JP4603072B2 - Ofdmシンボル時間追跡情報を使用するfftコレクションウィンドウ位置決め - Google Patents

Ofdmシンボル時間追跡情報を使用するfftコレクションウィンドウ位置決め Download PDF

Info

Publication number
JP4603072B2
JP4603072B2 JP2008501015A JP2008501015A JP4603072B2 JP 4603072 B2 JP4603072 B2 JP 4603072B2 JP 2008501015 A JP2008501015 A JP 2008501015A JP 2008501015 A JP2008501015 A JP 2008501015A JP 4603072 B2 JP4603072 B2 JP 4603072B2
Authority
JP
Japan
Prior art keywords
channel
ofdm symbol
point
fap
cyclic prefix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008501015A
Other languages
English (en)
Other versions
JP2008533860A (ja
Inventor
バルセルジ、ボジャン
マントラバディ、アショク
リング、フユン
ビジャヤン、ラジブ
ワン、マイケル・マオ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of JP2008533860A publication Critical patent/JP2008533860A/ja
Application granted granted Critical
Publication of JP4603072B2 publication Critical patent/JP4603072B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2662Symbol synchronisation
    • H04L27/2665Fine synchronisation, e.g. by positioning the FFT window
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2662Symbol synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0212Channel estimation of impulse response
    • H04L25/0216Channel estimation of impulse response with estimation of channel length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/022Channel estimation of frequency response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2649Demodulators
    • H04L27/265Fourier transform demodulators, e.g. fast Fourier transform [FFT] or discrete Fourier transform [DFT] demodulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2649Demodulators
    • H04L27/26524Fast Fourier transform [FFT] or discrete Fourier transform [DFT] demodulators in combination with other circuits for demodulation
    • H04L27/26526Fast Fourier transform [FFT] or discrete Fourier transform [DFT] demodulators in combination with other circuits for demodulation with inverse FFT [IFFT] or inverse DFT [IDFT] demodulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] receiver or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2675Pilot or known symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2676Blind, i.e. without using known symbols
    • H04L27/2679Decision-aided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2695Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation with channel estimation, e.g. determination of delay spread, derivative or peak tracking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Dc Digital Transmission (AREA)
  • Communication Control (AREA)
  • Radio Relay Systems (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Description

