JP4590020B1 - 電荷輸送材料及び有機電界発光素子 - Google Patents

電荷輸送材料及び有機電界発光素子 Download PDF

Info

Publication number
JP4590020B1
JP4590020B1 JP2010107586A JP2010107586A JP4590020B1 JP 4590020 B1 JP4590020 B1 JP 4590020B1 JP 2010107586 A JP2010107586 A JP 2010107586A JP 2010107586 A JP2010107586 A JP 2010107586A JP 4590020 B1 JP4590020 B1 JP 4590020B1
Authority
JP
Japan
Prior art keywords
group
general formula
compound represented
atom
charge transport
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010107586A
Other languages
English (en)
Other versions
JP2011071474A (ja
Inventor
哲 北村
徹 渡辺
俊大 伊勢
裕雄 滝沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2010107586A priority Critical patent/JP4590020B1/ja
Priority to PCT/JP2010/062647 priority patent/WO2011013681A1/ja
Priority to US13/388,132 priority patent/US20120126221A1/en
Priority to KR1020127002597A priority patent/KR101178084B1/ko
Priority to TW099125368A priority patent/TWI532733B/zh
Application granted granted Critical
Publication of JP4590020B1 publication Critical patent/JP4590020B1/ja
Publication of JP2011071474A publication Critical patent/JP2011071474A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms

Abstract

【課題】優れた発光効率と耐久性を有する有機電界発光素子を提供。
【解決手段】一般式(1)で表される化合物を含む電荷輸送材料であって、特定のハロゲン含有化合物の含有量がそれぞれ一般式(1)で表される化合物に対して0.1%以下である電荷輸送材料を有機層に含む有機電界発光素子。
Figure 0004590020
一般式(1)中、A、Aはそれぞれ独立にN、−CH又は−CRを表す。
【選択図】なし

