒子の重量が1.5g程度になるまで高密度に圧縮すると、黒鉛粒子の平均円形度の減少率は30%を超えて黒鉛粒子が大きく変形する。そのため、黒鉛粒子の内部応力が増大する。従って、充放電に伴う膨張・収縮の繰り返しの際に粒子形状が大きく変化し、黒鉛粒子が負極芯材から脱落し易くなり、充放電サイクル特性が大幅に低下する。
 一方、本発明のように、負極前駆体を結着剤が軟化する温度で加熱しながら圧縮する場合、圧縮時に負極前駆体に加える圧力を低減できるとともに、結着剤が変形し易いことにより、黒鉛粒子間に結着剤が入り込み易くなる。このため、黒鉛粒子間の結着性が大幅に向上し、負極合剤層を負極芯材と強固に一体化させることができる。従って、1回の圧縮工程で目的の負極の厚みおよび黒鉛粒子の密度を有し、黒鉛粒子間の結着性に優れた負極合剤層が容易かつ確実に得られる。負極合剤層1cm3あたりに含まれる黒鉛粒子の重量を1.5g以上とする場合でも、黒鉛粒子の変形が抑制され、黒鉛粒子の平均円形度の減少率を30%以下に抑制することができる。本発明によれば、充放電サイクル特性を損なうことなく、負極合剤層1cm3あたりに含まれる黒鉛粒子の重量が1.5g以上である高容量および高エネルギー密度の負極が得られる。本発明によれば、特に、従来法では得ることのできなかった、負極合剤層1cm3あたりに含まれる黒鉛粒子の重量が1.6g以上である、極めて高い黒鉛粒子の充填密度を実現することができる。
 圧縮時の黒鉛粒子の平均円形度の減少率は20%以下が好ましい。圧縮時の黒鉛粒子の平均円形度の減少率が20%以下であると、充放電サイクル特性を大幅に向上させることができる。負極合剤層1cm3あたりに含まれる黒鉛粒子の重量は1.7g以下であるのが好ましい。負極合剤層1cm3あたりに含まれる黒鉛粒子の重量が1.7gを超えると、負極のLi受け入れ性が低下するので、充電時に負極表面でLiが析出する場合がある。
 円形度は、粒子の形態を表す指標であり、以下の式で定義され、円形度が1の場合、粒子は真球であり、円形度が1に近いほど、粒子は真球に近い形状を有することを意味する。
 円形度=(粒子の二次元投影像と同じ面積を有する円の周囲長)/(粒子の二次元投影像の実際の周囲長)
 平均円形度は、例えば、走査型電子顕微鏡(SEM)による負極断面の画像処理により測定することができる。このとき、平均粒径と一致する円相当径を有する任意の100個の粒子の円形度を求め、その平均値を求める。円相当径とは、粒子の二次元投影像の面積と同じ面積を有する円の直径である。
 圧縮時の黒鉛粒子の平均円形度の減少率は、下記式により求められる。
 圧縮時の黒鉛粒子の平均円形度の減少率(%)=(圧縮前の黒鉛粒子の平均円形度-圧縮後の黒鉛粒子の平均円形度)/(圧縮前の黒鉛粒子の平均円形度)×100
 圧縮後の黒鉛粒子の平均粒径は、10~30μmが好ましい。黒鉛粒子の平均粒径が30μmを超えると、充電時における黒鉛粒子のリチウムとの反応性が低下する場合がある。黒鉛粒子の平均粒径が10μm未満であると、比表面積が大きくなり過ぎて、不可逆容量が増大する場合がある。より好ましくは、黒鉛粒子の平均粒径は、15~25μmである。
 なお、平均粒径とは、負極活物質の体積粒度分布におけるメディアン径(D50)を意味する。負極活物質の体積粒度分布は、市販のレーザー回折式粒度分布測定装置(例えば、HORIBA(株)製のLA-920)により測定することができる。
 圧縮後の黒鉛粒子の平均円形度は、0.5以上が好ましい。圧縮後の黒鉛粒子の平均円形度が0.5未満であると、圧縮により生じる黒鉛粒子の配向性が高くなり、黒鉛粒子のリチウムとの反応性が低下する場合がある。より好ましくは、圧縮後の黒鉛粒子の平均円形度は0.7以上である。
 圧縮後の黒鉛粒子の平均円形度を0.5以上とするためには、圧縮時の黒鉛粒子の平均円形度の減少度合いの観点から、圧縮前の黒鉛粒子の平均円形度は0.7以上が好ましい。
 工程(2)は、例えば、熱板を用いて負極前駆体をプレスする工程、または一対の熱ロール間に負極前駆体を通過させる工程である。この工程を一度実施することにより、負極合剤層と負極芯材を密着させ一体化させることができる。
 工程(2)で得られる負極が、金属箔からなる負極芯材、および負極芯材の両面に形成された負極合剤層からなる場合、その負極の総厚みは、例えば、100~300μmである。負極合剤層の片面あたりの厚みは、例えば、46~146μmであり、好ましくは60~80μmである。
 負極芯材の両面に負極合剤層を設ける場合、工程(2)における圧縮率(圧縮前の負極前駆体における負極合剤層の厚みに対する圧縮後の負極における負極合剤層の厚みの割合)は、50~70%であるのが好ましい。
 工程(2)において負極前駆体を圧縮する力(線圧)は、1×102~3×102kgf/cmであるのが好ましい。線圧が1×102kgf/cm以上であると、1回の圧縮でも、黒鉛粒子間、および負極合剤層と負極芯材との間において優れた結着性が得られる。線圧が3×102kgf/cm以下であると、黒鉛粒子の変形が大幅に抑制される。