発明の分野
米国特許法第119条のもとでの優先権の主張
本出願は、2005年3月10日に出願された米国仮特許出願第60/660,717号の利点を特許請求するものであり、かつ非暫定的であり、これはこの譲渡人に譲渡され、その全体が参照として本明細書に組み込まれている。
発明の背景
直交周波数分割多重化(OFDM)とは、全システム帯域幅を複数(N個)の直交周波数サブバンドに効果的に分割するマルチキャリア変調技術である。これらのサブバンドは、トーン、サブキャリア、ビンおよび周波数チャネルとも称される。OFDMによって、各サブバンドは、データ、パイロットまたはオーバーヘッド情報によって変調されることがあるそれぞれのサブキャリアと関連付けられる。
OFDMシステムにおいて、送信機はデータを処理して変調シンボルを取得し、さらに、変調シンボルに処理を実行してOFDMシンボルを生成する。そして送信機は通信チャネルを介してOFDMシンボルを調整および送信する。OFDMシステムは送信構造を使用してもよく、これによってデータはフレームごとに送信され、各フレームは具体的な時間分を有している。異なるタイプのデータ(例えば、トラヒック/パケットデータ、オーバーヘッド/コントロールデータ、パイロットなど)は各フレームの異なる部分で送信されてもよい。用語「パイロット」は概して、送信機および受信機両方が事前に知っているデータおよび/または送信のことである。
受信機は通常、送信機によって送信されるデータを適切に回復するために適切なフレームおよびOFDMシンボルタイミングを取得する必要がある。例えば、受信機は、フレーム単位で送信される異なるタイプのデータを適切に回復するために、各フレームの開始を知る必要がある場合もある。受信機はしばしば、各OFDMシンボルが送信機によって送信される時間や、通信チャネルによって導入される伝搬遅延を知っているわけではない。そして受信機は、相補的OFDM復調を受信OFDMシンボルに適切に実行するために、通信チャネルを介して受信される各OFDMシンボルのタイミングを明確にする必要があるだろう。
同期とは、フレームおよびOFDMシンボルタイミングを取得するために受信機によって実行されるプロセスのことである。受信機はまた、周波数エラー推定およびチャネル推定などの他のタスクを実行することもある。同期は、タイミングを改善し、かつチャネルの変化を補正するために異なる時点で生じることがある。チャネルの急激な変化はほとんど生じないため、無線システムはコヒーレントにこのタイミング変化を有することができる。
しばしばチャネルは様々な遅延およびマルチパスを経験する。信号の異なる反射や経路は異なる時点で受信機に達し、異なる大きさを有することが可能である。フェージングは受信信号の大きさに影響を与える。遅延分散とは、最初の着信経路(FAP)および最後の着信経路(LAP)間の差である。LAPは、実際に最後に受信された反射ではなく、一部の時間遅延制限および/または大きさ基準を満たす最後のものであってもよい。FAPおよびLAPの両方が正しく推定可能であり、かつこれに応じてOFDMシンボルタイミングが調整される場合、受信信号反射の大部分は建設的にデータ復調に使用可能である。
発明の概要
一態様では、マルチキャリア通信信号を分析するフーリエ変換関数のコレクションウィンドウを配置するための方法が開示される。一ステップでは、第1の直交周波数分割多重(OFDM)シンボルおよび第2のOFDMシンボルが受信される。該第1のOFDMシンボルは複数の周波数分割多重(FDM)シンボルを備えている。該第1のOFDMシンボルは、最初の着信経路(FAP)および最終着信経路(LAP)を備えることを特徴とする。チャネルインパルス応答が該複数のFDMシンボルを使用して判断される。チャネル位置は該チャネルインパルス応答から推定される。該チャネル位置に対するポイントが選択され、この場合該チャネル位置はFAP、LAPまたは遅延分散のうちの少なくとも2つによって特徴付けられる。該コレクションウィンドウの開始は該第2のOFDMシンボルに対して該ポイントに配置される。該ポイントは、遅延分散が所定の長さ未満の場合、第1のアルゴリズムを使用して該チャネル位置に対する第1の位置で選択される。代替的に、該ポイントは、該遅延分散が該所定の長さより大きい場合、第2のアルゴリズムを使用して該チャネル位置に対する第2の位置で選択される。該第1および第2のアルゴリズムは異なり、また該第1および第2の位置は異なる。
一態様において、マルチキャリア通信信号を分析するフーリエ変換関数のコレクションウィンドウを配置するための受信機が開示される。該受信機は、第1のOFDMシンボルおよび第2のOFDMシンボルを受信する手段と、該複数のFDMシンボルを使用してチャネルインパルス応答を判断する手段と、該チャネルインパルス応答からチャネル位置を推定する手段であって、該チャネル位置は遅延分散、FAPまたはLAPのうちの少なくとも2つによって特徴付けられる手段と、該チャネル位置に対するポイントを選択する手段と、該コレクションウィンドウの開始を該第2のOFDMシンボルに対して該ポイントに配置する手段とを含んでいる。該第1のOFDMシンボルは複数のFDMシンボルを備えており、該第1のOFDMシンボルはFAPおよびLAPによって特徴付けられる。該ポイントは、遅延分散が所定の長さ未満である場合、第1のアルゴリズムを使用して該チャネル位置に対する第1の位置で選択される。代替的に、該ポイントは、該遅延分散が該所定の長さより大きい場合、第2のアルゴリズムを使用して該チャネル位置に対する第2の位置で選択される。該第1および第2のアルゴリズムは異なり、また該第1および第2の位置は異なる。
一態様では、マルチキャリア通信信号を分析するフーリエ変換関数のコレクションウィンドウを配置するための通信デバイスが開示される。該通信デバイスは、共に結合されているプロセッサおよびメモリを含んでいる。該プロセッサは、第1のOFDMシンボルおよび第2のOFDMシンボルを受信し(この場合第1のOFDMシンボルはFAPおよびLAPによって特徴付けられる)、該第1のOFDMシンボルからの複数のFDMシンボルを使用してチャネルインパルス応答を判断し、該チャネルインパルス応答からチャネル位置を推定し(この場合、該チャネル位置は遅延分散、FAPまたはLAPのうちの少なくとも2つによって特徴付けられる)、該チャネル位置に対するポイントを選択し、該コレクションウィンドウの開始を該第2のOFDMシンボルに対して該ポイントに配置するように構成されている。該ポイントは、遅延分散が所定の長さ未満である場合、第1のアルゴリズムを使用して該チャネル位置に対する第1の位置で選択される。代替的に、該ポイントは、該遅延分散が該所定の長さより大きい場合、第2のアルゴリズムを使用して該チャネル位置に対する第2の位置で選択される。該第1および第2のアルゴリズムは異なり、また該第1および第2の位置は異なる。
本開示の適用可能性に関するさらなる分野が、ここに提供されている詳細な説明から明らかになるであろう。詳細な説明および具体例は、種々の実施形態を示しているが、例示目的にすぎず、また本開示の範囲を必ずしも制限する意図はないことが理解されるべきである。
好ましい実施形態の詳細な説明
本開示について添付の図面を参照して説明する。
添付の図面において、同様のコンポーネントおよび/または特徴は同一の参照ラベルを有することがある。
以下の説明は好ましい例示的実施形態のみを提供し、本発明の範囲、適用可能性または構成を制限する意図はない。むしろ、好ましい例示的実施形態についての以下の説明は、本発明の好ましい例示的実施形態を実現するための実用的な説明を当業者に提供する。添付の請求項に説明されている本発明の主旨および範囲を逸脱することなく、要素の機能および配置に関して種々の変更がなされてもよいことが理解されるべきである。
実施形態の徹底的な理解を提供するために、具体的な詳細が以下の説明に付与される。しかし、実施形態はこれらの具体的詳細なしで実践可能である点が当業者には理解されるであろう。例えば、不必要な詳細で実施形態を妨げないように回路はブロック図で示されてもよい。他の例では、既知の回路、プロセス、アルゴリズム、構造および技術は、実施形態を妨げないように、不必要な詳細なしで示されてもよい。
また、本実施形態は、フローチャート、フロー図、データフロー図、構造図あるいはブロック図として描かれているプロセスとして説明可能である点が注目される。フローチャートは順次プロセスとして動作を説明する場合があるが、動作の多くは、並列または同時に実行可能である。加えて、動作の順序は並べ替えられてもよい。プロセスは、その動作が完了すると終了するが、図面には含まれていない追加ステップを有することもある。プロセスは、方法、機能、手順、サブルーチン、サブプログラムなどに対応することがある。プロセスが機能に対応する場合、その終了は、呼び出し機能やメイン機能にこの機能が戻ることに対応する。
さらに、ここに開示されているように、用語「記憶媒体」とは、リードオンリーメモリ(ROM)、ランダムアクセスメモリ(RAM)、磁気RAM、コアメモリ、磁気ディスク記憶媒体、光記憶媒体、フラッシュメモリデバイスおよび/または情報記憶用の他の機械読み取り可能な媒体を含む1つ以上のデータ記憶デバイスを表すことがある。用語「機械読み取り可能な媒体」は、ポータブルまたは固定記憶デバイス、光記憶デバイス、無線チャネル、および、命令および/またはデータを記憶、含有あるいは担持可能な種々の他の媒体を含むが、これらに制限されない。
さらに、実施形態は、ハードウェア、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語、あるいはこれらの組み合わせで具現化されてもよい。ソフトウェア、ファームウェア、ミドルウェアまたはマイクロコードで具現化される場合、必要なタスクを実行するためのプログラムコードやコードセグメントは、記憶媒体などの機械読み取り可能な媒体に記憶されてもよい。プロセッサは必要なタスクを実行してもよい。コードセグメントや機械実行可能な命令は、手順、機能、サブプログラム、プログラム、ルーチン、サブルーチン、モジュール、ソフトウェアパッケージ、クラス、あるいは、命令、データ構造またはプログラムステートメントの組み合わせを表すことがある。コードセグメントは、情報、データ、引数、パラメータあるいはメモリコンテンツを譲渡および/または受信することによって別のコードセグメントやハードウェア回路に結合されてもよい。情報、引数、パラメータ、データなどは、メモリ共有、メッセージ譲渡、トークン譲渡、ネットワーク送信などを含む適切な手段を介して譲渡、転送または送信されてもよい。
ここに説明されている同期技術は、種々のマルチキャリアシステム、ダウンリンクならびにアップリンク、およびブロードキャストシステムに使用されてもよい。ダウンリンク(つまりはフォワードリンク)とは基地局から無線受信機への通信リンクであり、アップリンク(つまりリバースリンク)とは無線受信機から基地局への通信リンクのことである。明確にするために、これらの技術は、直交周波数分割多重化(OFDM)または直交周波数分割多重アクセス(OFDMA)システムにおけるダウンリンクについて以下説明される。パイロット検出構造はブロードキャストシステムに適しているが、非ブロードキャストシステムに使用されてもよい。ブロードキャストトポロジーにおいて、フォワードリンクは、単一の基地局によって送信され、かつ多数の無線受信機によって受信される。一実施形態では、フォワードリンクは、単一の無線受信機、複数の無線受信機のサブセット、または全無線受信機を対象とするいくつかのチャネルを有する場合がある。
OFDMシステムにおける初期捕捉後のタイミング同期のための改良された方法およびシステムが開示されている。精密タイミング捕捉(FTA)は、本開示に説明されているデータモード時間追跡(DMTT)の実行に先行することがある。時間分割多重(TDM)パイロット1処理に基づいた初期時間捕捉の結果は粗タイミング推定である。粗タイミング推定は、スーパーフレームの開始に関する情報を提供して、TDMパイロット2の開始の粗推定を付与する。TDMパイロット2構造を使用するさらなるタイミング推定によって、受信機は、後続のOFDMシンボルのより正確な開始位置を推定する。このステップはFTAと称される。
FTAが実行されると、DMTTモードで継続中のタイミング補正は、チャネルが一時的に弱まったとしても受信機を同期状態に保ち、広範な遅延分散を経験し、新たに生じるエネルギークラスターや他の問題を知ることになる。DMTTはTDMパイロットや周波数分割多重(FDM)パイロットを使用可能であるが、以下の説明は、TDMパイロットにも適用可能であるが、主にFDMパイロットに関するものである。同期化は、チャネルの最初の着信経路(FAP)の検出の他に多くを伴っているが、チャネルから最も有用なエネルギーを捕捉するためのFFTコレクションウィンドウの最良位置を発見することを含んでいる。一実施形態では、このプロセスは、最大768個のチップの遅延分散によって1024個のサンプルのチャネル推定にうまく対処するように設計されている。
一実施形態では、DMTT補正は、FAP位置と、チャネルの推定遅延分散Dの両方に左右される。時間追跡ユニットはまず、最大累積エネルギーが生じる場所Tを発見し、この最大値Eを記憶する。次に、Tの左右への累積エネルギー曲線は、1未満のある所定値bに対して累積エネルギーが値(1−b)E以下に低下する位置を検索するために検証される。言い換えると、累積エネルギーが検出ウィンドウにおいてその最大値から数パーセント(例えば、5%または3%)下がったところに、累積エネルギー曲線の平坦ゾーンの始端および終端が定義される。パーセンテージは累積エネルギー曲線の最大値付近の帯域を定義する。この帯域に入ることによって、帯域の平坦部分の始端Tを定義するのに対して、帯域を出ることによって帯域の平坦部分の終端Tを定義する。終端はFAPの位置と一致するが、始端は最後の着信経路(LAP)−Nと等しい。始端と終端の差はN−遅延分散Dに等しい。従って、遅延分散DはD=N−T−Tとして計算可能である。FAP、LAPまたはDのうちの少なくとも2つが計算されると、DMTTはFFTコレクションウィンドウの配置に伴って実行される。
図1をまず参照すると、OFDMシステム100における基地局110および無線受信機150の実施形態のブロック図が示されている。基地局110は一般的に固定局であるが、基地トランシーバシステム(BTS)、アクセスポイント、あるいは他の用語で呼ばれてもよい。無線受信機150は固定でもモバイルでもよく、またユーザー端末、モバイル局、あるいは他の用語で呼ばれてもよい。無線受信機150は、ポータブルユニット、例えば、セルラー電話、ハンドヘルドデバイス、無線モジュール、携帯情報端末(PDA)、テレビ受像機などであってもよい。
基地局110において、TXデータ/パイロットプロセッサ120は異なるタイプのデータ(例えば、トラヒック/パケットデータおよびオーバーヘッド/コントロールデータ)を受信し、受信データを処理して(例えば、符号化、インタリーブ化、変調シンボルのマッピング)、データシンボルを生成する。ここで使用されているように、「データシンボル」はデータ用の変調シンボルであり、「パイロットシンボル」はパイロット用の変調シンボルであり、変調シンボルは、変調スキーム(例えば、M−PSK、M−QAMなど)用の信号コンステレーションポイントの複素数値である。パイロットプロセッサ120はまたパイロットデータを処理してパイロットシンボルを生成し、データシンボルおよびパイロットシンボルをOFDM変調器130に提供する。
OFMD変調器130は、後述されるように、データシンボルおよびパイロットシンボルを適切なサブバンドおよびシンボル周期に多重化して、さらにOFDM変調を多重化変調シンボルに実行して、OFDMシンボルを生成する。本実施形態では、OFDMシンボルは周波数ドメインにおいて4096個の変調シンボルで形成され、この場合変調シンボル当たり1個のサブキャリアがある。送信機(TMTR)ユニット132はOFDMシンボルを1つ以上のアナログ信号に変換し、さらに、アナログ信号を調整し(例えば、増幅、フィルタリング、周波数アップコンバートなど)、変調信号を生成する。そして基地局110は変調信号をアンテナ134からOFDMシステム100の無線受信機に送信する。本実施形態の時間ドメインにおいて、各OFDMシンボル周期は、長さが4096+512+17=4625個のサンプルである。
無線受信機150において、基地局110からの送信信号はアンテナ152によって受信され、受信機ユニット154に提供される。受信機ユニット154は受信信号を調整して(例えば、フィルタリング、増幅、周波数ダウンコンバートなど)、調整済み信号をディジタル化して入力サンプルのストリームを取得する。OFDM復調器160はOFDM復調を入力サンプルに実行して、受信されたデータシンボルおよびパイロットシンボルを取得する。OFDM復調器160はまた検出(例えば、整合フィルタリング)を受信データシンボルに対してチャネル推定(例えば、周波数応答推定)によって実行して、検出されたデータシンボルを取得するが、これらは基地局110によって送られるデータシンボルの推定である。OFDM復調器160は検出されたデータシンボルを受信(RX)データプロセッサ170に提供する。
同期/チャネル推定ユニット(SCEU)180は、後述のように、受信機ユニット154から入力サンプルを受信し、同期化を実行して、フレームおよびOFDMシンボルタイミングを判断する。SCEU180はまた、受信パイロットシンボルを使用するチャネル推定をOFDM復調器160から導出する。SCEU180はOFDMシンボルタイミングおよびチャネル推定をOFDM復調器160に提供し、フレームタイミングをRXデータプロセッサ170および/またはコントローラ190に提供することもある。OFDM復調器160はOFDMシンボルタイミングを使用してOFDM復調を実行し、またチャネル推定を使用して受信データシンボルの検出を実行する。
RXデータプロセッサ170はOFDM復調器160からの検出データシンボルを処理して(例えば、シンボルデマッピング、デインタリーブ、復号など)、復号データを提供する。RXデータプロセッサ170および/またはコントローラ190はフレームタイミングを使用して、基地局110によって送られる様々なタイプのデータを回復する。一般的に、OFDM復調器160およびRXデータプロセッサ170による処理は、基地局110におけるOFDM変調器130およびTXデータ/パイロットプロセッサ120による処理に対してそれぞれ相補的である。
コントローラ140、190は、基地局110および無線受信機150での動作をそれぞれ命令する。コントローラはプロセッサおよび/または状態機械である場合もある。メモリユニット142、192は、コントローラ140および190によってそれぞれ使用されるプログラムコードおよびデータの記憶装置を提供する。メモリユニット142、192は、情報を記憶するために種々のタイプの記憶媒体を使用してもよい。
基地局110は、このカバレージエリアにおいて、ポイントツーポイント送信を単一の無線受信機に、マルチキャスト送信を1グループの無線受信機に、ブロードキャスト送信を全無線受信機に送信してもよく、またはこれらの組み合わせでもよい。例えば、基地局110は、このカバレージエリアにおいてパイロットおよびオーバーヘッド/コントロールデータを全無線受信に送信してもよい。基地局110はさらに、種々の状況および実施形態において、ユーザー固有のデータを特定の無線受信機に、マルチキャストデータを1グループの無線受信機に、および/またはブロードキャストデータを全無線受信機にシングルキャスト送信してもよい。
図2A、2Bおよび2Cを参照すると、OFDMシステム100に使用可能なスーパーフレーム構造200の実施形態が示されている。データおよびパイロットはスーパーフレーム204で送信されてもよく、各スーパーフレーム204は所定の時間分を有している。スーパーフレーム204はまた、フレーム、タイムスロットあるいは他の用語で呼ばれることがある。本実施形態では、各スーパーフレーム204は、第1のTDMパイロット用のTDMパイロット1フィールド212、第2のTDMパイロット用のTDMパイロット2フィールド214、オーバーヘッド/コントロールデータ用のオーバーヘッドフィールド216、およびトラヒック/パケットデータ用のデータフィールド218を含んでいる。
4個のフィールド212、214、216、218はスーパーフレーム204ごとにデータを保持する。種々の割り当てスキームが使用可能であり、例えばバーストTDM、サイクルTDMおよび/またはバーストTDM/FDMである。一実施形態では、4個のフィールド212、214、216、218はまた、同期化およびデータ回復を容易にするように配列される。各スーパーフレーム204において最初に送信されるパイロットTDMシンボル212、214は、スーパーフレーム204において次に送信されるオーバーヘッドフィールド216のオーバーヘッドOFDMシンボルの検出に使用されてもよい。さらに、TDMパイロットフィールド212、214はOFDM信号のタイミング捕捉に使用される。オーバーヘッドフィールド216から取得されたオーバーヘッド情報は次いで、スーパーフレーム204で最後に送信されるデータフィールド218で送られるトラヒック/パケットデータの回復に使用されてもよい。