Description

本発明は電荷輸送材料及び有機電界発光素子に関する。
有機電界発光素子(以下、「素子」、「有機EL素子」ともいう)は、低電圧駆動で高輝度の発光が得られることから活発に研究開発が行われている。有機電界発光素子は、一対の電極間に有機層を有し、陰極から注入された電子と陽極から注入された正孔とが有機層において再結合し、生成した励起子のエネルギーを発光に利用するものである。
近年、燐光発光材料を用いることにより、素子の高効率化が進んでいる。また、発光材料をホスト材料中にドープした発光層を用いるドープ型素子が広く採用されている。
例えば、特許文献1−3には、燐光発光材料としてイリジウム錯体や白金錯体などを用い、更に含窒素ヘテロ環基とカルバゾール構造を含む特定構造の化合物をホスト材料として用いて、発光効率及び耐久性を向上させた有機電界発光素子が提案されている。
また、同じく含窒素ヘテロ環基とカルバゾール構造を含む特定構造の化合物を電子輸送材料として電子輸送層に用いて、発光効率を向上させた有機電界発光素子が提案されている(特許文献4参照)。
しかしながら、これら特許文献1−4に記載の素子よりも更に高いレベルで発光効率と耐久性が両立された有機電界発光素子が求められている。
ところで、特許文献5及び6には、有機層に含まれる有機化合物材料中のハロゲン含有化合物からなる不純物の濃度を低減することで有機電界発光素子の耐久性が改善されることが開示されている。ここで、ハロゲン含有不純物の濃度低減の方法としては、所望の有機化合物材料を合成後に精製する方法(特許文献5及び6)や、合成後の材料中のハロゲン含有化合物に対して還元処理を行う方法(特許文献6)が提案されている。
国際公開第05/085387号 国際公開第03/080760号 国際公開第03/078541号 特開2007−220721号公報 特許第3290432号公報 特開2005−222794号公報
一般的に、ある一つの有機化合物材料は複数種のハロゲン含有不純物を含むが、その全てが該有機化合物材料を用いた有機電界発光素子の耐久性に等しく影響を与えるものでなく、どのような構造のハロゲン含有不純物が素子の耐久性に大きな影響を与えるのかは簡単には分からない。
また、特許文献6に記載されるように、ハロゲン含有化合物の除去は困難なことが多く、有機化合物材料に応じて適切な不純物低減の方法を検討する必要がある。
特許文献1−4に記載の含窒素ヘテロ環基とカルバゾール構造を含む特定構造の電荷輸送材料に関しては、特許文献1及び2に、ハロゲン原子が置換した含窒素ヘテロ環を含む構造と、ボロン酸が置換したアリール基を含むカルバゾール構造とをカップリングして合成する方法が開示されている。しかしながら、特許文献1−4には、上記特定構造の化合物の純度や含有不純物による素子に対する影響についての記載はない。
一方で、特許文献2には、本発明の一般式(1)に相当する化合物が置換しうる置換基の例として、塩素、臭素、フッ素などのハロゲン原子が記載されており、一般式(1)で表される化合物においては、ハロゲン原子の置換は大きな悪影響を与えるものではないことが、知られていた。
本発明の目的は、優れた発光効率と耐久性を有する有機電界発光素子を提供することである。
また、本発明の別の目的は、優れた発光効率と耐久性を有する有機電界発光素子に有用な電荷輸送材料を提供することである。更に、本発明の別の目的は、有機電界発光素子に有用な化合物の製造方法を提供することである。そして、本発明の別の目的は、有機電界発光素子を含む発光装置及び照明装置を提供することである。
本発明者らの検討によると、含窒素ヘテロ環基とカルバゾール構造を含む特定化合物からなる電荷輸送材料において、従来、悪影響を与えないと考えられていたハロゲン含有不純物のうち、特定構造の不純物化合物が素子性能に大きく影響することを見出し、該不純物の含有量を低減することで、有機電界発光素子の発光効率と耐久性を高いレベルで両立できることを見出した。また、特定の合成方法により上記含窒素ヘテロ環基とカルバゾール構造を含む特定化合物を得ることで、前記不純物の含有量を低減し易くなることを見出した。
すなわち、本発明は下記の手段により達成することができる。
[1]
以下の一般式(1)で表される化合物を含む電荷輸送材料であって、以下の一般式(I−1)で表される化合物及び一般式(I−2)で表される化合物の含有量が、それぞれ一般式(1)で表される化合物に対して0.1質量%以下であることを特徴とする電荷輸送材料。
Figure 0004590020
一般式(1)中、A、Aはそれぞれ独立にN、−CH又は−CRを表す。Rは置換基を表す。Lは単結合、アリーレン基、シクロアルキレン基又は芳香族へテロ環を表す。Lが連結するベンゼン環中の炭素原子と、L中の原子と、更に他の原子とにより環を形成してもよい。前記他の原子は、炭素原子、酸素原子又は硫黄原子であり、該炭素原子には更にアルキル基又はアリール基が置換していてもよい。R〜Rはそれぞれ独立にハロゲン原子、アルキル基、アリール基、芳香族ヘテロ環基、アダマンチル基、シアノ基、シリル基又はカルバゾリル基を表す。n1〜n3はそれぞれ独立に0〜4の整数を表し、n4〜n5はそれぞれ独立に0〜5を表す。p、qはそれぞれ独立に1〜4の整数を表す。
Figure 0004590020
Figure 0004590020
一般式(I−1)及び一般式(I−2)中、A、A、R〜R、n1〜n5、p及びqはそれぞれ一般式(1)と同義であり、一般式(1)におけるA、A、R〜R、n1〜n5、p及びqと同一の基又は整数である。X、Xはそれぞれ独立にハロゲン原子を表す。L’及びL”はLと同義である。
[2]
一般式(I−1)で表される化合物及び一般式(I−2)で表される化合物の含有量が、それぞれ一般式(1)で表される化合物に対して0.001質量%以上0.1質量%以下であることを特徴とする上記[1]に記載の電荷輸送材料。
[3]
一般式(1)において、A及びAのいずれか一方が窒素原子であり、他方が炭素原子であることを特徴とする上記[1]又は[2]に記載の電荷輸送材料。
[4]
一般式(1)において、Lが単結合、フェニレン基、ビフェニレン基又はターフェニレン基であることを特徴とする上記[1]〜[3]のいずれか1項に記載の電荷輸送材料。
[5]
一般式(1)において、R〜Rがそれぞれ独立にアルキル基、アリール基、シアノ基又はシリル基であることを特徴とする上記[1]〜[4]のいずれか1項に記載の電荷輸送材料。
[6]
一般式(1)において、n1〜n5が全て0であることを特徴とする上記[1]〜[5]のいずれか1項に記載の電荷輸送材料。
[7]
一般式(1)で表される化合物が以下の一般式(2)で表される化合物であることを特徴とする上記[1]〜[6]のいずれか1項に記載の電荷輸送材料。
Figure 0004590020
一般式(2)中、R〜R11はそれぞれ独立にアルキル基、アリール基、シアノ基又はシリル基を表す。n6〜n9はそれぞれ0〜4の整数を表し、n10〜n11はそれぞれ独立に0〜5の整数を表す。
[8]
一般式(2)において、n6〜n11が全て0であることを特徴とする上記[7]に記載の電荷輸送材料。
[9]
一般式(I−1)で表される化合物及び一般式(I−2)で表される化合物がそれぞれ以下の一般式(II−1)で表される化合物及び一般式(II−2)で表される化合物であることを特徴とする上記[7]又は[8]に記載の電荷輸送材料。
Figure 0004590020
Figure 0004590020
一般式(II−1)及び一般式(II−2)中、X、Xはそれぞれ独立にハロゲン原子を表す。R〜R11及びn6〜n11は一般式(2)と同義である。
[10]
一般式(1)で表される化合物の分子量が450以上800以下であることを特徴とする上記[1]〜[9]のいずれか1項に記載の電荷輸送材料。
[11]
一般式(1)で表される化合物の薄膜状態での最低励起三重項Tエネルギーが2.61eV以上3.51eV以下である上記[1]〜[9]のいずれか1項に記載の電荷輸送材料。
[12]
一般式(1)で表される化合物のガラス転移温度Tgが80℃以上400℃以下であることを特徴とする上記[1]〜[10]のいずれか1項に記載の電荷輸送材料。
[13]
以下の一般式(2)で表される化合物の製造方法であって、
以下の一般式(M1)で表される化合物と一般式(M2)で表される化合物とをパラジウム触媒を用いてカップリング反応する工程と、
前記カップリング反応により得られた反応生成物を昇華精製する工程とを含むことを特徴とする一般式(2)で表される化合物の製造方法。
Figure 0004590020
一般式(2)中、R〜R11はそれぞれ独立にアルキル基、アリール基、シアノ基又はシリル基を表す。n6〜n9はそれぞれ0〜4の整数を表し、n10〜n11はそれぞれ独立に0〜5の整数を表す。
Figure 0004590020
Figure 0004590020
一般式(M1)及び一般式(M2)中、Xはハロゲン原子を表す。R〜R11及びn6〜n11は一般式(2)と同義である。R12は水素原子又はアルキル基を表す。
[14]
一般式(2)で表される化合物が上記[13]記載の製造方法で得られたことを特徴とする上記[7]又は[8]に記載の電荷輸送材料。
[15]
一対の電極間に、発光層を含む有機層を少なくとも一層含む有機電界発光素子であって、有機層のいずれかの層が上記[1]〜[12]及び[14]のいずれか1項に記載の電荷輸送材料を含むことを特徴とする有機電界発光素子。
[16]
前記有機層が電子輸送層を含み、該電子輸送層が上記[1]〜[12]及び[14]のいずれか1項に記載の電荷輸送材料を含むことを特徴とする上記[15]に記載の有機電界発光素子。
[17]
前記発光層が上記[1]〜[12]及び[14]のいずれか1項に記載の電荷輸送材料を含むことを特徴とする上記[15]に記載の有機電界発光素子。
[18]
前記発光層が発光材料として以下の一般式(C−3)で表される化合物を含むことを特徴とする上記[15]〜[17]のいずれか1項に記載の有機電界発光素子。
Figure 0004590020
一般式(C−3)中、A301〜A313は、それぞれ独立に、C−R又はNを表す。Rは水素原子又は置換基を表す。L31は単結合又は二価の連結基を表す。
[19]
前記L31が、単結合、アルキレン基又はアリーレン基であり、該アルキレン基及びアリーレン基は更に置換基としてアルキル基又はアリール基を有していてもよい(前記置換基が複数ある場合には互いに結合して環を形成してもよい)ことを特徴とする上記[18]に記載の有機電界発光素子。
[20]
前記A302又はA305はC−Rを表し、Rが水素原子、アミノ基、アルコキシ基、アリールオキシ基、又はフッ素基であることを特徴とする上記[18]又は[19]に記載の有機電界発光素子。
[21]
前記A301、A303、A304、又はA306がC−Rを表し、Rが水素原子、アミノ基、アルコキシ基、アリールオキシ基、又はフッ素基であることを特徴とする上記[18]〜[20]のいずれか1項に記載の有機電界発光素子。
[22]
前記A307、A308、A309、又はA310がC−Rであるとき、Rが水素原子、アルキル基、パーフルオロアルキル基、アリール基、ジアルキルアミノ基、シアノ基、又はフッ素原子であることを特徴とする上記[18]〜[21]のいずれか1項に記載の有機電界発光素子。
[23]
前記A307、A308、A309及びA310と2つの炭素原子とから形成される6員環が、ベンゼン環、ピリジン環、ピラジン環、ピリミジン環、又はピリダジン環であることを特徴とする上記[18]〜[22]のいずれか1項に記載の有機電界発光素子。
[24]
前記A311、A312、又はA313がC−Rであるとき、Rが水素原子、アルキル基、パーフルオロアルキル基、アリール基、ジアルキルアミノ基、シアノ基、又はフッ素原子であることを特徴とする上記[18]〜[23]のいずれか1項に記載の有機電界発光素子。
[25]
前記A311、A312及びA313の少なくとも1つがNであることを特徴とする上記[18]〜[24]のいずれか1項に記載の有機電界発光素子。
[26]
前記発光層が発光材料として以下の一般式(PQ−1)で表される化合物を含むことを特徴とする上記[15]〜[17]のいずれか1項に記載の有機電界発光素子。
Figure 0004590020
一般式(PQ−1)中、R〜R10は、それぞれ独立に、水素原子又は置換基を表す。該置換基同士は互いに結合して環を形成してもよい。X−Yは二座のモノアニオン性配位子を表す。nは1〜3の整数を表す。
[27]
前記R〜R10は、それぞれ独立に、水素原子、メチル基、エチル基、イソプロピル基、t−ブチル基、ネオペンチル基、イソブチル基、フェニル基、ナフチル基、フェナントリル基、又はトリル基を表すことを特徴とする上記[26]に記載の有機電界発光素子。
[28]
前記X−Yが、アセチルアセトネート又はピコリネートであることを特徴とする上記[26]又は[27]に記載の有機電界発光素子。
[29]
前記一般式(PQ−1)で表される化合物が、以下の一般式(PQ−3)で表される化合物であることを特徴とする上記[26]〜[28]のいずれか1項に記載の有機電界発光素子。
Figure 0004590020
一般式(PQ−3)中、R〜Rは一般式(PQ−1)と同義である。Ra、Rb、Rcは、それぞれ独立に、水素原子又はアルキル基を表す。ただし、Ra、Rb及びRcのうち一つは水素原子を表し、他の二つはアルキル基を表す。Rx、Ryは、それぞれ独立に、アルキル基又はフェニル基を表す。
[30]
上記[1]〜[12]及び[14]のいずれか1項に記載の電荷輸送材料を含有する組成物。
[31]
上記[15]〜[29]のいずれか1項に記載の有機電界発光素子を用いた発光装置。
[32]
上記[15]〜[29]のいずれか1項に記載の有機電界発光素子を用いた表示装置。
[33]
上記[15]〜[29]のいずれか1項に記載の有機電界発光素子を用いた照明装置。
本発明によれば、発光効率が高く、かつ耐久性に優れる有機電界発光素子を提供することができる。
本発明に係る有機電界発光素子の構成の一例を示す概略図である。 本発明に係る発光装置の一例を示す概略図である。 本発明に係る照明装置の一例を示す概略図である。 実施例で作製した素子の不純物含有量(質量%)に対する駆動耐久性の変化を表すグラフの概略図である。 実施例で作製した素子の不純物含有量(質量%)に対する駆動耐久性の変化を表すグラフの概略図である。 実施例で作製した素子の不純物含有量(質量%)に対する駆動耐久性の変化を表すグラフの概略図である。 実施例で作製した素子の不純物含有量(質量%)に対する駆動耐久性の変化を表すグラフの概略図である。 実施例で作製した素子の不純物含有量(質量%)に対する駆動耐久性の変化を表すグラフの概略図である。
本発明の有機電界発光素子は、一対の電極間に、発光層を含む有機層を少なくとも一層含む有機電界発光素子であって、有機層のいずれかの層が本発明の電荷輸送材料を含む。そして、本発明の電荷輸送材料は、一般式(1)で表される化合物を含む電荷輸送材料であって、一般式(I−1)で表される化合物及び一般式(I−2)で表される化合物の含有量がそれぞれ一般式(1)で表される化合物に対して0.1質量%以下である。
〔電荷輸送材料〕
以下、本発明の一般式(1)で表される化合物を含む電荷輸送材料について説明する。
Figure 0004590020
一般式(1)中、A、Aはそれぞれ独立にN、−CH又は−CRを表す。Rは置換基を表す。Lは単結合、アリーレン基、シクロアルキレン基又は芳香族へテロ環を表す。Lが連結するベンゼン環中の炭素原子と、L中の原子と、更に他の原子とにより環を形成してもよい。前記他の原子は、炭素原子、酸素原子又は硫黄原子であり、該炭素原子には更にアルキル基又はアリール基が置換していてもよい。R〜Rはそれぞれ独立にハロゲン原子、アルキル基、アリール基、芳香族ヘテロ環基、アダマンチル基、シアノ基、シリル基又はカルバゾリル基を表す。n1〜n3はそれぞれ独立に0〜4の整数を表し、n4〜n5はそれぞれ独立に0〜5を表す。p、qはそれぞれ独立に1〜4の整数を表す。
一般式(1)について説明する。
一般式(1)中、A、Aはそれぞれ独立にN、−CH又はRは置換基を表す。好ましくは、A及び/又はAが窒素原子であり、より好ましくは、A及びAのいずれか一方が窒素原子であり、他方が−CH又は−CRであり、更に好ましくは、Aが−CH又は−CRであり、Aが窒素原子であり、最も好ましくは、Aが−CHであり、Aが窒素原子である。
前記−CRのRが表す置換基の具体例や好ましい範囲としては下記の置換基群Tのものが挙げられ、最も好ましくはt−ブチル基、フェニル基、カルバゾリル基である。
(置換基群T)
フッ素、塩素、臭素、ヨウ素等のハロゲン原子、カルバゾリル基、ヒドロキシル基、アミノ基、ニトロ基、シアノ基、シリル基、カルボニル基、カルボキシル基、アルキル基、アルケニル基、アリールアルキル基、アリール基、芳香族ヘテロ環基、アラルキル基、アリールオキシ基、アルキルオキシ基。これらの置換基は、更にここで挙げた置換基を有していてもよい。
これらの置換基のうち、好ましくは、ハロゲン原子、アルキル基、アリール基、芳香族ヘテロ環基、アダマンチル基、シアノ基、シリル基又はカルバゾリル基であり、フッ素原子、メチル基、t−ブチル基、フェニル基、ピリジル基、ピラジル基、ピリミジル基、アダマンチル基、シアノ基、トリメチルシリル基、トリフェニルシリル基、トリフルオロメチル基、カルバゾリル基であり、より好ましくは、フッ素原子、メチル基、t−ブチル基、フェニル基、ピリジル基、シアノ基、トリメチルシリル基、トリフェニルシリル基、トリフルオロメチル基、カルバゾリル基であり、更に好ましくはフッ素原子、メチル基、t−ブチル基、フェニル基、シアノ基、シリル基、トリフェニルシリル基、トリフルオロメチル基、カルバゾリル基であり、更に好ましくはフッ素原子、t−ブチル基、フェニル基、シアノ基、トリフェニルシリル基、カルバゾリル基である。
Lは、単結合、アリーレン基、シクロアルキレン基又は芳香族へテロ環、及び、これらの組み合わせである。これらの基は置換基を有していてもよく、該置換基としては、前記置換基群Tのものが挙げられる。
アリーレン基としては、炭素数6〜30のアリーレン基が好ましく、例えば、フェニレン基、ビフェニレン基、ターフェニレン基、ナフチレン基、アントラニレン基、フェナンスリレン基、ビレニレン基、クリセニレン基、フルオランテニレン基、パーフルオロアリーレン基等が挙げられ、これらのうちフェニレン基、ビフェニレン基、ターフェニレン基、パーフルオロアリーレン基が好ましく、フェニレン基、ビフェニレン基、ターフェニレン基がより好ましく、フェニレン基、ビフェニレン基が更に好ましい。
シクロアルキレン基としては、炭素数5〜30のシクロアルキレン基が好ましく、例えばシクロペンチレン基、シクロヘキシレン基、シクロヘプチレン基などが挙げられ、これらのうちシクロペンチレン基、シクロヘキシレン基が好ましく、シクロへキシレン基がより好ましい。
芳香族へテロ環としては、炭素数2〜30の芳香族へテロ環が好ましく、1−ピロリル基、2−ピロリル基、3−ピロリル基、ピラジニル基、2−ピリジニル基、3−ピリジニル基、4−ピリジニル基、1−インドリル基、2−インドリル基、3−インドリル基、4−インドリル基、5−インドリル基、6−インドリル基、7−インドリル基、1−イソインドリル基、2−イソインドリル基、3−イソインドリル基、4−イソインドリル基、5−イソインドリル基、6−イソインドリル基、7−イソインドリル基、2−フリル基、3−フリル基、2−ベンゾフラニル基、3−ベンゾフラニル基、4−ベンゾフラニル基、5−ベンゾフラニル基、6−ベンゾフラニル基、7−ベンゾフラニル基、1−イソベンゾフラニル基、3−イソベンゾフラニル基、4−イソベンゾフラニル基、5−イソベンゾフラニル基、6−イソベンゾフラニル基、7−イソベンゾフラニル基、2−キノリル基、3−キノリル基、4−キノリル基、5−キノリル基、6−キノリル基、7−キノリル基、8−キノリル基、1−イソキノリル基、3−イソキノリル基、4−イソキノリル基、5−イソキノリル基、6−イソキノリル基、7−イソキノリル基、8−イソキノリル基、2−キノキサリニル基、5−キノキサリニル基、6−キノキサリニル基、1−カルバゾリル基、2−カルバゾリル基、3−カルバゾリル基、4−カルバゾリル基、9−カルバゾリル基、1−フェナンスリジニル基、2−フェナンスリジニル基、3−フェナンスリジニル基、4−フェナンスリジニル基、6−フェナンスリジニル基、7−フェナンスリジニル基、8−フェナンスリジニル基、9−フェナンスリジニル基、10−フェナンスリジニル基、1−アクリジニル基、2−アクリジニル基、3−アクリジニル基、4−アクリジニル基、9−アクリジニル基、1,7−フェナンスロリン−2−イル基、1,7−フェナンスロリン−3−イル基、1,7−フェナンスロリン−4−イル基、1,7−フェナンスロリン−5−イル基、1,7−フェナンスロリン−6−イル基、1,7−フェナンスロリン−8−イル基、1,7−フェナンスロリン−9−イル基、1,7−フェナンスロリン−10−イル基、1,8−フェナンスロリン−2−イル基、1,8−フェナンスロリン−3−イル基、1,8−フェナンスロリン−4−イル基、1,8−フェナンスロリン−5−イル基、1,8−フェナンスロリン−6−イル基、1,8−フェナンスロリン−7−イル基、1,8−フェナンスロリン−9−イル基、1,8−フェナンスロリン−10−イル基、1,9−フェナンスロリン−2−イル基、1,9−フェナンスロリン−3−イル基、1,9−フェナンスロリン−4−イル基、1,9−フェナンスロリン−5−イル基、1,9−フェナンスロリン−6−イル基、1,9−フェナンスロリン−7−イル基、1,9−フェナンスロリン−8−イル基、1,9−フェナンスロリン−10−イル基、1,10−フェナンスロリン−2−イル基、1,10−フェナンスロリン−3−イル基、1,10−フェナンスロリン−4−イル基、1,10−フェナンスロリン−5−イル基、2,9−フェナンスロリン−1−イル基、2,9−フェナンスロリン−3−イル基、2,9−フェナンスロリン−4−イル基、2,9−フェナンスロリン−5−イル基、2,9−フェナンスロリン−6−イル基、2,9−フェナンスロリン−7−イル基、2,9−フェナンスロリン−8−イル基、2,9−フェナンスロリン−10−イル基、2,8−フェナンスロリン−1−イル基、2,8−フェナンスロリン−3−イル基、2,8−フェナンスロリン−4−イル基、2,8−フェナンスロリン−5−イル基、2,8−フェナンスロリン−6−イル基、2,8−フェナンスロリン−7−イル基、2,8−フェナンスロリン−9−イル基、2,8−フェナンスロリン−10−イル基、2,7−フェナンスロリン−1−イル基、2,7−フェナンスロリン−3−イル基、2,7−フェナンスロリン−4−イル基、2,7−フェナンスロリン−5−イル基、2,7−フェナンスロリン−6−イル基、2,7−フェナンスロリン−8−イル基、2,7−フェナンスロリン−9−イル基、2,7−フェナンスロリン−10−イル基、1−フェナジニル基、2−フェナジニル基、1−フェノチアジニル基、2−フェノチアジニル基、3−フェノチアジニル基、4−フェノチアジニル基、10−フェノチアジニル基、1−フェノキサジニル基、2−フェノキサジニル基、3−フェノキサジニル基、4−フェノキサジニル基、10−フェノキサジニル基、2−オキサゾリル基、4−オキサゾリル基、5−オキサゾリル基、2−オキサジアゾリル基、5−オキサジアゾリル基、3−フラザニル基、2−チエニル基、3−チエニル基、2−メチルピロール−1−イル基、2−メチルピロール−3−イル基、2−メチルピロール−4−イル基、2−メチルピロール−5−イル基、3−メチルピロール−1−イル基、3−メチルピロール−2−イル基、3−メチルピロール−4−イル基、3−メチルピロール−5−イル基、2−t−ブチルピロール−4−イル基、3−(2−フェニルプロピル)ピロール−1−イル基、2−メチル−1−インドリル基、4−メチル−1−インドリル基、2−メチル−3−インドリル基、4−メチル−3−インドリル基、2−t−ブチル−1−インドリル基、4−t−ブチル−1−インドリル基、2−t−ブチル−3−インドリル基、4−t−ブチル−3−インドリル基等が挙げられ、これらのうち、ピリジニル基、キノリル基、インドリル基、カルバゾリル基が好ましく、ピリジニル基、カルバゾリル基がより好ましい。
Lとしては、単結合又はアリーレン基が好ましく、単結合、フェニレン基、ビフェニレン基、ターフェニレン基がより好ましく、単結合、フェニレン基、ビフェニレン基が更に好ましく、単結合、フェニレン基が特に好ましい。
また、一般式(1)中のLが連結するベンゼン環(Rが置換し得るベンゼン環)中の炭素原子とL中の原子、更に他の原子とにより環を形成してもよい。この環を形成する前記他の原子としては、炭素原子、酸素原子、硫黄原子が挙げられ、該炭素原子に更に前記置換基群Tの置換基が1又は2つ、好ましくは2つ置換していてもよい。この炭素原子に置換する置換基として、好ましくはアルキル基、アリール基、芳香族ヘテロ環基、シアノ基であり、より好ましくは、アルキル基、アリール基であり、更に好ましくはメチル基、エチル基、プロピル基、n−ブチル基、t−ブチル基、フェニル基であり、更に好ましくはメチル基、t−ブチル基、フェニル基であり、特に好ましくはメチル基である。これらの置換基には更にここで述べたアルキル基又はアリール基を置換基として有していてもよい。なお、炭素原子に置換する置換基が1つの場合には、該炭素原子には1つの水素原子が結合している。置換基が2つの場合には、該2つの置換基は互いに同じでも異なっていてもよいが、同じであることが好ましい。