 より優れた充放電サイクル特性を得るためには、より好ましくは、線圧は1×102~2×102kgf/cmである。
 工程(2)において負極前駆体を加熱する温度は、結着剤の弾性率が当該結着剤の25℃における弾性率の30%以下となる温度が好ましい。結着剤は、25℃における弾性率が0.5×103~3×103MPaであるのが好ましい。スチレンブタジエンゴム(SBR)の25℃における弾性率は1.7×103MPaである。
 弾性率は、変形し難さを表す指標であり、弾性率が低下すると、変形し易くなる。負極前駆体を上記温度に加熱しながら圧縮すると、結着剤が軟化して変形し易くなり、黒鉛粒子間に結着剤が入り込み易くなり、黒鉛粒子間の結着性が大幅に向上する。
 負極合剤層中に結着剤を均一に存在させるためには、工程(2)の加熱温度は、結着剤の弾性率が当該結着剤の25℃における弾性率の0.05%以上となる温度がより好ましい。工程(2)の加熱温度が、結着剤の弾性率が当該結着剤の25℃における弾性率の0.05%未満となる温度であると、負極容量が低下する場合がある。これは、負極合剤層中において黒鉛粒子の表面全体が結着剤で密に覆われる部分が多くなり、黒鉛粒子のリチウム受け入れ性が低下するためと考えられる。
 結着剤の弾性率が、当該結着剤の25℃における弾性率の30%以下となるような温度は、例えば、50~100℃である。このため、工程(2)の加熱温度は、50~100℃であるのが好ましい。50~100℃の弾性率が、25℃における弾性率の30%以下となるような結着剤としては、SBRが挙げられる。
 工程(2)の圧縮時において、加熱温度が50~100℃、および線圧が1×102~3×102kgf/cmである場合、圧縮時の黒鉛粒子の平均円形度の減少率は、10%程度まで小さくすることが可能である。
 負極合剤層中の結着剤の含有量は、黒鉛粒子100重量部あたり0.5~3重量部が好ましい。より好ましくは、負極合剤層中の結着剤の含有量は、黒鉛粒子100重量部あたり0.5~2重量部である。
 結着剤としては、例えば、非水電解質二次電池で使用可能な材料であり、かつその弾性率が上記条件を満たす材料、すなわち25℃での弾性率が0.5×103~3×103MPaであり、50~100℃での弾性率が、25℃での弾性率の0.05~30%である材料が用いられる。
 また、結着剤としては、例えば、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴム(SBR)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-クロロトリフルオロエチレン共重合体、エチレン-テトラフルオロエチレン共重合体(ETFE樹脂)、ポリクロロトリフルオロエチレン(PCTFE)、フッ化ビニリデン-ペンタフルオロプロピレン共重合体、プロピレン-テトラフルオロエチレン共重合体、エチレン-クロロトリフルオロエチレン共重合体(ECTFE)、フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン共重合体、フッ化ビニリデン-パーフルオロメチルビニルエーテル-テトラフルオロエチレン共重合体、エチレン-アクリル酸共重合体もしくはその(Na)イオン架橋体、エチレン-メタクリル酸共重合体もしくはその(Na)イオン架橋体、エチレン-アクリル酸メチル共重合体もしくはその(Na)イオン架橋体、エチレン-メタクリル酸メチル共重合体もしくはその(Na)イオン架橋体、またはこれらの誘導体が挙げられる。これらを単独または2種以上を組み合わせて用いてもよい。これらのなかでも、SBRが好ましい。
 負極合剤層は、さらに、導電剤などの任意成分を含んでもよいが、負極合剤全体に占める任意成分の量は、3重量%以下とすることが望ましい。例えば、負極合剤層は、黒鉛粒子100重量部あたり0.5~2重量部、好ましくは0.5~1重量部の導電剤を含むことができる。導電剤としては、カーボンブラック、カーボンナノファイバなどが好ましい。
 負極芯材としては、例えば、銅箔および銅合金箔のような金属箔が用いられる。なかでも銅箔(銅以外の微量成分を1%以下含んでもよい。)が好ましく、特に電解銅箔が好ましい。負極芯材の強度および電池の高エネルギー密度化の観点から、金属箔の厚みは、5~15μmが好ましい。
 本発明の非水電解質二次電池は、上記製造方法により得られる負極と、Liを電気化学的に吸蔵および放出可能な正極と、負極と正極との間に介在するセパレータと、非水電解質とを具備する。本発明は、円筒型、扁平型、コイン型、角型など、様々な形状の非水電解質二次電池に適用可能であり、電池の形状は特に限定されない。