一実施形態では、TDMパイロット1フィールド212はTDMパイロット1に対してOFDMシンボル1個を担持し、TDMパイロット2フィールド214はTDMパイロット2に対してOFDMシンボル1個を担持する。一般的に、各フィールドは任意の期間であってもよく、またフィールドは任意の順序で配列されてもよい。一部の実施形態では、TDMパイロット1 212および/またはTDMパイロット2 214は、無線受信機による同期化を容易にするために、各スーパーフレーム204において定期的に送信可能である。
OFDMシステム100は、BW MHzの全システム帯域幅を有しており、これはOFDMを使用してN個の直交サブバンドに分割される。隣接するサブバンド間の間隔はBW/N MHzである。全N個のサブバンドのうち、M個のサブバンドがパイロットおよびデータの送信に使用可能であり(ここでM<Nである)、また残りのN−M個のサブバンドは未使用であり、ガードサブバンドとして作用することもある。一実施形態では、OFDMシステム100は、全N=4096個のサブバンドと、M=4000個の使用可能なサブバンドと、N−M=96個のガードサブバンドとによるOFDM構造を使用する。加えて、FDMパイロットシンボルは各OFDMシンボル226においてインタリーブされ、例えば、500個のFDMパイロットシンボルと3500個のデータシンボルがガードサブバンド外で使用可能となるように、各8番目のサブバンドはデータシンボルをFDMパイロットシンボルによってパンクチャする。一般的に、任意の使用可能なガードサブバンド総数を有するOFDM構造はOFDMシステム100に使用されてもよい。
データフィールド218は多数のフレーム222を含んでおり、これらは図2Bに詳述されている。本実施形態では、各データフィールド218に4個のフレーム222があるが、異なる実施形態ではこれよりも多数または少数のフレームを使用可能である。各フレーム222は、図2Cに示されているように多数のOFDMデータシンボル226を含んでいる。一実施形態では、各OFDMデータシンボル226は、未使用のガードサブバンドおよび除去されたFDMパイロットシンボルを考慮すると3500個のデータシンボルを含んでいる。
とりわけ、TDMパイロット1 212およびTDMパイロット2 214は、OFDMシステム100の無線受信機150による同期化を容易にするように設計されている。無線受信機は、各フレームの開始を検出し、OFDMシンボルタイミングの粗推定を取得し、かつ周波数エラーを推定するためにTDMパイロット1 212を使用してもよい。無線受信機は、より正確つまり精密なタイミング捕捉を取得するためにTDMパイロット2 214を使用してもよい。データシンボル内でインタリーブされたFDMパイロットシンボルによってさらに、同期タイミングは信号エネルギーの捕捉を最適化することができる。具体的には、FDMパイロットはチャネル推定に使用可能であり、チャネル推定は、信号エネルギーの捕捉を最適化し、最終的にはOFDMシンボルタイミングを再調整するために使用可能である。
次に図3を参照すると、基地局110のOFDM変調器130の一実施形態のブロック図の一実施形態が示されている。シンボル・サブバンド間マッピング/多重化ユニット510はTXデータ/パイロットプロセッサ120からデータシンボルおよびパイロットシンボルを受信し、これらのシンボルを、コントローラ140からのSubband_Mux_Ctrl信号に基づいて適切なサブバンドにマッピングする。各OFDMシンボル周期では、シンボル・サブバンド間マッピングユニット510は、データまたはパイロット送信に使用されるサブバンドごとに1個のデータシンボルまたはパイロットシンボルを、未使用サブバンドごとに(信号値0である)「ゼロシンボル」を提供する。OFDMシンボル周期ごとに、シンボル・サブバンド間マッピングユニット510は、全N個のサブバンドにN個の変調シンボルを提供して、各変調シンボルはデータシンボル、パイロットシンボルまたはゼロシンボルであってもよい。
Nポイント逆離散フーリエ変換(IDFT)ユニット512はOFDMシンボル周期ごとにN個の変調シンボルを受信し、このN個の変調シンボルをNポイントIDFTによって時間ドメインに変換し、N個の時間ドメインサンプルを含有する「変換済み」シンボルを提供する。各サンプルは、1つのサンプル周期で送られる複素数値である。Nポイント逆高速フーリエ変換(IFFT)はまた、Nが2の累乗であれば、NポイントIDFTの代わりに実行されることもあり、これが通常の場合である。
並列/直列(P/S)変換器530は変換済みシンボルごとにN個のサンプルを直列化する。そしてサイクリックプレフィックス生成器540は各変換済みシンボルの一部(つまりC個のサンプル)を反復して、N+C個のサンプルを含有するOFDMシンボルを形成する。例えば、サイクリックプレフィックス1004は、一実施形態においては、OFDMシンボルの最後の512個のサンプルである。サイクリックプレフィックスは、例えば通信チャネルの長期遅延分散によって引き起こされるシンボル間干渉(ISI)およびキャリア間干渉(ICI)に対処するために使用される。一般的に、遅延分散は、受信機150における信号のFAPとLAPの時間差である。OFDMシンボル周期(または、単に「シンボル周期」)はOFDMシンボルの期間であり、N+C個のサンプル周期に等しい。一実施形態では、シンボル周期が4608となるようにN=4096かつC=512である。OFDMシンボル周期が4625となるように、OFDMシンボル間で17個のサンプル周期のシンボル間ガード帯域を有する実施形態もある。
次に図4を参照すると、無線受信機150のSCEU180のブロック図の一実施形態が示されている。図示されている実施形態において、SCEU180は時間追跡(つまりデータモード)DMTT状態で動作中である。SCEU180内で、ウィンドウ配置ユニット725はOFDMシンボルタイミング補正に応じてサンプルを整列させ、シンボルタイミング検出器720つまりDMTTユニットからのシンボルタイミング情報を使用してOFDMシンボルから冗長CP1004を排除する。本実施形態では、OFDMシンボルは、ウィンドウ配置ユニット725の後に4096個のサンプルで表される。OFDMシンボルからの関連する4096個のサンプルはFFTウィンドウ配置ユニット725に見られ、NポイントDFTユニットに送られて、関連する4096個のサンプルを使用して受信機において変換済みOFDMシンボルを作成する。
周波数エラー推定器712はスクリーニング入力サンプルを受信し、受信信号における周波数エラー推定を判断する。周波数推定は周波数補正ユニット715に提供されて、周波数補正を実行する。この周波数エラーは、例えば、基地局および無線受信機における発振器の周波数の差やドップラーシフトなどの種々の原因による場合がある。スクリーニングおよび周波数補正された入力サンプルは、周波数推定を使用して周波数補正ユニット715によって生成される。チャネル推定ユニット730は、変換済みシンボルにおけるFDMパイロットからチャネル推定を受信および導出する。
チャネル推定は主にデータ復調を支援するために使用されるが、将来のOFDMシンボルのシンボルタイミングを判断するためにも使用される。シンボルタイミング検出器720はチャネル推定からシンボルタイミングを判断し、タイミング情報をウィンドウ配置ユニット725に提供する。反復的に、ウィンドウ配置は前のチャネル推定に影響される。
図5を参照すると、シンボルタイミング検出器720およびチャネル推定器730の一実施形態のブロック図が、FDMパイロットに基づいてタイミング同期およびチャネル推定を実行する一実施形態と関連して示されている。チャネル推定器730はFDMパイロットに基づいて、時間および周波数両方のドメインチャネル推定を生成する。時間ドメインチャネル推定はシンボルタイミング検出器720によって、チャネル推定ユニットにフィードバックされて次の時間ドメインチャネル推定の捕捉に影響を与える新たなタイミングオフセットを生成する際に使用される。タイミングオフセットはまたFFTウィンドウ配置ユニット725、ならびに受信ユニット150における他の回路によって使用される。このループによって、受信ユニット150全体の様々な場所で使用するタイミングオフセットを反復的に判断することができる。
チャネル推定器730は時間ドメインにおいてチャネルインパルス応答を生成する、つまりチャネル推定器730は、時間フィルタユニット528を使用して、FDMパイロットから時間および周波数両方のドメインでのチャネル推定を担っている。チャネル推定器730は、本実施形態では、NポイントDFT514と、パイロット復調器516と、ゼロ外挿ユニット517と、MポイントIDFT518と、時間フィルタ528と、MポイントDFT532とを含んでいる。NポイントDFT514は、FFTウィンドウ配置ユニット725によるサイクリックプレフィックスにおける冗長情報の除去後に、例えばOFDMシンボルに4096ポイントフーリエ変換を実行する。データシンボルがNポイントDFT514の後であらゆる場所で使用されるとしても、DFTから出力された500個のFDMパイロットに議論の焦点を当てる。FDMパイロットはパイロット復調ユニット516で復調されて、500個の復調FDMパイロットを生成する。ゼロ外挿ユニット517は500個の実パイロットを512個の外挿FDMパイロットに変換する。MポイントIDFT518は512ポイント逆フーリエ変換を使用して、512個の外挿FDMパイロットに基づいて時間ドメインチャネル観測を生成する。時間ドメインチャネル観測はエリアシングを有する場合がある。
時間フィルタ528は、多数の連続OFDMシンボルに対するチャネル観測を収集することによって、生じうるエリアシングを除去する。時間フィルタ528の本実施形態は3つの連続OFDMシンボルに対するチャネル観測をフィルタリングするが、他の実施形態は、この数より多数または少数のOFDMシンボルの平均化を実行する場合がある。本プロセスを通して、サンプル512個の長さの3つの連続チャネル観測は、本実施形態では、サンプル1024個の長さの時間ドメインチャネル推定に結合される。タイミングオフセットは、3つの連続チャネル観測を整列するために使用される。
シンボルタイミング検出器720内で、チャネル平均化ユニット508および時間追跡ブロック520がシンボルタイミングを判断するために使用される。シンボルタイミング検出器720は、チャネル推定ユニット730の副産物である連続時間ドメインチャネル推定を受信し、時間ドメインチャネル推定を処理して信号を追跡し、チャネル推定器730による将来のチャネル推定の生成をコントロールする。チャネルエネルギーの位置は、FDMパイロットによって生成されるチャネル推定の分析に基づいて時間追跡器520によって判断される。
次に図6を参照すると、シンボルタイミング検出器720の一実施形態のブロック図が示されており、これは、チャネルエネルギー位置の判断の助けとなるように使用される。本実施形態は2レベルのフィルタリングを使用するが、フィルタ1個のみを有しているか、全くフィルタリングのない実施形態もある。チャネルインパルス応答つまり時間ドメインチャネル推定は一度に1タップずつ順次受信され、短期平均ブロック908によってフィルタリングされる。短期平均は最後のいくつかのチャネル推定を使用して、チャネル推定の短期平均を維持する。一般的に、平均化されたチャネルインパルス応答は1つのフレーム周期内にある。短期平均化プロセスは、短期平均を長期平均化ブロック912に提供した後に定期的にクリアされる。本実施形態では、短期平均化ブロック912は、有用なチャネル情報と背景雑音を区別して、チャネルタップをより正確に識別し、かつさらなる処理に使用される平均チャネルインパルス応答を平滑化する助けとなる。
インターバルタイマー928は、クリア前に結果を長期平均ブロック912に提供可能な遅延932の後に短期平均ブロック608をクリアする。インターバルタイマーは、1つのフレーム周期のチャネル推定が短期平均ブロックで使用されるように、一実施形態では各ファイル222後にトリガされる。クリア動作中、短期平均ブロックからの出力はスイッチによって長期平均912から接続解除される。インターバルタイマー928の周期は一部の実施形態では調整可能であり、予想コヒーレント時間に左右されることがある。
本実施形態では、チャネルインパルス応答は長さが1024個のタップであるが、他の実施形態では他のサイズであってもよい。スプリアスチャネル推定は、ディジタルフィルタを使用する短期平均ブロック908でフィルタリングされ、例えば無限インパルス応答(IIR)が示されているが、有限インパルス応答(FIR)フィルタが他の実施形態では代替的に使用されることがある。短期平均ブロック908におけるのと同様に経時的にチャネルタップエネルギーを1つずつフィルタリングすることによって、チャネルエネルギープロファイルを経時的に平均化することができ、またチャネル対背景雑音のかなりの部分を強化する助けとなる。短期平均チャネル推定は瞬時検出器を通過し、瞬時FAPおよびLAPを発見し、これらは、過去のいくつかのOFDMシンボルのチャネルプロファイルに対応する。
別のフィルタリングステップにおいて、長期平均ブロック912は短期平均チャネル推定を取り、これを履歴チャネル推定に対してフィルタリングする。これらの履歴チャネル推定は一般的に、(1つ以上のスーパーフレーム204全体にもわたる)複数の先行フレーム222からのチャネルプロファイルによるものである。いずれの場合も、長期平均ブロック912は、短期平均ブロック908よりも広範なチャネル推定を使用する。FIRやIIRフィルタは、履歴チャネル推定を現行の短期平均チャネル推定と結合するために使用される。一実施形態では、長期平均ブロックは、過去に生じており、かつ将来も生じる可能性があるが、頻度の小さいチャネル特徴を想起させるために使用される。長期平均チャネル推定はトレンド検出器920に譲渡されて、FAPおよびLAPの挙動のトレンドを発見する。
チャネルロケータブロック924は瞬時FAPおよびLAPと、トレンドFAPおよびLAPとをとり、ウィンドウ配置ユニット725にFFTコレクションウィンドウを配置する際、ならびに時間フィルタ528にチャネル観測を整列する際に使用されるオフセットOffを判断する。オフセット判断およびアプリケーションに使用されるアルゴリズム動作については以下さらに説明する。
再度図5を参照すると、時間追跡器520は、累積エネルギー曲線1050のピークにおける低下を検索することによってFAPを判断してもよい。累積およびピークの検出は、チャネルインパルス応答プロファイルつまり「チャネルプロファイル」全体に長さNの「検出」ウィンドウをスライドすることによって達成されてもよい。各検出ウィンドウ開始位置において、検出ウィンドウ1016内にある全タップのエネルギーが、累積エネルギー曲線1050を発見するために計算される。累積エネルギー曲線1050は分析されて、累積エネルギー曲線1050の最大値付近の平坦域の始端および終端を発見することによってFAPおよびLAPを判断する。
さまざまな検出ウィンドウ1016の開始位置でのチャネルタップの累積エネルギーのプロットが、一実施形態の累積エネルギー曲線1050に対して図10Bに示されている。検出ウィンドウ1016は循環的に右側にシフトされて、検出ウィンドウ1016の右端が最終タップに達すると、ウィンドウ1016は最初のタップに折り返す。従って累積エネルギーは、チャネルプロファイル1030のチャネルインパルス応答タップ全体にわたって各検出ウィンドウ1016の開始位置ごとに同数のチャネルタップについて収集される。
図7を参照すると、時間フィルタユニット528およびMポイントDFT532の一実施形態のブロック図が示されており、図5において高レベルに示されたこれらのブロックを詳述している。図7は、対象のデータインタレースに対して周波数ドメインの512ポイントチャネル推定を取得するためにチャネル観測に実行される動作を示している。
一実施形態では、チャネル推定は、各OFDMシンボルにある500FDMパイロットサブキャリアに基づいて実行される。収集されたFDMパイロットは、NポイントDFTユニット514、パイロット復調ユニット516、ゼロ外挿ユニット517およびMポイントIDFTユニット518においてそれぞれ処理される。従ってパイロットインタレースに対応する時間ドメインチャネル観測が取得される。図7は、FDMキャリアの対象データインタレースに対して周波数ドメインの512ポイントチャネル推定を取得するために、時間ドメインチャネル観測のブロック528および532に実行される動作を示している。
512ポイントIFFT518の後に、位相ランプ604が、ゼロインタレースからのパイロットインタレースのオフセットを説明するために実行される。位相ランプ604の終わりに取得される512時間ドメインチャネル観測は次いで、2つの異なる時間フィルタを使用してフィルタリングされて、時間ドメインにおける1024ポイントチャネル推定をもたらす。分解能が改良されたこの時間ドメインチャネル推定はチャネル推定ユニット730の副産物であると同時に、シンボルタイミング検出器ブロック720への入力である。
2つの異なる3タップ非カジュアル時間フィルタ612、616がフィルタリング動作に使用される。フィルタリング動作は3つのさらなる512長バッファ632を使用し、このうちの2つは、先行および将来のOFDMシンボルに対応するパイロット観測を記憶するために、残りの1つは、用いられている第2の時間フィルタ616から取得されるさらなる512個のチャネル推定を記憶するために使用される。第1の時間フィルタ612の動作の結果は、最古のOFDMシンボルに対応するパイロット観測を含有する512長バッファに書き込まれるのに対して、第2の時間フィルタ616の動作の結果は、このために用いられているさらなる512長バッファに書き込まれる。正確な時間フィルタリング動作はシンボル数に左右されるが、これはパイロットインタレースの位置を判断する。
3つの連続OFDMシンボルからの時間ドメインチャネル観測を結合するプロセスにおいて、時間フィルタリングユニット528は、時間追跡ブロック520によって検出されるタイミングオフセット(つまり補正)を考慮する。これは、タイミング補正がFFTウィンドウ配置ユニット725に適用されるようになると、対応する時間ドメインチャネル観測はもはや時間フィルタユニット528の入力で整列されず、時間フィルタリングユニット528において整列が生じるからである。タイミングオフセットは将来および過去のOFDMシンボル観測に対応するバッファに適用されるのに対して、現在のOFDMシンボル観測は正しいタイミングを有するものとされる。オフセットは、時間フィルタリングユニット528を使用して時間ドメインチャネル観測を結合する前に適用される。
時間追跡ブロック520から入力を取得し、これをnewTimingOffset(新たなタイミングオフセット)と称することにする。また2つのレジスタを維持し、これらをOffset1(オフセット1)およびOffset2(オフセット2)と称することにする。Offset1は将来のOFDMシンボル(h(n+1))に対応するバッファに適用される有効オフセットに対応し、Offset2は過去のOFDMシンボル(h(n−1))に対応するバッファに適用されるオフセットに対応する。
結合638が実行されて512長ベクトルを形成する。このベクトルは、異なる(非パイロット)インタレースに対応する等価512長時間ドメインチャネル観測を表す。次に、このベクトルは512ポイントFFTユニット650を使用して周波数ドメインに変換され、このような等価周波数ドメインチャネル推定は、当該インタレースのデータを復調する際に使用される。
タイミング補正が実行されると、時間フィルタユニット528は、チャネル条件が変化するのに伴ってある時間ベースから新たな時間ベースに推移する。OFDMシンボルのFDMパイロットに使用される時間ベースは、OFDMシンボルのデータに使用されるものに対応する。時間フィルタ528は一般的に、3つの連続OFDMシンボル(つまり、過去、現在および将来)からの時間ドメインチャネル観測を結合するが、推移する場合には、同一の時間ベースのOFDMシンボルからのチャネル観測を考慮するだけでよい。加えて、別の時間ベースのチャネル観測は使用前に現在の時間ベースに補正されることもある。いずれの場合も、同一時間ベース、あるいは同一時間ベースに補正されたチャネル観測のみが、時間フィルタが連続OFDMシンボルを考慮する場合に使用される。
図8を参照すると、TDMパイロットとFDMパイロットの結合によるパイロット送信スキームの一実施形態が示されている。基地局110は、無線受信機150による初期の精密タイミング捕捉を容易にするために、各スーパーフレーム204においてTDMパイロット1 212およびTDMパイロット2 214を送信してもよい。本実施形態では、TDMパイロット212、214のオーバーヘッドは2つのOFDMシンボル周期であり、これらはスーパーフレーム204のサイズと比べて小さくてもよい。基地局110はまた、種々のスキームに従って残りのサブバンドの大部分または一部でFDMパイロットを送信することもある。