〜Rはそれぞれ独立にハロゲン原子、アルキル基、アリール基、芳香族ヘテロ環基、アダマンチル基、シアノ基、シリル基又はカルバゾリル基を表す。これらの基は更に置換基を有していてもよく、該置換基としては、前記置換基群Tのものが挙げられる。R〜Rがそれぞれ複数のとき、複数のR〜Rはそれぞれ同一でも異なっていてもよい。また、R〜Rで共同して環を形成してもよい。
本発明の効果の点から、R〜Rとしては、アルキル基、アリール基、シアノ基又はシリル基が好ましい。
〜Rの具体例としては、フッ素原子、メチル基、t−ブチル基、フェニル基、ピリジル基、ピラジル基、ピリミジル基、アダマンチル基、シアノ基、トリメチルシリル基、トリフェニルシリル基、トリフルオロメチル基、カルバゾリル基などが挙げられる。なかでも、フッ素原子、メチル基、t−ブチル基、フェニル基、ピリジル基、シアノ基、トリメチルシリル基、トリフェニルシリル基、トリフルオロメチル基、カルバゾリル基が好ましく、フッ素原子、メチル基、t−ブチル基、フェニル基、シアノ基、シリル基、トリフェニルシリル基、トリフルオロメチル基、カルバゾリル基がより好ましく、フッ素原子、t−ブチル基、フェニル基、シアノ基、トリフェニルシリル基、カルバゾリル基が更に好ましく、フッ素原子、t−ブチル基、フェニル基、シアノ基、トリフェニルシリル基が更に好ましく、t−ブチル基、フェニル基、シアノ基、トリフェニルシリル基が特に好ましい。
n1〜n3はそれぞれ独立に0〜4の整数を表し、n4〜n5はそれぞれ独立に0〜5を表す。n1〜n5は、それぞれ、0〜2であることが好ましく、0〜1であることがより好ましく、0であることが更に好ましい。特に、n1〜n5の全てが0であることが好ましい。
p、qはそれぞれ独立に1〜4の整数を表す。それぞれ1〜4であることが好ましく、1〜3であることがより好ましく、1〜2であることが更に好ましい。
一般式(1)で表される化合物は、以下の一般式(2)で表される化合物であることが好ましい。
Figure 0004590020
一般式(2)中、R〜R11はそれぞれ独立にアルキル基、アリール基、シアノ基又はシリル基を表す。n6〜n9はそれぞれ0〜4の整数を表し、n10〜n11はそれぞれ独立に0〜5の整数を表す。
一般式(2)について説明する。
一般式(2)中、R〜R11はそれぞれ独立にアルキル基、アリール基、シアノ基又はシリル基を表す。これらの基は更に置換基を有していてもよく、該置換基としては前記置換基群Tのものが挙げられる。
〜R11の具体例としては、メチル基、t−ブチル基、フェニル基、シアノ基、トリメチルシリル基、トリフェニルシリル基、トリフルオロメチル基などが挙げられる。なかでも、t−ブチル基、フェニル基、シアノ基、トリフェニルシリル基が好ましい。
n6〜n9はそれぞれ0〜4の整数を表し、n10〜n11はそれぞれ独立に0〜5の整数を表す。n6〜n11は、それぞれ、0〜2であることが好ましく、0〜1であることがより好ましく、0であることが更に好ましい。特に、n6〜n9の全てが0であることが好ましい。
一般式(1)又は一般式(2)で表される化合物は、駆動耐久性の観点からは炭素原子、水素原子、窒素原子のみからなる場合が好ましい。
一般式(1)で表される化合物の分子量は400以上1000以下であることが好ましく、450以上800以下であることがより好ましく、500以上700以下であることが更に好ましい。分子量が400以上であると良質なアモルファス薄膜形成に有利であり、分子量が1000以下であると溶解性や昇華性が向上し、化合物の純度向上に有利である。
一般式(1)で表される化合物を有機電界発光素子の発光層のホスト材料や発光層に隣接する層の電荷輸送材料として使用する場合、発光材料より薄膜状態でのエネルギーギャップ(発光材料が燐光発光材料の場合には、薄膜状態での最低励起三重項(T)エネルギー)が大きいと、発光がクエンチしてしまうことを防ぎ、効率向上に有利である。一方、化合物の化学的安定性の観点からは、エネルギーギャップ及びTエネルギーは大き過ぎない方が好ましい。即ち、一般式(1)で表される化合物の膜状態でのエネルギーギャップは2.75eV(63.5kcal/mol)以上3.90eV(90kcal/mol)以下であることが好ましく、2.82eV(65kcal/mol)以上3.90eV(90kcal/mol)以下であることがより好ましく、2.91eV(67kcal/mol)以上3.90eV(90kcal/mol)以下であることが更に好ましい。一般式(1)で表される化合物の膜状態でのTエネルギーは、2.69eV(62kcal/mol)以上3.47eV(80kcal/mol)以下であることが好ましく、2.75eV(63.5kcal/mol)以上3.47eV(80kcal/mol)以下であることがより好ましく、2.82eV(65kcal/mol)以上3.25eV(75kcal/mol)以下であることが更に好ましい。特に、発光材料として燐光発光材料を用いる場合には、Tエネルギーが上記範囲となることが好ましい。
エネルギーは、材料の薄膜の燐光発光スペクトルを測定し、その短波長端から求めることができる。例えば、洗浄した石英ガラス基板上に、材料を真空蒸着法により約50nmの膜厚に成膜し、薄膜の燐光発光スペクトルを液体窒素温度下でF−7000日立分光蛍光光度計(日立ハイテクノロジーズ)を用いて測定する。得られた発光スペクトルの短波長側の立ち上がり波長をエネルギー単位に換算することによりTエネルギーを求めることができる。
有機電界発光素子を高温駆動時や素子駆動中の発熱に対して安定して動作させる観点から、一般式(1)で表される化合物のガラス転移温度(Tg)は80℃以上400℃以下であることが好ましく、100℃以上400℃以下であることがより好ましく、120℃以上400℃以下であることが更に好ましい。
以下に、一般式(1)で表される化合物の具体例を例示するが、本発明はこれらに限定されるものではない。
Figure 0004590020
Figure 0004590020
Figure 0004590020
Figure 0004590020
次に、一般式(1)で表される化合物を含む電荷輸送材料中の不純物について説明する。
本発明では、一般式(1)で表される化合物を含む電荷輸送材料中の一般式(I−1)で表される化合物及び一般式(I−2)で表される化合物の含有量を一般式(1)で表される化合物に対してそれぞれ0.1質量%以下とする。
Figure 0004590020
Figure 0004590020
一般式(I−1)及び一般式(I−2)中、A、A、R〜R、n1〜n5、p及びqは一般式(1)と同義であり、一般式(1)におけるA、A、R〜R、n1〜n5、p及びqと同一の基又は整数である。X、Xはそれぞれ独立にハロゲン原子を表す。L’及びL”はLと同義である。
一般式(1)で表される化合物は、WO05/085387やWO03/080760に記載されるように、アリールハライドとアリールボロン酸(若しくはボロン酸エステル)又はカルバゾールをカップリングして合成することができる。この際、合成中間体であるアリールハライド(例えば、カルバゾール部位を有するアリールハライド又はピリミジン部位を有するアリールハライド)が不純物として生成し得る。本発明者らの検討によれば、このアリールハライドが一般式(1)で表される化合物を含む電荷輸送材料中に0.1質量%を超えて存在すると、電荷トラップになる、反応性が高い等の理由により有機電界発光素子の発光効率や耐久性などの素子特性に影響し、特に耐久性が悪化し、発光効率と耐久性を高レベルで両立させることが困難であることが判明した。更に、このアリールハライドが一般式(I−1)化合物及び/又は一般式(I−2)で表される化合物である場合に、素子特性の影響が極めて大きいため、これら化合物の含有量をそれぞれ一般式(1)で表される化合物に対して0.1質量%以下とする必要がある。好ましくはこれら化合物の含有量をそれぞれ0.05質量%以下とすることであり、より好ましくは0.03質量%以下とすることである。
一般式(I−1)及び一般式(I−2)について説明する。
式中、R〜R、n1〜n5は一般式(1)におけるものと同義であり、一般式(1)におけるA、A、R〜R、n1〜n5、p及びqと同一の基又は整数である。
、Xはそれぞれ独立にハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)を表す。ハロゲン原子が塩素原子、臭素原子、ヨウ素原子である場合が素子特性の影響がより大きく、臭素原子、ヨウ素原子である場合が更に影響が大きいため、一般式(I−1)及び一般式(I−2)で表される化合物の含有量を一般式(1)で表される化合物に対して0.1質量%以下とすることの効果がより大きい。
L’及びL”は、一般式(1)におけるLと同義である。一般式(I−1)化合物及び/又は一般式(I−2)で表される化合物は一般式(1)で表される化合物合成時の出発原料や中間合成体であり、この場合、L’及びL”は単結合又は一般式(1)におけるLの部分構造を有する2価の基を表す。例えば、Lがビフェニレンを表す場合、L’及びL”は、単結合、フェニレン、ビフェニレンのいずれかになる。
一般式(I−1)で表される化合物及び一般式(I−2)で表される化合物がそれぞれ以下の一般式(II−1)で表される化合物及び一般式(II−2)で表される化合物の場合に、これら化合物の含有量をそれぞれ一般式(1)又は一般式(2)で表される化合物に対して0.1質量%以下とすることは、素子の耐久性向上の観点からより好ましい。より好ましくはこれら化合物の含有量を一般式(1)又は一般式(2)で表される化合物に対してそれぞれ0.05質量%以下とすることであり、更に好ましくは0.03質量%以下とすることである。
一般式(II−1)で表される化合物及び一般式(II−2)で表される化合物は、一般式(1)で表される化合物が一般式(2)で表される場合に不純物として素子特性に大きく影響するアリールハライドである。
Figure 0004590020
Figure 0004590020
一般式(II−1)及び一般式(II−2)中、X、Xはそれぞれ独立にハロゲン原子を表す。R〜R11及びn6〜n11は一般式(2)と同義である。
一般式(II−1)及び一般式(II−2)について説明する。
〜R11、n6〜n11は一般式(2)におけるものと同義である。一般式(II−1)及び一般式(II−2)で表される化合物の含有量を一般式(1)又は(2)で表される化合物に対して0.1質量%以下とすることの効果がより大きいのは、R〜R11がアルキル基、アリール基、シアノ基、シリル基である場合及び/又はn6〜n11が0〜3である場合であり、更に効果が大きいのは、R〜R11がアルキル基、アリール基である場合及び/又はn6〜n11が0〜1である場合である。
、Xはそれぞれ独立にハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)を表す。ハロゲン原子が塩素原子、臭素原子、ヨウ素原子である場合が素子特性の影響がより大きく、臭素原子、ヨウ素原子である場合が更に影響が大きい。しかしながら、その場合であっても、本発明では一般式(II−1)及び一般式(II−2)で表される化合物の含有量を一般式(1)又は(2)で表される化合物に対して0.1質量%以下とすることで、素子性能の影響を抑え、耐久性の改善を図ることができる。
本発明の電荷輸送材料中の一般式(I−1)、(I−2)、(II−1)、(II−2)で表される化合物などのアリールハライドやその他の不純物の含有率や、本発明の電荷輸送材料の純度は、高速液体クロマトグラフィー(HPLC)により求めることができる。本発明においては、254nmにおける吸収強度の面積比を不純物含有率や純度の指標に用いる。アリールハライドのピーク位置は、本発明の電荷輸送材料である一般式(1)又は一般式(2)の化合物の合成中間体であるアリールハライドと比較することで確認できる。また、その他の不純物ピークの構造は、液体クロマトグラフィー/質量分析法(LC/MS)により推定できる。
本発明の電荷輸送材料中に不純物として含まれ得るアリールハライドとしては、(I−1)、(I−2)、(II−1)、(II−2)で表される化合物以外には、(I−1)、(I−2)、(II−1)、(II−2)を合成する出発原料、中間体で使用されるアリールハライド等が挙げられる。具体的には、ヨードブロモベンゼン、p−ブロモベンゾアルデヒドなどが挙げられる。
(I−1)、(I−2)、(II−1)、(II−2)で表される化合物以外のアリールハライドが本発明の電荷輸送材料中に不純物として含まれる場合、全てのアリールハライドの含有率は、一般式(1)又は(2)で表される化合物に対して0.2質量%以下であることが好ましく、0.1質量%以下であることがより好ましく、0.05質量%以下であることが更に好ましい。含有率が0.2質量%を越えると、電荷トラップになる、反応性が高い等の理由により効率や駆動耐久性などの素子特性に悪影響を与えることがある。
これらのアリールハライド以外の不純物は、含まれていても素子特性に与える影響は小さい。他の不純物としては、(I−1)、(I−2)、(II−1)、(II−2)で表される化合物のハロゲン原子が水素原子で置き換わった化合物などが挙げられる。本発明の電荷輸送材料中のアリールハライド以外の不純物の含有率は、0.5質量%以下であることが好ましく、0.3質量%以下であることがより好ましく、0.2質量%以下であることが更に好ましい。
好ましくは、本発明の電荷輸送材料中に含まれる不純物全体(アリールアライド及びそれ以外の不純物)の総量は、一般式(1)又は(2)で表される化合物に対して、1.0質量%以下であることが好ましく、0.5質量%以下であることがより好ましく、0.1質量%以下であることが更に好ましい。
本発明の電荷輸送材料中の不純物は、理想的には0質量%であることが好ましい。一方、不純物が0質量%であることを測定することも現実的には不可能である。また、製造工程や精製工程数の増加や使用するエネルギー増加により影響する環境負荷の観点からは、不純物の種類によっては、本発明の電荷輸送材料中に極少量存在させた方が好ましい。このような不純物としては、ハロゲン原子を含まない化合物が挙げられる。その含有量としては、一般式(1)又は(2)で表される化合物に対して、それぞれ0.01質量%以上0.2質量%以下であることが好ましく、0.01質量%以上0.1質量%以下であることがより好ましく、0.01質量%以上0.05質量%以下であることが更に好ましい。
本発明の(I−1)、(I−2)、(II−1)、(II−2)で表される化合物も、製造工程や精製工程数の増加や使用するエネルギー増加により影響する環境負荷の観点からは、本発明の電荷輸送材料中に極少量存在させた方が好ましい。したがって、耐久性向上と環境負荷抑制との双方の観点から、本発明の(I−1)、(I−2)、(II−1)、(II−2)で表される化合物のそれぞれの含有量は、一般式(1)又は(2)で表される化合物に対して、0.001質量%以上0.1質量%以下であることが好ましく、0.001質量%以上0.05質量%以下であることがより好ましく、0.001質量%以上0.03質量%以下であることが更に好ましい。
また、本発明の電荷輸送材料の純度は、99.0質量%以上であることが好ましく、99.5質量%以上であることがより好ましく、99.9質量%以上であることが更に好ましい。
本発明の一般式(1)で表される化合物は、WO05/085387やWO03/080760に記載される方法などの種々の方法で合成することができる。
合成後、カラムクロマトグラフィー、再結晶等による精製を行った後、昇華精製により精製することが好ましい。昇華精製により、有機不純物を分離できるだけでなく、無機塩や残留溶媒等を効果的に取り除くことができる。
〔一般式(2)で表される化合物の製造方法〕
本発明の一般式(2)で表される化合物は、WO05/085387やWO03/080760に記載されるように、ピリミジン部位を有するアリールハライドと、カルバゾール部位を有するアリールボロン酸をカップリングさせて合成し、製造することができる。
例えば、後述する実施例で用いる例示化合物1は、m−ブロモベンゾアルデヒドを出発原料に用い、国際公開第05/085387号パンフレット[0074]−[0075](45頁、11行〜46頁、18行)に記載の方法で合成することができる。また、例示化合物2は、m−ブロモベンゾアルデヒドを出発原料に用い、国際公開第05/085387号パンフレット[0078]−[0079](47頁、11行〜46頁、23行)に記載の方法で合成することができる。
本発明の製造方法では、カルバゾール部位を有するアリールハライドとピリミジン部位を有するアリールボロン酸(又はボロン酸エステル)をカップリングさせる。即ち、以下の一般式(M1)で表される化合物と一般式(M2)で表される化合物とをパラジウム触媒を用いてカップリング反応させる。
Figure 0004590020
Figure 0004590020
一般式(M1)及び一般式(M2)中、Xはハロゲン原子を表す。R〜R11及びn6〜n11は一般式(2)と同一のものである。R12は水素原子又はアルキル基を表す。
一般式(M1)及び一般式(M2)について説明する。
〜R11、n6〜n11は一般式(2)におけるものと同一のものである。
12は水素原子又はアルキル基を表し、2つのR12が共同して環を形成してもよい。R12のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、シクロヘキシル基、二つのR12が互いに連結してピナコール環を形成する基が挙げられる。R12としては、好ましくは水素原子、メチル基、エチル基、二つのR12が互いに連結してピナコール環を形成する基であり、より好ましくは水素原子、メチル基、二つのR12が互いに連結してピナコール環を形成する基である。
は、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)を表す。好ましくは、塩素原子、臭素原子、ヨウ素原子であり、より好ましくは臭素原子である。
上記カップリング反応の反応条件はChem.Rev.,1995,95,2457−2483.等に記載の条件を用いることができる。反応の好ましい条件を以下に説明する。
パラジウム触媒としては、2価のパラジウム塩若しくは、0価のパラジウム塩が用いられる。2価のパラジウムとしては、酢酸パラジウム、ジクロロビストルフェニルホスフィンパラジウム等、0価のパラジウムとしては、テトラキストリフェニルホスフィンパラジウム、ビス(ジベンジリデンアセトン)パラジウム等が挙げられる。好ましくは、酢酸パラジウム、テトラキス(トリフェニルホスフィン)パラジウムである。
反応時の溶媒としては、特に限定されないが、水;ベンゼン、トルエン、キシレンなどの芳香族炭化水素類;ジクロロエタン、クロロホルム等のハロゲン化炭化水素類;テトラヒドロフラン、1,2−ジメトキシエタン、1,4−ジオキサン、ジエチルエーテル等のエーテル類;メタノール、エタノール、イソプロピルアルコール等のアルコール類;酢酸エチル、酢酸ブチル等のエステル類が挙げられる。このうち好ましくは、水、芳香族炭化水素類、エーテル類である。これらの溶媒は、2種類以上混合して使用しても構わない。 反応温度は、反応の温度は特に限定されず、通常は、0℃〜溶媒の沸点の間で行われるが、生成物の分解等が起こらない場合は、反応速度向上の為に、溶媒の沸点付近の温度で反応させることが好ましい。
上記反応は、必要に応じて更に配位子を加えて反応を行っても良い。配位子としては、ホスフィン配位子、カルベン配位子等が挙げられる。その中でもホスフィン配位子が好ましい。
上記配位子の使用量は、通常、使用するパラジウム触媒に対して、0.5〜20モル倍量用いられ、好ましくは1〜10モル倍量であり、更に好ましくは1〜5モル倍量である。
上記反応に使用する塩基としては特に限定されないが、具体的には、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、水酸化カルシウム、水酸化バリウム等のアルカリ土類金属水酸化物、炭酸水素ナトリウム、炭酸水素カリウム等のアルカリ金属重炭酸塩、炭酸水素カルシウム、炭酸水素バリウム等のアルカリ土類金属重炭酸塩、炭酸ナトリウム、炭酸カルシウム等のアルカリ金属炭酸塩、炭酸カルシウム、炭酸バリウム等のアルカリ土類金属炭酸塩、リン酸ナトリウム、リン酸カリウム等のリン酸塩などが挙げられる。そのなかでも、アルカリ金属重炭酸塩、アルカリ金属炭酸塩、リン酸塩が好ましい。
塩基の使用量としては、通常、化合物(M1)に対して、0.1〜50モル倍量用いられ、好ましくは、1〜20モル倍量であり、更に好ましくは2〜10モル倍量である。
一般式(M1)及び一般式(M2)で表される化合物と、上記パラジウム触媒、溶媒等を混合し、上記反応温度で反応させ、一般式(2)で表される化合物を合成する。
本発明では、上記カップリング反応後、反応生成物を昇華精製する。好ましくは、カラムクロマトグラフィーや再結晶の後に昇華精製を行うことで、素子特性に悪影響を与える一般式(I−1)及び(I−2)で表される化合物の含有量がそれぞれ一般式(1)の化合物に対して0.1質量%以下の電荷輸送材料が得られる。
本発明の製造方法においては一般式(MI)の化合物がハロゲン原子を含むが、本発明者らの検討によれば、このカルバゾール部位のアリールハライドに起因する不純物を昇華精製で除去し易いため、不純物含有量の調整に有利である。
昇華精製では、精製対象のサンプルを固着した位置を基準に系内に温度勾配を持たせ、固着位置から離れた領域(フラクション)に純度の高い生成物を得ることができる。その際、系内にはAr、窒素等のガスを導入することが好ましい。系内の圧力は、1〜10−5Paであることが好ましく、1〜10−3Paであることがより好ましい。
〔本発明の電荷輸送材料の用途〕
本発明の電荷輸送材料は、電子写真、有機トランジスタ、有機光電変換素子(エネルギー変換用途、センサー用途等)、有機電界発光素子等の有機エレクトロニクス素子に好ましく用いることができ、有機電界発光素子に用いるのが特に好ましい。
有機電界発光素子において、本発明の電荷輸送材料は有機層のいずれの層に含有されてもよい。好ましくはホール注入層、ホール輸送層、発光層、電子輸送層、電子注入層のいずれかに用いる場合であり、より好ましくは発光層、電子輸送層、電子注入層に用いる場合であり、更に好ましくは発光層、電子輸送層に用いる場合である。
一般式(1)で表される化合物を発光層中含有させる場合、本発明の一般式(1)で表される化合物は発光層の全質量に対して10〜99質量%含ませることが好ましく、40〜95質量%含ませることがより好ましく、70〜90質量%含ませることが更に好ましい。
また、一般式(1)で表される化合物を発光層以外の層に含有させる場合は、60〜100質量%含ませることが好ましく、70〜100質量%含ませることがより好ましく、85〜100質量%含まれせることがより好ましい。
〔本発明の電荷輸送材料を含有する組成物〕
本発明は前記電荷輸送材料を含む組成物にも関する。本発明の組成物における一般式(1)で表される化合物の含有量は30〜99質量%であることが好ましく、50〜95質量%であることがより好ましく、70〜90質量%であることが更に好ましい。本発明の組成物における他に含有しても良い成分としては、有機物でも無機物でもよく、有機物としては、後述するホスト材料、蛍光発光材料、燐光発光材料、炭化水素材料として挙げた材料が適用でき、好ましくはホスト材料、炭化水素材料である。
本発明の組成物は蒸着法やスパッタ法等の乾式製膜法、転写法、印刷法等により有機電界発光素子の有機層を形成することができる。
〔有機電界発光素子〕
本発明の有機電界発光素子について詳細に説明する。
本発明の有機電界発光素子は、一対の電極間に発光層を含む有機層を有する。発光素子の性質上、一対の電極である陽極及び陰極のうち少なくとも一方の電極は、透明若しくは半透明であることが好ましい。
有機層としては、発光層以外に、正孔注入層、正孔輸送層、ブロック層(正孔ブロック層、励起子ブロック層など)、電子輸送層などが挙げられる。これらの有機層は、それぞれ複数層設けてもよく、複数層設ける場合には同一の材料で形成してもよいし、層毎に異なる材料で形成してもよい。
図1に、本発明に係る有機電界発光素子の構成の一例を示す。図1の有機電界発光素子10は、基板2上に、一対の電極(陽極3と陰極9)の間に発光層6を含む有機層を有する。有機層としては、陽極側3から正孔注入層4、正孔輸送層5、発光層6、正孔ブロック層7及び電子輸送層8がこの順に積層されている。
有機電界発光素子の素子構成、基板、陰極及び陽極については、例えば、特開2008−270736号公報に詳述されており、該公報に記載の事項を本発明に適用することができる。
(発光層)
発光層は、電界印加時に、陽極、正孔注入層又は正孔輸送層から正孔を受け取り、陰極、電子注入層又は電子輸送層から電子を受け取り、正孔と電子の再結合の場を提供して発光させる機能を有する層である。
<発光材料>
本発明では、発光材料として、蛍光発光材料や燐光発光材料を用いることができ、両者を併用してもよい。
これら蛍光発光材料や燐光発光材料については、例えば、特開2008−270736号公報の段落番号[0100]〜[0164]、特開2007−266458号公報の段落番号[0088]〜[0090]に詳述されており、これら公報の記載の事項を本発明に適用することができる。
発光効率等の観点からは、燐光発光材料が好ましい。燐光発光材料の好ましい材料としては、下記の一般式(C−1)で表される白金錯体が挙げられる。
Figure 0004590020
一般式(C−1)中、Q、Q、Q及びQはそれぞれ独立にPtに配位する配位子を表す。L、L及びLはそれぞれ独立に単結合又は二価の連結基を表す。