 非水電解質二次電池の充放電の繰り返しに伴い、負極合剤層の圧縮時に生じた黒鉛粒子の歪み応力が次第に解消され、圧縮により減少した黒鉛粒子の平均円形度は増大する。本発明では、圧縮時に黒鉛粒子の平均円形度が減少する度合いを小さくしたため、上記の歪み応力は小さく、充放電の繰り返しに伴い黒鉛粒子の平均円形度が増大する度合いが小さい。従って、黒鉛粒子の形状変化が小さい。よって、充放電の繰り返しに伴い黒鉛粒子の平均円形度が過度に増大することにより負極合剤層内の黒鉛粒子が負極芯材から脱落することが抑制され、良好な充放電サイクル特性が得られる。
 上記非水電解質二次電池の充放電サイクル試験における、初期(例えば1サイクル時)の黒鉛粒子の平均円形度に対する100サイクル時の黒鉛粒子の平均円形度の増加率(以下、100サイクル時の平均円形度の増加率)は20%以下であるのが好ましい。すなわち、100サイクル時の黒鉛粒子の平均円形度は、初期の黒鉛粒子の平均円形度の120%以下であるのが好ましい。
 100サイクル時の平均円形度の増加率は、下記式により表される。
 100サイクル時の平均円形度の増加率(%)=(100サイクル時の黒鉛粒子の平均円形度-初期の黒鉛粒子の平均円形度)/初期の黒鉛粒子の平均円形度×100
 この場合、充放電サイクルに伴う黒鉛粒子の負極芯材からの脱落が抑制され、初期容量(例えば、1サイクル目の放電容量)に対する100サイクル目の放電容量の割合(以下、100サイクル時の容量維持率)が95%以上となり、優れたサイクル特性が得られる。
 非水電解質二次電池の充放電の繰り返しに伴い、負極合剤層の圧縮時に生じた黒鉛粒子の歪み応力が次第に解消され、圧縮により減少した黒鉛粒子の平均円形度は増大することにより、負極合剤層の厚みが増大する。本発明では、圧縮時に黒鉛粒子の平均円形度が減少する度合いを小さくしたため、上記の歪み応力は小さく、充放電の繰り返しに伴い負極合剤層の厚みが増大する度合いが小さい。よって、充放電の繰り返しに伴い黒鉛粒子の平均円形度が過度に増大することにより負極合剤層の厚みが過度に増大して負極合剤層内の黒鉛粒子が負極芯材から脱落することが抑制され、良好な充放電サイクル特性が得られる。
 上記非水電解質二次電池の充放電サイクル試験における、1サイクル時の負極合剤層の厚みに対する100サイクル時の負極合剤層の厚みの増加率(以下、100サイクル時の厚みの増加率)は5%以下であるのが好ましい。すなわち、100サイクル時の負極合剤層の厚みは、1サイクル時の負極合剤層の厚みの105%以下であるのが好ましい。
 100サイクル時の厚みの増加率は、下記式により表される。
 100サイクル時の厚みの増加率(%)=(100サイクル時の負極合剤層の厚み-1サイクル時の負極合剤層の厚み)/1サイクル時の負極合剤層の厚み×100
 この場合、充放電サイクルに伴う黒鉛粒子の負極芯材からの脱落が抑制され、100サイクル時の容量維持率が95%以上となり、優れたサイクル特性が得られる。
 上記非水電解質二次電池の充放電サイクル試験では、1CA(1時間率)で充放電を繰り返す。
 具体例として、電池容量が850mAhの場合の充放電サイクル試験条件を以下に示す。
 定電流充電:充電電流値850mA、充電終止電圧4.2V
 定電圧充電:充電電圧値4.2V、充電終止電流100mA
 定電流放電:放電電流値850mA、放電終止電圧3V
 休止時間:10min
 正極は、非水電解質二次電池の正極として用いることのできるものであれば、特に限定ない。正極は、例えば、正極活物質と、カーボンブラックなどの導電剤と、ポリフッ化ビニリデンなどの結着剤とを含む正極合剤スラリーを、アルミニウム箔などの正極芯材に塗布した後、乾燥し、圧縮することにより得られる。正極活物質としては、リチウム含有遷移金属酸化物が好ましい。リチウム含有遷移金属化合物の代表的な例としては、LiCoO2、LiNiO2、LiMn24、LiMnO2、LiNi1-yCoy2(0<y<1)、LiNi1-y-zCoyMnz2(0<y+z<1)などを挙げることができる。
 非水電解質としては、非水溶媒およびこれに溶解するリチウム塩からなる液状の電解質が好ましい。非水溶媒としては、エチレンカーボネート、プロピレンカーボネートなどの環状カーボネート類とジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどの鎖状カーボネート類との混合溶媒が一般的に用いられる。また、γ-ブチロラクトンやジメトキシエタンなども用いられる。リチウム塩としては、無機リチウムフッ化物やリチウムイミド化合物などが挙げられる。無機リチウムフッ化物としては、LiPF6、LiBF4等が挙げられ、リチウムイミド化合物としてはLiN(CF3SO22等が挙げられる。
 セパレータとしては、ポリエチレン、ポリプロピレンなどからなる微多孔性フィルムが一般に用いられている。セパレータの厚みは、例えば10~30μmである。
 以下、本発明の実施例を詳細に説明するが、本発明は、以下の実施例に限定されない。