OFDMシンボル周期の各セットは、無線受信機によるチャネル推定と周波数および時間追跡とをサポートするために、1セットにかなり多数の(Lfdm個の)サブバンドを含有している。FDMパイロットシンボルに使用されるこの1セットのサブバンドは、OFDMシンボルに使用される全サブバンドの1サブセットである。各セットのサブバンドは全N個のサブバンド全体に均一に分散され、かつ均等にSfdm=N/Lfdm個のサブバンドの間隔があけられてもよい。異なるOFDMシンボル周期について、隣接するOFDMシンボルが異なるセットのサブバンドを有するように異なるセットのサブバンドが使用されることがある。さらに、1セットのサブバンドは他のセットのサブバンドに対してスタガまたはオフセットされてもよく、これら2セットのサブバンドは重複せずに相互にインタレースされる。従って、上記の各セットの相互排他的かつ非重複サブバンドは一般的に「インタレース」と称される。一例として、N=4096、Lfdm=512、Sfdm=8であり、OFDMシンボルごとに8個のインタレースがあり、各インタレースは512個のサブバンドからなる。一般的に、多数のインタレース(サブバンドセット)がFDMパイロットに使用されてもよく、各セットは全N個のサブバンドのうちの任意の数のサブバンドを含有してもよい。一実施形態では、(ガードサブバンドを含む512個のサブバンドからなる)単一のインタレースはFDMパイロットに使用される。
無線受信機150は、チャネル推定、時間追跡および/または場合によっては周波数追跡にFDMパイロットを使用する。無線受信機は、パイロット2OFDMシンボル214に基づいて初期チャネル推定を取得してもよい。無線受信機は、スーパーフレーム204内のチャネル推定の精度を高めるためにFDMパイロットを使用してもよい。無線受信機150はまた、受信信号の周波数エラーを補正可能な周波数追跡ループを更新するためにFDMパイロットを使用してもよい。無線受信機150はさらに、(例えば、通信チャネルのチャネルインパルス応答の変化に起因する)観察されるチャネル位置および遅延分散に従って、時間追跡ループを更新しかつFFTコレクションウィンドウ1012をオフセットに配置するために、(チャネル推定ユニット730によって時間ドメインチャネル推定に変換された後に)FDMパイロットを使用してもよい。
図8に示されている実施形態について、各8個のサブバンドが7個のデータシンボルおよび1個のFDMパイロットシンボルを含むように、FDMパイロットはインタリーブ8で送信される。インタリーブFDMパイロットの位置は、本実施形態ではあるOFDMシンボルから次のOFDMシンボルにスタガされる。パイロットがOFDMシンボル周期mのインタレース2に配置されると、OFDMシンボルm+1のインタレース6に配置されることになる。
スタガによってチャネル推定は、実際の2倍のFDMパイロットサブバンドを使用して、これらを時間ドメインチャネルインパルス応答に変換することができる。チャネル推定ブロックは、条件(チャネルなど)は連続OFDMシンボル全体で静的であるとする。チャネル観測はOFDMシンボルm−1からインタレース6のFDMパイロットと、OFDMシンボルmからはインタレース2のパイロットと、再びインタレース6のOFDMシンボルm+1と結合される。このプロセスを通して、実際のFDMパイロット数の2倍の総数に対してインタレース2および6の両方にFDMパイロットがあるような効果が生成される。例えば、所与のOFDMシンボル周期に対して512個のFDMパイロットがある場合、チャネル推定ブロック730は、隣接するOFDMシンボル周期を使用するものを倍増させ、512個の実FDMパイロットおよび512個の架空FDMパイロットを有する。
次に図9A、9Bおよび9Cを参照すると、異なる遅延分散でOFDMシンボルの3つの受信信号経路を示す実施形態が示されている。各OFDMシンボルはC個のサンプルからなるサイクリックプレフィックス1004と、N個のサンプルからなる変換シンボル1008とを含んでいる。OFDMシンボルは3つの経路で受信されたものとして示されており、各経路は、本実施形態では異なる大きさおよび時間シフトを有している。所定の大きさ以下のOFDMシンボルによる経路が無視される実施形態もある。例えば、図9Aに示されている3つの経路よりもかなり多いこともあるが、チャネル位置を特徴付ける場合にはより小さい経路は無視される。
FAPとLAPの差は遅延分散Dである。一実施形態では、例えば、サイクリックプレフィックス1004は512個のサンプル長であり、遅延分散は490個のチップである。DmidはFFTコレクションウィンドウ1012に対して配置され、FAP、LAPおよび/または遅延分散を分析することによって判断される。Dmidは、現在のOFDMシンボルのFFTコレクションウィンドウ1012の開始と、次のOFDMシンボルのチャネルの所望の中間地点との間の距離である。現在のOFDMシンボルと次のOFDMシンボル間の、N個のサンプル(例えば、4096個のサンプル)からなるコレクションウィンドウ1012の位置を調整するためにオフセットが使用される。コレクションウィンドウ1012は、例えばFFT514によって周波数ドメインに変換される着信信号の関連部分を定義する。
コレクションウィンドウ1012は、最も有用なエネルギーを包含する信号の一部を捕捉するために配置される。後述のように、FAP、LAPおよび遅延分散のうちの少なくとも2つが、チャネル位置を特徴付けるために判断される。FAP、LAPおよび遅延分散は現在の測定値、経時的に平均化される測定値および/または最悪の測定値の場合がある。コレクションウィンドウ1012を配置するために、コレクションウィンドウ1012の開始は、以後のチャネル推定がプログラマブルな値Dmid付近にセンタリングされるように配置可能である。一実施形態では、Dmidはサイクリックプレフィックス1004の長さの約半分の値に設定され(つまり、256個のサンプルは512長サンプルのサイクリックプレフィックスに)、コレクションウィンドウ1012の開始から測定される。
図9A、9Bおよび9Cの実施形態では、Dmidは次のOFDMシンボルの遅延分散の中間に配置され、コレクションウィンドウはDmidに対して配置される。遅延分散Dが、図9Aおよび9Bの場合のようにサイクリックプレフィックス1004の長さ未満である限り、FFTウィンドウ内で収集される全信号エネルギーは所望のOFDMシンボルに対応し、かつデータ復調に対して建設的に結合可能である。反対に、図9Cの遅延分散によっては、FFTウィンドウ内で収集される全エネルギーは、遅延分散が大きいため所望のOFDMシンボルから生じることができない。図9Aおよび9Bの実施形態では、コレクションウィンドウ1012がDmidに対して所定の位置に配置されるが、コレクションウィンドウ1012は図9Cの実施形態ではFAPminに配置される。
FAP距離は、第1の経路に対するFFTコレクションウィンドウ1012の開始と、サイクリックプレフィックス1004の終点間の測定値である。LAP距離は、最終経路に対するFFTコレクションウィンドウ1012の開始と、サイクリックプレフィックス1004の終点間の測定値である。Dmid’は現在のOFDMシンボルのDmidに対する所望の位置である。Dmidは次のOFDMシンボル中のDmid’の所望の位置である。Dmidは、FAPとLAP間のどこか、あるいは一実施形態ではFAPとLAPの中間地点に配置される。言い換えると、Dmid’は次のOFDMシンボル周期ではDmidになる。チャネル条件が図9Aでは変化していないため、Dmid’およびDmidは一般的に相互に対応する。
図9Aおよび9Bは、OFDMシンボルの有用な信号エネルギーを捕捉するためにコレクションウィンドウ1012が配置可能な場所の例を示している。これらの場合の両方において、遅延分散はサイクリックプレフィックス1004のサイズ未満である。このような環境下では、コレクションウィンドウ1012の開始は全着信経路のサイクリックプレフィックスの共通部分内に配置され、これは対象のOFDMシンボルに対応している。共通部分は、弱い経路を排除するようにスクリーニング可能な信号経路が各々同一のOFDMシンボルのサイクリックプレフィックスを受信している期間として定義される。言い換えると、共通部分はLAPのサイクリックプレフィックスの開始から始まり、FAPのサイクリックプレフィックス1004の終点で停止する。一実施形態では、最初と最後の着信経路に対応するサイクリックプレフィックスの共通部分が非空セットである限り、コレクションウィンドウ1012はこの共通部分の中間に配置される。FFTコレクションウィンドウ1012は一般的に、Dmid’がDmidから変化すると変更する場合がある、以後の(将来の)チャネル推定がDmid付近にセンタリングされるように配置される。反復的に、Dmid’は、Dmid’がDmidから変化するオフセットで補正される。
図9Aにおいて、Dmid’およびDmidが概して相互に対応するようにチャネル位置は変化していない。しかし図9Bにおいては、DmidとDmid’間のオフセットがある場合とは異なる。図9Aと9Bの違いは、DmidがDmid’ともはや一致しないように、コレクションウィンドウ1012がチャネル位置に対して右側にシフトされたことである。このオフセットは、次のOFDMシンボルのコレクションウィンドウ1012の位置に対して調整が実行可能であるように、時間追跡器520から時間フィルタ528に中継される。次のシンボルのコレクションウィンドウ1012はDmidから左側に、Dmid’に対して移動されるが、これらは現在のOFDMシンボルに対して存在しているからである。このように、コレクションウィンドウ1012の開始は、全対象経路のサイクリックプレフィックス1004の共通部分に維持可能である。
遅延分散がサイクリックプレフィックス1004の長さを超える場合、図9Cの場合のように、コレクションウィンドウ1012の一部である他のOFDMシンボルからの経路を回避することはもはや可能ではない。これらの場合、コレクションウィンドウ1012は、現在のOFDMシンボルのFAPに対応するサイクリックプレフィックス1004の推定終点の前に、最小FAP距離FAPminに配置される。1つ以上の過去のOFDMシンボルが、サイクリックプレフィックス1004が現在のOFDMシンボルに対して終了する場所を予測するために使用される。一実施形態では、FAPminは、512個のサンプルのうちの、サイクリックプレフィックス1004に対する24個のサンプルである。他の実施形態では、FAPminは、サイクリックプレフィックス1004の長さの約0%、1%、2%、3%、4%、5%、6%、7%、8%、9%または10%であってもよい。
図10Aおよび10Bを参照すると、図面は、累積エネルギーを判断するためのチャネルタップエネルギーの処理を示している。図10Aにおいて、検出ウィンドウ1016はインパルス応答タップエネルギー全体を移動して、検出ウィンドウ1016内にエネルギーを累積する。本実施形態では、トレンドFAPおよびLAPおよび/または瞬時FAPおよびLAPが、検出ウィンドウ1016のスライディングおよび後述の他のステップを含む種々の技術を使用して判断されるように、タップエネルギーは短期平均ブロック908および/または長期平均ブロック912に付される。
図10Bに示されているように、検出ウィンドウ1016が図10Aのチャネルプロファイル1030を通過すると、累積エネルギー曲線1050が検出ウィンドウ1016の累積エネルギーによって形成される。累積エネルギー曲線1050から、遅延分散、FAPおよびLAPが判断可能である。遅延分散、FAPまたはLAPのうちのいずれか2つを知ることによって、欠落しているものを判断可能である。チャネルタップエネルギーのベクトルは、本実施形態においてN=1024ポイントで評価されるDMTTアルゴリズムへの入力として使用される。しかしながら、このことは他の実施形態と同じである必要はない。DMTTアルゴリズムの分解能が低下する場合、ここに説明されているすべての長さおよび寸法が適切にスケールダウン可能である。これは、N=1024−長チャネル推定の複数の隣接タップからのエネルギーを結合してより低い分解能の(より短い)チャネル推定に到着することによって達成される。別の実施形態では、8個の隣接タップが結合可能であり、例えばより低い分解能NC1=128である。
時間追跡アルゴリズムの追跡能力や分解能はしばしばチャネル推定の長さ、つまりNに左右される。循環畳み込みチャネルの全N=4096個の時間ドメインタップが使用可能である場合、時間追跡分解能は一般的に最大である。この場合、OFDMシンボル境界に対するFFTコレクションウィンドウ1012の位置の導入シフト量を一意に判断可能である。多くの実用的状況においては、しかしながら、チャネル推定の長さは、チャネル推定に使用されるFDMサブキャリア数によって制限される。図8に示されているような適所の(2,6)パイロットスタガパターンによって、例えば、使用可能な時間ドメインチャネルタップ数は、OFDMシンボルの500個の有用なFDMサブキャリアのゼロ外挿および補間ならびにOFDMシンボルのチャネル観測の平均化後にはN=1024個である。パイロットのスタガはチャネル推定の分解能を増大させ、例えば一実施形態では、OFDMシンボルあたりLfdm=512個のパイロットであり、さらに上記のように(これもまたOFDMシンボルあたり)N=1024個のチャネルタップである。
本実施形態の時間追跡能力は、実行されている実時間追跡アルゴリズムに左右される。一実施形態では、アルゴリズムは、チャネル変化を検出する能力を増大させるために、過去のチャネル配置に関する情報を使用する。チャネルの最大非ゼロ遅延分散がDMAXであるとすると、ここではチャネルに関するさらなる情報は使用可能ではなく、チャネル配置のあいまいさは、DMAX>N/2ほど迅速には解決不可能である。しかしながら、FAPおよびLAPの情報が過去に正しく評価されたとすると、絶対追跡能力は総数N−DMAX個の位置に拡張する。言い換えると、チャネルは両方向にその位置を等しく変更する可能性がある(つまり、チャネルコンテンツが現在のタイミング基準の前後に等しく生じる可能性がある)とする。そして、将来のチャネル位置は、現在のタイミング基準から±(N−DMAX)/2個のチップほどであってもよい。これは図11に示されており、この図は、得られるチャネルタップエネルギーに対するタイミングドリフトの効果を示している。
追跡能力の要素の1つは、DMAXではなくチャネルの推定遅延分散Dである。チャネル遅延分散に関する情報が使用可能である場合、可能なチャネル位置の総数は一実施形態ではN−D個に増加する。遅延分散推定DならびにN/2タップより大きい遅延分散に対するアルゴリズムの抵抗はFAP検出方法の修正を招くことがある。表記の便宜のために、「ポジティブ検索領域」または「ネガティブ検索領域」という用語を導入することにし、両方とも図11に示されている。ポジティブ検索領域は非ゼロチャネルコンテンツ(つまり、図11において0とDMAX間の領域)外の領域の一部であり、ここでは遅いチャネルコンテンツが潜在的に生じる可能性があるとされる。同様に、ネガティブ検索領域で検出される経路は、先に観測されたチャネルコンテンツよりも短い距離を移動したため、「より早い」時間に生じたとされる。先行のチャネルコンテンツに対する検索領域の導入は、DMTTの追跡能力を増大させることが可能なメモリ(つまり因果関係)を導入する。最大検出領域内の検出済みチャネルコンテンツの配置ならびに2つの検索領域間の境界1104の配置をもたらす判定について次に説明する。
タイミング同期は、チャネル推定と累積エネルギー曲線1050の値に基づいている。図10Aに示されている、タイミング同期に使用されるチャネルプロファイル1030について検討する。チャネルエネルギーがビンにグループ化されることが可能であり、この場合、チャネルプロファイル1030はより粗く、かつ図10AのNは削減される。以下の明確さのために、常にN=1024とし、必要ならば、長さ削減係数2を積極的に導入する。タイミング検索アルゴリズムは、図6と関連して説明されるように長期および/または短期平均チャネル推定エネルギーに対して実行される。一時的な平均化のプロセスにおいて、図10Aにおいて最大チャネルエネルギー、つまりnMAXを有しているその時のビンが識別される。また、最大エネルギー
Figure 0004603072
が記憶される。このEMAX値は、実際のチャネルコンテンツに対応しないチャネル推定の人工タップを除去する目的で、雑音閾値処理に使用される閾値TDMTTを判断するために使用される。
図10Bを参照すると、チャネルプロファイル1030を介するエネルギー検出ウィンドウ1016のスライディングによって生成される累積エネルギー曲線1050が示されている。図10Aおよび10Bの例は、この方法の特徴を示すためのものである。検出ウィンドウ長Nは、完全なチャネルプロファイル1030が検出ウィンドウ1016にフィット可能なように選択される。従って、N≧DMAXであり、N=768個のサンプルは、チャネルインパルス応答長(N)が1024個のサンプルである本実施形態について選択されるが、他の実施形態では他のサイズでもよい。完全チャネルエネルギー(またはその大部分)が含まれている検出ウィンドウ1016の開始位置は、累積エネルギー曲線1050の比較的平坦なゾーン1040を形成する。平坦ゾーン1040の長さはN−Dであり、ポジティブ期間にあると仮定され、ここでDは実チャネル遅延分散である。平坦ゾーン1040の境界を推定することによって、N長のチャネル推定およびチャネル遅延分散D内の対象チャネルエネルギーの位置を判断することができる。平坦ゾーン1040は累積エネルギー曲線1050の連続部分として定義され、ここで曲線1050は曲線1050の最大値から所定範囲内である。
図10Bにおいて、チャネル位置は、FAPおよびLAPの有無によって識別される。現在のチャネル推定のFAPおよびDを知れば、将来のFFTコレクションウィンドウ1012に導入されるタイミング補正またはオフセットは、将来のOFDMシンボルのチャネルが最大検出領域DMAX内のある所定位置Dmid付近にセンタリングされるものである。早期経路が最大検出領域の前に現れる可能性を最小化することが目的ならば、有効チャネル遅延分散を小さく維持しつつ、DmidはDMAX/2と選択される。一般的に、Dmidについて選択される値は展開エリアに左右され、かつプログラマブルに維持される。得られるタイミングオフセットは以下のように算出可能である:
Figure 0004603072
式(1)の第2項は、最大許容チャネル長および現在の推定チャネル長の推定「ヘッドルーム」、ならびに将来のOFDMシンボルの堅牢性問題を考慮するチャネルの最良の配置とに左右される可変的バックオフに対応していることに注意すべきである。言い換えると、FFTコレクションウィンドウ1012で適用されるタイミングオフセットを算出する式(1)は、将来のOFDMシンボルのポイントDmid付近にセンタリングされる時間ドメインチャネルコンテンツの移動をもたらす。算出されたオフセットは、本実施形態においてロールオーバー値4625に達すると、コレクションウィンドウ1012を移動させる。上記手順はタイミング判定の単一のインスタンスに適用する。
タイミング判定は他の実施形態ではハードウェア(HW)および/またはソフトウェア(SW)で別個に実現可能であり、この場合、HW判定は短期平均または瞬時のチャネル推定に基づいており、SW判定は長期平均またはトレンドのチャネル推定に基づいている。他の実施形態は、短期または長期平均を実行するためにSWまたはHWを互換的に使用してもよい。各判定インスタンス(HWおよびSW)は次いで、チャネル位置、つまりFAPおよびLAPについて判定する。これらの判定は次いでチャネルロケータブロック924の一実施形態において結合可能であり、以下のようになる:
Figure 0004603072
式(2)の値は、LAP−FAP≦DMAXである限り使用可能である。条件に反すると、高速フィルタ瞬時値は低速フィルタトレンド値に対して優先する。言い換えると、LAP−FAP>DMAXであれば、以下のようになる:
Figure 0004603072
唯一の残りの状況LAPHW−FAPHW>DMAXまたはLAPSW−FAPSW>DMAXが後述のように扱われる。式(1)で使用されているパラメータDはD:=LAP−FAPとされることが可能である。
次に、FAPおよびLAPを計算するための実アルゴリズムが一実施形態について説明される。アルゴリズムへの入力はN/2個のビンにおける平均チャネルエネルギー
Figure 0004603072
のベクトルであり、ここでmは0とmmax(一部の実施形態では、mmax=2または3である)間の値をとることができる。エネルギーは平均化されるが、タイミング同期ブロックで使用される前に、チャネルタップは、プログラマブル値TDMTTである閾値以下に選択される。アルゴリズムの出力は2つの整数、つまりFAPおよびLAPである。以下に列挙されるステップにおける以下のアルゴリズムは一部の実施形態ではHWおよび/またはSWにおいて別個に適用可能であり、結果は結合可能であることに注意すべきである。FAP/LAP検出アルゴリズムの2つの変形、単一パスアルゴリズムおよび2パスアルゴリズムが説明される。単一パスアルゴリズムはかなり短い計算時間ですむが、一実施形態では実行論理に関してはかなり複雑である。2パスアルゴリズムは実現がかなり簡単であり、計算時間が最も厳密なリソースでなければ常に使用可能である。
単一パス強化DMTTアルゴリズム