一般式(C−1)について説明する。
まず、置換基群A及びBを以下のように定義する。
(置換基群A)
アルキル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメチル、エチル、イソプロピル、tert−ブチル、n−オクチル、n−デシル、n−ヘキサデシル、シクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばビニル、アリル、2−ブテニル、3−ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばプロパルギル、3−ペンチニルなどが挙げられる。)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル、p−メチルフェニル、ナフチル、アントラニルなどが挙げられる。)、アミノ基(好ましくは炭素数0〜30、より好ましくは炭素数0〜20、特に好ましくは炭素数0〜10であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノ、ジフェニルアミノ、ジトリルアミノなどが挙げられる。)、アルコキシ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメトキシ、エトキシ、ブトキシ、2−エチルヘキシロキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、1−ナフチルオキシ、2−ナフチルオキシなどが挙げられる。)、ヘテロ環オキシ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルオキシ、ピラジルオキシ、ピリミジルオキシ、キノリルオキシなどが挙げられる。)、アシル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜12であり、例えばアセチル、ベンゾイル、ホルミル、ピバロイルなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、スルファモイル基(好ましくは炭素数0〜30、より好ましくは炭素数0〜20、特に好ましくは炭素数0〜12であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイルなどが挙げられる。)、カルバモイル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばカルバモイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイルなどが挙げられる。)、アルキルチオ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる。)、ヘテロ環チオ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルチオ、2−ベンズイミゾリルチオ、2−ベンズオキサゾリルチオ、2−ベンズチアゾリルチオなどが挙げられる。)、スルホニル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメシル、トシルなどが挙げられる。)、スルフィニル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメタンスルフィニル、ベンゼンスルフィニルなどが挙げられる。)、ウレイド基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばウレイド、メチルウレイド、フェニルウレイドなどが挙げられる。)、リン酸アミド基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(芳香族ヘテロ環基も包含し、好ましくは炭素数1〜30、より好ましくは炭素数1〜12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、リン原子、ケイ素原子、セレン原子、テルル原子であり、具体的にはピリジル、ピラジニル、ピリミジル、ピリダジニル、ピロリル、ピラゾリル、トリアゾリル、イミダゾリル、オキサゾリル、チアゾリル、イソキサゾリル、イソチアゾリル、キノリル、フリル、チエニル、セレノフェニル、テルロフェニル、ピペリジル、ピペリジノ、モルホリノ、ピロリジル、ピロリジノ、ベンゾオキサゾリル、ベンゾイミダゾリル、ベンゾチアゾリル、カルバゾリル基、アゼピニル基、シロリル基などが挙げられる。)、シリル基(好ましくは炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは炭素数3〜24であり、例えばトリメチルシリル、トリフェニルシリルなどが挙げられる。)、シリルオキシ基(好ましくは炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは炭素数3〜24であり、例えばトリメチルシリルオキシ、トリフェニルシリルオキシなどが挙げられる。)、ホスホリル基(例えばジフェニルホスホリル基、ジメチルホスホリル基などが挙げられる。)が挙げられる。
これらの置換基は更に置換されてもよく、更なる置換基としては、以上に説明した置換基群Aから選択される基を挙げることができる。
(置換基群B)
アルキル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメチル、エチル、イソプロピル、tert−ブチル、n−オクチル、n−デシル、n−ヘキサデシル、シクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばビニル、アリル、2−ブテニル、3−ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばプロパルギル、3−ペンチニルなどが挙げられる。)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル、p−メチルフェニル、ナフチル、アントラニルなどが挙げられる。)、シアノ基、ヘテロ環基(芳香族ヘテロ環基も包含し、好ましくは炭素数1〜30、より好ましくは炭素数1〜12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、リン原子、ケイ素原子、セレン原子、テルル原子であり、具体的にはピリジル、ピラジニル、ピリミジル、ピリダジニル、ピロリル、ピラゾリル、トリアゾリル、イミダゾリル、オキサゾリル、チアゾリル、イソキサゾリル、イソチアゾリル、キノリル、フリル、チエニル、セレノフェニル、テルロフェニル、ピペリジル、ピペリジノ、モルホリノ、ピロリジル、ピロリジノ、ベンゾオキサゾリル、ベンゾイミダゾリル、ベンゾチアゾリル、カルバゾリル基、アゼピニル基、シロリル基などが挙げられる。)などが挙げられる。これらの置換基は更に置換されてもよく、更なる置換基としては、以上に説明した置換基群A及びBから選択される基を挙げることができる。
本発明において、上記アルキル基等の置換基の「炭素数」とは、アルキル基等の置換基が他の置換基によって置換されてもよい場合も含み、当該他の置換基の炭素数も包含する意味で用いる。
一般式(C−1)中、Q、Q、Q及びQはそれぞれ独立にPtに配位する配位子を表す。この時、Q、Q、Q及びQとPtの結合は、共有結合、イオン結合、配位結合などいずれであっても良い。Q、Q、Q及びQ中のPtに結合する原子としては、炭素原子、窒素原子、酸素原子、硫黄原子、リン原子が好ましく、Q、Q、Q及びQ中のPtに結合する原子の内、少なくとも一つが炭素原子であることが好ましく、二つが炭素原子であることがより好ましく、二つが炭素原子で、二つが窒素原子であることが特に好ましい。
炭素原子でPtに結合するQ、Q、Q及びQとしては、アニオン性の配位子でも中性の配位子でもよく、アニオン性の配位子としてはビニル配位子、芳香族炭化水素環配位子(例えばベンゼン配位子、ナフタレン配位子、アントラセン配位子、フェナントレン配位子など)、ヘテロ環配位子(例えばフラン配位子、チオフェン配位子、ピリジン配位子、ピラジン配位子、ピリミジン配位子、ピリダジン配位子、トリアジン配位子、チアゾール配位子、オキサゾール配位子、ピロール配位子、イミダゾール配位子、ピラゾール配位子、トリアゾール配位子及び、それらを含む縮環体(例えばキノリン配位子、ベンゾチアゾール配位子など))が挙げられる。中性の配位子としてはカルベン配位子が挙げられる。
窒素原子でPtに結合するQ、Q、Q及びQとしては、中性の配位子でもアニオン性の配位子でもよく、中性の配位子としては含窒素芳香族ヘテロ環配位子(ピリジン配位子、ピラジン配位子、ピリミジン配位子、ピリダジン配位子、トリアジン配位子、イミダゾール配位子、ピラゾール配位子、トリアゾール配位子、オキサゾール配位子、チアゾール配位子及びそれらを含む縮環体(例えばキノリン配位子、ベンゾイミダゾール配位子など))、アミン配位子、ニトリル配位子、イミン配位子が挙げられる。アニオン性の配位子としては、アミノ配位子、イミノ配位子、含窒素芳香族ヘテロ環配位子(ピロール配位子、イミダゾール配位子、トリアゾール配位子及びそれらを含む縮環体(例えばインドール配位子、ベンゾイミダゾール配位子など))が挙げられる。
酸素原子でPtに結合するQ、Q、Q及びQとしては、中性の配位子でもアニオン性の配位子でもよく、中性の配位子としてはエーテル配位子、ケトン配位子、エステル配位子、アミド配位子、含酸素ヘテロ環配位子(フラン配位子、オキサゾール配位子及びそれらを含む縮環体(ベンゾオキサゾール配位子など))が挙げられる。アニオン性の配位子としては、アルコキシ配位子、アリールオキシ配位子、芳香族へテロ環オキシ配位子、アシルオキシ配位子、シリルオキシ配位子などが挙げられる。
硫黄原子でPtに結合するQ、Q、Q及びQとしては、中性の配位子でもアニオン性の配位子でもよく、中性の配位子としてはチオエーテル配位子、チオケトン配位子、チオエステル配位子、チオアミド配位子、含硫黄ヘテロ環配位子(チオフェン配位子、チアゾール配位子及びそれらを含む縮環体(ベンゾチアゾール配位子など))が挙げられる。アニオン性の配位子としては、アルキルメルカプト配位子、アリールメルカプト配位子、芳香族へテロ環メルカプト配位子などが挙げられる。
リン原子でPtに結合するQ、Q、Q及びQとしては、中性の配位子でもアニオン性の配位子でもよく、中性の配位子としてはホスフィン配位子、リン酸エステル配位子、亜リン酸エステル配位子、含リンヘテロ環配位子(ホスフィニン配位子など)が挙げられ、アニオン性の配位子としては、ホスフィノ配位子、ホスフィニル配位子、ホスホリル配位子などが挙げられる。
、Q、Q及びQで表される基は、置換基を有していてもよく、置換基としては前記置換基群Aとして挙げたものが適宜適用できる。また置換基同士が連結していても良い(QとQが連結した場合、環状四座配位子のPt錯体になる)。
、Q、Q及びQで表される基として好ましくは、炭素原子でPtに結合する芳香族炭化水素環配位子、炭素原子でPtに結合する芳香族ヘテロ環配位子、窒素原子でPtに結合する含窒素芳香族ヘテロ環配位子、アシルオキシ配位子、アルキルオキシ配位子、アリールオキシ配位子、芳香族へテロ環オキシ配位子、シリルオキシ配位子であり、より好ましくは、炭素原子でPtに結合する芳香族炭化水素環配位子、炭素原子でPtに結合する芳香族ヘテロ環配位子、窒素原子でPtに結合する含窒素芳香族ヘテロ環配位子、アシルオキシ配位子、アリールオキシ配位子であり、更に好ましくは炭素原子でPtに結合する芳香族炭化水素環配位子、炭素原子でPtに結合する芳香族ヘテロ環配位子、窒素原子でPtに結合する含窒素芳香族ヘテロ環配位子、アシルオキシ配位子である。
、L及びLは、単結合又は二価の連結基を表す。L、L及びLで表される二価の連結基としては、アルキレン基(メチレン、エチレン、プロピレンなど)、アリーレン基(フェニレン、ナフタレンジイル)、ヘテロアリーレン基(ピリジンジイル、チオフェンジイルなど)、イミノ基(−NR−)(フェニルイミノ基など)、オキシ基(−O−)、チオ基(−S−)、ホスフィニデン基(−PR−)(フェニルホスフィニデン基など)、シリレン基(−SiRR’−)(ジメチルシリレン基、ジフェニルシリレン基など)、又はこれらを組み合わせたものが挙げられる(R、R’はそれぞれ置換基を表す)。
これらの二価の連結基は、更に置換基を有していてもよい。そのような置換基としては、アルキル基又はアリール基が挙げられ、該置換基が複数ある場合には互いに結合して環を形成してもよい。アルキル基の場合、好ましくはメチル基、エチル基、プロピル基、i−ブチル基、t−ブチル基、トリフルオロメチル基、又は、互いに結合してシクロヘキシル基若しくはシクロペンチル基を形成する基である。アリール基の場合、好ましくはフェニル基又は互いに結合してフルオレン基を形成する基である。最も好ましくはメチル基、エチル基、プロピル基、i−ブチル基である。
錯体の安定性及び発光量子収率の観点から、L、L及びLとして好ましくは単結合、アルキレン基、アリーレン基、ヘテロアリーレン基、イミノ基、オキシ基、チオ基、シリレン基であり、より好ましくは単結合、アルキレン基、アリーレン基、イミノ基であり、更に好ましくは単結合、アルキレン基、アリーレン基であり、更に好ましくは、単結合、メチレン基、フェニレン基であり、更に好ましくは単結合、ジ置換のメチレン基であり、更に好ましくは単結合、ジメチルメチレン基、ジエチルメチレン基、ジイソブチルメチレン基、ジベンジルメチレン基、エチルメチルメチレン基、メチルプロピルメチレン基、イソブチルメチルメチレン基、ジフェニルメチレン基、メチルフェニルメチレン基、シクロヘキサンジイル基、シクロペンタンジイル基、フルオレンジイル基、フルオロメチルメチレン基であり、特に好ましくは単結合、ジメチルメチレン基、ジフェニルメチレン基、シクロヘキサンジイル基である。
一般式(C−1)で表される白金錯体のうち、より好ましくは下記一般式(C−2)で表される白金錯体である。
Figure 0004590020
(式中、L21は単結合又は二価の連結基を表す。A21、A22はそれぞれ独立にC又はNを表す。Z21、Z22はそれぞれ独立に含窒素芳香族ヘテロ環を表す。Z23、Z24はそれぞれ独立にベンゼン環又は芳香族ヘテロ環を表す。)
一般式(C−2)について説明する。L21は、前記一般式(C−1)中のLと同義であり、また好ましい範囲も同様である。
21、A22はそれぞれ独立に炭素原子又は窒素原子を表す。A21、A22の内、少なくとも一方は炭素原子であることが好ましく、A21、A22が共に炭素原子であることが、錯体の安定性の観点及び錯体の発光量子収率の観点から好ましい。
21、Z22は、それぞれ独立に含窒素芳香族ヘテロ環を表す。Z21、Z22で表される含窒素芳香族ヘテロ環としては、ピリジン環、ピリミジン環、ピラジン環、トリアジン環、イミダゾール環、ピラゾール環、オキサゾール環、チアゾール環、トリアゾール環、オキサジアゾール環、チアジアゾール環などが挙げられる。錯体の安定性、発光波長制御及び発光量子収率の観点から、Z21、Z22で表される環として好ましくは、ピリジン環、ピラジン環、イミダゾール環、ピラゾール環であり、より好ましくはピリジン環、イミダゾール環、ピラゾール環であり、更に好ましくはピリジン環、ピラゾール環であり、特に好ましくはピリジン環である。
前記Z21、Z22で表される含窒素芳香族ヘテロ環は置換基を有していてもよく、炭素原子上の置換基としては前記置換基群Aが、窒素原子上の置換基としては前記置換基群Bが適用できる。炭素原子上の置換基として好ましくはアルキル基、パーフルオロアルキル基、アリール基、芳香族へテロ環基、ジアルキルアミノ基、ジアリールアミノ基、アルコキシ基、シアノ基、ハロゲン原子である。置換基は発光波長や電位の制御のために適宜選択されるが、短波長化させる場合には電子供与性基、フッ素原子、芳香環基が好ましく、例えばアルキル基、ジアルキルアミノ基、アルコキシ基、フッ素原子、アリール基、芳香族ヘテロ環基などが選択される。また長波長化させる場合には電子求引性基が好ましく、例えばシアノ基、パーフルオロアルキル基などが選択される。N上の置換基として好ましくは、アルキル基、アリール基、芳香族ヘテロ環基であり、錯体の安定性の観点からアルキル基、アリール基が好ましい。前記置換基同士は連結して縮合環を形成していてもよく、形成される環としては、ベンゼン環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、イミダゾール環、オキサゾール環、チアゾール環、ピラゾール環、チオフェン環、フラン環などが挙げられる。
23、Z24は、それぞれ独立にベンゼン環又は芳香族ヘテロ環を表す。Z23、Z24で表される含窒素芳香族ヘテロ環としては、ピリジン環、ピリミジン環、ピラジン環、ピリダジン環、トリアジン環、イミダゾール環、ピラゾール環、オキサゾール環、チアゾール環、トリアゾール環、オキサジアゾール環、チアジアゾール環、チオフェン環、フラン環などが挙げられる。錯体の安定性、発光波長制御及び発光量子収率の観点からZ23、Z24で表される環として好ましくは、ベンゼン環、ピリジン環、ピラジン環、イミダゾール環、ピラゾール環、チオフェン環であり、より好ましくはベンゼン環、ピリジン環、ピラゾール環であり、更に好ましくはベンゼン環、ピリジン環である。
前記Z23、Z24で表されるベンゼン環、含窒素芳香族ヘテロ環は置換基を有していてもよく、炭素原子上の置換基としては前記置換基群Aが、窒素原子上の置換基としては前記置換基群Bが適用できる。炭素上の置換基として好ましくはアルキル基、パーフルオロアルキル基、アリール基、芳香族へテロ環基、ジアルキルアミノ基、ジアリールアミノ基、アルコキシ基、シアノ基、ハロゲン原子である。置換基は発光波長や電位の制御のために適宜選択されるが、長波長化させる場合には電子供与性基、芳香環基が好ましく、例えばアルキル基、ジアルキルアミノ基、アルコキシ基、アリール基、芳香族ヘテロ環基などが選択される。また短波長化させる場合には電子求引性基が好ましく、例えばフッ素基、シアノ基、パーフルオロアルキル基などが選択される。N上の置換基として好ましくは、アルキル基、アリール基、芳香族ヘテロ環基であり、錯体の安定性の観点からアルキル基、アリール基が好ましい。前記置換基同士は連結して縮合環を形成していてもよく、形成される環としては、ベンゼン環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、イミダゾール環、オキサゾール環、チアゾール環、ピラゾール環、チオフェン環、フラン環などが挙げられる。
一般式(C−2)で表される白金錯体のうち、より好ましい態様の一つは下記一般式(C−3)で表される白金錯体である。
Figure 0004590020
(式中、A301〜A313は、それぞれ独立に、C−R又はNを表す。Rは水素原子又は置換基を表す。L31は単結合又は二価の連結基を表す。)
一般式(C−3)について説明する。L31は一般式(C−2)におけるL21と同義であり、また好ましい範囲も同様である。A301〜A306はそれぞれ独立にC−R又はNを表す。Rは水素原子又は置換基を表す。Rで表される置換基としては、前記置換基群Aとして挙げたものが適用できる。
301〜A306として好ましくはC−Rであり、R同士が互いに連結して環を形成していても良い。A301〜A306がC−Rである場合に、A302、A305のRとして好ましくは水素原子、アルキル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、フッ素基、シアノ基であり、より好ましくは水素原子、アミノ基、アルコキシ基、アリールオキシ基、フッ素基であり、特に好ましくは水素原子、フッ素基である。A301、A303、A304、A306のRとして好ましくは水素原子、アルキル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、フッ素基、シアノ基であり、より好ましくは水素原子、アミノ基、アルコキシ基、アリールオキシ基、フッ素基であり、特に好ましく水素原子である。A307、A308、A309及びA310は、それぞれ独立に、C−R又はNを表す。Rは水素原子又は置換基を表す。Rで表される置換基としては、前記置換基群Aとして挙げたものが適用できる。A307、A308、A309及びA310がC−Rである場合に、Rとして好ましくは水素原子、アルキル基、パーフルオロアルキル基、アリール基、芳香族へテロ環基、ジアルキルアミノ基、ジアリールアミノ基、アルキルオキシ基、シアノ基、ハロゲン原子であり、より好ましくは、水素原子、アルキル基、パーフルオロアルキル基、アリール基、ジアルキルアミノ基、シアノ基、フッ素原子、更に好ましくは、水素原子、アルキル基、トリフルオロメチル基、フッ素原子である。また可能な場合は置換基同士が連結して縮環構造を形成してもよい。発光波長を短波長側にシフトさせる場合、A308がN原子であることが好ましい。
上記の如くA307〜A310を選択した場合、2つの炭素原子とA307、A308、A309及びA310から形成される6員環としては、ベンゼン環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、トリアジン環が挙げられ、より好ましくは、ベンゼン環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環であり、特に好ましくはベンゼン環、ピリジン環である。前記6員環が、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環(特に好ましくはピリジン環)であることにより、ベンゼン環と比較して、金属−炭素結合を形成する位置に存在する水素原子の酸性度が向上する為、より金属錯体を形成しやすくなる点有利である。
311、A312及びA313は、それぞれ独立に、C−R又はNを表す。Rは水素原子又は置換基を表す。Rで表される置換基としては、前記置換基群Aとして挙げたものが適用できる。A311、A312及びA313がC−Rである場合に、Rとして好ましくは水素原子、アルキル基、パーフルオロアルキル基、アリール基、芳香族へテロ環基、ジアルキルアミノ基、ジアリールアミノ基、アルキルオキシ基、シアノ基、ハロゲン原子であり、より好ましくは、水素原子、アルキル基、パーフルオロアルキル基、アリール基、ジアルキルアミノ基、シアノ基、フッ素原子、更に好ましくは、水素原子、アルキル基、トリフルオロメチル基、フッ素原子である。また可能な場合は置換基同士が連結して、縮環構造を形成してもよい。A311、A312及びA313のうち少なくとも一つはNであることが好ましく、特にA311がNであることが好ましい。
一般式(C−2)で表される白金錯体のうち、より好ましい態様の一つは下記一般式(C−4)で表される白金錯体である。
一般式(C−4)
Figure 0004590020
(一般式(C−4)中、A401〜A414はそれぞれ独立にC−R又はNを表す。Rは水素原子又は置換基を表す。L41は単結合又は二価の連結基を表す。)
一般式(C−4)について説明する。
401〜A414はそれぞれ独立にC−R又はNを表す。Rは水素原子又は置換基を表す。A401〜A406及びL41は、前記一般式(C−3)におけるA301〜A306及びL31と同義であり、好ましい範囲も同様である。
407〜A414としては、A407〜A410とA411〜A414のそれぞれにおいて、N(窒素原子)の数は、0〜2が好ましく、0〜1がより好ましい。発光波長を短波長側にシフトさせる場合、A408、A412がN原子であることが好ましく、A408とA412が共にN原子であることが更に好ましい。
407〜A414がC−Rを表す場合に、A408、A412のRとして好ましくは水素原子、アルキル基、パーフルオロアルキル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、フッ素基、シアノ基であり、より好ましくは水素原子、パーフルオロアルキル基、アルキル基、アリール基、フッ素基、シアノ基であり、特に好ましくは、水素原子、フェニル基、パーフルオロアルキル基、シアノ基である。A407、A409、A411、A413のRとして好ましくは水素原子、アルキル基、パーフルオロアルキル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、フッ素基、シアノ基であり、より好ましくは水素原子、パーフルオロアルキル基、フッ素基、シアノ基であり、特に好ましく水素原子、フェニル基、フッ素基である。A410、A414のRとして好ましくは水素原子、フッ素基であり、より好ましくは水素原子である。A407〜A409、A411〜A413のいずれかがC−Rを表す場合に、R同士が互いに連結して環を形成していても良い。
一般式(C−2)で表される白金錯体のうち、より好ましい態様の一つは下記一般式(C−5)で表される白金錯体である。
Figure 0004590020
(一般式(C−5)中、A501〜A512は、それぞれ独立に、C−R又はNを表す。Rは水素原子又は置換基を表す。L51は単結合又は二価の連結基を表す。)
一般式(C−5)について説明する。A501〜A506及びL51は、前記一般式(C−3)におけるA301〜A306及びL31と同義であり、好ましい範囲も同様である。
507、A508及びA509とA510、A511及びA512は、それぞれ独立に、一般式(C−3)におけるA311、A312及びA313と同義であり、また好ましい範囲も同様である。