《実施例1》
(1)負極の作製
 負極活物質である人造黒鉛3kg(三菱化学(株)製、平均粒子径20μm、平均円形度0.72)と、日本ゼオン(株)製のBM-400B(スチレンブタジエンゴム(SBR)を40重量%含む水性分散液)75gと、カルボキシメチルセルロース(CMC)30gと、適量の水とを、双腕式練合機で攪拌し、負極スラリーを調製した。この負極スラリーを厚み10μmの銅箔からなる負極芯材の両面に塗布した後、乾燥して負極合剤層を形成した。このようにして、負極前駆体を得た。
 その後、負極前駆体を一対の熱ローラ間に通過させて、圧縮した。圧縮する回数は1回とした。より具体的には、負極前駆体を熱ローラで80℃に加熱しながら、1.5×10kgf/cmの線圧で圧縮した。このとき、負極合剤層(片面)の厚みは、120μmから67μmに減少した。このようにして、総厚みが144μmの負極を得た。負極を45mm幅の帯状に裁断した。
 結着剤であるSBRの各温度における弾性率、および25℃の弾性率に対する各温度での弾性率の割合を表1に示す。ここでいう弾性率とは、貯蔵弾性率を指す。
Figure JPOXMLDOC01-appb-T000001
(2)正極の作製
 正極活物質であるコバルト酸リチウム3kgと、(株)クレハ製のPVDF#7208(PVDFを8重量%含むN-メチル-2-ピロリドン(以下、NMPと略記)溶液)0.6kgと、アセチレンブラック90gと、適量のNMPとを、双腕式練合機で攪拌し、正極スラリーを調製した。この正極スラリーを厚み15μmのアルミニウム箔からなる正極芯材の両面に塗布した後、乾燥して、正極合剤層を形成した。この正極合剤層を圧縮して、総厚みが152μmの正極を得た。正極を43mm幅の帯状に裁断した。
(4)非水電解質の調製
 エチレンカーボネート(EC)と、ジメチルカーボネート(DMC)と、エチルメチルカーボネート(EMC)との体積比1:1:1の混合溶媒に、1モル/リットルの濃度でLiPF6を溶解させて非水電解質を調製した。非水電解質には3重量%のビニレンカーボネートを含ませた。
(5)電池の組み立て
 図1に示すような角型リチウムイオン二次電池を作製した。
 負極と正極と、これらの間に介在させた厚み20μmのポリエチレン製の微多孔質フィルムからなるセパレータ(セルガード(株)製のA089(商品名))を捲回し、断面が略楕円形の電極群1を構成した。電極群1はアルミニウム製の角型の電池缶2に収容した。電池缶2は、底部と、側壁とを有し、上部は開口しており、その形状は略矩形である。その後、電池缶2と正極リード3または負極リード4との短絡を防ぐための絶縁体7を、電極群1の上部に配置した。次に、絶縁ガスケット8で囲まれた負極端子6と安全弁10とを有する矩形の封口板5を、電池缶2の開口に配置した。負極リード4は、負極端子6と接続した。正極リード3は、封口板5の下面と接続した。電池缶2の開口の端部と封口板5とをレーザーで溶接し、電池缶2の開口を封口した。その後、封口板5の注液孔から2.5gの非水電解質を電池缶2に注入した。最後に、注液孔を封栓9で溶接により塞ぎ、高さ50mm、幅34mm、厚み約5.4mm、および設計容量850mAhの角型リチウムイオン二次電池を完成させた。
《比較例1》
 工程(2)において、実施例1の負極と、総厚み(黒鉛粒子の密度)が同じになるように、負極前駆体を加熱せずに線圧4×102kgf/cmで圧縮した以外、実施例1と同様の方法により負極を作製した。この負極を用いて、実施例1と同様の方法により、非水電解質二次電池を作製した。
《比較例2》
 工程(2)において、負極前駆体を加熱せずに圧縮した以外、実施例1と同様の方法により負極を作製した。このとき、負極の総厚みは159μmであった。この負極を用いて、実施例1と同様の方法により、非水電解質二次電池を作製した。
 実施例1ならびに比較例1および2の負極および電池について、以下の評価を実施した。
[負極の評価]
(1)負極合剤層1cm3あたりに含まれる黒鉛粒子の重量(以下、黒鉛粒子の密度)の測定
 負極合剤層の寸法(縦、横、および厚み)および黒鉛粒子の重量より、下記式を用いて活物質密度を求めた。
  黒鉛粒子の密度(g/cm3)=黒鉛粒子の重量(g)/負極合剤層の体積(cm3
(2)圧縮前後の黒鉛粒子の平均円形度の測定
 負極合剤層の断面を走査型電子顕微鏡(SEM)で観察して、負極合剤層中の黒鉛粒子の平均円形度を求めた。
 具体的には、SEMの画像処理により、平均粒径と一致する円相当径を有する任意の100個の黒鉛粒子を抽出し、それらの円形度を求め、その平均値を求めた。円相当径とは、粒子の二次元投影像の面積と同じ面積を有する円の直径である。
 円形度は、下記式より求めた。
 円形度=(粒子の二次元投影像と同じ面積を有する円の周囲長)/(粒子の二次元投影像の実際の周囲長)
 上記の黒鉛粒子の平均粒径は、SEMの画像処理により、負極合剤層中の任意の100個の黒鉛粒子を抽出し、それらの粒径の平均値として求めた。黒鉛粒子の平均粒径を求める際には、粒径が1μm以下の黒鉛粒子を除いた。1つの黒鉛粒子について、任意の3箇所にて測定を行い、その測定値の平均値を、その黒鉛粒子の粒径とした。
(3)圧縮工程における黒鉛粒子の平均円形度の減少率の測定
 下記式より圧縮時の黒鉛粒子の平均円形度の減少率を求めた。
 圧縮時の黒鉛粒子の平均円形度の減少率(%)=(圧縮前の黒鉛粒子の平均円形度-圧縮後の黒鉛粒子の平均円形度)/圧縮前の黒鉛粒子の平均円形度×100
(4)圧縮率の測定
 黒鉛粒子の圧縮前後の負極合剤層の厚みを測定し、下記式により圧縮率を求めた。
 圧縮率(%)=圧縮後の負極合剤層の厚み/圧縮前の負極合剤層の厚み×100
[角型電池の評価]
(1)充放電サイクル特性の評価
 20℃環境下で、下記条件で充放電し、初期容量を求めた。その後、20℃環境下で、下記条件で、充放電を100サイクル繰り返し、100サイクル目の放電容量を求めた。下記式により、100サイクル時の容量維持率を求めた。
 100サイクル時の容量維持率(%)=100サイクル目の放電容量/1サイクル目の放電容量×100
<充放電条件>
 定電流充電:充電電流値850mA、充電終止電圧4.2V
 定電圧充電:充電電圧値4.2V、充電終止電流100mA
 定電流放電:放電電流値850mA、放電終止電圧3V
 休止時間:10min
(2)充放電サイクル時における黒鉛粒子の平均円形度の変化の測定
 下記式より、100サイクル時の黒鉛粒子の平均円形度の増加率を求めた。
 100サイクル時の黒鉛粒子の平均円形度の増加率=(100サイクル時の黒鉛粒子の平均円形度-1サイクル時の黒鉛粒子の平均円形度)/1サイクル時の黒鉛粒子の平均円形度×100
(3)充放電サイクル時における負極合剤層の厚みの変化の測定
 下記式より、100サイクル時の負極合剤層の厚み増加率を求めた。
 100サイクル時の負極合剤層の厚みの増加率=(100サイクル時の負極合剤層の厚み-1サイクル時の負極合剤層の厚み)/1サイクル時の負極合剤層の厚み×100
 評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 黒鉛粒子の密度が1.5g/cm3以上であり、圧縮時の黒鉛粒子の平均円形度の減少率が14%である実施例1の負極を用いた電池では、比較例1および2の負極を用いた電池と比べて、優れた充放電サイクル特性が得られた。
 比較例1では、圧縮時に負極前駆体を加熱しないため、実施例1と同じ負極厚み(黒鉛粒子の密度)となるように圧縮すると、圧縮時の線圧は、実施例1よりも高い値となった。その結果、黒鉛粒子の変形が大きくなり、圧縮時の黒鉛粒子の平均円形度の減少率が大きくなり、充放電サイクル特性が低下した。
 比較例2では、圧縮時に負極前駆体を加熱しないため、実施例1と同じ線圧で圧縮すると、黒鉛粒子間に結着剤が十分に入り込まず、実施例1と比べて、負極合剤層中の黒鉛粒子間の結着性が低下し、充放電サイクル特性が低下した。
《実施例2》
 工程(2)において線圧を2.0×102kgf/cmとし、加熱温度を表3に示す値に変えた以外、実施例1と同様の方法により負極を作製した。この負極を用いて、実施例1と同様の方法により電池を作製した。上記方法により負極および電池を評価した。評価結果を表3に示す。
 負極B~Eでは、負極合剤層の黒鉛粒子の密度が1.5g/cm3以上であり、圧縮時の黒鉛粒子の平均粒子円形度の減少率が20%以下であった。工程(2)の加熱温度が50~100℃である電池B~Eでは、負極合剤層の黒鉛粒子の密度の高い負極が得られるとともに、優れた充放電サイクル特性が得られた。
《実施例3》
 工程(2)における加熱温度を80℃とし、線圧を表4に示す値に変えた以外、実施例1と同様の方法により負極を作製した。この負極を用いて実施例1と同様の方法により電池を作製した。上記方法により負極および電池を評価した。評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 負極G~Jでは、負極合剤層中の黒鉛粒子の密度が1.5g/cm3以上であり、圧縮時の黒鉛粒子の平均円形度の減少率が30%以下であった。工程(2)の線圧が1.0×102~3.0×102kgf/cmである電池G~Jでは、負極合剤層の黒鉛粒子の密度の高い負極が得られるとともに、優れた充放電サイクル特性が得られた。
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。
 本発明の負極は、角型等の非水電解質二次電池に好適に用いられる。本発明の非水電解質二次電池は、優れた初期特性および充放電サイクル特性を有するため、情報機器等の電子機器の電源として好適に用いられる。

Claims (11)

  1.  (1)負極芯材に、黒鉛粒子および結着剤を含む負極スラリーを塗布し、乾燥して負極合剤層を形成し、負極前駆体を得る工程と、
     (2)前記負極前駆体を前記結着剤が軟化する温度で加熱しながら圧縮し、負極を得る工程と、を含み、
     前記工程(2)において、前記負極の圧縮された前記負極合剤層が、前記黒鉛粒子を当該負極合剤層1cmあたり1.5g以上含み、かつ前記黒鉛粒子の平均円形度が、前記負極前駆体の黒鉛粒子の平均円形度の70%以上を保持するように、前記負極前駆体を加熱する温度および前記負極前駆体を圧縮する力を制御することを特徴とする非水電解質二次電池用負極の製造方法。
  2.  前記負極前駆体を加熱する温度が、前記結着剤の弾性率が、当該結着剤の25℃における弾性率の30%以下となる温度である請求項1記載の非水電解質二次電池用負極の製造方法。
  3.  前記負極前駆体を加熱する温度が、50~100℃である請求項1記載の非水電解質二次電池用負極の製造方法。
  4.  前記負極前駆体を圧縮する力が、1×102~3×102kgf/cmである請求項1記載の非水電解質二次電池用負極の製造方法。
  5.  請求項1記載の製造方法により得られた非水電解質二次電池用負極。
  6.  負極芯材、ならびに黒鉛粒子および結着剤を含み、前記負極芯材上に圧縮された負極合剤層を含む非水電解質二次電池用負極であって、
     前記負極合剤層は、前記黒鉛粒子を当該負極合剤層1cm3あたり1.5g以上含み、かつ前記黒鉛粒子の平均円形度は、圧縮前のそれの70%以上を保持していることを特徴とする非水電解質二次電池用負極。
  7.  前記負極合剤層は、前記黒鉛粒子を、当該負極合剤層1cm3あたり1.6g以上含み、かつ前記黒鉛粒子の平均円形度が0.7以上である請求項6記載の非水電解質二次電池用負極。
  8.  前記負極芯材が金属箔からなり、
     前記負極合剤層が前記金属箔の両面に形成され、
     前記負極合剤層の片面あたりの厚みが60~80μmである請求項6記載の非水電解質二次電池用負極。
  9.  請求項6記載の負極、正極活物質を含む正極、前記正極と負極との間に介在するセパレータ、および非水電解質を備える非水電解質二次電池。
  10.  充放電サイクル試験における、1サイクル時の前記黒鉛粒子の平均円形度に対する100サイクル時の前記黒鉛粒子の平均円形度の増加率は、20%以下である請求項9記載の非水電解質二次電池。
  11.  充放電サイクル試験における、1サイクル時の前記負極合剤層の厚みに対する100サイクル時の前記負極合剤層の厚みの増加率は、5%以下である請求項9記載の非水電解質二次電池。
PCT/JP2010/003963 2009-06-16 2010-06-15 非水電解質二次電池用負極の製造方法、負極、およびそれを用いた非水電解質二次電池 WO2010146832A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011519551A JPWO2010146832A1 (ja) 2009-06-16 2010-06-15 非水電解質二次電池用負極の製造方法、負極、およびそれを用いた非水電解質二次電池
US13/058,426 US20110136015A1 (en) 2009-06-16 2010-06-15 Method of producing negative electrode for non-aqueous electrolyte secondary battery, negative electrode, and non-aqueous electrolyte secondary battery using the same
CN2010800025598A CN102150304A (zh) 2009-06-16 2010-06-15 非水电解质二次电池用负极的制造方法、负极以及使用其的非水电解质二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009143500 2009-06-16
JP2009-143500 2009-06-16