1.図11および12に示されているように2つの領域、ポジティブ検索領域およびネガティブ検索領域を区別するためにチャネルプロファイル1030を「解く」。ネガティブ検索領域およびポジティブ検索領域間の境界ポイント1104は一部の実施形態では別のプログラマブルパラメータである。新たな信号経路が現在検出されるチャネルコンテンツの前後に等しく生じる可能性があるとすると、(チャネル推定の終了からの)境界ポイント1104は、領域が等しい長さ、つまりΔ=(N/2−Dmid)2となるように選択される。従って、TDMTTによる閾値処理後に以下のようになる:
Figure 0004603072
概念的に、解かれたチャネル推定は次いで、図10Bに示されている平坦領域の始端および終端の両方が、後述のように実行される長さNの検出ウィンドウ1016をスライディングさせることによって検出されることを保証するために、両側にゼロパッド化される。
2.初期値、N=DMAX/2、n=0、E=0と、分解能が異なる2つのステップ、δ=EMAX/γ、Δ=Nγ・δ(プログラマブルパラメータγおよびNγ)とを設定し、3つのフォワード閾値と1つのバックワード閾値、ETF0=EMAX−2Δ、ETF1=EMAX−Δ、ETF,end=ETF1−δおよびETB=ETF,endを設定し、バイナリフラグfoundbeg=false,foundend=falseを設定し、始端位置BEGbuffのバッファを長さNγの全ゼロに初期化する。
3.0≦n<Nについて、単一パスアルゴリズムにおいて以下を実行する:
a)E=E+e(n):
Figure 0004603072
およびe(n)にゼロが先行する点を想起されたい。
b)(E>ETF0およびE>ETF1)の値が閾値をかなり超えていれば、バッファBEGbuffは本実施形態では値n(Nγ倍)で充填される。
c)また(E>ETF0であるがE≦ETF1)の値が閾値を超えると、現在位置nをバッファBEGbuffに一度シフトする。(b)および(c)の両方において、以下のETF0=E+δ、ETF1=ETF0+Δ、ETB=E−Δ、foundbeg=trueを実行する。
d)また(foundbeg=true、foundend=falseおよびE<ETB)であれば、END=n、foundend=true、ETF,end=ETB+Δを実行する。
e)また(foundend=trueおよびE>ETF,end)であれば、foundend=falseを実行する。
4.N≦n<N/2について、以下を実行する:[E=E−e(n−N)+e(n);、次いで上記ステップ(b)乃至(e)を反復する]。
5.foundend=falseの場合、以下を実行する:[n=n+1、E=E−e(n−N)、次いでステップ(d)を実行する]。
最後に、以下のようにチャネル位置および遅延分散に結び付けられた出力パラメータを取得する:
Figure 0004603072
上記ステップ1乃至5に説明されているアルゴリズムは以下のプロパティの一部または全部を有する:
・アルゴリズムの有効ステップを構築するために小さな精密ステップδおよび(2の累乗として選択された)対応する値Nγを使用すると、小さな値δは累積エネルギープロファイルの絶対最大値をより正確に判断する助けとなるため、Δが有用である。始端位置BEGbuffのバッファは大まかにΔによって最大値位置から効果的にバックトラックし、始端となるポイントを明確にする役割をする。実際のバックトラック量は複数の要因に左右されることがある。
・アルゴリズムは、Δ1060が平坦ゾーン1040における最大ピーク間リップルEより大きい限り、推定始端beg=BEGbuff[0]を平坦ゾーン1040の実際の開始位置よりも前に、かつ推定終端ENDを平坦ゾーン1040の実際の終了点よりも後に配置する。得られる平坦ゾーン1040は実際の平坦ゾーン1040よりも広いことがある。しかしながら、多くの実際のシナリオでは、始端は実際の最大値ポイントからΔ乃至2Δのいずれかに示されるのに対して、終端は最大値以下、ほぼΔ1060になる。
・値γおよびNγのトレードオフの一部は、大きな値が正確性の観点から好まれるということを含んでいる。γおよびこれに応じたNγが無限になる傾向がある場合、累積エネルギーの最大値
Figure 0004603072
がより正確に判断される。Nγが増大すると、(始端位置を判断するための)最大値からのバックトラックのあいまい性もまた増大する。一実施形態では、値はγ=256およびNγ=8と選択される。これらの値は一部の実施形態ではプログラマブルのままである。
・閾値TDMTTの値はγおよびNγに関する。閾値処理はシンボルタイミング検出つまりDMTTブロック720に導入されて、一時的なチャネル推定平均化のコヒーレント結合利得を利用する。閾値処理は、ゼロパッド化により上記ステップ3に見られるポジティブバイアス(累積エネルギー曲線1050のポジティブ傾斜)を除去する。閾値は得られる等価ステップΔより大きくなく、また精密ステップδ、Nthの倍数に関してプログラマブルに維持される。一実施形態では、選択された値はNth=4であるため、TDMTT=EMAX/64となる。
概して、γ、NγおよびNthならびに2の適切な値は経験的またはアルゴリズム的であってもよいが、プログラマブルレジスタに維持されている。さらに、AGCセットポイントをEMAXではなく基準値に維持することが可能である。
上記のように、式(3)において、低速および高速平均チャネル推定908、912を使用するタイミング判定の何らかの不一致が検出される場合には代替的な取り扱いが適用されてもよい。類似の予防措置が、上記の個々の(HWまたはSW)タイミング検索アルゴリズムが予測されていなかった結果、例えばLAP−FAP>DMAXを戻すという確率の小さいシナリオに適用する。推定される始端位置および終端位置に関係なく、FAPおよびLAPの値は、実施形態において、分離の際にDMAX未満までに制限される。しかしながら、誤ったタイミングから生じる性能劣化を回避するためには、HWを適所に設定することが望ましく、これはLAP−FAL>DMAX状況を検出し、かつこの場合にFAP=DMAX−N、LAP=2DMAX−Nを設定する。
上記のアルゴリズムを使用すると、短期平均(HW)および長期平均(SW)のチャネル推定のチャネルパラメータが取得可能である。対応するアルゴリズム、つまりFAPHW、LAPHW、FAPSW、LAPSWの最終結果は次いで結合されて、コレクションウィンドウ1012を位置決めするために式(2)および(3)に説明されているように、OFDMサンプルカウンター修正に使用される。
2パス強化DMTTアルゴリズム
高速フィルタ平均チャネル推定A(k)とすると、FAPおよびLAPに関する情報は、単一パスまたは2パスDMTTアルゴリズムのいずれかを使用して抽出可能である。単一パスアルゴリズムはより高速な処理時間という利点を提供するのに対して、関連の論理およびHWリソースはより条件が厳しいことがある。
(k)に含有されている平均チャネル推定は、有用なチャネルコンテンツの推定長に左右される可変的バックオフを含む既知のタイミングに従って整列される。平均チャネル推定はまた本実施形態においては閾値処理されない。DMTTアルゴリズムの目的は、様々なチャネル条件に対する所望の性能および堅牢性を確立するために、推定A(k)の非ゼロチャネルコンテンツの開始および終了を再評価し、かつこの情報を使用して将来のOFDMシンボルにおけるFFTコレクションウィンドウ1012の配置を更新することである。この再評価(タイミング推定)は、Nud個のOFDMシンボルごとに1回実行され、以下の動作を備えている:
1.平均チャネル推定の「将来」と「過去」を分離するブレークポイントを定義する。有限数のスタガパイロット(本実施形態では、チャネル推定は1024個の時間ドメインチップのみをスパンする)ゆえに、開始位置(最小時間の位置)がチャネル推定のどこにあるかについて硬判定がなされる。この推定は次いで、時間順に再配列される。
2.最大時間ドメインタップEMAXの比として選択された閾値に従ってチャネル推定を閾値処理する。閾値処理されていないチャネル推定はHWで平均化されて、雑音タップの非コヒーレント結合はチャネル推定のSNR利得になりうる。この利得を利用するために、閾値処理はDMTTブロック720で適用される。
3.閾値処理されたチャネル推定にサイズNの矩形検出ウィンドウ1016をスライディングすることによって累積エネルギー曲線1050を計算する。累積エネルギープロファイルの最大値を見つける。事前に設定されているフォワードおよびバックワードの閾値処理係数εおよびεに基づいて、平坦ゾーン縁を判断するためのフォワードおよびバックワードの閾値を計算する:
T,F=En,MAX(1−ε)、ET,B=En,MAX(1−ε
4.En,MAXに対応するポイントnMAXから開始し、累積エネルギープロファイルの端に対して移動し、エネルギーがフォワードおよびバックワード閾値と交差する最も離れたポイントを判断する。一実施形態では、フォワードおよびバックワード閾値はEn,MAXの5%、10%、15%または20%である。これらのポイントは平坦ゾーン1040の終了および開始を(それぞれ)判断する。これらのポイントを使用して、非ゼロチャネルコンテンツの推定開始および終了(FAPおよびLAP)を計算することは簡単である。
強化DMTTユニットへの入力はN個の値A(k)であり、A(k)の最大値、つまりEMAXは平均化ブロックによって判断可能であり、「DMTT更新リクエスト信号」は通常の動作モードでNud個のOFDMシンボルごとに一回FFTブロックによって生成される。他の「入力」は2パスアルゴリズムのSWプログラマブルパラメータであり、下記の表1に示されている。
Figure 0004603072
これらのパラメータはソフトウェアによって書き込み可能であり、モデム動作を通して一定に維持されるものもあり、より高度なSWアルゴリズムに応じてフレームごとに採用可能なものもある。「DMTT更新リクエスト信号」が高に設定される場合は常に、他の入力に基づいて、強化DMTTユニットは2つの出力、つまり非ゼロチャネルコンテンツの推定された開始および終了を生成し、これらは2つの整数、FAPおよびLAPである。さらなるプログラマブルパラメータは最小バックオフBoffおよびハード限度offsetmaxを含んでいる。
初期段階では、関連変数およびバッファが初期化される。これらは以後の段階で使用される。第1のステップは、長さN=1024/Nの(Aとも称される)バッファA(k)に含有されているチャネル推定エネルギープロファイルの開始および終了の表記を定義することである。エネルギー累積のためのこのバッファの開始ポイントはN−Δと定義されるのに対して、最終ポイントはN−Δ−1であり、インデックスはモジュロNを増加させることに注目する。メモリ位置のアドレスはstartIndex=endIndex=N−Δと定義され、ブレークポイント位置はbreakPt=[N−Δ+NmodNと定義される。累積エネルギーEは12ビットの符号なし値(スケーリング2)であり、これは本実施形態ではゼロに初期化される。また位置カウンタnはゼロ(10ビット)に初期化され、それぞれ始端および終端の位置(各々10ビット)を含有する値BEGおよびENDも同様である。平均チャネル推定の最大タップEMAXに基づいて、符号なしの8ビット閾値TDMTT=EMAX/βが判断される。最大累積エネルギー値En,MAXおよび対応する位置nMAXは両方ともゼロに初期化される。メモリは累積エネルギーバッファEに対して割り当てられ、これはN+N−(12ビットの符号なし値を含有する長バッファ)である。最終的にバイナリフラグが設定される:
foundbeg=false、foundend=false
初期化が生じた後、DMTTアルゴリズムの第1のパスが開始する用意がある。この段階の結果は累積エネルギーを計算し、これらの最大値を検索することである。
0≦n<Nに対して、以下を実行する:
f)e=AendIndex;e>TDMTTの場合、E=E+e(12ビットに飽和される);endIndex=[endIndex+1]modNを実行する
g)endIndex>breakPtの場合、e=AstartIndexを実行する;e>TDMTTの場合、E=E−e(12ビットで維持する);startIndex=[startIndex+1]modNを実行する; Eを適切な位置に保存する;
h)E>En,MAXならば、En,MAX=EおよびnMAX=nを設定する。
N≦n<N+Nに対して、e=AstartIndexを実行する;e>TDMTTならば、E=E−e(12ビットで維持する);startIndex=[startIndex+1]modNを実行する;Eを適切な位置に保存する;
第1のパスが完了された後、En,MAXを使用してフォワードおよびバックワード閾値:ET,F=En,MAX・(1−ε)、ET,B=En,MAX・(1−ε)を設定する。閾値は符号なしの12ビットに維持される。
第2のパスは2つの部分、始端BEGを発見するためのバックワード検索および終端ENDを検索するためのフォワード検索を含んでいる。
MAX−1≧n≧0(降順インデックス)に対して、以下のfoundend=falseを実行する。
a)(foundbeg=falseおよびE<ET,B)の場合、BEG=n+1、foundbeg=trueを実行する;
b)また(foundbeg=trueおよびE≧ET,B)の場合、foundbeg=falseを実行する。
MAX+1≦n<N+N(昇順インデックス)に対して、以下を実行する:
a)(foundend=falseおよびE<ET,f)の場合、END=n、foundend=trueを実行する;
b)また(foundend=trueおよびE≧ET,f)の場合、foundend=falseを実行する。
このポイントでは、BEGおよびENDの両方は非ゼロ値を含んでいるはずであり、両方のバイナリフラグはtrueに設定されるはずである。そうでない場合、タイミングオフセット値は修正されなければならない。チャネル位置および遅延分散と結び付けられている出力パラメータFAPおよびLAPは以下のように見つけられる:
Figure 0004603072
代替通信チャネル位置アルゴリズム
FAPを判断するための上記方法に加えて、一部の実施形態ではもう1つの方法が使用される場合がある。一実施形態では、平坦ゾーン1040の始端および終端が累積エネルギーおよびこのポジティブ有限差の重み合計を獲得することによって発見される。遅延分散Dは、累積エネルギー曲線1050の始端および終端の両方を発見した後に判断可能である。参照として本明細書に組み込まれているFINE TIMING ACQUISITIONと題された本出願と同日に出願された米国特許出願(代理人整理番号第040588号)は、平坦ゾーンの終端を判断するための累積エネルギー曲線のネガティブ差のスパイク検出の使用について説明しており、これはまた、平坦ゾーンの始端を発見するのにも使用可能である。これらの端が発見されると、遅延分散は上記説明に従って判断可能である。これらの通信チャネル位置パラメータを発見した後、これらは、上記のようにチャネル推定ユニット720および/またはコレクションウィンドウ1012の配置に使用可能である。
次に図13を参照すると、マルチキャリア通信信号を分析するフーリエ変換関数のコレクションウィンドウを位置決めするための受信機1300の実施形態が開示されている。この受信機は、第1のOFDMシンボルおよび第2のOFDMシンボルを受信する手段1304と、複数のFDMシンボルを使用してチャネルインパルス応答を判断する手段1308と、チャネルインパルス応答からチャネル位置を推定する手段1316であって、チャネル位置は遅延分散、FAPまたはLAPのうちのいずれか2つによって特徴付けられる手段1316と、チャネル位置に対するポイントを選択する手段1320と、コレクションウィンドウの開始を第2のOFDMシンボルに対してそのポイントに配置する手段1324とを含んでいる。第1のOFDMシンボルは複数のFDMシンボルを備えており、第1のOFDMシンボルはFAPおよびLAPによって特徴付けられる。ポイントは、遅延分散が所定の長さ未満であれば、第1のアルゴリズムを使用してチャネル位置に対する第1の位置で選択される。代替的に、ポイントは、遅延分散が所定の長さより大きければ、第2のアルゴリズムを使用してチャネル位置に対する第2の位置で選択される。第1および第2のアルゴリズムは異なり、第1および第2の位置は異なる。
図14を参照すると、フーリエ変換関数のFFTコレクションウィンドウ1012をウィンドウ配置ユニット725に配置するためのプロセス1400の実施形態が開示されている。ブロック1404および1432において、第1の直交周波数分割多重(OFDM)シンボルおよび第2のOFDMシンボルが順次受信される。第1のOFDMシステムの分析は、第2のOFDMシンボルを捕捉する際に必要である。第1のOFDMシンボルは複数の周波数分割多重(FDM)シンボルを含んでいる。第1のOFDMシンボルのチャネル位置は、遅延分散、最初の着信経路(FAP)または最終着信経路(LAP)のうちの少なくとも2つによって特徴付けられる。チャネル位置は、ブロック1408において、チャネルインパルス応答から推定される。FFTコレクションウィンドウ1012が配置されるポイントは、ブロック1416で判断されるように、遅延分散に従った2つの異なる位置であってもよい。
ポイントは、ブロック1420において、遅延分散が所定の長さ未満であれば、第1のアルゴリズムを使用してチャネル位置に対する第1の位置で選択される。ポイントは、ブロック1424において、遅延分散が所定の長さより大きければ、第2のアルゴリズムを使用してチャネル位置に対する第2の位置で選択される。チャネル位置に対するポイントはブロック1428で選択される。FFTコレクションウィンドウ1012の開始は、ブロック1432において、第2のOFDMシンボルに対してそのポイントに配置される。
ここに説明されている同期技術は種々の手段によって実現可能である。例えば、これらの技術はハードウェア、ソフトウェアあるいはこれらの組み合わせで実現可能である。ハードウェア実現について、同期をサポートするために使用される基地局の処理ユニット(例えば、TXデータ/パイロットプロセッサ120)は1つ以上のアプリケーション固有の集積回路(ASIC)、ディジタル信号プロセッサ(DSP)、ディジタル信号処理デバイス(DSPD)、プログラマブル論理デバイス(PLD)、フィールドプログラマブルゲートアレイ(FPGA)、プロセッサ、コントローラ、マイクロコントローラ、マイクロプロセッサ、ここに説明されている機能を実行するように設計されている他の電子ユニット、あるいはこれらの組み合わせで実現可能である。同期を実行するために使用される無線受信機の処理ユニット(例えば、SCEU180)はまた、1つ以上のASIC、DSPなどで実現可能である。
上記実施形態のいくつかは、具体的な方法で平坦ゾーンの始端および終端を判断する。タップエネルギーと最大タップエネルギーからの有限差との重み合計を獲得する実施形態もある。平坦ゾーンの開始および終了はこのタイプの獲得アルゴリズムによって判断可能である。
ソフトウェア実現について、同期技術は、ここに説明されている機能を実行するモジュール(例えば、手順、機能など)によって実現可能である。ソフトウェアコードはメモリユニット(例えば、図1のメモリユニット192)に記憶され、かつプロセッサ(例えば、コントローラ190)によって実行可能である。メモリユニットはプロセッサ内またはプロセッサ外で実現可能である。
本開示の原理は具体的な装置および方法と関連して上述されているが、この説明は例証にすぎず、本発明の範囲を制限するためのものではない点が明確に理解されるべきである。
直交周波数分割多重化(OFDM)システムにおける基地局および無線受信機の実施形態のブロック図。 詳細レベルが高いスーパーフレーム構造の実施形態のブロック図。 詳細レベルが高いスーパーフレーム構造の実施形態のブロック図。 詳細レベルが高いスーパーフレーム構造の実施形態のブロック図。 OFDM変調器の実施形態のブロック図。 同期/チャネル推定ユニットの実施形態のブロック図。 OFDMシンボルタイミング検出器およびチャネル推定器の実施形態のブロック図。 シンボルタイミング検出器の実施形態のブロック図。 時間フィルタユニットの実施形態のブロック図。 TDMパイロットおよびFDMパイロットの両方によるパイロット送信スキームの実施形態の図。 遅延分散が異なるOFDMシンボル用の3つの受信信号経路を示す実施形態のブロック図。 遅延分散が異なるOFDMシンボル用の3つの受信信号経路を示す実施形態のブロック図。 遅延分散が異なるOFDMシンボル用の3つの受信信号経路を示す実施形態のブロック図。 累積エネルギー曲線を判断するためのチャネルプロファイルの処理を示す図。 累積エネルギー曲線を判断するためのチャネルプロファイルの処理を示す図。 生じるチャネルタップエネルギーに対するタイミングドリフトの効果を示す実施形態の図。 プログラマブルチャネル配置用の検索ウィンドウを示す実施形態の図。 受信機の一部の実施形態のブロック図。 FFTコレクションウィンドウを配置するためのプロセスの実施形態のフローチャート。
符号の説明
100・・・OFDMシステム、110・・・基地局、150、1300・・・受信機、134、152・・・アンテナ、200・・・スーパーフレーム構造、1016・・・検出ウィンドウ、1030・・・チャネルプロファイル、1040・・・平坦ゾーン、1050・・・累積エネルギー曲線、1104・・・検索領域間の境界、1400・・・プロセス。