一般式(C−1)で表される白金錯体のうち、より好ましい別の態様は下記一般式(C−6)で表される白金錯体である。
Figure 0004590020
(式中、L61は単結合又は二価の連結基を表す。A61はそれぞれ独立にC又はNを表す。Z61、Z62はそれぞれ独立に含窒素芳香族ヘテロ環を表す。Z63はそれぞれ独立にベンゼン環又は芳香族ヘテロ環を表す。YはPtに結合するアニオン性の非環状配位子である。)
一般式(C−6)について説明する。L61は、前記一般式(C−1)中のLと同義であり、また好ましい範囲も同様である。
61はC又はNを表す。錯体の安定性の観点及び錯体の発光量子収率の観点からA61はCであることが好ましい。
61、Z62は、それぞれ前記一般式(C−2)におけるZ21、Z22と同義であり、また好ましい範囲も同様である。Z63は、前記一般式(C−2)におけるZ23と同義であり、また好ましい範囲も同様である。
YはPtに結合するアニオン性の非環状配位子である。非環状配位子とはPtに結合する原子が配位子の状態で環を形成していないものである。Y中のPtに結合する原子としては、炭素原子、窒素原子、酸素原子、硫黄原子が好ましく、窒素原子、酸素原子がより好ましく、酸素原子が最も好ましい。炭素原子でPtに結合するYとしてはビニル配位子が挙げられる。窒素原子でPtに結合するYとしてはアミノ配位子、イミノ配位子が挙げられる。酸素原子でPtに結合するYとしては、アルコキシ配位子、アリールオキシ配位子、芳香族へテロ環オキシ配位子、アシルオキシ配位子、シリルオキシ配位子、カルボキシル配位子、リン酸配位子、スルホン酸配位子などが挙げられる。硫黄原子でPtに結合するYとしては、アルキルメルカプト配位子、アリールメルカプト配位子、芳香族へテロ環メルカプト配位子、チオカルボン酸配位子などが挙げられる。
Yで表される配位子は、置換基を有していてもよく、置換基としては前記置換基群Aとして挙げたものが適宜適用できる。また置換基同士が連結していても良い。
Yで表される配位子として好ましくは酸素原子でPtに結合する配位子であり、より好ましくはアシルオキシ配位子、アルキルオキシ配位子、アリールオキシ配位子、芳香族へテロ環オキシ配位子、シリルオキシ配位子であり、更に好ましくはアシルオキシ配位子である。
一般式(C−6)で表される白金錯体のうち、より好ましい態様の一つは下記一般式(C−7)で表される白金錯体である。
Figure 0004590020
(式中、A701〜A710は、それぞれ独立に、C−R又はNを表す。Rは水素原子又は置換基を表す。L71は単結合又は二価の連結基を表す。YはPtに結合するアニオン性の非環状配位子である。)
一般式(C−7)について説明する。L71は、前記一般式(C−6)中のL61と同義であり、また好ましい範囲も同様である。A701〜A710は一般式(C−3)におけるA301〜A310と同義であり、また好ましい範囲も同様である。Yは一般式(C−6)におけるそれと同義であり、また好ましい範囲も同様である。
一般式(C−1)で表される白金錯体として具体的には、特開2005−310733の[0143]〜[0152]、[0157]〜[0158]、[0162]〜[0168]に記載の化合物、特開2006−256999の[0065]〜[0083]に記載の化合物、特開2006−93542の[0065]〜[0090]に記載の化合物、特開2007−73891の[0063]〜[0071]に記載の化合物、特開2007−324309の[0079]〜[0083]に記載の化合物、特開2007−96255の[0055]〜[0071]に記載の化合物、特開2006−313796の[0043]〜[0046]が挙げられ、その他以下に例示する白金錯体が挙げられる。以下の例示において、Meはメチル基を表す。
Figure 0004590020
Figure 0004590020
Figure 0004590020
一般式(C−1)で表される白金錯体化合物は、例えば、Journal of Organic Chemistry 53, 786, (1988) 、G. R. Newkome et al.)の、789頁、左段53行〜右段7行に記載の方法、790頁、左段18行〜38行に記載の方法、790頁、右段19行〜30行に記載の方法及びその組み合わせ、Chemische Berichte 113, 2749 (1980)、H. Lexy ほか)の、2752頁、26行〜35行に記載の方法等、種々の手法で合成できる。
例えば、配位子、又はその解離体と金属化合物を溶媒(例えば、ハロゲン系溶媒、アルコール系溶媒、エーテル系溶媒、エステル系溶媒、ケトン系溶媒、ニトリル系溶媒、アミド系溶媒、スルホン系溶媒、スルホキサイド系溶媒、水などが挙げられる)の存在下、若しくは、溶媒非存在下、塩基の存在下(無機、有機の種々の塩基、例えば、ナトリウムメトキシド、t−ブトキシカリウム、トリエチルアミン、炭酸カリウムなどが挙げられる)、若しくは、塩基非存在下、室温以下、若しくは加熱し(通常の加熱以外にもマイクロウェーブで加熱する手法も有効である)得ることができる。
本発明において、一般式(C−1)で表される化合物を発光層に含有させる場合、その含有量は発光層中1〜30質量%であることが好ましく、3〜25質量%であることがより好ましく、5〜20質量%であることが更に好ましい。
本発明において、前記白金錯体化合物の他、発光材料としてイリジウム(Ir)錯体を併用することができる。前記併用するイリジウム(Ir)錯体として、下記一般式(PQ−1)で表される化合物であることが好ましい。
一般式(PQ−1)で表される化合物について説明する。
Figure 0004590020
(一般式PQ−1中、R〜R10は水素原子又は置換基を表す。置換基同士は可能であれば互いに結合して環を形成しても良い。X−Yは二座のモノアニオン性配位子を表す。nは1〜3の整数を表す。)
〜R10で表される置換基としては前記置換基群Aを挙げることができる。R〜R10として好ましくは、水素原子、アルキル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、ヘテロ環オキシ基、シアノ基、ヘテロ環基、シリル基、シリルオキシ基、フルオロ基であり、より好ましくは水素原子、アルキル基、アリール基、アミノ基、アルコキシ基、シアノ基、シリル基、フルオロ基であり、より好ましくは水素原子、アルキル基、アリール基であり、更に好ましくは水素原子、メチル基、エチル基、イソプロピル基、t−ブチル基、ネオペンチル基、イソブチル基、フェニル基、ナフチル基、フェナントリル基、トリル基であり、更に好ましくは水素原子、メチル基、フェニル基である。置換基同士は可能であれば互いに結合して環を形成しても良い。
nは2〜3であることが好ましく、2であることがより好ましい。
(X−Y)は、二座のモノアニオン性配位子を示す。これらの配位子は、発光特性に直接寄与するのではなく、分子の発光特性を制御することができると考えられている。「3−n」は0、1又は2でありうる。発光材料において使用される二座のモノアニオン性配位子を、当業界で公知であるものから選択することができる。二座のモノアニオン性配位子は、例えばLamanskyらのPCT出願WO02/15645号パンフレットの89〜90頁に記載されている配位子が挙げられるが、本発明はこれに限定されない。好ましい二座のモノアニオン性配位子には、アセチルアセトネート(acac)及びピコリネート(pic)、及びこれらの誘導体が含まれる。本発明においては錯体の安定性、高い発光量子収率の観点から二座のモノアニオン性配位子はアセチルアセトネートであることが好ましい。
Figure 0004590020
上記アセチルアセトネートの構造式において、Mは配位する金属原子を表す。
前記一般式(PQ−1)で表される化合物は、下記一般式(PQ−2)で表される化合物であることが好ましい。
Figure 0004590020
(一般式(PQ−2)中、R〜R10は水素原子又は置換基を表す。置換基同士は可能であれば互いに結合して環を形成しても良い。X−Yは二座のモノアニオン性配位子を表す。)
〜R10及びX−Yは、一般式(PQ−1)におけるR〜R10及びX−Yと同義であり、また好ましい範囲も同様である。
前記一般式(PQ−1)で表される化合物は、下記一般式(PQ−3)で表される化合物であることが好ましい。
Figure 0004590020
一般式(PQ−3)中、R〜Rは一般式(PQ−1)と同義である。Ra、Rb、Rcは、それぞれ独立に、水素原子又はアルキル基を表す。ただし、Ra、Rb及びRcのうち一つは水素原子を表し、他の二つはアルキル基を表す。Rx、Ryは、それぞれ独立に、アルキル基又はフェニル基を表す。
一般式(PQ−3)について説明する。
〜Rは一般式(PQ−1)と同義である。好ましくは、水素原子、アルキル基、アリール基、フルオロ基、シアノ基であり、より好ましくは、水素原子、炭素数1〜5のアルキル基、フェニル基、フルオロ基、シアノ基である、これらの基は可能であれば置換基を有していてもよく、該置換基としては下記置換基群Zの基が挙げられる。
(置換基群Z)
炭素数1〜6のアルキル基、炭素数2〜6のアルケニル基、フェニル基、炭素数5〜10の芳香族ヘテロ環基、炭素数1〜4のアルコキシ基、フェノキシ基、フルオロ基、シリル基、アミノ基、シアノ基、及びこれらを組み合わせてなる基。
〜Rが複数の置換基を有する場合、それらの置換基は互いに連結して芳香族炭化水素環を形成してもよい。
〜Rはとして、好ましくは、水素原子、メチル基、エチル基、イソブチル基、t−ブチル基、フルオロ基、フェニル基、シアノ基、トリフルオロメチル基であり、より好ましくは水素原子、メチル基、イソブチル基、フルオロ基、フェニル基、シアノ基であり、更に好ましくは水素原子、メチル基、イソブチル基、フェニル基であり、更に好ましくは水素原子、メチル基、イソブチル基であり、特に好ましくは水素原子である。
Ra、Rb、Rcは、それぞれ独立に、水素原子又はアルキル基(好ましくは炭素数1〜5のアルキル基)を表す。ただし、Ra、Rb及びRcの少なくとも一つは水素原子を表す。Rb又はRcが水素原子を表すことが好ましく、Rbが水素原子を表すことがより好ましい。
Ra、Rb、Rcが水素原子以外の場合、好ましくは、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、n−ペンチル基、イソアミル基、t−アミル基、n−ヘキシル基であり、より好ましくはメチル基、エチル基、プロピル基、イソプロピル基、t−ブチル基であり、更に好ましくはメチル基、エチル基であり、特に好ましくはメチル基である。
Rx、Ryは、それぞれ独立に、アルキル基又はフェニル基を表す。アルキル基としては炭素数1〜5のアルキル基が好ましい。
Rx、Ryとして、好ましくはメチル基、t−ブチル基、フェニル基であり、更に好ましくはメチル基である。
一般式(PQ−1)で表される化合物の具体例を以下に列挙するが、以下に限定されるものではない。
Figure 0004590020
Figure 0004590020
Figure 0004590020
Figure 0004590020
上記一般式(PQ−1)で表される化合物として例示した化合物は、例えば特許第3929632号公報に記載の方法などの種々の方法で合成できる。例えば、FR−2は、2−フェニルキノリンを出発原料として、特許第3929632号公報の18頁、2〜13行に記載の方法で合成することができる。また、FR−3は、2−(2−ナフチル)キノリンを出発原料として、特許第3929632号公報の18頁、14行〜19頁、8行に記載の方法で合成することができる。
本発明において、発光層に一般式(PQ−1)で表される化合物を含有させる場合、その含有量は発光層中0.1〜30質量%であることが好ましく、2〜20質量%であることがより好ましく、5〜15質量%であることが更に好ましい。
発光層中の発光材料は、発光層を形成する全化合物質量に対して、一般的に0.1質量%〜50質量%含有されるが、耐久性、外部量子効率の観点から1質量%〜50質量%含有されることが好ましく、2質量%〜40質量%含有されることがより好ましい。
発光層の厚さは、特に限定されるものではないが、通常、2nm〜500nmであるのが好ましく、中でも、外部量子効率の観点で、3nm〜200nmであるのがより好ましく、5nm〜100nmであるのが更に好ましい。
本発明の素子における発光層は、発光材料のみで構成されていてもよく、ホスト材料と発光材料の混合層とした構成でもよい。発光材料の種類は一種であっても二種以上であっても良い。ホスト材料は電荷輸送材料であることが好ましい。ホスト材料は一種であっても二種以上であってもよく、例えば、電子輸送性のホスト材料とホール輸送性のホスト材料を混合した構成が挙げられる。更に、発光層中に電荷輸送性を有さず、発光しない材料を含んでいてもよい。
また、発光層は一層であっても二層以上の多層であってもよく、それぞれの層に同じ発光材料やホスト材料を含んでもよいし、層毎に異なる材料を含んでもよい。発光層が複数の場合、それぞれの発光層が異なる発光色で発光してもよい。
<ホスト材料>
ホスト材料とは、発光層において主に電荷の注入、輸送を担う化合物であり、また、それ自体は実質的に発光しない化合物のことである。ここで「実質的に発光しない」とは、該実質的に発光しない化合物からの発光量が好ましくは素子全体での全発光量の5%以下であり、より好ましくは3%以下であり、更に好ましくは1%以下であることを言う。
ホスト材料としては、本発明の一般式(1)で表される化合物を用いることができる。この場合、一般式(C−1)で表される白金錯体と併用することが好ましい。併用する場合に、一般式(1)で表される化合物と一般式(C−1)で表される白金錯体との質量比は99:1〜3:1であることが好ましく。95:1〜5:1であることがより好ましい。
その他の本発明に用いることのできるホスト材料としては、例えば、以下の化合物を挙げることができる。
縮環炭化水素化合物(ナフタレン、アントラセン、フェナントレン、トリフェニレン、ピレン等)、ピロール、インドール、カルバゾール、アザインドール、アザカルバゾール、トリアゾール、オキサゾール、オキサジアゾール、ピラゾール、イミダゾール、チオフェン、ポリアリールアルカン、ピラゾリン、ピラゾロン、フェニレンジアミン、アリールアミン、アミノ置換カルコン、スチリルアントラセン、フルオレノン、ヒドラゾン、スチルベン、シラザン、芳香族第三級アミン化合物、スチリルアミン化合物、ポルフィリン系化合物、ポリシラン系化合物、ポリ(N−ビニルカルバゾール)、アニリン系共重合体、チオフェンオリゴマー、ポリチオフェン等の導電性高分子オリゴマー、有機シラン、カーボン膜、ピリジン、ピリミジン、トリアジン、イミダゾール、ピラゾール、トリアゾ−ル、オキサゾ−ル、オキサジアゾ−ル、フルオレノン、アントラキノジメタン、アントロン、ジフェニルキノン、チオピランジオキシド、カルボジイミド、フルオレニリデンメタン、ジスチリルピラジン、フッ素置換芳香族化合物、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フタロシアニン、8−キノリノ−ル誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾ−ルやベンゾチアゾ−ルを配位子とする金属錯体に代表される各種金属錯体及びそれらの誘導体(置換基や縮環を有していてもよい)等を挙げることができる。
本発明において、併用することができるホスト材料としては、正孔輸送性ホスト材料であっても、電子輸送性ホスト材料であってもよいが、正孔輸送性ホスト材料を用いることができる。
本発明において、前記発光層が、ホスト材料を含むことが好ましい。前記ホスト材料は下記一般式(4−1)又は(4−2)で表される化合物であることが好ましい。
本発明においては、発光層に一般式(4−1)又は(4−2)で表される化合物の少なくとも1つ以上を含むことがより好ましい。
本発明において、一般式(4−1)又は(4−2)で表される化合物が発光層に含有される場合、一般式(4−1)又は(4−2)で表される化合物は発光層中に30〜100質量%含まれることが好ましく、40〜100質量%含まれることが好ましく、50〜100質量%含まれることが特に好ましい。また、一般式(4−1)又は(4−2)で表される化合物を、複数の有機層に用いる場合はそれぞれの層において、上記の範囲で含有することが好ましい。
一般式(4−1)又は(4−2)で表される化合物は、いずれかの有機層に、一種類のみを含有していてもよく、複数の一般式(4−1)又は(4−2)で表される化合物を任意の割合で組み合わせて含有していてもよい。
Figure 0004590020
(一般式(4−1)及び(4−2)中、d、eは0〜3の整数を表し、少なくとも一方は1以上である。fは1〜4の整数を表す。R’は置換基を表し、d、e、fが2以上である場合R’は互いに異なっていても同じでも良い。また、R’の少なくとも1つは下記一般式(5)で表されるカルバゾール基を表す。)
Figure 0004590020
(一般式(5)中、R’はそれぞれ独立に置換基を表す。gは0〜8の整数を表す。)
R’はそれぞれ独立に置換基を表し、具体的にはハロゲン原子、アルコキシ基、シアノ基、ニトロ基、アルキル基、アリール基、ヘテロ環基、又は一般式(5)で表される置換基である。R’が一般式(5)を表さない場合、好ましくは炭素数10以下のアルキル基、炭素数10以下の置換又は無置換のアリール基であり、更に好ましくは炭素数6以下のアルキル基である。
R’はそれぞれ独立に置換基を表し、具体的にはハロゲン原子、アルコキシ基、シアノ基、ニトロ基、アルキル基、アリール基、ヘテロ環基であり、好ましくは炭素数10以下のアルキル基、炭素数10以下の置換又は無置換のアリール基であり、更に好ましくは炭素数6以下のアルキル基である。
gは0〜8の整数を表し、電荷輸送を担うカルバゾール骨格を遮蔽しすぎない観点から0〜4が好ましい。また、合成容易さの観点から、カルバゾールが置換基を有する場合、窒素原子に対し、対称になるように置換基を持つものが好ましい。
一般式(4−1)において、電荷輸送能を保持する観点で、dとeの和は2以上であることが好ましい。また、他方のベンゼン環に対しR’がメタで置換することが好ましい。その理由として、オルト置換では隣り合う置換基の立体障害が大きいため結合が開裂しやすく、耐久性が低くなる。また、パラ置換では分子形状が剛直な棒状へと近づき、結晶化しやすくなるため高温条件での素子劣化が起こりやすくなる。具体的には以下の構造で表される化合物であることが好ましい。
Figure 0004590020
一般式(4−2)において、電荷輸送能を保持する観点で、fは2以上であることが好ましい。fが2又は3の場合、同様の観点からR’が互いにメタで置換することが好ましい。具体的には以下の構造で表される化合物であることが好ましい。
Figure 0004590020
一般式(4−1)及び(4−2)が水素原子を有する場合、水素の同位体(重水素原子等)も含む。この場合化合物中の全ての水素原子が水素同位体に置き換わっていてもよく、また一部が水素同位体を含む化合物である混合物でもよい。好ましくは一般式(5)におけるR’が重水素によって置換されたものであり、特に好ましくは以下の構造が挙げられる。
Figure 0004590020
更に置換基を構成する原子は、その同位体も含んでいることを表す。
一般式(4−1)及び(4−2)で表される化合物は、種々の公知の合成法を組み合わせて合成することが可能である。最も一般的には、カルバゾール化合物に関してはアリールヒドラジンとシクロヘキサン誘導体との縮合体のアザーコープ転位反応の後、脱水素芳香族化による合成(L.F.Tieze,Th.Eicher著、高野、小笠原訳、精密有機合成、339頁(南江堂刊))が挙げられる。また、得られたカルバゾール化合物とハロゲン化アリール化合物のパラジウム触媒を用いるカップリング反応に関してはテトラヘドロン・レターズ39巻617頁(1998年)、同39巻2367頁(1998年)及び同40巻6393頁(1999年)等に記載の方法が挙げられる。反応温度、反応時間については特に限定されることはなく、前記文献に記載の条件が適用できる。また、mCPなどのいくつかの化合物は市販されているものを好適に用いることができる。
本発明において、一般式(4−1)及び(4−2)で表される化合物は、真空蒸着プロセスで薄層を形成することが好ましいが、溶液塗布などのウェットプロセスも好適に用いることが出来る。化合物の分子量は、蒸着適性や溶解性の観点から2000以下であることが好ましく、1200以下であることがより好ましく、800以下であることが特に好ましい。また蒸着適性の観点では、分子量が小さすぎると蒸気圧が小さくなり、気相から固相への変化がおきず、有機層を形成することが困難となるので、250以上が好ましく、300以上が特に好ましい。
一般式(4−1)及び(4−2)は、以下に示す構造若しくはその水素原子が1つ以上重水素原子で置換された化合物であることが好ましい。
Figure 0004590020
上記具体例中、R’は、一般式(5)におけるR’と同義である。
以下に、本発明における一般式(4−1)及び(4−2)で表される化合物の具体例を例示するが、本発明はこれらに限定されるものではない。
Figure 0004590020
Figure 0004590020
Figure 0004590020
Figure 0004590020
Figure 0004590020
Figure 0004590020
本発明における発光層において、前記各ホスト材料の三重項最低励起エネルギー(Tエネルギー)が、前記燐光発光材料のTエネルギーより高いことが色度、発光効率、駆動耐久性の点で好ましい。
また、本発明におけるホスト化合物の含有量は、特に限定されるものではないが、発光効率、駆動電圧の観点から、発光層を形成する全化合物質量に対して15質量%以上95質量%以下であることが好ましい。一般式(1)で表される化合物は全ホスト化合物中50質量%以上99質量%以下であることが好ましい。
本発明の有機電界発光素子は前記電極が陽極を含み、前記発光層と該陽極の間に電荷輸送層を有し、該電荷輸送層がカルバゾール化合物を含むことが好ましい。
(電荷輸送層)
電荷輸送層とは、有機電界発光素子に電圧を印加した際に電荷移動が起こる層をいう。具体的には正孔注入層、正孔輸送層、電子ブロック層、発光層、正孔ブロック層、電子輸送層又は電子注入層が挙げられる。好ましくは、正孔注入層、正孔輸送層、電子ブロック層又は発光層である。塗布法により形成される電荷輸送層が正孔注入層、正孔輸送層、電子ブロック層又は発光層であれば、低コストかつ高効率な有機電界発光素子の製造が可能となる。また、電荷輸送層として、より好ましくは、正孔注入層、正孔輸送層又は電子ブロック層である。
−正孔注入層、正孔輸送層−
正孔注入層、正孔輸送層は、陽極又は陽極側から正孔を受け取り陰極側に輸送する機能を有する層である。
正孔注入層、正孔輸送層については、特開2008−270736号公報の段落番号〔0165〕〜〔0167〕に記載の事項を本発明に適用することができる。
正孔注入層、正孔輸送層がカルバゾール化合物を含有することが好ましい。
本発明において、カルバゾール化合物は下記一般式(a)で表されるカルバゾール化合物であることが好ましい。
一般式(a)
Figure 0004590020
(一般式(a)中、Rは該骨格の水素原子に置換し得る置換基を表し、Rは複数存在する場合はそれぞれ同じでも異なってもよい。nは0〜8の整数を表す。)
一般式(a)で表される化合物を、電荷輸送層中で用いる場合は、一般式(a)で表される化合物は50〜100質量%含まれることが好ましく、80〜100質量%含まれることが好ましく、95〜100質量%含まれることが特に好ましい。
また、一般式(a)で表される化合物を、複数の有機層に用いる場合はそれぞれの層において、上記の範囲で含有することが好ましい。
一般式(a)で表される化合物は、いずれかの有機層に、一種類のみを含有していてもよく、複数の一般式(a)で表される化合物を任意の割合で組み合わせて含有していてもよい。
本発明において、一般式(a)で表される化合物を正孔輸送層に含ませる場合、一般式(a)で表される化合物を含む正孔輸送層の厚さとしては、1nm〜500nmであるのが好ましく、3nm〜200nmであるのがより好ましく、5nm〜100nmであるのが更に好ましい。また、該正孔輸送層は発光層に接して設けられていることが好ましい。 該正孔輸送層は、上述した材料の一種又は二種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
が表す置換基としては具体的にはハロゲン原子、アルコキシ基、シアノ基、ニトロ基、アルキル基、アリール基、芳香族複素環基が挙げられ、炭素数10以下のアルキル基、炭素数10以下の置換又は無置換のアリール基が好ましく、炭素数6以下のアルキル基であることがより好ましい。tは0〜4が好ましく、0〜2がより好ましい。
本発明において、一般式(a)を構成する水素原子は、水素の同位体(重水素原子等)も含む。この場合化合物中の全ての水素原子が水素同位体に置き換わっていてもよく、また一部が水素同位体を含む化合物である混合物でもよい。
一般式(a)で表される化合物は、種々の公知の合成法を組み合わせて合成することが可能である。最も一般的には、カルバゾール化合物に関してはアリールヒドラジンとシクロヘキサン誘導体との縮合体のアザーコープ転位反応の後、脱水素芳香族化による合成(L.F.Tieze,Th.Eicher著、高野、小笠原訳、精密有機合成、339頁(南江堂刊))が挙げられる。また、得られたカルバゾール化合物とハロゲン化アリール化合物のパラジウム触媒を用いるカップリング反応に関してはテトラヘドロン・レターズ39巻617頁(1998年)、同39巻2367頁(1998年)及び同40巻6393頁(1999年)等に記載の方法が挙げられる。反応温度、反応時間については特に限定されることはなく、前記文献に記載の条件が適用できる。
本発明において、一般式(a)で表される化合物は、真空蒸着プロセスで薄層を形成することが好ましいが、溶液塗布などのウェットプロセスも好適に用いることが出来る。化合物の分子量は、蒸着適性や溶解性の観点から2000以下であることが好ましく、1200以下であることがより好ましく、800以下であることが特に好ましい。また蒸着適性の観点では、分子量が小さすぎると蒸気圧が小さくなり、気相から固相への変化がおきず、有機層を形成することが困難となるので、250以上が好ましく、300以上が特に好ましい。
以下に、本発明における一般式(a)で表される化合物の具体例を例示するが、本発明はこれらに限定されるものではない。
Figure 0004590020
Figure 0004590020
Figure 0004590020
Figure 0004590020
−電子注入層、電子輸送層−
電子注入層、電子輸送層は、陰極又は陰極側から電子を受け取り陽極側に輸送する機能を有する層である。これらの層に用いる電子注入材料、電子輸送材料は低分子化合物であっても高分子化合物であってもよい。
電子輸送材料としては、本発明の一般式(1)で表される化合物を用いることができる。その他の材料としては、ピリジン誘導体、キノリン誘導体、ピリミジン誘導体、ピラジン誘導体、フタラジン誘導体、フェナントロリン誘導体、トリアジン誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、フルオレノン誘導体、アントラキノジメタン誘導体、アントロン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド誘導体、フルオレニリデンメタン誘導体、ジスチリルピラジン誘導体、ナフタレン、ペリレン等の芳香環テトラカルボン酸無水物、フタロシアニン誘導体、8−キノリノール誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾールやベンゾチアゾールを配位子とする金属錯体に代表される各種金属錯体、シロールに代表される有機シラン誘導体、等を含有する層であることが好ましい。
電子注入層、電子輸送層の厚さは、駆動電圧を下げるという観点から、各々500nm以下であることが好ましい。
電子輸送層の厚さとしては、1nm〜500nmであるのが好ましく、5nm〜200nmであるのがより好ましく、10nm〜100nmであるのが更に好ましい。また、電子注入層の厚さとしては、0.1nm〜200nmであるのが好ましく、0.2nm〜100nmであるのがより好ましく、0.5nm〜50nmであるのが更に好ましい。
電子注入層、電子輸送層は、上述した材料の1種又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
−正孔ブロック層−
正孔ブロック層は、陽極側から発光層に輸送された正孔が、陰極側に通りぬけることを防止する機能を有する層である。本発明において、発光層と陰極側で隣接する有機層として、正孔ブロック層を設けることができる。
正孔ブロック層を構成する有機化合物の例としては、アルミニウム(III)ビス(2−メチル−8−キノリナト)4−フェニルフェノレート(Aluminum (III)bis(2−methyl−8−quinolinato)4−phenylphenolate(BAlqと略記する))等のアルミニウム錯体、トリアゾール誘導体、2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン(2,9−Dimethyl−4,7−diphenyl−1,10−phenanthroline(BCPと略記する))等のフェナントロリン誘導体、等が挙げられる。
正孔ブロック層の厚さとしては、1nm〜500nmであるのが好ましく、5nm〜200nmであるのがより好ましく、10nm〜100nmであるのが更に好ましい。
正孔ブロック層は、上述した材料の一種又は二種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
−電子ブロック層−
電子ブロック層は、陰極側から発光層に輸送された電子が、陽極側に通りぬけることを防止する機能を有する層である。本発明において、発光層と陽極側で隣接する有機層として、電子ブロック層を設けることができる。
電子ブロック層を構成する有機化合物の例としては、例えば前述の正孔輸送材料として挙げたものが適用できる。
電子ブロック層の厚さとしては、1nm〜500nmであるのが好ましく、5nm〜200nmであるのがより好ましく、10nm〜100nmであるのが更に好ましい。
電子ブロック層は、上述した材料の一種又は二種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
<保護層>
本発明において、有機EL素子全体は、保護層によって保護されていてもよい。
保護層については、特開2008−270736号公報の段落番号〔0169〕〜〔0170〕に記載の事項を本発明に適用することができる。
<基板>
本発明で使用する基板としては、有機層から発せられる光を散乱又は減衰させない基板であることが好ましい。
<陽極>
陽極は、通常、有機層に正孔を供給する電極としての機能を有していればよく、その形状、構造、大きさ等については特に制限はなく、発光素子の用途、目的に応じて、公知の電極材料の中から適宜選択することができる。前述のごとく、陽極は、通常透明陽極として設けられる。
<陰極>
陰極は、通常、有機層に電子を注入する電極としての機能を有していればよく、その形状、構造、大きさ等については特に制限はなく、発光素子の用途、目的に応じて、公知の電極材料の中から適宜選択することができる。
基板、陽極、陰極については、特開2008−270736号公報の段落番号〔0070〕〜〔0089〕に記載の事項を本発明に適用することができる。
<封止容器>
本発明の素子は、封止容器を用いて素子全体を封止してもよい。
封止容器については、特開2008−270736号公報の段落番号〔0171〕に記載の事項を本発明に適用することができる。
(駆動)
本発明の有機電界発光素子は、陽極と陰極との間に直流(必要に応じて交流成分を含んでもよい)電圧(通常2ボルト〜15ボルト)、又は直流電流を印加することにより、発光を得ることができる。
本発明の有機電界発光素子の駆動方法については、特開平2−148687号、同6−301355号、同5−29080号、同7−134558号、同8−234685号、同8−241047号の各公報、特許第2784615号、米国特許5828429号、同6023308号の各明細書等に記載の駆動方法を適用することができる。
本発明の有機電界発光素子の外部量子効率としては、7%以上が好ましく、10%以上がより好ましく、12%以上が更に好ましい。外部量子効率の数値は20℃で素子を駆動したときの外部量子効率の最大値、若しくは、20℃で素子を駆動したときの300〜400cd/m付近での外部量子効率の値を用いることができる。
本発明の有機電界発光素子の内部量子効率は、30%以上であることが好ましく、50%以上が更に好ましく、70%以上が更に好ましい。素子の内部量子効率は、外部量子効率を光取り出し効率で除して算出される。通常の有機EL素子では光取り出し効率は約20%であるが、基板の形状、電極の形状、有機層の膜厚、無機層の膜厚、有機層の屈折率、無機層の屈折率等を工夫することにより、光取り出し効率を20%以上にすることが可能である。
(本発明の素子の用途)
本発明の素子は、表示素子、ディスプレイ、バックライト、電子写真、照明光源、記録光源、露光光源、読み取り光源、標識、看板、インテリア、又は光通信等に好適に利用できる。特に、照明装置、表示装置等の発光輝度が高い領域で駆動されるデバイスに好ましく用いられる。
次に、図2を参照して本発明の発光装置について説明する。
図2は、本発明の発光装置の一例を概略的に示した断面図である。図2の発光装置20は、透明基板(支持基板)2、有機電界発光素子10、封止容器16等により構成されている。
有機電界発光素子10は、基板2上に、陽極(第一電極)3、有機層11、陰極(第二電極)9が順次積層されて構成されている。また、陰極9上には、保護層12が積層されており、更に、保護層12上には接着層14を介して封止容器16が設けられている。なお、各電極3、9の一部、隔壁、絶縁層等は省略されている。
ここで、接着層14としては、エポキシ樹脂等の光硬化型接着剤や熱硬化型接着剤を用いることができ、例えば熱硬化性の接着シートを用いることもできる。
本発明の発光装置の用途は特に制限されるものではなく、例えば、照明装置のほか、テレビ、パーソナルコンピュータ、携帯電話、電子ペーパ等の表示装置とすることができる。
(照明装置)
次に、図3を参照して本発明の照明装置について説明する。
図3は、本発明の照明装置の一例を概略的に示した断面図である。本発明の照明装置40は、図3に示すように、前述した有機EL素子10と、光散乱部材30とを備えている。より具体的には、照明装置40は、有機EL素子10の基板2と光散乱部材30とが接触するように構成されている。
本発明の実施形態に係る照明装置40は、図3に示すように、前述した有機EL素子10と、光散乱部材30とを備えている。より具体的には、照明装置40は、有機EL素子10の基板2と光散乱部材30とが接触するように構成されている。
光散乱部材30は、光を散乱できるものであれば特に制限されないが、図3においては、透明基板31に微粒子32が分散した部材とされている。透明基板31としては、例えば、ガラス基板を好適に挙げることができる。微粒子32としては、透明樹脂微粒子を好適に挙げることができる。ガラス基板及び透明樹脂微粒子としては、いずれも、公知のものを使用できる。このような照明装置40は、有機電界発光素子10からの発光が散乱部材30の光入射面30Aに入射されると、入射光を光散乱部材30により散乱させ、散乱光を光出射面30Bから照明光として出射するものである。
以下、実施例により本発明を更に詳細に説明するが、本発明はこれらに限定されるものではない。特に、置換基の有無は本発明の効果に殆ど影響を与えず、以下に示す実施例で用いられる化合物に置換基を有していても同様の効果が得られる。
<実施例1>
例示化合物1の合成
(合成法B:比較の合成法)
WO05/085387の段落〔0074〕−〔0075〕に記載の方法に従って、一般式(1)の電荷輸送材料の例示化合物1を合成・精製した。反応式を以下に示す。
Figure 0004590020
得られたサンプルを昇華精製(Ar気流下、5×10−1Paにて加熱)し、採取時にサンプルの固着位置からフラクションA、Bを分け取り、それぞれから電荷輸送材料を得た。ここで、フラクションAよりフラクションBの方が固着位置から離れた領域で、フラクションAに比べてフラクションBの方から、より低温で気化する物質が採取される。
得られた電荷輸送材料のHPLC純度や特定不純物含有量は、素子特性とともに表1に示す。表1中、昇華精製を行っていない材料は「未昇華」と表記した。
(合成法A:本発明の合成法)
合成法Bにおいて、合成中間体Aを合成中間体M−1に、合成中間体Bを合成中間体M−2に変えた以外は触媒のmol濃度、溶媒のmol濃度、塩基のmol濃度、反応条件、精製条件を合成法Bと同様の方法で合成・精製した。反応式を以下に示す。
Figure 0004590020
得られたサンプルを合成法Bと同様の方法で昇華精製し、フラクションA、B、Cを分け取り、それぞれから電荷輸送材料を得た。ここで、フラクションAよりフラクションBの方が、またフラクションBよりフラクションCの方が、固着位置から離れた領域となる。フラクションAに比べてフラクションBの方から、またフラクションBに比べてフラクションCの方からより低温で気化する物質が採取される。
得られた電荷輸送材料のHPLC純度や特定不純物含有量は、素子特性とともに表1に示す。
表1中の不純物1とは、カルバゾール部位を含むアリールハライドであり、本発明の一般式(I−1)又は(II−1)に相当する化合物である。電荷輸送材料の例示化合物1の場合は合成中間体M−1もこれに相当する。また、不純物2とは、ピリミジン部位を含むアリールハライドであり、本発明の一般式(I−2)又は(II−2)に相当する化合物である。電荷輸送材料の例示化合物1では合成中間体Bもこれに相当する。
一般式(1)の電荷輸送材料の例示化合物5、6、20、36についても、例示化合物1と同様に合成・昇華精製を行った。本発明の合成法で合成したものを合成法A、WO05/085387及びWO03/080760に記載の方法又はそれに準じた方法で合成したものを合成法Bと表記する。例示化合物20と例示化合物36に関しては、本発明の一般式(I−2)又は(II−2)に相当する化合物とカルバゾールをカップリングさせて合成しているが、この方法を合成法Bに相当すると定義する。下記に例示化合物5、6、20、36の合成における不純物1及び不純物2の構造を示す。
Figure 0004590020
また、同様に一般式(1)の例示化合物37、38、40、41、42、45、46、47、50、51、52、53、54、55についても前記合成法A及びBにより合成を行った。下記に例示化合物37、38、40、41、42、45、46、47、50、51、52、53、54、55の合成における不純物1及び不純物2の構造を示す。
Figure 0004590020
Figure 0004590020
<実施例2>
[素子の作製]
厚み0.5mm、2.5cm角のITO膜を有するガラス基板(ジオマテック社製、表面抵抗10Ω/□)を洗浄容器に入れ、2−プロパノール中で超音波洗浄した後、30分間UV−オゾン処理を行った。この透明陽極(ITO膜)上に真空蒸着法にて以下の有機
化合物層を順次蒸着した。
第1層:2−TNATA及びF−TCNQ(質量比99.7:0.3):膜厚120nm
第2層:α−NPD:膜厚7nm
第3層:C−1:膜厚3nm
第4層:H−1及びD−1(質量比85:15):膜厚30nm
第5層:電子輸送材料(実施例1で作製の電荷輸送材料:表1に記載):膜厚3nm
第6層:BAlq:膜厚27nm
この上に、フッ化リチウム0.1nm及び金属アルミニウム100nmをこの順に蒸着し陰極とした。
このものを、大気に触れさせることなく、窒素ガスで置換したグローブボックス内に入れ、ガラス製の封止缶及び紫外線硬化型の接着剤(XNR5516HV、長瀬チバ(株)製)を用いて封止し、有機電界発光素子を得た。
これらの素子を発光させた結果、各素子とも発光材料に由来する発光が得られた。
(有機電界発光素子の性能評価)
得られた各素子に対し、外部量子効率及び駆動耐久性を測定して素子の性能を評価した。なお、各種測定は以下のように行なった。結果を表1に示す。
(a)外部量子効率
東陽テクニカ製ソースメジャーユニット2400を用いて、直流電圧を各素子に印加し発光させ、その輝度をトプコン社製輝度計BM−8を用いて測定した。発光スペクトルと発光波長は浜松ホトニクス製スペクトルアナライザーPMA−11を用いて測定した。これらを基に輝度が360cd/m付近の外部量子効率を輝度換算法により算出した。
(b)駆動耐久性
各素子を輝度が1000cd/mになるように直流電圧を印加し、輝度が500cd/mになるまでの時間を測定した。この輝度半減時間を駆動耐久性評価の指標とした。なお、電荷輸送材料例示化合物1の合成法Aで作製し、昇華精製フラクションAのものを用いた素子の値を1.0とし、各素子の値はこれに対する相対値として表1及び2に記載した。
Figure 0004590020
Figure 0004590020
表1及び2の結果から、同一の電子輸送材料を用いた素子同士の比較により、不純物1及び2の含有量を0.1質量%以下に抑えた本発明の素子は、発光効率及び耐久性がともに優れていることが分かる。
また、本発明の方法により電子輸送材料化合物を合成した場合、合成後の昇華精製でのフラクション位置によらず、発光効率及び耐久性に優れた素子を提供し得る電子輸送材料が得られることが分かる。
<実施例3>
[素子の作製]
有機化合物層の蒸着を以下の第1層〜第5層の順序で行う以外には、実施例2と同様の方法で素子を作製した。
第1層:2−TNATA及びF−TCNQ(質量比99.7:0.3):膜厚120nm
第2層:α−NPD:膜厚7nm
第3層:C−1:膜厚3nm
第4層:表3及び4に記載のホスト材料(実施例1で作製の電荷輸送材料)及び発光材料(質量比95:5):膜厚30nm
第5層:BAlq:膜厚30nm
得られた素子を発光させた結果、各素子とも発光材料に由来する発光が得られた。また、素子の外部量子効率及び駆動耐久性を実施例2と同様な方法で測定して素子の性能を評価した。結果を表3及び4に示す。
なお、表3及び4の駆動耐久性の値は、電荷輸送材料の例示化合物1の合成法Aで作製し、昇華精製フラクションAのものを用いた素子の値を1.0とし、各素子の値はこれに対する相対値として表3及び4に記載した。
Figure 0004590020
Figure 0004590020
表3及び表4の結果から、本発明の電子輸送材料を発光層のホスト材料として用いた場合でも、不純物1及び2の含有量を0.1%以下に抑えた本発明の素子は、発光効率及び耐久性がともに優れていることが分かる。
また、第3層、第4層、第5層を下記表5及び表7に示すものに変えた以外は実施例2と同様の方法で作製した素子で、実施例2と同様の方法により評価した結果を表6及び表8に示す。なお、用いた本発明の電子輸送材料の合成法、昇華精製フラクションを例示化合物1(#A−B)(合成法A、昇華精製フラクションBを表す)のように表記する。
表5及び表7に示す各素子の極大発光波長は浜松ホトニクス製スペクトルアナライザーPMA−11を用いて測定した。また、駆動電圧は、輝度が1000cd/mになるときの直流電圧値である。
表5及び表7の「第4層」の欄に示す括弧内の比はホスト材料と発光材料の質量比を表す。
Figure 0004590020
Figure 0004590020
Figure 0004590020
Figure 0004590020
表6及び8の実施例の素子3−1〜3−42に示すように、本発明の電子輸送材料を用いることで、明細書中に記載の様々な材料と組み合わせて高性能の素子が得られることが分かった。
更に、有機化合物層の蒸着を以下の第1層〜第5層の順序で行う以外には、実施例2と同様の方法で素子を作製した。
第1層:2−TNATA及びF−TCNQ(質量比99.7:0.3):膜厚60nm
第2層:α−NPD:膜厚20nm
第3層:H−10及びBD−1(質量比97:3):膜厚40nm
第4層:表9に記載の電子輸送材料:膜厚10nm
第5層:BAlq:膜厚10nm
得られた素子を発光させた結果、各素子とも発光材料に由来する発光が得られた。発光色を表9に示す。また、各素子の外部量子効率及び駆動耐久性を実施例2と同様な方法で測定した。測定結果を表9に示す。
なお、表9において、用いた本発明の電子輸送材料の合成法、昇華精製フラクションを例示化合物1(#A−B)(合成法A、昇華精製フラクションBを表す)のように表記する。
Figure 0004590020
以上のように、発光材料や組み合わせるホスト材料、電子輸送材料等の構造が全く異なるものであっても同様に本発明の電子輸送材料を用いることで高性能の素子が得られることが分かった。
<実施例4>
実施例1において合成法Aで作製した電荷輸送材料例示化合物1について、昇華精製回数を1〜7回と変更した電子輸送材料サンプルをそれぞれ作製した。作製した電子輸送材料サンプルを用いて、実施例2の本発明の素子1−1と同様に本発明の素子4−1〜4−6を作製し、外部量子効率、駆動耐久性を評価した。評価結果を表10に示す。
Figure 0004590020
表10の結果から、不純物1の含有量がおよそ0.03質量%以下の場合、効率と耐久性は殆ど変化が無く、昇華精製回数が増えることによる工程数増により環境負荷が大きくなることが分かった。
また、実施例1において合成法Aで作製した電荷輸送材料例示化合物1について、昇華精製を行わず、代わりに再結晶、シリカゲルカラムクロマトグラフィーにより不純物1の含有率が異なる電子輸送材料サンプルをそれぞれ作製した。作製した電荷輸送材料サンプルを用いて、実施例2の本発明の素子1−1と同様に本発明の素子4−7及び比較素子4−1〜4−7を作製し、外部量子効率、駆動耐久性を評価した。評価結果を表11に示す。
Figure 0004590020
図4は、表10及び表11に示される結果に基づいた、不純物1含有率に対する素子の駆動耐久性の変化を示すグラフである。
図4から分かるように、不純物1の含有量が0.1質量%以下であると、素子の耐久性が著しく向上することが分かる。
<実施例5>
実施例4と同様に、例示化合物6を昇華精製回数、未昇華精製で精製方法を変えることにより、不純物1の含有率が異なる電荷輸送材料サンプルをそれぞれ作製した。作製した電子輸送材料サンプルを用いて、実施例2の本発明の素子1−1と同様に本発明の素子5−1〜5−6及び比較素子5−1〜5−9を作製し、外部量子効率、駆動耐久性を評価した。実施例2で作製した本発明の素子1−6と合わせて、評価結果を表12にまとめて示す。
Figure 0004590020
表12の結果から、不純物1の含有量がおよそ0.05質量%以下の場合、効率と耐久性は殆ど変化が無く、昇華精製回数が増えることによる工程数増により環境負荷が大きくなることが分かった。
図5は、不純物1含有率に対する素子の駆動耐久性の変化を調べた結果を示すグラフである。
図5から分かるように、不純物1の含有量が0.1質量%以下であると、素子の耐久性が著しく向上することが分かる。
<実施例6>
実施例4と同様に、例示化合物51を昇華精製回数、未昇華精製で精製方法を変えることにより、不純物1の含有率が異なる電荷輸送材料サンプルをそれぞれ作製した。作製した電子輸送材料サンプルを用いて、実施例2の本発明の素子1−1と同様に本発明の素子6−1〜6−4及び比較素子6−1〜6−5を作製し、外部量子効率、駆動耐久性を評価した。実施例2で作製した本発明の素子1−27と合わせて、結果を表13にまとめて示す。
Figure 0004590020
表13の結果から、不純物1の含有量がおよそ0.09質量%以下の場合、効率と耐久性は殆ど変化が無く、昇華精製回数が増えることによる工程数増により環境負荷が大きくなることが分かった。
図6は、不純物1含有率に対する素子の駆動耐久性の変化を調べた結果を示すグラフである。
図6から分かるように、不純物1の含有量が0.1質量%以下であると、素子の耐久性が著しく向上することが分かる。
<実施例7>
実施例4と同様に、例示化合物52を昇華精製回数、未昇華精製で精製方法を変えることにより、不純物1の含有率が異なる電荷輸送材料サンプルをそれぞれ作製した。作製した電子輸送材料サンプルを用いて、実施例2の本発明の素子1−1と同様に本発明の素子7−1〜7−4及び比較素子7−1〜7−6を作製し、外部量子効率、駆動耐久性を評価した。実施例2で作製した本発明の素子1−29と合わせて、結果を表14にまとめて示す。
Figure 0004590020
表14の結果から、不純物1の含有量がおよそ0.05質量%以下の場合、効率と耐久性は殆ど変化が無く、昇華精製回数が増えることによる工程数増により環境負荷が大きくなることが分かった。
図7は、不純物1含有率に対する素子の駆動耐久性の変化を調べた結果を示すグラフである。
図7から分かるように、不純物1の含有量が0.1質量%以下であると、素子の耐久性が著しく向上することが分かる。
<実施例8>
実施例7と同様に、例示化合物54を昇華精製回数、未昇華精製で精製方法を変えることにより、不純物2の含有率が異なる電荷輸送材料サンプルをそれぞれ作製した。作製した電子輸送材料サンプルを用いて、実施例2の本発明の素子1−1と同様に本発明の素子8−1〜8−6及び比較素子8−1〜8−5を作製し、外部量子効率、駆動耐久性を評価した。実施例2で作製した本発明の素子1−33と合わせて、結果を表15にまとめて示す。
Figure 0004590020
表15の結果から、不純物1の含有量がおよそ0.04質量%以下の場合、効率と耐久性は殆ど変化が無く、昇華精製回数が増えることによる工程数増により環境負荷が大きくなることが分かった。
図8は、不純物2含有率に対する素子の駆動耐久性の変化を調べた結果を示すグラフである。
図8から分かるように、不純物1の含有量が0.1質量%以下であると、素子の耐久性が著しく向上することが分かる。
また、発光装置、表示装置、照明装置の場合、各画素部で高い電流密度を通じて瞬間的に高輝度発光させる必要があり、本発明の発光素子はそのような場合に発光効率が高くなるように設計されているため、有利に利用することができる。
以下に実施例2〜8で用いた化合物の構造を示す。
Figure 0004590020
Figure 0004590020
Figure 0004590020
Figure 0004590020
Figure 0004590020
Figure 0004590020
Figure 0004590020
2・・・基板
3・・・陽極
4・・・正孔注入層
5・・・正孔輸送層
6・・・発光層
7・・・正孔ブロック層
8・・・電子輸送層
9・・・陰極
10・・・有機電界発光素子
11・・・有機層

Claims (33)

  1. 以下の一般式(1)で表される化合物を含む電荷輸送材料であって、以下の一般式(I−1)で表される化合物及び一般式(I−2)で表される化合物の含有量が、それぞれ一般式(1)で表される化合物に対して0.1質量%以下であることを特徴とする電荷輸送材料。
    Figure 0004590020
    一般式(1)中、A、Aはそれぞれ独立にN、−CH又は−CRを表す。Rは置換基を表す。Lは単結合、アリーレン基、シクロアルキレン基又は芳香族へテロ環を表す。Lが連結するベンゼン環中の炭素原子と、L中の原子と、更に他の原子とにより環を形成してもよい。前記他の原子は、炭素原子、酸素原子又は硫黄原子であり、該炭素原子には更にアルキル基又はアリール基が置換していてもよい。R〜Rはそれぞれ独立にハロゲン原子、アルキル基、アリール基、芳香族ヘテロ環基、アダマンチル基、シアノ基、シリル基、又はカルバゾリル基を表す。n1〜n3はそれぞれ独立に0〜4の整数を表し、n4〜n5はそれぞれ独立に0〜5を表す。p、qはそれぞれ独立に1〜4の整数を表す。
    Figure 0004590020
    Figure 0004590020
    一般式(I−1)及び一般式(I−2)中、A、A、R〜R、n1〜n5、p及びqはそれぞれ一般式(1)と同義であり、一般式(1)におけるA、A、R〜R、n1〜n5、p及びqと同一の基又は整数である。X、Xはそれぞれ独立にハロゲン原子を表す。L’及びL”はLと同義である。
  2. 一般式(I−1)で表される化合物及び一般式(I−2)で表される化合物の含有量が、それぞれ一般式(1)で表される化合物に対して0.001質量%以上0.1質量%以下であることを特徴とする請求項1に記載の電荷輸送材料。
  3. 一般式(1)において、A及びAのいずれか一方が窒素原子であり、他方が炭素原子であることを特徴とする請求項1又は2に記載の電荷輸送材料。
  4. 一般式(1)において、Lがフェニレン基、ビフェニレン基又はターフェニレン基であることを特徴とする請求項1〜3のいずれか1項に記載の電荷輸送材料。
  5. 一般式(1)において、R〜Rがそれぞれ独立にアルキル基、アリール基、シアノ基又はシリル基であることを特徴とする請求項1〜4のいずれか1項に記載の電荷輸送材料。
  6. 一般式(1)において、n1〜n5が全て0であることを特徴とする請求項1〜5のいずれか1項に記載の電荷輸送材料。
  7. 一般式(1)で表される化合物が以下の一般式(2)で表される化合物であることを特徴とする請求項1〜6のいずれか1項に記載の電荷輸送材料。
    Figure 0004590020
    一般式(2)中、R〜R11はそれぞれ独立にアルキル基、アリール基、シアノ基又はシリル基を表す。n6〜n9はそれぞれ0〜4の整数を表し、n10〜n11はそれぞれ独立に0〜5の整数を表す。
  8. 一般式(2)において、n6〜n11が全て0であることを特徴とする請求項7に記載の電荷輸送材料。
  9. 一般式(I−1)で表される化合物及び一般式(I−2)で表される化合物がそれぞれ以下の一般式(II−1)で表される化合物及び一般式(II−2)で表される化合物であることを特徴とする請求項7又は8に記載の電荷輸送材料。
    Figure 0004590020
    Figure 0004590020
    一般式(II−1)及び一般式(II−2)中、X、Xはそれぞれ独立にハロゲン原子を表す。R〜R11及びn6〜n11は一般式(2)と同義である。
  10. 一般式(1)で表される化合物の分子量が450以上800以下であることを特徴とする請求項1〜9のいずれか1項に記載の電荷輸送材料。
  11. 一般式(1)で表される化合物の薄膜状態での最低励起三重項Tエネルギーが2.61eV以上3.51eV以下である請求項1〜9のいずれか1項に記載の電荷輸送材料。
  12. 一般式(1)で表される化合物のガラス転移温度Tgが80℃以上400℃以下であることを特徴とする請求項1〜10のいずれか1項に記載の電荷輸送材料。
  13. 以下の一般式(2)で表される化合物の製造方法であって、
    以下の一般式(M1)で表される化合物と一般式(M2)で表される化合物とをパラジウム触媒を用いてカップリング反応する工程と、
    前記カップリング反応により得られた反応生成物を昇華精製する工程とを含むことを特徴とする一般式(2)で表される化合物の製造方法。
    Figure 0004590020
    一般式(2)中、R〜R11はそれぞれ独立にアルキル基、アリール基、シアノ基又はシリル基を表す。n6〜n9はそれぞれ0〜4の整数を表し、n10〜n11はそれぞれ独立に0〜5の整数を表す。
    Figure 0004590020
    Figure 0004590020
    一般式(M1)及び一般式(M2)中、Xはハロゲン原子を表す。R〜R11及びn6〜n11は一般式(2)と同義である。R12は水素原子又はアルキル基を表す。
  14. 一般式(2)で表される化合物が請求項13記載の製造方法で得られたことを特徴とする請求項7又は8に記載の電荷輸送材料。
  15. 一対の電極間に、発光層を含む有機層を少なくとも一層含む有機電界発光素子であって、
    有機層のいずれかの層が請求項1〜12及び14のいずれか1項に記載の電荷輸送材料を含むことを特徴とする有機電界発光素子。
  16. 前記有機層が電子輸送層を含み、該電子輸送層が請求項1〜12及び14のいずれか1項に記載の電荷輸送材料を含むことを特徴とする請求項15に記載の有機電界発光素子。
  17. 前記発光層が請求項1〜12及び14のいずれか1項に記載の電荷輸送材料を含むことを特徴とする請求項15に記載の有機電界発光素子。
  18. 前記発光層が発光材料として以下の一般式(C−5)で表される化合物を含むことを特徴とする請求項15〜17のいずれか1項に記載の有機電界発光素子。
    Figure 0004590020
    一般式(C−3)中、A301〜A313は、それぞれ独立に、C−R又はNを表す。Rは水素原子又は置換基を表す。L31は単結合又は二価の連結基を表す。
  19. 前記L31が、単結合、アルキレン基又はアリーレン基であり、該アルキレン基及びアリーレン基は更に置換基としてアルキル基又はアリール基を有していてもよい(前記置換基が複数ある場合には互いに結合して環を形成してもよい)ことを特徴とする請求項18に記載の有機電界発光素子。
  20. 前記A302又はA305はC−Rを表し、Rが水素原子、アミノ基、アルコキシ基、アリールオキシ基、又はフッ素基であることを特徴とする請求項18又は19に記載の有機電界発光素子。
  21. 前記A301、A303、A304、又はA306がC−Rを表し、Rが水素原子、アミノ基、アルコキシ基、アリールオキシ基、又はフッ素基であることを特徴とする請求項18〜20のいずれか1項に記載の有機電界発光素子。
  22. 前記A307、A308、A309、又はA310がC−Rであるとき、Rが水素原子、アルキル基、パーフルオロアルキル基、アリール基、ジアルキルアミノ基、シアノ基、又はフッ素原子であることを特徴とする請求項18〜21のいずれか1項に記載の有機電界発光素子。
  23. 前記A307、A308、A309及びA310と2つの炭素原子とから形成される6員環が、ベンゼン環、ピリジン環、ピラジン環、ピリミジン環、又はピリダジン環であることを特徴とする請求項18〜22のいずれか1項に記載の有機電界発光素子。
  24. 前記A311、A312、又はA313がC−Rであるとき、Rが水素原子、アルキル基、パーフルオロアルキル基、アリール基、ジアルキルアミノ基、シアノ基、又はフッ素原子であることを特徴とする請求項18〜23のいずれか1項に記載の有機電界発光素子。
  25. 前記A311、A312及びA313の少なくとも1つがNであることを特徴とする請求項18〜24のいずれか1項に記載の有機電界発光素子。
  26. 前記発光層が発光材料として以下の一般式(PQ−1)で表される化合物を含むことを特徴とする請求項15〜17のいずれか1項に記載の有機電界発光素子。
    Figure 0004590020
    一般式(PQ−1)中、R〜R10は、それぞれ独立に、水素原子又は置換基を表す。該置換基同士は互いに結合して環を形成してもよい。X−Yは二座のモノアニオン性配位子を表す。nは1〜3の整数を表す。
  27. 前記R〜R10は、それぞれ独立に、水素原子、メチル基、エチル基、イソプロピル基、t−ブチル基、ネオペンチル基、イソブチル基、フェニル基、ナフチル基、フェナントリル基、又はトリル基を表すことを特徴とする請求項26に記載の有機電界発光素子。
  28. 前記X−Yが、アセチルアセトネート又はピコリネートであることを特徴とする請求項26又は27に記載の有機電界発光素子。
  29. 前記一般式(PQ−1)で表される化合物が、以下の一般式(PQ−3)で表される化合物であることを特徴とする請求項26〜28のいずれか1項に記載の有機電界発光素子。
    Figure 0004590020
    一般式(PQ−3)中、R〜Rは一般式(PQ−1)と同義である。Ra、Rb、Rcは、それぞれ独立に、水素原子又はアルキル基を表す。ただし、Ra、Rb及びRcのうち一つは水素原子を表し、他の2つがアルキル基を表す。Rx、Ryは、それぞれ独立に、アルキル基又はフェニル基を表す。
  30. 請求項1〜12及び14のいずれか1項に記載の電荷輸送材料を含有する組成物。
  31. 請求項15〜29のいずれか1項に記載の有機電界発光素子を用いた発光装置。
  32. 請求項15〜29のいずれか1項に記載の有機電界発光素子を用いた表示装置。
  33. 請求項15〜29のいずれか1項に記載の有機電界発光素子を用いた照明装置。
JP2010107586A 2009-07-31 2010-05-07 電荷輸送材料及び有機電界発光素子 Active JP4590020B1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010107586A JP4590020B1 (ja) 2009-07-31 2010-05-07 電荷輸送材料及び有機電界発光素子
PCT/JP2010/062647 WO2011013681A1 (ja) 2009-07-31 2010-07-27 電荷輸送材料及び有機電界発光素子
US13/388,132 US20120126221A1 (en) 2009-07-31 2010-07-27 Charge-transporting material and organic electroluminescence device
KR1020127002597A KR101178084B1 (ko) 2009-07-31 2010-07-27 전하 수송 재료 및 유기 전계 발광 소자
TW099125368A TWI532733B (zh) 2009-07-31 2010-07-30 電荷傳送材料及有機電激發光元件

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009180226 2009-07-31
JP2009201158 2009-08-31
JP2010107586A JP4590020B1 (ja) 2009-07-31 2010-05-07 電荷輸送材料及び有機電界発光素子

Publications (2)

Publication Number Publication Date
JP4590020B1 true JP4590020B1 (ja) 2010-12-01
JP2011071474A JP2011071474A (ja) 2011-04-07

Family

ID=43425680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010107586A Active JP4590020B1 (ja) 2009-07-31 2010-05-07 電荷輸送材料及び有機電界発光素子

Country Status (5)

Country Link
US (1) US20120126221A1 (ja)
JP (1) JP4590020B1 (ja)
KR (1) KR101178084B1 (ja)
TW (1) TWI532733B (ja)
WO (1) WO2011013681A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014511025A (ja) * 2011-02-11 2014-05-01 ユニバーサル ディスプレイ コーポレイション 有機発光素子及び該有機発光素子に使用されるための材料
US9406891B2 (en) 2012-12-12 2016-08-02 Samsung Electronics Co., Ltd. Compound for organic optoelectronic device, organic light emitting diode including the same, and display including the organic light emitting diode
KR20180010168A (ko) * 2016-07-20 2018-01-30 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
US11746117B2 (en) 2018-11-27 2023-09-05 Lg Chem, Ltd. Heterocyclic compound and organic light emitting device comprising same
US11795185B2 (en) 2017-12-13 2023-10-24 Lg Display Co., Ltd. Compound for electron-transport material and organic light emitting diode including the same

Families Citing this family (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011046182A1 (ja) 2009-10-16 2011-04-21 出光興産株式会社 含フルオレン芳香族化合物、有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
CN104592206B (zh) 2010-04-20 2019-12-31 出光兴产株式会社 双咔唑衍生物、有机电致发光元件用材料及使用其的有机电致发光元件
JP6007467B2 (ja) * 2010-07-27 2016-10-12 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、
US20140217393A1 (en) * 2011-09-09 2014-08-07 Idemitsu Kosan Co., Ltd. Organic electroluminescence element
KR102261235B1 (ko) 2011-11-22 2021-06-04 이데미쓰 고산 가부시키가이샤 방향족 복소 고리 유도체, 유기 일렉트로루미네선스 소자용 재료 및 유기 일렉트로루미네선스 소자
CN107342368B (zh) 2011-11-22 2019-05-28 出光兴产株式会社 芳香族杂环衍生物、有机电致发光元件用材料以及有机电致发光元件
WO2013175789A1 (ja) * 2012-05-24 2013-11-28 出光興産株式会社 有機エレクトロルミネッセンス素子用材料、及びそれを用いた有機エレクトロルミネッセンス素子
JP6189090B2 (ja) * 2012-06-01 2017-08-30 株式会社半導体エネルギー研究所 有機材料の製造方法、発光素子の製造方法、発光装置の製造方法及び照明装置の製造方法
JP6136616B2 (ja) * 2012-06-18 2017-05-31 東ソー株式会社 環状アジン化合物、その製造方法、及びそれを含有する有機電界発光素子
KR102148539B1 (ko) * 2012-06-18 2020-08-26 토소가부시키가이샤 환상 아진 화합물, 그 제조 방법, 및 그것을 함유하는 유기 전계발광소자
KR101540053B1 (ko) * 2012-07-05 2015-07-29 주식회사 엠비케이 신규한 유기발광화합물 및 이를 포함하는 유기전기발광소자
JP6312960B2 (ja) * 2012-08-03 2018-04-18 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器、照明装置及び複素環化合物
CN103972404A (zh) * 2013-01-31 2014-08-06 海洋王照明科技股份有限公司 有机电致发光器件及其制备方法
CN103972412A (zh) * 2013-01-31 2014-08-06 海洋王照明科技股份有限公司 有机电致发光器件及其制备方法
WO2014122933A1 (ja) * 2013-02-08 2014-08-14 ソニー株式会社 有機エレクトロルミネッセンス素子
US9673401B2 (en) * 2013-06-28 2017-06-06 Universal Display Corporation Organic electroluminescent materials and devices
JP6182217B2 (ja) 2013-11-13 2017-08-16 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子および電子機器
KR101829745B1 (ko) 2014-01-24 2018-02-19 삼성에스디아이 주식회사 유기 화합물, 조성물, 유기 광전자 소자 및 표시 장치
US10403825B2 (en) 2014-02-27 2019-09-03 Universal Display Corporation Organic electroluminescent materials and devices
KR101773363B1 (ko) 2014-04-09 2017-08-31 제일모직 주식회사 유기 화합물, 조성물, 유기 광전자 소자 및 표시 장치
WO2015175678A1 (en) * 2014-05-14 2015-11-19 President And Fellows Of Harvard College Organic light-emitting diode materials
KR101864473B1 (ko) * 2014-09-22 2018-06-04 주식회사 엘지화학 헤테로환 화합물 및 이를 포함하는 유기 발광 소자
JP6640735B2 (ja) 2014-11-28 2020-02-05 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子および電子機器
US9929361B2 (en) 2015-02-16 2018-03-27 Universal Display Corporation Organic electroluminescent materials and devices
US11056657B2 (en) 2015-02-27 2021-07-06 University Display Corporation Organic electroluminescent materials and devices
CN107592860B (zh) 2015-04-24 2020-11-03 三星Sdi株式会社 有机化合物、组合物及有机光电二极管
US9859510B2 (en) 2015-05-15 2018-01-02 Universal Display Corporation Organic electroluminescent materials and devices
US10418568B2 (en) 2015-06-01 2019-09-17 Universal Display Corporation Organic electroluminescent materials and devices
US11127905B2 (en) 2015-07-29 2021-09-21 Universal Display Corporation Organic electroluminescent materials and devices
US10672996B2 (en) 2015-09-03 2020-06-02 Universal Display Corporation Organic electroluminescent materials and devices
US20170229663A1 (en) 2016-02-09 2017-08-10 Universal Display Corporation Organic electroluminescent materials and devices
US10236456B2 (en) 2016-04-11 2019-03-19 Universal Display Corporation Organic electroluminescent materials and devices
US11482683B2 (en) 2016-06-20 2022-10-25 Universal Display Corporation Organic electroluminescent materials and devices
US10862054B2 (en) 2016-06-20 2020-12-08 Universal Display Corporation Organic electroluminescent materials and devices
US10672997B2 (en) 2016-06-20 2020-06-02 Universal Display Corporation Organic electroluminescent materials and devices
US10608186B2 (en) 2016-09-14 2020-03-31 Universal Display Corporation Organic electroluminescent materials and devices
US10680187B2 (en) 2016-09-23 2020-06-09 Universal Display Corporation Organic electroluminescent materials and devices
US11196010B2 (en) 2016-10-03 2021-12-07 Universal Display Corporation Organic electroluminescent materials and devices
US11011709B2 (en) 2016-10-07 2021-05-18 Universal Display Corporation Organic electroluminescent materials and devices
US20180130956A1 (en) 2016-11-09 2018-05-10 Universal Display Corporation Organic electroluminescent materials and devices
US10680188B2 (en) 2016-11-11 2020-06-09 Universal Display Corporation Organic electroluminescent materials and devices
US11780865B2 (en) 2017-01-09 2023-10-10 Universal Display Corporation Organic electroluminescent materials and devices
US10844085B2 (en) 2017-03-29 2020-11-24 Universal Display Corporation Organic electroluminescent materials and devices
US10944060B2 (en) 2017-05-11 2021-03-09 Universal Display Corporation Organic electroluminescent materials and devices
US20180370999A1 (en) 2017-06-23 2018-12-27 Universal Display Corporation Organic electroluminescent materials and devices
US11228010B2 (en) 2017-07-26 2022-01-18 Universal Display Corporation Organic electroluminescent materials and devices
US11744142B2 (en) 2017-08-10 2023-08-29 Universal Display Corporation Organic electroluminescent materials and devices
KR102423189B1 (ko) * 2017-08-25 2022-07-22 삼성디스플레이 주식회사 유기 분자, 특히 광전자 장치에 사용하기 위한 유기 분자
KR102246691B1 (ko) * 2017-09-29 2021-04-30 삼성에스디아이 주식회사 유기 화합물, 조성물, 유기 광전자 소자 및 표시 장치
EP3483156B1 (en) * 2017-11-08 2020-09-16 Cynora Gmbh Organic molecues for use in optoelectronic devices
US20190161504A1 (en) 2017-11-28 2019-05-30 University Of Southern California Carbene compounds and organic electroluminescent devices
EP3492480B1 (en) 2017-11-29 2021-10-20 Universal Display Corporation Organic electroluminescent materials and devices
US11937503B2 (en) 2017-11-30 2024-03-19 Universal Display Corporation Organic electroluminescent materials and devices
US11542289B2 (en) 2018-01-26 2023-01-03 Universal Display Corporation Organic electroluminescent materials and devices
EP3527557A1 (en) * 2018-02-16 2019-08-21 Novaled GmbH N-heteroarylene compounds
KR20200122313A (ko) * 2018-02-20 2020-10-27 이데미쓰 고산 가부시키가이샤 유기 일렉트로루미네센스 소자 및 전자 기기
ES2910071T3 (es) 2018-03-08 2022-05-11 Incyte Corp Compuestos de aminopirazina diol como inhibidores de PI3K-Y
WO2020010003A1 (en) 2018-07-02 2020-01-09 Incyte Corporation AMINOPYRAZINE DERIVATIVES AS PI3K-γ INHIBITORS
US20200075870A1 (en) 2018-08-22 2020-03-05 Universal Display Corporation Organic electroluminescent materials and devices
WO2020050217A1 (ja) * 2018-09-07 2020-03-12 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び、電子機器
US11737349B2 (en) 2018-12-12 2023-08-22 Universal Display Corporation Organic electroluminescent materials and devices
US11780829B2 (en) 2019-01-30 2023-10-10 The University Of Southern California Organic electroluminescent materials and devices
US20200251664A1 (en) 2019-02-01 2020-08-06 Universal Display Corporation Organic electroluminescent materials and devices
US20200295291A1 (en) 2019-03-12 2020-09-17 Universal Display Corporation OLED WITH TRIPLET EMITTER AND EXCITED STATE LIFETIME LESS THAN 200 ns
JP2020158491A (ja) 2019-03-26 2020-10-01 ユニバーサル ディスプレイ コーポレイション 有機エレクトロルミネセンス材料及びデバイス
CN110407816B (zh) * 2019-06-25 2021-08-13 清华大学 一种化合物及应用及采用该化合物的器件
US20210032278A1 (en) 2019-07-30 2021-02-04 Universal Display Corporation Organic electroluminescent materials and devices
US20210047354A1 (en) 2019-08-16 2021-02-18 Universal Display Corporation Organic electroluminescent materials and devices
KR20210028409A (ko) * 2019-09-04 2021-03-12 엘지디스플레이 주식회사 유기 화합물, 이를 포함하는 유기발광다이오드 및 유기발광장치
US20210135130A1 (en) 2019-11-04 2021-05-06 Universal Display Corporation Organic electroluminescent materials and devices
JP2021082801A (ja) 2019-11-14 2021-05-27 ユニバーサル ディスプレイ コーポレイション 有機エレクトロルミネセンス材料及びデバイス
US20210217969A1 (en) 2020-01-06 2021-07-15 Universal Display Corporation Organic electroluminescent materials and devices
US20220336759A1 (en) 2020-01-28 2022-10-20 Universal Display Corporation Organic electroluminescent materials and devices
EP3937268A1 (en) 2020-07-10 2022-01-12 Universal Display Corporation Plasmonic oleds and vertical dipole emitters
US20220158096A1 (en) 2020-11-16 2022-05-19 Universal Display Corporation Organic electroluminescent materials and devices
US20220162243A1 (en) 2020-11-24 2022-05-26 Universal Display Corporation Organic electroluminescent materials and devices
US20220165967A1 (en) 2020-11-24 2022-05-26 Universal Display Corporation Organic electroluminescent materials and devices
US20220271241A1 (en) 2021-02-03 2022-08-25 Universal Display Corporation Organic electroluminescent materials and devices
EP4059915A3 (en) 2021-02-26 2022-12-28 Universal Display Corporation Organic electroluminescent materials and devices
EP4060758A3 (en) 2021-02-26 2023-03-29 Universal Display Corporation Organic electroluminescent materials and devices
US20220298192A1 (en) 2021-03-05 2022-09-22 Universal Display Corporation Organic electroluminescent materials and devices
US20220298190A1 (en) 2021-03-12 2022-09-22 Universal Display Corporation Organic electroluminescent materials and devices
US20220298193A1 (en) 2021-03-15 2022-09-22 Universal Display Corporation Organic electroluminescent materials and devices
US20220340607A1 (en) 2021-04-05 2022-10-27 Universal Display Corporation Organic electroluminescent materials and devices
EP4075531A1 (en) 2021-04-13 2022-10-19 Universal Display Corporation Plasmonic oleds and vertical dipole emitters
US20220352478A1 (en) 2021-04-14 2022-11-03 Universal Display Corporation Organic eletroluminescent materials and devices
US20230006149A1 (en) 2021-04-23 2023-01-05 Universal Display Corporation Organic electroluminescent materials and devices
US20220407020A1 (en) 2021-04-23 2022-12-22 Universal Display Corporation Organic electroluminescent materials and devices
US20230133787A1 (en) 2021-06-08 2023-05-04 University Of Southern California Molecular Alignment of Homoleptic Iridium Phosphors
EP4151699A1 (en) 2021-09-17 2023-03-22 Universal Display Corporation Organic electroluminescent materials and devices
EP4212539A1 (en) 2021-12-16 2023-07-19 Universal Display Corporation Organic electroluminescent materials and devices
US20230292592A1 (en) 2022-03-09 2023-09-14 Universal Display Corporation Organic electroluminescent materials and devices
US20230337516A1 (en) 2022-04-18 2023-10-19 Universal Display Corporation Organic electroluminescent materials and devices
US20230389421A1 (en) 2022-05-24 2023-11-30 Universal Display Corporation Organic electroluminescent materials and devices
EP4293001A1 (en) 2022-06-08 2023-12-20 Universal Display Corporation Organic electroluminescent materials and devices
US20240016051A1 (en) 2022-06-28 2024-01-11 Universal Display Corporation Organic electroluminescent materials and devices
US20240107880A1 (en) 2022-08-17 2024-03-28 Universal Display Corporation Organic electroluminescent materials and devices

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000041443A1 (fr) * 1998-12-28 2000-07-13 Idemitsu Kosan Co., Ltd. Dispositif electroluminescent organique
WO2003078541A1 (en) * 2002-03-15 2003-09-25 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent devices and organic electroluminescent devices made by using the same
WO2003080760A1 (fr) * 2002-03-22 2003-10-02 Idemitsu Kosan Co., Ltd. Materiau pour dispositifs electroluminescents organiques et dispositifs electroluminescents organiques produits avec ce materiau
JP2004178895A (ja) * 2002-11-26 2004-06-24 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子および表示装置
JP2004281296A (ja) * 2003-03-18 2004-10-07 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子及び表示素子及び照明装置
JP2005222794A (ja) * 2004-02-05 2005-08-18 Fuji Photo Film Co Ltd 有機電界発光素子および有機電界発光素子材料の調製方法
JP2005347004A (ja) * 2004-06-01 2005-12-15 Canon Inc 発光素子及び表示装置
JP2007088433A (ja) * 2005-08-23 2007-04-05 Mitsubishi Chemicals Corp 電荷輸送材料、電荷輸送材料組成物及び有機電界発光素子
JP2009141339A (ja) * 2007-11-15 2009-06-25 Mitsubishi Chemicals Corp 有機電界発光素子用組成物および有機電界発光素子

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6821645B2 (en) * 1999-12-27 2004-11-23 Fuji Photo Film Co., Ltd. Light-emitting material comprising orthometalated iridium complex, light-emitting device, high efficiency red light-emitting device, and novel iridium complex
US8895154B2 (en) * 2004-03-02 2014-11-25 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
JP4500735B2 (ja) * 2004-09-22 2010-07-14 富士フイルム株式会社 有機電界発光素子
WO2006067976A1 (ja) * 2004-12-24 2006-06-29 Pioneer Corporation 有機化合物、電荷輸送材料および有機電界発光素子

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000041443A1 (fr) * 1998-12-28 2000-07-13 Idemitsu Kosan Co., Ltd. Dispositif electroluminescent organique
WO2003078541A1 (en) * 2002-03-15 2003-09-25 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent devices and organic electroluminescent devices made by using the same
WO2003080760A1 (fr) * 2002-03-22 2003-10-02 Idemitsu Kosan Co., Ltd. Materiau pour dispositifs electroluminescents organiques et dispositifs electroluminescents organiques produits avec ce materiau
JP2004178895A (ja) * 2002-11-26 2004-06-24 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子および表示装置
JP2004281296A (ja) * 2003-03-18 2004-10-07 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子及び表示素子及び照明装置
JP2005222794A (ja) * 2004-02-05 2005-08-18 Fuji Photo Film Co Ltd 有機電界発光素子および有機電界発光素子材料の調製方法
JP2005347004A (ja) * 2004-06-01 2005-12-15 Canon Inc 発光素子及び表示装置
JP2007088433A (ja) * 2005-08-23 2007-04-05 Mitsubishi Chemicals Corp 電荷輸送材料、電荷輸送材料組成物及び有機電界発光素子
JP2009141339A (ja) * 2007-11-15 2009-06-25 Mitsubishi Chemicals Corp 有機電界発光素子用組成物および有機電界発光素子

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014511025A (ja) * 2011-02-11 2014-05-01 ユニバーサル ディスプレイ コーポレイション 有機発光素子及び該有機発光素子に使用されるための材料
US9406891B2 (en) 2012-12-12 2016-08-02 Samsung Electronics Co., Ltd. Compound for organic optoelectronic device, organic light emitting diode including the same, and display including the organic light emitting diode
KR20180010168A (ko) * 2016-07-20 2018-01-30 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
KR101885900B1 (ko) * 2016-07-20 2018-08-06 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
US11795185B2 (en) 2017-12-13 2023-10-24 Lg Display Co., Ltd. Compound for electron-transport material and organic light emitting diode including the same
US11746117B2 (en) 2018-11-27 2023-09-05 Lg Chem, Ltd. Heterocyclic compound and organic light emitting device comprising same

Also Published As

Publication number Publication date
JP2011071474A (ja) 2011-04-07
KR20120025006A (ko) 2012-03-14
TWI532733B (zh) 2016-05-11
KR101178084B1 (ko) 2012-08-30
TW201109317A (en) 2011-03-16
WO2011013681A1 (ja) 2011-02-03
US20120126221A1 (en) 2012-05-24

Similar Documents

Publication Publication Date Title
JP4590020B1 (ja) 電荷輸送材料及び有機電界発光素子
JP6286386B2 (ja) 有機電界発光素子
JP6209577B2 (ja) 有機電界発光素子
JP4729642B1 (ja) 有機電界発光素子
JP4474493B1 (ja) 有機電界発光素子
JP5608095B2 (ja) 芳香族アミン誘導体及び有機エレクトロルミネッセンス素子
JP4680322B1 (ja) 有機電界発光素子
JP4523992B1 (ja) 有機電界発光素子
KR101867105B1 (ko) 유기 전기발광 소자용 재료 및 그것을 이용한 유기 전기발광 소자
JP4751955B1 (ja) 有機電界発光素子
JPWO2009008099A1 (ja) 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
JP5650961B2 (ja) 有機電界発光素子、及びジベンゾチオフェン構造又はジベンゾフラン構造を有する有機電界発光素子用材料
JP6109137B2 (ja) 有機電界発光素子、及びジベンゾチオフェン構造又はジベンゾフラン構造を有する有機電界発光素子用材

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100910

R150 Certificate of patent or registration of utility model

Ref document number: 4590020

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250