Publications (1)

Publication Number Publication Date
WO2010146832A1 true WO2010146832A1 (ja) 2010-12-23

Family

ID=43356164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003963 WO2010146832A1 (ja) 2009-06-16 2010-06-15 非水電解質二次電池用負極の製造方法、負極、およびそれを用いた非水電解質二次電池

Country Status (4)

Country Link
US (1) US20110136015A1 (ja)
JP (1) JPWO2010146832A1 (ja)
CN (1) CN102150304A (ja)
WO (1) WO2010146832A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130111387A (ko) * 2012-03-30 2013-10-10 니폰 에이 엔 엘 가부시키가이샤 전지 전극용 바인더 및 이 바인더를 함유하는 조성물 및 전극
WO2014157418A1 (ja) * 2013-03-26 2014-10-02 日産自動車株式会社 非水電解質二次電池
KR20160037949A (ko) 2013-07-24 2016-04-06 니폰 에이 엔 엘 가부시키가이샤 전극용 바인더, 전극용 조성물 및 전극 시트
JP2017091885A (ja) * 2015-11-12 2017-05-25 トヨタ自動車株式会社 非水電解液二次電池

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100964490B1 (ko) * 2007-10-12 2010-06-21 킴스테크날리지 주식회사 쿼지바이폴라 구조를 갖는 전기화학셀
BRPI1107189A2 (pt) * 2011-12-05 2014-11-11 Valmeron Martins Bateria receptora, conversora, emissora do efeito ativo magnetohidroressonante, processo de preparo da bateria incluindo os compostos hidroressonante e biomagnético, e aplicativo técnico da mesma nos reinos mineral, vegetal e animal
JP6822372B2 (ja) * 2017-10-12 2021-01-27 トヨタ自動車株式会社 負極板および非水電解質二次電池

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08203500A (ja) * 1995-01-20 1996-08-09 Japan Storage Battery Co Ltd 非水電解液電池用極板の製造方法
JPH11126603A (ja) * 1997-10-22 1999-05-11 Japan Storage Battery Co Ltd 電池電極の製造方法
JP2001222996A (ja) * 2000-02-08 2001-08-17 Shin Kobe Electric Mach Co Ltd 非水電解液二次電池
JP2001266873A (ja) * 2000-03-16 2001-09-28 Hitachi Maxell Ltd 非水二次電池用負極、その製造方法および前記負極を用いた非水二次電池
JP2002025540A (ja) * 2000-07-03 2002-01-25 Matsushita Electric Ind Co Ltd 非水電解質二次電池および非水電解質二次電池用極板の製造方法
JP2002216757A (ja) * 2001-01-23 2002-08-02 Hitachi Maxell Ltd 非水二次電池
JP2007134276A (ja) * 2005-11-14 2007-05-31 Jfe Chemical Corp リチウムイオン二次電池用負極およびその製造方法ならびにリチウムイオン二次電池
JP2008135262A (ja) * 2006-11-28 2008-06-12 Matsushita Electric Ind Co Ltd 非水電解質二次電池負極の製造方法
JP2009054552A (ja) * 2007-08-29 2009-03-12 Sony Corp 非水電解質電池および非水電解質電池の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2729911Y (zh) * 2004-08-24 2005-09-28 惠州德赛能源科技有限公司 针形锂-二氧化锰电池

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08203500A (ja) * 1995-01-20 1996-08-09 Japan Storage Battery Co Ltd 非水電解液電池用極板の製造方法
JPH11126603A (ja) * 1997-10-22 1999-05-11 Japan Storage Battery Co Ltd 電池電極の製造方法
JP2001222996A (ja) * 2000-02-08 2001-08-17 Shin Kobe Electric Mach Co Ltd 非水電解液二次電池
JP2001266873A (ja) * 2000-03-16 2001-09-28 Hitachi Maxell Ltd 非水二次電池用負極、その製造方法および前記負極を用いた非水二次電池
JP2002025540A (ja) * 2000-07-03 2002-01-25 Matsushita Electric Ind Co Ltd 非水電解質二次電池および非水電解質二次電池用極板の製造方法
JP2002216757A (ja) * 2001-01-23 2002-08-02 Hitachi Maxell Ltd 非水二次電池
JP2007134276A (ja) * 2005-11-14 2007-05-31 Jfe Chemical Corp リチウムイオン二次電池用負極およびその製造方法ならびにリチウムイオン二次電池
JP2008135262A (ja) * 2006-11-28 2008-06-12 Matsushita Electric Ind Co Ltd 非水電解質二次電池負極の製造方法
JP2009054552A (ja) * 2007-08-29 2009-03-12 Sony Corp 非水電解質電池および非水電解質電池の製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130111387A (ko) * 2012-03-30 2013-10-10 니폰 에이 엔 엘 가부시키가이샤 전지 전극용 바인더 및 이 바인더를 함유하는 조성물 및 전극
JP2013229327A (ja) * 2012-03-30 2013-11-07 Nippon A&L Inc 電池電極用バインダー及び該バインダーを含有する組成物及び電極
KR102055452B1 (ko) * 2012-03-30 2020-01-22 니폰 에이 엔 엘 가부시키가이샤 전지 전극용 바인더 및 이 바인더를 함유하는 조성물 및 전극
WO2014157418A1 (ja) * 2013-03-26 2014-10-02 日産自動車株式会社 非水電解質二次電池
KR20150129753A (ko) * 2013-03-26 2015-11-20 닛산 지도우샤 가부시키가이샤 비수전해질 이차 전지
KR101634919B1 (ko) 2013-03-26 2016-06-29 닛산 지도우샤 가부시키가이샤 비수전해질 이차 전지
JP6004088B2 (ja) * 2013-03-26 2016-10-05 日産自動車株式会社 非水電解質二次電池
KR20160037949A (ko) 2013-07-24 2016-04-06 니폰 에이 엔 엘 가부시키가이샤 전극용 바인더, 전극용 조성물 및 전극 시트
JP2017091885A (ja) * 2015-11-12 2017-05-25 トヨタ自動車株式会社 非水電解液二次電池

Also Published As

Publication number Publication date
US20110136015A1 (en) 2011-06-09
CN102150304A (zh) 2011-08-10
JPWO2010146832A1 (ja) 2012-11-29

Similar Documents

Publication Publication Date Title
US9455477B2 (en) Non-aqueous electrolyte battery having polymer layers including graphite
US20100209763A1 (en) Electrode for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP4968183B2 (ja) 非水電解質二次電池および非水電解質二次電池の製造方法
WO2011039949A1 (ja) 非水電解質およびそれを用いた非水電解質二次電池
US20190067685A1 (en) Negative electrode slurry, negative electrode plate and electrochemical energy storage device
US9379376B2 (en) Positive electrode containing lithium nickel composite oxide for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and method for producing the same
US20110281163A1 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2005098997A1 (ja) 非水電解液二次電池
WO2010113419A1 (ja) 非水電解質およびそれを用いた非水電解質二次電池
JP2010267540A (ja) 非水電解質二次電池
WO2010146832A1 (ja) 非水電解質二次電池用負極の製造方法、負極、およびそれを用いた非水電解質二次電池
WO2011001666A1 (ja) 非水電解質二次電池用正極及びその製造方法並びに非水電解質二次電池
JP2006294393A (ja) リチウムイオン二次電池
JP2006294482A (ja) リチウムイオン二次電池
JP2010287472A (ja) 非水電解質二次電池
JP2012146590A (ja) 非水電解質二次電池用正極、その正極の製造方法、及び非水電解質二次電池
JP2011065929A (ja) 非水電解質二次電池用負極およびその製造方法
JP2009087885A (ja) 正極の製造方法
JP2013114848A (ja) リチウムイオン二次電池とその製造方法
JP2011192561A (ja) 非水電解液二次電池の製造方法
JP2011181386A (ja) 非水電解質二次電池
JP2013114847A (ja) リチウムイオン二次電池とその製造方法
JP5509644B2 (ja) リチウム二次電池の電極合剤用スラリー、電極、その製造方法およびリチウム二次電池
JP2007242518A (ja) 角形電池
KR101438696B1 (ko) 전극조립체 및 이를 구비하는 이차전지

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080002559.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 13058426

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10789213

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011519551

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10789213

Country of ref document: EP

Kind code of ref document: A1