Claims (18)

  1. 通信チャネルを介して第1の直交周波数分割多重(OFDM)シンボルおよび第2のOFDMシンボルを受信するステップであって、前記第1のOFDMシンボルはサイクリックプリフィックス長のサイクリックプリフィックスと複数の周波数分割多重(FDM)シンボルを備えており、また前記第1のOFDMシンボルは最初の着信経路(FAP)、最終着信経路(LAP)および前記FAPと前記LAPとの差である遅延分散によって特徴付けられるステップと、
    前記通信チャネルのチャネルインパルス応答からチャネル位置を推定するステップと、
    前記チャネル位置に関するポイントを選択するステップと、
    前記コレクションウィンドウの開始を前記第2のOFDMシンボルに対して前記ポイントに配置するステップであって、
    前記ポイントは、前記遅延分散が所定の長さ未満である場合、第1のアルゴリズムを使用して前記チャネル位置に対する第1の位置で選択され、前記第1の位置は前記遅延分散の中間点、または前記第1のOFDMシンボルの前記FAP乃至前記LAPに対応するサイクリックプレフィックスの共通部分内の点であり、
    前記ポイントは、前記遅延分散が前記所定の長さより大きい場合、第2のアルゴリズムを使用して前記チャネル位置に対する第2の位置で選択され、前記第2の位置は前記FAPに対応するサイクリックプレフィックスの推定端から時間的に後方に所定の距離シフトした位置の点であるステップと、
    を備える通信方法。
  2. 前記第1および第2のOFDMシンボルは各々複数のキャリアに対応する、請求項1に記載の通信方法。
  3. 前記第1のOFDMシンボルからの前記複数のFDMシンボルを使用して前記チャネルインパルス応答を決定するステップをさらに備える、請求項1に記載の通信方法。
  4. 前記所定の距離は前記サイクリックプレフィックスの長さの約5%である、請求項に記載の通信方法。
  5. 前記所定の長さは、前記第1のOFDMシンボルのサイクリックプレフィックスの長さ未満である、請求項1に記載の通信方法。
  6. 前記コレクションウィンドウは将来のチャネル推定を捕捉するために使用される、請求項1に記載の通信方法。
  7. 前記第1の位置は、前記第1のOFDMシンボルの前記FAP乃至前記LAPに対応するサイクリックプレフィックスの共通部分のほぼ中間の点である、請求項1に記載の通信方法。
  8. フーリエ変換関数のコレクションウィンドウを配置するように構成された受信機であって、
    通信チャネルを介して第1の直交周波数分割多重(OFDM)シンボルおよび第2のOFDMシンボルを受信する手段であって、前記第1のOFDMシンボルはサイクリックプリフィックス長のサイクリックプリフィックスと複数の周波数分割多重(FDM)シンボルを備えており、また前記第1のOFDMシンボルは最初の着信経路(FAP)、最終着信経路(LAP)および前記FAPと前記LAPとの差である遅延分散によって特徴付けられる手段と、
    前記通信チャネルのチャネルインパルス応答からチャネル位置を推定する手段と、
    前記チャネル位置に関するポイントを選択する手段と、
    前記コレクションウィンドウの開始を前記第2のOFDMシンボルに対して前記ポイントに配置する手段であって、
    前記ポイントは、前記遅延分散が所定の長さ未満である場合、第1のアルゴリズムを使用して前記チャネル位置に対する第1の位置で選択され、前記第1の位置は前記遅延分散の中間点、または前記第1のOFDMシンボルの前記FAP乃至前記LAPに対応するサイクリックプレフィックスの共通部分内の点であり、
    前記ポイントは、前記遅延分散が前記所定の長さより大きい場合、第2のアルゴリズムを使用して前記チャネル位置に対する第2の位置で選択され、前記第2の位置は前記FAPに対応するサイクリックプレフィックスの推定端から時間的に後方に所定の距離シフトした位置の点である手段と、を備える受信機。
  9. 前記複数のFDMシンボルを使用して前記チャネルインパルス応答を決定する手段をさらに備える、請求項8に記載の受信機。
  10. 前記所定の距離は前記サイクリックプレフィックスの約5%である、請求項8に記載の受信機。
  11. 前記所定の長さは、前記サイクリックプレフィックス未満である、請求項8に記載の受信機。
  12. 前記コレクションウィンドウは将来のチャネル推定を捕捉するために使用される、請求項8に記載の受信機。
  13. 前記第1の位置は、前記第1のOFDMシンボルの前記FAP乃至前記LAPに対応するサイクリックプレフィックスの共通部分のほぼ中間の点である、請求項8に記載の受信機。
  14. フーリエ変換関数のコレクションウィンドウを配置するための通信デバイスであって、
    通信チャネルを介して第1のOFDMシンボルおよび第2のOFDMシンボルを受信し、この場合前記第1のOFDMシンボルはサイクリックプリフィックス長のサイクリックプリフィックスと複数の周波数分割多重(FDM)シンボルを備えており、また前記第1のOFDMシンボルは最初の着信経路(FAP)、最終着信経路(LAP)および前記FAPと前記LAPとの差である遅延分散によって特徴付けられ、
    前記通信チャネルのチャネルインパルス応答からチャネル位置を推定し、
    前記チャネル位置に関するポイントを選択し、
    前記コレクションウィンドウの開始を前記第2のOFDMシンボルに対して前記ポイントに配置し、この場合、
    前記ポイントは、前記遅延分散が所定の長さ未満である場合、第1のアルゴリズムを使用して前記チャネル位置に対する第1の位置で選択され、前記第1の位置は前記遅延分散の中間点、または前記第1のOFDMシンボルの前記FAP乃至前記LAPに対応するサイクリックプレフィックスの共通部分内の点であり、
    前記ポイントは、前記遅延分散が前記所定の長さより大きい場合、第2のアルゴリズムを使用して前記チャネル位置に対する第2の位置で選択され、前記第2の位置は前記FAPに対応するサイクリックプレフィックスの推定端から時間的に後方に所定の距離シフトした位置の点であるように構成されているプロセッサと、
    前記プロセッサに結合されているメモリと、を備える通信デバイス。
  15. 前記プロセッサはさらに、前記第1のOFDMシンボルからの複数のFDMシンボルを使用して前記チャネルインパルス応答を決定するように構成されている、請求項14に記載の通信デバイス。
  16. 前記所定の距離は、前記サイクリックプレフィックスのうちの約24個のサンプルである、請求項14に記載の通信デバイス。
  17. 前記所定の長さは前記サイクリックプレフィックス未満である、請求項14に記載の通信デバイス。
  18. 前記第1の位置は、前記第1のOFDMシンボルの前記FAP乃至前記LAPに対応するサイクリックプレフィックスの共通部分のほぼ中間の点である、請求項14に記載の通信デバイス。
JP2008501015A 2005-03-10 2006-03-09 Ofdmシンボル時間追跡情報を使用するfftコレクションウィンドウ位置決め Expired - Fee Related JP4603072B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US66071705P 2005-03-10 2005-03-10
PCT/US2006/008798 WO2006099241A1 (en) 2005-03-10 2006-03-09 Fft collection window positioning using ufdm symbol time tracking information

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010156077A Division JP2010273364A (ja) 2005-03-10 2010-07-08 Ofdmシンボル時間追跡情報を使用するfftコレクションウィンドウ位置決め

Publications (2)

Publication Number Publication Date
JP2008533860A JP2008533860A (ja) 2008-08-21
JP4603072B2 true JP4603072B2 (ja) 2010-12-22

Family

ID=36579188

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2008501016A Pending JP2008533861A (ja) 2005-03-10 2006-03-09 Ofdm通信システム用のトレンドに影響されるシンボル時間追跡
JP2008501015A Expired - Fee Related JP4603072B2 (ja) 2005-03-10 2006-03-09 Ofdmシンボル時間追跡情報を使用するfftコレクションウィンドウ位置決め
JP2008501014A Ceased JP2008533859A (ja) 2005-03-10 2006-03-09 Ofdm通信システム用のシンボル時間追跡
JP2010156077A Pending JP2010273364A (ja) 2005-03-10 2010-07-08 Ofdmシンボル時間追跡情報を使用するfftコレクションウィンドウ位置決め

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2008501016A Pending JP2008533861A (ja) 2005-03-10 2006-03-09 Ofdm通信システム用のトレンドに影響されるシンボル時間追跡

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2008501014A Ceased JP2008533859A (ja) 2005-03-10 2006-03-09 Ofdm通信システム用のシンボル時間追跡
JP2010156077A Pending JP2010273364A (ja) 2005-03-10 2010-07-08 Ofdmシンボル時間追跡情報を使用するfftコレクションウィンドウ位置決め

Country Status (10)

Country Link
US (3) US8165167B2 (ja)
EP (3) EP1872550B1 (ja)
JP (4) JP2008533861A (ja)
KR (3) KR100934146B1 (ja)
CN (3) CN101164309B (ja)
AR (1) AR052693A1 (ja)
AT (3) ATE460037T1 (ja)
DE (3) DE602006012467D1 (ja)
TW (3) TW200706016A (ja)
WO (3) WO2006099240A1 (ja)

Families Citing this family (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2338325C1 (ru) * 2004-09-18 2008-11-10 Самсунг Электроникс Ко., Лтд. Устройство и способ для синхронизации частоты в системе ofdm
US8780957B2 (en) 2005-01-14 2014-07-15 Qualcomm Incorporated Optimal weights for MMSE space-time equalizer of multicode CDMA system
TWI424750B (zh) * 2005-03-10 2014-01-21 Qualcomm Inc 用於在串流式多媒體中最佳化錯誤管理之解碼器結構
CN101171843B (zh) * 2005-03-10 2010-10-13 高通股份有限公司 用于多媒体处理的内容分类
US20100157833A1 (en) * 2005-03-10 2010-06-24 Qualcomm Incorporated Methods and systems for improved timing acquisition for varying channel conditions
US7925955B2 (en) * 2005-03-10 2011-04-12 Qualcomm Incorporated Transmit driver in communication system
US20060221810A1 (en) * 2005-03-10 2006-10-05 Bojan Vrcelj Fine timing acquisition
US8428001B2 (en) 2005-03-10 2013-04-23 Qualcomm Incorporated Timing corrections in a multi carrier system and propagation to a channel estimation time filter
US8675631B2 (en) * 2005-03-10 2014-03-18 Qualcomm Incorporated Method and system for achieving faster device operation by logical separation of control information
US8165167B2 (en) * 2005-03-10 2012-04-24 Qualcomm Incorporated Time tracking for a communication system
US8693540B2 (en) 2005-03-10 2014-04-08 Qualcomm Incorporated Method and apparatus of temporal error concealment for P-frame
JP4856171B2 (ja) * 2005-04-21 2012-01-18 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Ofdmシステムにおける複雑度を低減したチャネル推定
US20070002726A1 (en) * 2005-07-01 2007-01-04 Zangi Kambiz C System and method for adapting a cyclic prefix in an orthogonal frequency division multiplexing (OFDM) system
US8879635B2 (en) 2005-09-27 2014-11-04 Qualcomm Incorporated Methods and device for data alignment with time domain boundary
US8654848B2 (en) 2005-10-17 2014-02-18 Qualcomm Incorporated Method and apparatus for shot detection in video streaming
US8948260B2 (en) 2005-10-17 2015-02-03 Qualcomm Incorporated Adaptive GOP structure in video streaming
US7623607B2 (en) 2005-10-31 2009-11-24 Qualcomm Incorporated Methods and apparatus for determining timing in a wireless communication system
US8009745B2 (en) 2005-11-15 2011-08-30 Qualcomm Incorporated Time tracking for a receiver with guard interval correlation
US8948329B2 (en) * 2005-12-15 2015-02-03 Qualcomm Incorporated Apparatus and methods for timing recovery in a wireless transceiver
US8144818B2 (en) * 2005-12-15 2012-03-27 Qualcomm Incorporated Apparatus and methods for determining timing in a communication system
US8428198B2 (en) * 2006-03-15 2013-04-23 Qualcomm Incorporated Frequency tracking which adapts to timing synchronization
US8005169B1 (en) 2006-03-17 2011-08-23 Marvell International Ltd. Joint estimation of channel and preamble sequence for orthogonal frequency division multiplexing systems
US9131164B2 (en) 2006-04-04 2015-09-08 Qualcomm Incorporated Preprocessor method and apparatus
US8396151B2 (en) * 2006-10-19 2013-03-12 Qualcomm Incorporated Timing tracking in a multiple receive antenna system
US7929624B2 (en) * 2006-10-26 2011-04-19 Telefonaktiebolaget L M Ericsson (Publ) Cell ID detection in cellular communication systems
US7907673B2 (en) * 2006-10-26 2011-03-15 Telefonaktiebolaget L M Ericsson (Publ) Robust and low-complexity combined signal power estimation
US7684504B2 (en) * 2006-10-31 2010-03-23 Freescale Semiconductor, Inc. System and method for reducing edge effect
US8265178B2 (en) * 2006-11-07 2012-09-11 Qualcomm Incorporated Methods and apparatus for signal and timing detection in wireless communication systems
US20080107200A1 (en) * 2006-11-07 2008-05-08 Telecis Wireless, Inc. Preamble detection and synchronization in OFDMA wireless communication systems
CN101193094B (zh) * 2006-11-20 2011-10-19 电信科学技术研究院 一种发送广播/组播业务的方法及系统
US8085873B2 (en) * 2007-01-02 2011-12-27 Qualcomm, Incorporated Systems and methods for enhanced channel estimation in wireless communication systems
US9008198B2 (en) * 2007-01-05 2015-04-14 Qualcomm Incorporated Methods and apparatus for timing synchronization based on transitional pilot symbols
US7839831B2 (en) * 2007-01-08 2010-11-23 Qualcomm Incorporated Methods and apparatus for time tracking using assistance from TDM pilots in a communication network
US7859990B2 (en) * 2007-01-23 2010-12-28 Beceem Communications Inc. Methods and systems for performing channels estimation in a wireless communication system
US20080219332A1 (en) * 2007-03-05 2008-09-11 Qualcomm Incorporated Apparatus and methods accounting for automatic gain control in a multi carrier system
US8098567B2 (en) * 2007-03-05 2012-01-17 Qualcomm Incorporated Timing adjustments for channel estimation in a multi carrier system
WO2008109607A1 (en) * 2007-03-05 2008-09-12 Qualcomm Incorporated Apparatus and methods accounting for effects of discontinuities at the output of automatic gain control in a multi carrier system
US8045636B1 (en) * 2007-03-27 2011-10-25 Marvell International Ltd. Maximum-likelihood frame synchronization algorithms for OFDM systems
US8102754B2 (en) * 2007-04-30 2012-01-24 Telefonaktiebolaget Lm Ericsson (Publ) Synchronization time difference measurements in OFDM systems
US8135078B2 (en) * 2007-05-04 2012-03-13 Amicus Wireless Technology Ltd. Channel profile estimation for OFDM-based communication system
US8385826B2 (en) 2007-07-10 2013-02-26 Qualcomm Incorporated Methods and apparatus for supporting communication over different ranges in a wireless network
US8411805B1 (en) 2007-08-14 2013-04-02 Marvell International Ltd. Joint estimation of channel and preamble sequence for orthogonal frequency division multiplexing systems
US8681666B2 (en) * 2007-10-01 2014-03-25 Qualcomm Incorporated Partial discarding of cyclic prefix for efficient TDD or half-duplex FDD operation
JP5098553B2 (ja) * 2007-10-10 2012-12-12 富士通セミコンダクター株式会社 Ofdm受信装置およびofdm受信方法
JP2009094839A (ja) 2007-10-10 2009-04-30 Fujitsu Microelectronics Ltd Ofdm受信装置
JP5085269B2 (ja) * 2007-10-23 2012-11-28 京セラ株式会社 無線通信装置
DE102007053402A1 (de) * 2007-11-09 2009-05-14 Rohde & Schwarz Gmbh & Co. Kg Synchronisierung von Empfangssymbolen bei OFDM
US8532201B2 (en) * 2007-12-12 2013-09-10 Qualcomm Incorporated Methods and apparatus for identifying a preamble sequence and for estimating an integer carrier frequency offset
US8537931B2 (en) * 2008-01-04 2013-09-17 Qualcomm Incorporated Methods and apparatus for synchronization and detection in wireless communication systems
JP4524704B2 (ja) * 2008-03-14 2010-08-18 ソニー株式会社 復調回路、復調方法、プログラム、および受信装置
US8699529B2 (en) 2008-03-28 2014-04-15 Qualcomm Incorporated Broadband pilot channel estimation using a reduced order FFT and a hardware interpolator
EP2262140B1 (en) * 2008-03-31 2019-11-20 Panasonic Intellectual Property Management Co., Ltd. Receiver, method of reception, reception program, integrated circuit, and digital television
US8073064B2 (en) * 2008-04-18 2011-12-06 Newport Media, Inc. Robust FFT trigger point tracking for echo channels in OFDM based communication systems
US8824575B2 (en) * 2008-05-28 2014-09-02 Nokia Siemens Networks Oy Method and apparatus for providing pilot signals in OFDM frames
JP4712912B2 (ja) * 2008-06-19 2011-06-29 シャープ株式会社 無線装置
US8559296B2 (en) * 2008-08-01 2013-10-15 Broadcom Corporation Method and system for an OFDM joint timing and frequency tracking system
US8174958B2 (en) 2008-08-01 2012-05-08 Broadcom Corporation Method and system for a reference signal (RS) timing loop for OFDM symbol synchronization and tracking
US8411765B2 (en) * 2008-10-10 2013-04-02 Ziva Corporation Techniques and systems for wireless communications
US8964789B1 (en) 2008-11-11 2015-02-24 Marvell International Ltd. Method and system for data synchronization in communication systems using repetitive preamble patterns
US8719649B2 (en) * 2009-03-04 2014-05-06 Alcatel Lucent Method and apparatus for deferred scheduling for JTAG systems
KR101625056B1 (ko) * 2009-03-13 2016-05-27 엘지전자 주식회사 무선 통신 시스템에서 데이터 전송 및 수신 방법
CN101552764B (zh) * 2009-04-29 2012-12-19 香港应用科技研究院有限公司 基于ofdm的通信的时间同步系统和方法
CN101924723B (zh) * 2009-06-09 2013-05-08 中兴通讯股份有限公司 Ofdm信号解调方法和装置
US8743976B2 (en) 2009-09-03 2014-06-03 Ziva Corporation Techniques and systems for communications based on time reversal pre-coding
JP5336994B2 (ja) * 2009-10-19 2013-11-06 キヤノン株式会社 通信方法及び通信装置
TW201141144A (en) 2009-11-16 2011-11-16 Maxlinear Inc Apparatus and methods for symbol timing error detection, tracking and correction
US9642105B2 (en) * 2009-11-17 2017-05-02 Qualcomm Incorporated Access terminal-assisted time and/or frequency tracking
US8503553B2 (en) * 2009-12-17 2013-08-06 Texas Instruments Incorporated Pilot subcarriers in wireless transmissions
CN102209377B (zh) * 2010-03-31 2015-01-28 中兴通讯股份有限公司 辅同步信号的生成方法和装置
US8582698B2 (en) 2010-05-10 2013-11-12 Telefonaktiebolaget Lm Ericsson (Publ) Reduced complexity timing estimation for locating the position of a mobile terminal
US8559537B2 (en) * 2010-05-12 2013-10-15 GM Global Technology Operations LLC Spectral-temporal averaging for IEEE 802.11p dynamic channel equalization
US8494070B2 (en) * 2010-05-12 2013-07-23 Qualcomm Incorporated Channel impulse response (CIR)-based and secondary synchronization channel (SSC)-based (frequency tracking loop (FTL)/time tracking loop (TTL)/channel estimation
US9083408B2 (en) * 2010-08-31 2015-07-14 Qualcomm Incorporated Implicit and explicit channel sounding for beamforming
CN103067952A (zh) * 2011-10-21 2013-04-24 上海湾流仪器技术有限公司 基于信令流程的移动网络单通分析方法
EP2595352B1 (en) 2011-11-18 2014-04-09 Cambridge Silicon Radio Limited Method and apparatus for enhanced channel estimation using a frame based compensation of changes of the communication channel
US20130170568A1 (en) * 2011-12-29 2013-07-04 Assaf Prihed Reducing inter-carrier interference in ofdm and ofdma systems by time sample scaling based on cyclic prefix samples
US9078205B2 (en) 2012-03-09 2015-07-07 Qualcomm Incorporated Methods and apparatus for enabling non-destaggered channel estimation
US9275013B2 (en) * 2012-03-16 2016-03-01 Qualcomm Incorporated System and method for analysis and reconstruction of variable pulse-width signals having low sampling rates
US9967112B2 (en) * 2012-05-03 2018-05-08 Apple Inc. Apparatus and methods for adaptively resuming radio channel estimation
TWI524682B (zh) * 2013-06-11 2016-03-01 晨星半導體股份有限公司 用於接收器之時序恢復的修正裝置與方法
US9143376B2 (en) * 2013-09-04 2015-09-22 Broadcom Corporation Efficient tree-based MIMO OFDM detection
ES2748500T3 (es) * 2014-03-25 2020-03-17 Ericsson Telefon Ab L M Formato de preámbulo de PRACH mejorado
US9673948B2 (en) * 2014-10-29 2017-06-06 Qualcomm Incorporated Hybrid pilot design for low latency communication
KR102403502B1 (ko) * 2015-10-13 2022-05-30 삼성전자 주식회사 무선 통신 시스템에서 채널 상태 추정 방법 및 장치
US10070447B1 (en) * 2017-03-02 2018-09-04 Samsung Electronics Co., Ltd Method and apparatus for enhanced reference (RSTD) measurement for long term evolution (LTE) positioning
US10327220B2 (en) * 2017-07-12 2019-06-18 Cable Television Laboratories, Inc. Multicast aided cooperative beamforming wireless system
WO2019172412A1 (ja) 2018-03-09 2019-09-12 日本電気株式会社 無線装置及びチャネル予測方法
WO2019207425A1 (en) * 2018-04-26 2019-10-31 Marvell World Trade Ltd. Pilots for wireless access in vehicular environments
US11121785B2 (en) 2019-01-10 2021-09-14 Exfo Inc. Detection and tracking of interferers in a RF spectrum with multi-lane processing
US10735109B1 (en) 2019-01-11 2020-08-04 Exfo Inc. Automated analysis of RF spectrum
US11528176B2 (en) * 2019-09-13 2022-12-13 Samsung Electronics Co., Ltd Apparatus and method for symbol time recovery using feedback loop
US11540234B2 (en) 2019-12-05 2022-12-27 Exfo Inc. Automated narrow peak interference severity estimation
EP4364477A4 (en) * 2021-06-30 2024-07-31 Ericsson Telefon Ab L M PURPOSE-DEPENDENT DETERMINATION OF THE START OF A RECEIVER SYMBOLIC PROCESSING WINDOW

Family Cites Families (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US624071A (en) * 1899-05-02 Gas-burning heater
US673594A (en) * 1900-12-28 1901-05-07 American Ordnance Company Semi-automatic breech-loading ordnance.
US723554A (en) * 1902-05-08 1903-03-24 David Servis Spike.
DE3929291A1 (de) * 1989-09-04 1991-03-07 Philips Patentverwaltung Einrichtung zum umsetzen und rueckumsetzen eines videosignals
JP2770626B2 (ja) 1991-11-29 1998-07-02 日本電気株式会社 適応受信機
US5463627A (en) 1993-02-23 1995-10-31 Matsushita Electric Industrial Co., Ltd. Frame synchronizing apparatus for quadrature modulation data communication radio receiver
US5490168A (en) 1994-07-08 1996-02-06 Motorola, Inc. Method and system for automatic optimization of data throughput using variable packet length and code parameters
KR100254067B1 (ko) 1995-02-06 2000-04-15 피셔 데이비드 에프. 다중 지점 대 지점 통신 시스템
CN1097928C (zh) * 1995-08-16 2003-01-01 皇家菲利浦电子有限公司 码处理改善的接收机和传输系统
US5732113A (en) 1996-06-20 1998-03-24 Stanford University Timing and frequency synchronization of OFDM signals
JPH1065605A (ja) * 1996-08-23 1998-03-06 Sony Corp 受信方法、タイミング検出装置及び受信装置
JP3479418B2 (ja) * 1996-10-18 2003-12-15 アルパイン株式会社 デジタルオーディオ放送における受信装置
JP3751385B2 (ja) 1996-11-01 2006-03-01 三菱電機株式会社 信号復調装置
JP3453696B2 (ja) * 1996-11-07 2003-10-06 株式会社ケンウッド 復調器
KR100230271B1 (ko) 1997-01-10 1999-11-15 윤종용 Ofdm 시스템 수신기의 미세 fft 윈도우 위치 복원장치
JP2883866B2 (ja) * 1997-04-21 1999-04-19 株式会社次世代デジタルテレビジョン放送システム研究所 Ofdm復調装置
US6175551B1 (en) 1997-07-31 2001-01-16 Lucent Technologies, Inc. Transmission system and method employing peak cancellation to reduce the peak-to-average power ratio
DE69737018T2 (de) 1997-09-04 2007-06-28 Sony Deutschland Gmbh Übertragungssystem für OFDM-Signalen mit optimierter Synchronisation
DE19747369A1 (de) * 1997-10-27 1999-05-06 Siemens Ag Übertragungskanalschätzung in Telekommunikationssystemen mit drahtloser Telekommunikation
EP2782307B1 (en) 1997-11-05 2016-03-30 Sony Deutschland Gmbh Synchronisation of digital communication systems
US6370397B1 (en) * 1998-05-01 2002-04-09 Telefonaktiebolaget Lm Ericsson (Publ) Search window delay tracking in code division multiple access communication systems
JP2000059238A (ja) 1998-08-04 2000-02-25 Mitsubishi Electric Corp ビタビデコーダの符号同期判定回路
US6347071B1 (en) 1998-10-13 2002-02-12 Lucent Technologies Inc. Time division multiplexed transmission of OFDM symbols
JP4068242B2 (ja) * 1998-11-30 2008-03-26 株式会社東芝 Ofdm受信装置
US6229839B1 (en) * 1999-02-08 2001-05-08 Qualcomm Incorporated Method and apparatus for time tracking
US6539063B1 (en) 1999-02-18 2003-03-25 Ibiquity Digital Corporation System and method for recovering symbol timing offset and carrier frequency error in an OFDM digital audio broadcast system
JP2000307489A (ja) 1999-04-23 2000-11-02 Matsushita Electric Ind Co Ltd 無線受信装置及び受信タイミング検出方法
JP2001119368A (ja) 1999-05-31 2001-04-27 Sony Corp 受信装置及び受信方法、並びに媒体
KR100335443B1 (ko) 1999-06-15 2002-05-04 윤종용 직교주파수분할다중변조 신호의 심볼 타이밍 및 주파수 동기 장치 및 방법
JP4410388B2 (ja) * 1999-06-22 2010-02-03 パナソニック株式会社 Ofdm復調装置およびofdm復調方法
EP1063824B1 (en) 1999-06-22 2006-08-02 Matsushita Electric Industrial Co., Ltd. Symbol synchronisation in multicarrier receivers
CN1172460C (zh) 1999-09-29 2004-10-20 三星电子株式会社 正交频分复用系统中补偿定时误差的系统和方法
EP1107526A1 (en) * 1999-12-09 2001-06-13 Alcatel Alsthom Compagnie Generale D'electricite Channel estimation using weighted averages over several time slots
US6628735B1 (en) 1999-12-22 2003-09-30 Thomson Licensing S.A. Correction of a sampling frequency offset in an orthogonal frequency division multiplexing system
JP2001251273A (ja) 2000-03-06 2001-09-14 Sanyo Electric Co Ltd ディジタル放送受信機
GB2365714A (en) 2000-03-15 2002-02-20 Conexant Digital Infotainment Minimising effects of inter-symbol interference in receiver
JP3407711B2 (ja) * 2000-04-27 2003-05-19 日本電気株式会社 Ds−cdma方式の受信機におけるパスサーチ回路
US6771591B1 (en) 2000-07-31 2004-08-03 Thomson Licensing S.A. Method and system for processing orthogonal frequency division multiplexed signals
US6885712B1 (en) 2000-08-16 2005-04-26 Agere Systems Inc. Methods and devices for minimizing interblock interference using an optimum time of reference
KR100424496B1 (ko) 2000-08-31 2004-03-26 삼성전자주식회사 디지털 vsb시스템의 동기신호를 이용한 이퀄라이져 제어 방법 및 장치
EP1329032B1 (en) 2000-10-20 2006-12-27 Nortel Networks Limited Multi-user detector for direct sequence - code division multiple access (ds/cdma) channels
GB2369015A (en) 2000-11-09 2002-05-15 Sony Uk Ltd Receiver that uses guard signals to estimate synchronisation position
GB2369016B (en) 2000-11-09 2004-06-09 Sony Uk Ltd Receiver
US6438367B1 (en) 2000-11-09 2002-08-20 Magis Networks, Inc. Transmission security for wireless communications
JP4511714B2 (ja) 2000-12-05 2010-07-28 パナソニック株式会社 Ofdm受信装置
JP3895115B2 (ja) 2001-02-01 2007-03-22 ソニー株式会社 データ伝送方法、データ送信装置、およびデータ受信装置
KR100393630B1 (ko) 2001-02-14 2003-08-02 삼성전자주식회사 이동통신시스템에서 프레임 동기 획득 장치 및 방법
GB2376855A (en) 2001-06-20 2002-12-24 Sony Uk Ltd Determining symbol synchronisation in an OFDM receiver in response to one of two impulse response estimates
US7298785B2 (en) 2001-07-04 2007-11-20 Kabushiki Kaisha Toyota Chuo Kenkyusho Multicarrier demodulation method and apparatus, and multicarrier modulation method and apparatus
US7058144B2 (en) 2001-08-07 2006-06-06 Conexant, Inc. Intelligent control system and method for compensation application in a wireless communications system
JP4056238B2 (ja) 2001-09-27 2008-03-05 三洋電機株式会社 デジタル信号受信装置
DE10156111A1 (de) 2001-11-16 2003-06-05 Philips Intellectual Property Empfangsschaltung zum Empfang von Nachrichtensignalen
US20030110434A1 (en) 2001-12-11 2003-06-12 Amrutur Bharadwaj S. Serial communications system and method
US6724834B2 (en) 2002-02-22 2004-04-20 Albert L. Garrett Threshold detector for detecting synchronization signals at correlator output during packet acquisition
TW571543B (en) 2002-04-19 2004-01-11 Taiwan Semiconductor Mfg Phase transition determination device and sampling phase determination device
FR2840142B1 (fr) 2002-05-24 2004-09-10 Dibcom Procede et dispositif de synchronisation a la reception d'un signal et d'echos
US7346013B2 (en) * 2002-07-18 2008-03-18 Coherent Logix, Incorporated Frequency domain equalization of communication signals
CN1207908C (zh) * 2002-08-16 2005-06-22 清华大学 基于滑动窗口的对含导频的块信号的信道估计和均衡方法
GB2395094A (en) 2002-10-28 2004-05-12 Sony Uk Ltd Determining a symbol synch time in an OFDM receiver
US7254196B2 (en) 2002-11-26 2007-08-07 Agere Systems Inc. Symbol timing for MIMO OFDM and other wireless communication systems
EP1445906B1 (en) * 2002-12-09 2006-05-31 Rohde & Schwarz GmbH & Co. KG Method and device for analysing an OFDM signal
US7656936B2 (en) 2003-01-28 2010-02-02 Cisco Technology, Inc. Method and system for interference reduction in a wireless communication network using a joint detector
JP4276009B2 (ja) 2003-02-06 2009-06-10 株式会社エヌ・ティ・ティ・ドコモ 移動局、基地局、無線伝送プログラム、及び無線伝送方法
CN100544240C (zh) * 2003-04-01 2009-09-23 北京邮电大学 用于多载波码分多址系统的时间同步方法
EP1469647B1 (en) 2003-04-17 2007-01-10 Mitsubishi Electric Information Technology Centre Europe B.V. OFDM symbol synchronisation
SG113465A1 (en) 2003-05-30 2005-08-29 Oki Techno Ct Singapore Pte Method of estimating reliability of decoded message bits
KR20040110341A (ko) * 2003-06-18 2004-12-31 삼성전자주식회사 채널상태에 따라 다른 채널등화방식을 사용하는tds-ofdm수신기 및 이를 이용한 채널등화방법
US7133457B2 (en) * 2003-06-27 2006-11-07 Texas Instruments Incorporated Joint timing recovery for multiple signal channels
US7577087B2 (en) 2003-06-30 2009-08-18 Nokia Corporation Faster fine timing operation in multi-carrier system
TWI220547B (en) 2003-07-08 2004-08-21 Realtek Semiconductor Corp Symbol boundary detection device and method
EP1650891B1 (en) 2003-07-29 2011-05-04 Fujitsu Limited Pilot multiplexing method and transmission apparatus for an OFDM system
JP2005057575A (ja) 2003-08-06 2005-03-03 Seiko Epson Corp Ofdm受信機
JP2005057673A (ja) 2003-08-07 2005-03-03 Mitsubishi Electric Corp マルチキャリア受信装置
RU2235429C1 (ru) 2003-08-15 2004-08-27 Федеральное государственное унитарное предприятие "Воронежский научно-исследовательский институт связи" Способ частотно-временной синхронизации системы связи и устройство для его осуществления
US20050063298A1 (en) * 2003-09-02 2005-03-24 Qualcomm Incorporated Synchronization in a broadcast OFDM system using time division multiplexed pilots
WO2005050865A2 (en) 2003-11-18 2005-06-02 Ibiquity Digital Corporation Coherent tracking for fm iboc receiver using a switch diversity antenna system
US8553822B2 (en) 2004-01-28 2013-10-08 Qualcomm Incorporated Time filtering for excess delay mitigation in OFDM systems
EP1712054A1 (en) 2004-01-28 2006-10-18 Qualcomm, Incorporated Timing estimation in an ofdm receiver
US7457231B2 (en) 2004-05-04 2008-11-25 Qualcomm Incorporated Staggered pilot transmission for channel estimation and time tracking
US7860193B2 (en) 2004-07-20 2010-12-28 Qualcomm Incorporated Coarse timing estimation system and methodology for wireless symbols
US7123669B2 (en) 2004-10-25 2006-10-17 Sandbridge Technologies, Inc. TPS decoder in an orthogonal frequency division multiplexing receiver
US8422955B2 (en) 2004-12-23 2013-04-16 Qualcomm Incorporated Channel estimation for interference cancellation
US7826807B2 (en) 2005-03-09 2010-11-02 Qualcomm Incorporated Methods and apparatus for antenna control in a wireless terminal
US20060221810A1 (en) 2005-03-10 2006-10-05 Bojan Vrcelj Fine timing acquisition
US8165167B2 (en) 2005-03-10 2012-04-24 Qualcomm Incorporated Time tracking for a communication system
US7609773B2 (en) 2005-04-18 2009-10-27 Qualcomm Incorporated Method of determining the location of the FFT window and the delay spread for the platinum broadcast channel estimator
US7623607B2 (en) 2005-10-31 2009-11-24 Qualcomm Incorporated Methods and apparatus for determining timing in a wireless communication system
US8948329B2 (en) 2005-12-15 2015-02-03 Qualcomm Incorporated Apparatus and methods for timing recovery in a wireless transceiver
US7782806B2 (en) 2006-03-09 2010-08-24 Qualcomm Incorporated Timing synchronization and channel estimation at a transition between local and wide area waveforms using a designated TDM pilot
US7839831B2 (en) 2007-01-08 2010-11-23 Qualcomm Incorporated Methods and apparatus for time tracking using assistance from TDM pilots in a communication network

Also Published As

Publication number Publication date
DE602006012641D1 (de) 2010-04-15
ATE459176T1 (de) 2010-03-15
CN101160895B (zh) 2013-03-20
CN101160893B (zh) 2013-05-22
ATE460037T1 (de) 2010-03-15
US8165167B2 (en) 2012-04-24
US8175123B2 (en) 2012-05-08
US20060245349A1 (en) 2006-11-02
EP1869857B1 (en) 2010-03-03
ATE456234T1 (de) 2010-02-15
CN101160893A (zh) 2008-04-09
KR20070103786A (ko) 2007-10-24
WO2006099242A1 (en) 2006-09-21
AR052693A1 (es) 2007-03-28
JP2008533860A (ja) 2008-08-21
JP2008533861A (ja) 2008-08-21
WO2006099240A1 (en) 2006-09-21
CN101160895A (zh) 2008-04-09
KR100893510B1 (ko) 2009-04-16
KR20070110915A (ko) 2007-11-20
JP2010273364A (ja) 2010-12-02
TW200706016A (en) 2007-02-01
TW200704088A (en) 2007-01-16
US8144824B2 (en) 2012-03-27
US20060233097A1 (en) 2006-10-19
EP1872549A1 (en) 2008-01-02
EP1869857A1 (en) 2007-12-26
EP1872550A1 (en) 2008-01-02
KR100934146B1 (ko) 2009-12-29
JP2008533859A (ja) 2008-08-21
EP1872549B1 (en) 2010-01-20
KR100882165B1 (ko) 2009-02-06
KR20070103787A (ko) 2007-10-24
WO2006099241A1 (en) 2006-09-21
DE602006011869D1 (de) 2010-03-11
CN101164309B (zh) 2015-04-08
DE602006012467D1 (de) 2010-04-08
US20060215539A1 (en) 2006-09-28
CN101164309A (zh) 2008-04-16
TW200708020A (en) 2007-02-16
EP1872550B1 (en) 2010-02-24

Similar Documents

Publication Publication Date Title
JP4603072B2 (ja) Ofdmシンボル時間追跡情報を使用するfftコレクションウィンドウ位置決め
KR100947794B1 (ko) 미세 타이밍 획득
KR101036778B1 (ko) 시분할 멀티플렉싱 파일럿을 이용하는 브로드캐스트ofdm 시스템에서의 동기화
KR100761791B1 (ko) Ofdm-fdma/cdma/tdma 시스템의 타이밍추정 성능 향상을 위한 동기화 장치 및 방법
US20090190675A1 (en) Synchronization in a broadcast ofdm system using time division multiplexed pilots
US20050152326A1 (en) Frequency error estimation and frame synchronization in an OFDM system
AU2009202005A1 (en) Frame synchronization and initial symbol timing acquisition system and method
JP2011502454A (ja) 時分割多重化パイロットを使用する同報ofdmシステムにおける同期化

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100930

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees