WO2020050217A1 - 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び、電子機器 - Google Patents

化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び、電子機器 Download PDF

Info

Publication number
WO2020050217A1
WO2020050217A1 PCT/JP2019/034437 JP2019034437W WO2020050217A1 WO 2020050217 A1 WO2020050217 A1 WO 2020050217A1 JP 2019034437 W JP2019034437 W JP 2019034437W WO 2020050217 A1 WO2020050217 A1 WO 2020050217A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
unsubstituted
substituted
group
atoms
Prior art date
Application number
PCT/JP2019/034437
Other languages
English (en)
French (fr)
Inventor
圭 吉田
雅俊 齊藤
竜志 前田
中村 雅人
増田 哲也
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to US17/273,563 priority Critical patent/US11903308B2/en
Publication of WO2020050217A1 publication Critical patent/WO2020050217A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers

Definitions

  • the present invention relates to a compound, a material for an organic electroluminescence device using the compound, an organic electroluminescence device, and an electronic device.
  • an organic electroluminescence device (hereinafter, sometimes referred to as an “organic EL device”) includes an anode, a cathode, and an organic layer sandwiched between the anode and the cathode.
  • an organic EL device When a voltage is applied between the two electrodes, electrons are injected from the cathode side and holes are injected from the anode side into the light-emitting region, and the injected electrons and holes recombine in the light-emitting region to generate an excited state. Emit light when the state returns to the ground state. Therefore, development of a compound that efficiently transports electrons or holes to the light emitting region and promotes recombination of electrons and holes is important for obtaining a high-performance organic EL device.
  • Patent Documents 1 and 2 disclose compounds describing compounds used in organic EL devices.
  • the present invention has been made in order to solve the above-mentioned problems, and is intended to improve the performance of an organic EL device, more specifically, a compound that achieves a longer life, and more specifically to improve the performance of an organic EL device. It is an object of the present invention to provide an organic EL device having a long life and an electronic device including such an organic EL device.
  • the present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, it has been found that the compounds represented by the following formulas (1) and (1A) can realize a high-performance organic EL device. More specifically, they have found that an organic EL element that achieves a longer life can be realized, and completed the present invention.
  • the present invention is an organic electroluminescent device comprising an anode, a cathode, and an organic layer disposed between the anode and the cathode,
  • the organic layer includes a light emitting layer, and a first layer disposed between the light emitting layer and the cathode,
  • an organic electroluminescence device wherein the first layer contains a compound represented by the following formula (1A) (hereinafter, also referred to as compound (1A)).
  • R 1 to R 24 each independently represent a hydrogen atom or a substituent, and the substituent is a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, a substituted or unsubstituted ring atom having 5 ring atoms.
  • a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 5 to 50 ring carbon atoms, or a cyano group At least one pair of R 31 and R 32 , R 32 and R 33 , R 33 and R 34 , and R 34 and R 35 are independently bonded to each other to form a substituted or unsubstituted ring-forming carbon number 6 to Forming an aromatic hydrocarbon ring having 30 aromatic or substituted or unsubstituted heterocyclic rings having 5 to 30 ring-forming atoms or a substituted or unsubstituted aliphatic hydrocarbon ring having 5 to 50 ring-forming carbon atoms, or R 31 and R 32 , R 32 and R 33 , R 33 and R 34 , and R 34 and R 35 are not bonded to each other to form a ring, and when not bonded to each other to form a ring, R 31 to R 35 Is each independently
  • a 1 is a substituted or unsubstituted n + 1 valent residue of an aromatic hydrocarbon having 6 to 30 ring carbon atoms, or a substituted or unsubstituted n + 1 valent residue of an aromatic heterocyclic compound having 5 to 30 ring atom atoms.
  • Is a residue of A 2 is each independently a substituted or unsubstituted aryl group having 6 to 30 ring-forming carbon atoms, a substituted or unsubstituted heteroaryl group having 5 to 30 ring-forming atoms, or a cyano group; n is an integer of 0 to 3. When n is 0, (A 2 ) 0 is hydrogen. )
  • the present invention provides a compound represented by the following formula (1) (hereinafter sometimes referred to as compound (1)).
  • R 1 to R 24 each independently represent a hydrogen atom or a substituent, and the substituent is a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, a substituted or unsubstituted ring atom having 5 ring atoms.
  • a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 5 to 50 ring carbon atoms, or a cyano group At least one pair of R 31 and R 32 , R 32 and R 33 , R 33 and R 34 , and R 34 and R 35 are independently bonded to each other to form a substituted or unsubstituted ring-forming carbon number 6 to Forming an aromatic hydrocarbon ring having 30 aromatic or substituted or unsubstituted heterocyclic rings having 5 to 30 ring-forming atoms or a substituted or unsubstituted aliphatic hydrocarbon ring having 5 to 50 ring-forming carbon atoms, or R 31 and R 32 , R 32 and R 33 , R 33 and R 34 , and R 34 and R 35 are not bonded to each other to form a ring, and when not bonded to each other to form a ring, R 31 to R 35 Is each independently
  • a 1 is a substituted or unsubstituted n + 1 valent residue of an aromatic hydrocarbon having 6 to 30 ring carbon atoms, or a substituted or unsubstituted n + 1 valent residue of an aromatic heterocyclic compound having 5 to 30 ring atom atoms.
  • Is a residue of A 2 is each independently a substituted or unsubstituted aryl group having 6 to 30 ring-forming carbon atoms, a substituted or unsubstituted heteroaryl group having 5 to 30 ring-forming atoms, or a cyano group; n is an integer from 0 to 3, When A 1 is an n + 1-valent residue of benzene, n is an integer of 1 or more. When n is 0, (A 2 ) 0 is hydrogen. )
  • the present invention provides a material for an organic electroluminescence device and an organic electroluminescence device containing the compound (1).
  • the present invention provides an electronic device including the organic electroluminescence device.
  • Compound (1) or compound (1A) realizes an organic EL device with improved performance. More specifically, an organic EL element having a longer life is realized.
  • FIG. 1 is a schematic diagram illustrating an example of a layer configuration of an organic EL device according to an embodiment of the present invention.
  • FIG. 4 is a schematic view illustrating another example of the layer configuration of the organic EL element according to the embodiment of the present invention.
  • FIG. 9 is a schematic diagram showing still another example of the layer configuration of the organic EL device according to the embodiment of the present invention.
  • the “carbon number XX to YY” in the expression “substituted or unsubstituted ZZ group having XX to YY carbon atoms” represents the number of carbon atoms when the ZZ group is unsubstituted. The carbon number of the substituent in the case where it is performed is not included.
  • the number of atoms XX to YY in the expression “substituted or unsubstituted ZZ group having the number of atoms XX to YY” represents the number of atoms when the ZZ group is unsubstituted. Does not include the number of substituent atoms.
  • unsubstituted ZZ group in the case of "substituted or unsubstituted ZZ group” means that a hydrogen atom of the ZZ group is not substituted with a substituent.
  • hydroxide atom includes isotopes having different numbers of neutrons, that is, protium, deuterium, and tritium.
  • the “ring-forming carbon number” refers to a ring having a structure in which atoms are cyclically bonded (for example, a monocyclic compound, a condensed ring compound, a bridged compound, a carbocyclic compound, a heterocyclic compound). Indicates the number of carbon atoms among the constituent atoms. When the ring is substituted by a substituent, the carbon contained in the substituent is not included in the ring-forming carbon.
  • the "number of ring carbon atoms" described below is the same unless otherwise specified.
  • a benzene ring has 6 ring-forming carbons
  • a naphthalene ring has 10 ring-forming carbons
  • a pyridine ring has 5 ring-forming carbons
  • a furan ring has 4 ring-forming carbons.
  • a benzene ring or a naphthalene ring is substituted with, for example, an alkyl group as a substituent, the number of carbon atoms of the alkyl group is not included in the number of ring-forming carbon atoms.
  • the number of carbon atoms of the fluorene ring as the substituent is not included in the number of ring-forming carbon atoms.
  • number of ring-forming atoms refers to a compound having a structure in which atoms are cyclically bonded (e.g., a single ring, a condensed ring, a ring assembly) (e.g., a monocyclic compound, a condensed ring compound, a crosslinked compound, a carbocyclic compound).
  • Heterocyclic compound represents the number of atoms constituting the ring itself.
  • An atom that does not form a ring eg, a hydrogen atom that terminates a bond of an atom that forms a ring
  • an atom that is included in a substituent when the ring is substituted with a substituent is not included in the number of ring-forming atoms.
  • the “number of ring-forming atoms” described below is the same unless otherwise specified.
  • the pyridine ring has 6 ring-forming atoms
  • the quinazoline ring has 10 ring-forming atoms
  • the furan ring has 5 ring-forming atoms.
  • the hydrogen atoms and the atoms constituting the substituents respectively bonded to the ring-forming carbon atoms of the pyridine ring and the quinazoline ring are not included in the number of ring-forming atoms.
  • a fluorene ring is bonded to a fluorene ring as a substituent (including a spirobifluorene ring)
  • the number of atoms of the fluorene ring as a substituent is not included in the number of ring-forming atoms.
  • preferred embodiments eg, compounds, various groups, numerical ranges, and the like
  • any other embodiments eg, compounds, various groups, numerical ranges, and the like.
  • Including more preferable, more preferable, and particularly preferable embodiments is more preferable.
  • Compound Compound (1) according to one embodiment of the present invention is represented by Formula (1).
  • the compound (1) according to one embodiment is preferably a compound represented by any one of the following formulas (2) to (4), more preferably any one of the formulas (2) to (3).
  • the compound (1) according to one embodiment is preferably a compound represented by any of the following formulas (5) to (17), and more preferably any one of the following formulas (5) to (10) And more preferably a compound represented by any of the following formulas (6) to (8), and still more preferably a compound represented by any of the following formulas (6) to (7) Compound.
  • An optional substituent when referred to as "substituted or unsubstituted"; Has the following meanings unless otherwise specified.
  • the aryl group having 6 to 30 ring carbon atoms described in this specification includes, for example, phenyl group, biphenylyl group, terphenylyl group, biphenylenyl group, naphthyl group, anthryl group, benzoanthryl group, phenanthryl group, benzophenyl group It is a nanthryl group, a phenalenyl group, a picenyl group, a pentaphenyl group, a pyrenyl group, a chrysenyl group, a benzochrysenyl group, a fluorenyl group, a fluoranthenyl group, a perylenyl group, a triphenylenyl group, or a benzotriphenylenyl group.
  • the naphthyl group includes a 1-naphthyl group and a 2-naphthyl group.
  • the phenanthryl group is a 1-, 2-, 3-, 4- or 9-phenanthryl group, preferably a 2- or 9-phenanthryl group.
  • the triphenylenyl group is preferably a 2-triphenylenyl group.
  • the aromatic hydrocarbon ring having 6 to 30 ring carbon atoms is preferably benzene, biphenyl, terphenyl, naphthalene, anthracene, benzoanthracene, phenanthrene, benzophenanthrene, phenalene, picene, pentaphene, pyrene, chrysene, benzochrysene, fluorene, It is fluoranthene, perylene or triphenyl, more preferably benzene, biphenyl, naphthalene or phenanthrene.
  • the aromatic hydrocarbon having 6 to 30 ring carbon atoms is the same as the aromatic hydrocarbon ring having 6 to 30 ring carbon atoms.
  • the ring-forming hetero atom is selected from, for example, a nitrogen atom, a sulfur atom and an oxygen atom.
  • the free bond of the heteroaryl group is on a ring-forming carbon atom or, if physically possible, on a ring-forming nitrogen atom.
  • the heteroaryl group having 5 to 30 ring atoms includes, for example, pyrrolyl, furyl, thienyl, pyridyl, imidazopyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, imidazolyl, oxazolyl, Thiazolyl group, pyrazolyl group, isoxazolyl group, isothiazolyl group, oxadiazolyl group, thiadiazolyl group, triazolyl group, tetrazolyl group, indolyl group, isoindolyl group, indolizinyl group, quinolizinyl group, quinolyl group, isoquinolyl group, cinnolyl group, phthalazinyl group, quinazolinyl group , Quinoxalinyl group, benzimidazolyl group, benzoxazolyl group, benzothiazo
  • a benzofuranyl group isobenzofuranyl group, naphthobenzofuranyl group, dibenzofuranyl group, benzothiophenyl group, isobenzothiophenyl group, naphthobenzothiophenyl group, dibenzothiophenyl group, carbazolyl group (9- Carbazolyl group or 1-, 2-, 3- or 4-carbazolyl group).
  • the aromatic heterocyclic compound having 5 to 30 ring atoms is preferably pyrrole, furan, thiophene, pyridine, pyridazine, pyrimidine, pyrazine, triazine, imidazole, oxazole, thiazole, pyrazole, isoxazole, isothiazole, oxadiazole.
  • the alkyl group having 1 to 50 carbon atoms is preferably an alkyl group having 1 to 18 and more preferably an alkyl group having 1 to 8 carbon atoms.
  • Examples of the alkyl group having 1 to 50 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an s-butyl group, a t-butyl group, a pentyl group (isomer Hexyl group (including isomeric group), heptyl group (including isomeric group), octyl group (including isomeric group), nonyl group (including isomeric group), decyl group (including isomeric group) And an undecyl group (including an isomer group), a dodecyl group (including an isomer group), and the like.
  • a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an s-butyl group, a t-butyl group and a pentyl group (including an isomer group) are preferred, and a methyl group is preferred.
  • Ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl and t-butyl more preferably methyl, ethyl, isopropyl and t-butyl.
  • Examples of the cycloalkyl group having 5 to 50 ring carbon atoms include a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, and an adamantyl group. Among these, a cyclopentyl group and a cyclohexyl group are preferred.
  • the aliphatic hydrocarbon ring having 5 to 50 ring carbon atoms may be, for example, a cyclopentene ring, a cyclopentadiene ring, a cyclohexene ring, a cyclohexadiene ring, or the aromatic hydrocarbon ring having 6 to 30 ring carbon atoms. Is an aliphatic ring obtained by hydrogenation.
  • an optional substituent in “substituted or unsubstituted” is a halogen atom; a cyano group; a nitro group; an alkyl group having 1 to 30, preferably 1 to 18, and more preferably 1 to 8 carbon atoms.
  • the optional substituent is preferably an alkyl group having 1 to 30 carbon atoms, a cycloalkyl group having 3 to 30 ring carbon atoms, an aryl group having 6 to 30 ring carbon atoms, or an alkyl group having 1 to 30 carbon atoms.
  • R 1 to R 24 each independently represent a hydrogen atom or a substituent, and the substituent is a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, a substituted or unsubstituted ring atom having 5 ring atoms.
  • R 1 to R 24 are preferably a hydrogen atom.
  • an aryl group having 6 to 30 ring carbon atoms a heteroaryl group having 5 to 30 ring atoms, an alkyl group having 1 to 50 carbon atoms, a cycloalkyl group having 5 to 50 ring carbon atoms, and "substituted
  • alkyl group having 1 to 50 carbon atoms a cycloalkyl group having 5 to 50 ring carbon atoms
  • substituted The details of the optional substituent when "or unsubstituted" are as described above.
  • At least one pair of R 31 and R 32 , R 32 and R 33 , R 33 and R 34 , and R 34 and R 35 are independently bonded to each other to form a substituted or unsubstituted ring-forming carbon number 6 to Forming an aromatic hydrocarbon ring having 30 aromatic or substituted or unsubstituted heterocyclic rings having 5 to 30 ring-forming atoms or a substituted or unsubstituted aliphatic hydrocarbon ring having 5 to 50 ring-forming carbon atoms, or R 31 and R 32 , R 32 and R 33 , R 33 and R 34 , and R 34 and R 35 are not bonded to each other to form a ring, and when not bonded to each other to form a ring, R 31 to R 35 Is each independently a hydrogen atom or a substituent, and the substituent is a substituted or unsubstituted aryl group having 6 to 30 ring-forming carbon atoms, a substituted or unsubstituted heteroaryl having
  • R 31 to R 35 are preferably a hydrogen atom.
  • an aromatic hydrocarbon ring having 6 to 30 ring-forming carbon atoms, a heterocyclic ring having 5 to 30 ring-forming atoms, an aliphatic hydrocarbon ring having 5 to 50 ring-forming carbon atoms, and an aromatic hydrocarbon ring having 6 to 30 ring-forming carbon atoms are preferably a hydrogen atom.
  • An aryl group, a heteroaryl group having 5 to 30 ring atoms, an alkyl group having 1 to 50 carbon atoms, a cycloalkyl group having 5 to 50 ring carbon atoms, and an optional substituent referred to as “substituted or unsubstituted” Are as described above.
  • the heterocyclic ring having 5 to 30 ring atoms has at least one set of R 31 and R 32 , R 32 and R 33 , R 33 and R 34 , and R 34 and R 35 , and R 31 to R 35.
  • a 1 is a substituted or unsubstituted n + 1 valent residue of an aromatic hydrocarbon having 6 to 30 ring carbon atoms, or a substituted or unsubstituted n + 1 valent residue of an aromatic heterocyclic compound having 5 to 30 ring atom atoms. And preferably an unsubstituted n + 1-valent residue of an aromatic hydrocarbon having 6 to 30 ring-forming carbon atoms or an unsubstituted n + 1-valent residue of an aromatic heterocyclic compound having 5 to 30 ring-forming atoms. Residue.
  • a 2 is each independently a substituted or unsubstituted aryl group having 6 to 30 ring-forming carbon atoms, a substituted or unsubstituted heteroaryl group having 5 to 30 ring-forming atoms, or a cyano group.
  • the details of the aryl group having 6 to 30 ring-forming carbon atoms, the heteroaryl group having 5 to 30 ring-forming atoms, and the optional substituent when referred to as “substituted or unsubstituted” are as described above.
  • n is an integer of 0 to 3, preferably 0 or 1, and more preferably 1. Note that when A 1 is a n + 1 valent residue of benzene, n represents an integer of 1 or more. When n is 0, (A 2 ) 0 is hydrogen.
  • R 1 to R 24 and R 31 to R 35 are hydrogen atoms
  • a 1 is an unsubstituted aromatic hydrocarbon having 6 to 30 carbon atoms.
  • n + 1 valent residue, or an unsubstituted n + 1 valent residue of an aromatic heterocyclic compound ring atoms 5 ⁇ 30, a 2 is unsubstituted ring carbon atoms 6 to 30 aryl group or unsubstituted It is a substituted heteroaryl group having 5 to 30 ring atoms.
  • R 1 to R 24 and R 31 to R 35 are the same as described above.
  • R 41 to R 42 are each independently the same as R 1 described above.
  • m is 0 or 1, preferably 0.
  • X does not exist and the two benzene rings are not bridged.
  • m is 1, X is O or S.
  • p is an integer of 0 to 5, preferably 0 or 1, and more preferably 0.
  • q is an integer of 0 to 4, preferably 0 or 1, and more preferably 0.
  • R 1 to R 24 and R 31 to R 35 are the same as described above.
  • a 2 and n are the same as described above.
  • R 43 is the same as R 1 described above.
  • u is an integer of 0 to (5-n), preferably 0 or 1, and more preferably 0.
  • R 1 to R 24 and R 31 to R 35 are the same as described above.
  • R 44 is a hydrogen atom or a cyano group, preferably a hydrogen atom.
  • Y is CH or N, preferably CH.
  • Z is CH or N, preferably CH.
  • v and w are each independently 0 or 1, preferably at least one of v and w is 0, the other is 0 or 1, and more preferably 0.
  • R 1 to R 24 and R 31 to R 35 are the same as described above.
  • R 45 to R 49 are the same as R 1 described above.
  • R 1 to R 24 and R 31 to R 35 are the same as described above.
  • One of R 51 ⁇ R 55 is a single bond to bond to a *, R 51 ⁇ R 55 is not bound to a * are each independently as defined above R 1.
  • R 56 to R 60 are each independently the same as R 1 described above.
  • R 1 to R 24 and R 31 to R 35 are the same as described above.
  • One of R 51 ⁇ R 55 is a single bond to bond to b *, R 51 ⁇ R 55 is not bound to b * are each independently as defined above R 1.
  • One of R 61 ⁇ R 65 is a single bond to bond to c *, R 61 ⁇ R 65 that does not bind to c * are each independently as defined above R 1.
  • R 1 to R 24 and R 31 to R 35 are the same as described above.
  • One of R 61 ⁇ R 65 is a single bond to bond to d *, R 61 ⁇ R 65 is not bound to d * are each independently as defined above R 1.
  • R 1 to R 24 and R 31 to R 35 are the same as described above.
  • One of R 71 ⁇ R 78 is a single bond to bond to e *, R 71 ⁇ R 78 that does not bind to e * are each independently as defined above R 1.
  • R 1 to R 24 and R 31 to R 35 are the same as described above.
  • One of R 71 ⁇ R 78 is a single bond to bond to e *, R 71 ⁇ R 78 that does not bind to e * are each independently as defined above R 1.
  • R 1 to R 24 and R 31 to R 35 are the same as described above.
  • R 1 to R 24 and R 31 to R 35 are the same as described above.
  • One of R 81 ⁇ R 88 is a single bond to bond to g *, one of R 81 ⁇ R 88 is a single bond to bond to h *, do not bind to g * and h * R 81 to R 88 are each independently the same as R 1 described above.
  • R 89 to R 93 are each independently the same as R 1 described above.
  • R 1 to R 24 and R 31 to R 35 are the same as described above.
  • One of R 51 ⁇ R 55 is a single bond to bond to i *, R 51 ⁇ R 55 is not bound to i * are each independently as defined above R 1.
  • One of R 81 ⁇ R 88 is a single bond to bond to j *, R 81 ⁇ R 88 is not bound to j * are each independently as defined above R 1.
  • R 1 to R 24 and R 31 to R 35 are the same as described above.
  • One of R 94 ⁇ R 103 is a single bond to bond to k *, R 94 ⁇ R 103 that does not bind to k * are each independently as defined above R 1.
  • R 1 to R 24 and R 31 to R 35 are the same as described above.
  • One of R 51 ⁇ R 55 is a single bond to bond to l *, R 51 ⁇ R 55 is not bound to l * are each independently as defined above R 1.
  • One of R 71 ⁇ R 78 is a single bond to bond to m *, R 71 ⁇ R 78 that does not bind to m * are each independently as defined above R 1.
  • R 1 to R 24 and R 31 to R 35 are the same as described above.
  • One of R 51 ⁇ R 55 is a single bond to bond to n *, R 51 ⁇ R 55 is not bound to n * are independently the same as the R 1.
  • One of R 71 ⁇ R 78 is a single bond to bond to administrat *, R 71 ⁇ R 78 is not bound to o * are each independently as defined above R 1.
  • R 1 to R 24 and R 31 to R 35 are the same as described above.
  • One of R 51 ⁇ R 55 is a single bond to bond to p *, R 51 ⁇ R 55 is not bound to p * are each independently as defined above R 1.
  • R 111 to R 118 are each independently the same as R 1 described above.
  • the group represented by the following formula (18) is preferably represented by the following formulas (a) to (l), more preferably the formulas (a), (b), It is represented by (e) or (i), more preferably by formula (a), (b) or (e), and even more preferably by formula (a).
  • the group represented by -A 1- (A 2 ) n is preferably represented by the following formulas (m) to (x), more preferably the formulas (m) and (x). It is represented by (n), (o), (p), (q) or (r), and more preferably by formula (m) or (q).
  • At least one of the hydrogen atoms in the compounds represented by the formulas (1) to (17) may be a deuterium atom.
  • At least one of R 1 to R 24 may be a deuterium atom. All of the hydrogen atoms of R 1 to R 24 may be deuterium atoms. Further, all of R 1 to R 24 may be deuterium atoms.
  • the group represented by A 1 may have a hydrogen atom, and at least one of the hydrogen atoms may be a deuterium atom. n is 0, the group represented by A 1 is unsubstituted, and all the hydrogen atoms of the group represented by A 1 may be deuterium atoms.
  • n 1, the group represented by A 1 has a hydrogen atom, and at least one of the hydrogen atoms is a deuterium atom; the group represented by A 2 has a hydrogen atom; In addition, at least one of the hydrogen atoms may be a deuterium atom.
  • n 1; the group represented by A 1 is unsubstituted; all the hydrogen atoms of the group represented by A 1 are deuterium atoms; and the group represented by A 2 is unsubstituted. There, the hydrogen atom of the group represented by a 2 may all be deuterium atoms.
  • At least one of R 31 to R 35 may be a deuterium atom. All of R 31 to R 35 may be a deuterium atom.
  • the compound according to the present invention may be a compound represented by the following formulas (D1) to (D6).
  • R 1a to R 8a , R 1b to R 8b , R 1c to R 8c , R 1d to R 5d , R 1x to R 3x , and R 1e to R 5e are hydrogen atoms, and One to 37 hydrogen atoms are deuterium atoms.
  • R 1a to R 8a , R 1b to R 8b , R 1c to R 8c , R 1d to R 5d , R 1x to R 3x , and R 1f to R 9f are hydrogen atoms, and One to 41 of the hydrogen atoms are deuterium atoms.
  • R 1a to R 8a , R 1b to R 8b , R 1c to R 8c , R 1d to R 5d , R 1x to R 3x , and R 1g to R 9g are hydrogen atoms, and One to 41 of the hydrogen atoms are deuterium atoms.
  • R 1a to R 8a , R 1b to R 8b , R 1c to R 8c , R 1d to R 5d , R 1x to R 3x , R 1f to R 5f , and R 7f to R 9f are hydrogen. And one or more and no more than 40 of the hydrogen atoms are deuterium atoms.
  • R 1a to R 8a , R 1b to R 8b , R 1c to R 8c , R 1d to R 5d , R 1x to R 3x , and R 1h to R 7h are hydrogen atoms, and One to 39 hydrogen atoms are deuterium atoms.
  • R 1a to R 8a , R 1b to R 8b , R 1c to R 8c , R 1d to R 5d , R 1x to R 3x , and R 1j to R 7j are hydrogen atoms, and One to 39 hydrogen atoms are deuterium atoms.
  • the method for producing the compound (1) is not particularly limited, and those skilled in the art can easily produce the compound by the method described in the following Examples, or by modifying the method with reference to a known synthesis method. Can be.
  • the material for an organic EL device of the present invention contains the compound (1).
  • the content of the compound (1) in the material for an organic EL device of the present invention is not particularly limited. For example, 1% by mass or more (including 100%) with respect to the total mass of the layer containing the compound (1). It is preferably 10% by mass or more (including 100%), more preferably 50% by mass or more (including 100%), and preferably 80% by mass or more (including 100%). The content is more preferably 90% by mass or more (including 100%).
  • the material for an organic EL device of the present invention is useful for producing an organic EL device.
  • the organic EL device according to the first embodiment of the present invention includes a cathode, an anode, and an organic layer between the cathode and the anode.
  • the organic layer includes a light emitting layer, and at least one of the organic layers includes the compound (1) represented by the above formula (1).
  • Examples of the organic layer containing the compound (1) include a hole transport zone (a hole injection layer, a hole transport layer, an electron blocking layer, an exciton blocking layer, and the like) provided between the anode and the light emitting layer.
  • Examples include, but are not limited to, a light emitting layer, a space layer, and an electron transporting zone (electron injection layer, electron transporting layer, hole blocking layer, etc.) provided between the cathode and the light emitting layer.
  • the compound (1) is preferably used as a material for an electron transporting zone or a light emitting layer of a fluorescent or phosphorescent EL device, more preferably as a material for an electron transporting zone, and still more preferably as a material for an electron transporting layer or a hole blocking layer.
  • the organic EL element according to the second aspect of the present invention is an organic electroluminescence element including an anode, a cathode, and an organic layer disposed between the anode and the cathode.
  • the organic layer includes a light emitting layer, and a first layer disposed between the light emitting layer and the cathode, and the first layer includes a compound (1A) represented by the following formula (1A).
  • R 1 to R 24 each independently represent a hydrogen atom or a substituent, and the substituent is a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, a substituted or unsubstituted ring atom having 5 ring atoms.
  • a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 5 to 50 ring carbon atoms, or a cyano group At least one pair of R 31 and R 32 , R 32 and R 33 , R 33 and R 34 , and R 34 and R 35 are independently bonded to each other to form a substituted or unsubstituted ring-forming carbon number 6 to Forming an aromatic hydrocarbon ring having 30 aromatic or substituted or unsubstituted heterocyclic rings having 5 to 30 ring-forming atoms or a substituted or unsubstituted aliphatic hydrocarbon ring having 5 to 50 ring-forming carbon atoms, or R 31 and R 32 , R 32 and R 33 , R 33 and R 34 , and R 34 and R 35 are not bonded to each other to form a ring, and when not bonded to each other to form a ring, R 31 to R 35 Is each independently
  • a 1 is a substituted or unsubstituted n + 1 valent residue of an aromatic hydrocarbon having 6 to 30 ring carbon atoms, or a substituted or unsubstituted n + 1 valent residue of an aromatic heterocyclic compound having 5 to 30 ring atom atoms.
  • Is a residue of A 2 is each independently a substituted or unsubstituted aryl group having 6 to 30 ring-forming carbon atoms, a substituted or unsubstituted heteroaryl group having 5 to 30 ring-forming atoms, or a cyano group; n is an integer of 0 to 3. When n is 0, (A 2 ) 0 is hydrogen.
  • the organic EL device according to the second embodiment is different from the organic EL device according to the first embodiment in having the following difference 1 and difference 2.
  • Difference 1 The compound (1) in the first embodiment has a limitation that “when A 1 is an n + 1-valent residue of benzene, n is an integer of 1 or more.” (1A) has no such limitation.
  • Difference 2 In the first embodiment, at least one of the organic layers contains the compound (1), whereas in the second embodiment, the first layer of the organic layer disposed between the light emitting layer and the cathode is the compound (1A) )including.
  • n when A 1 is an n + 1-valent residue of benzene, n may be an integer of 1 or more, and n is 0. Is also good. However, if A 1 is a n + 1 valent residue of benzene, n represents it is preferably an integer of 1 or more.
  • the compound (1A) in the second embodiment is preferably the same as the compound (1) described in the above “1. Compound”.
  • specific examples of the compound (1A) in the second embodiment are preferably compounds (specific example compounds) listed as specific examples in the above “1. Compound” and a compound represented by the following formula (19). More preferred are the compounds listed in the above “1. Compound”.
  • the organic EL device includes the first layer containing the compound (1A).
  • the compound (1A) may or may not be contained in another layer besides the first layer, but the compound (1A) is contained only in the first layer. Is preferred.
  • the first layer is preferably a layer adjacent to the light emitting layer.
  • the organic layer include a hole transport zone (a hole injection layer, a hole transport layer, an electron blocking layer, an exciton blocking layer, etc.) provided between the anode and the light emitting layer, a light emitting layer, a space layer, and a cathode. And an electron transporting zone (electron injecting layer, electron transporting layer, hole blocking layer, etc.) provided between the light emitting layer and the light emitting layer.
  • the compound (1A) Is included in the first layer of the organic layer disposed between the light emitting layer and the cathode.
  • the compound (1A) is preferably used as a material for an electron transporting band of a fluorescent or phosphorescent EL device, more preferably as a material for an electron transporting layer or a hole blocking layer.
  • the organic EL device according to the first and second aspects of the present invention is a fluorescent / phosphorescent hybrid type white light even if it is a fluorescent or phosphorescent type monochromatic light emitting device. It may be a light emitting element, a simple type having a single light emitting unit, or a tandem type having a plurality of light emitting units. Among them, a fluorescent light emitting element is preferable.
  • the “light-emitting unit” is a minimum unit that includes an organic layer, at least one of which is a light-emitting layer, and emits light by recombination of injected holes and electrons.
  • the light emitting unit may be a stacked type having a plurality of phosphorescent light emitting layers or fluorescent light emitting layers. In this case, the light emitting unit is formed between the light emitting layers by the phosphorescent light emitting layer.
  • a space layer may be provided for the purpose of preventing the excitons from being diffused into the fluorescent light emitting layer.
  • a typical layer configuration of the simple type light emitting unit is shown below. The layers in parentheses are optional.
  • A (hole injection layer /) hole transport layer / fluorescence emission layer (/ electron transport layer / electron injection layer)
  • B (hole injection layer /) hole transport layer / phosphorescent layer (/ electron transport layer / electron injection layer)
  • C (hole injection layer /) hole transport layer / first fluorescence emission layer / second fluorescence emission layer (/ electron transport layer / electron injection layer)
  • D (hole injection layer /) hole transport layer / first phosphorescent layer / second phosphorescent layer (/ electron transport layer / electron injection layer)
  • E (hole injection layer /) hole transport layer / phosphorescent layer / space layer / fluorescent layer (/ electron transport layer / electron injection layer)
  • F (hole injection layer /) hole transport layer / first phosphorescent layer / second phosphorescent layer / space layer / fluorescent layer (/ electron transport layer / electron injection layer)
  • G (hole injection layer /) hole transport layer / first phosphorescent layer / space layer /
  • Each of the above-mentioned phosphorescent or fluorescent light-emitting layers can emit a different emission color.
  • the laminated light emitting unit (f) (hole injection layer /) hole transport layer / first phosphorescent light emitting layer (red light emission) / second phosphorescent light emitting layer (green light emission) / space layer / fluorescence
  • a layer configuration such as a light emitting layer (blue light emission) / an electron transport layer is exemplified.
  • an electron blocking layer may be appropriately provided between each light emitting layer and the hole transport layer or the space layer.
  • a hole blocking layer may be appropriately provided between each light emitting layer and the electron transport layer.
  • Typical element configurations of the tandem-type organic EL element include the following element configurations.
  • the first light emitting unit and the second light emitting unit can be independently selected from the above light emitting units, for example.
  • the intermediate layer is generally referred to as an intermediate electrode, an intermediate conductive layer, a charge generation layer, an electron extraction layer, a connection layer, or an intermediate insulating layer.
  • the intermediate layer has electrons in the first light emitting unit and holes in the second light emitting unit.
  • a known material configuration to be supplied can be used.
  • FIG. 1 is a schematic diagram showing an example of a layer configuration of an organic EL device according to an embodiment of the present invention.
  • the organic EL element 1 of this example includes a substrate 2, an anode 3, a cathode 4, and a light emitting unit 10 disposed between the anode 3 and the cathode 4.
  • the light emitting unit 10 has the light emitting layer 5.
  • a hole transport zone 6 hole injection layer, hole transport layer, etc.
  • an electron transport zone 7 electron injection layer, electron transport layer
  • FIG. 2 is a schematic view showing another example of the layer structure of the organic EL device according to the embodiment of the present invention.
  • the organic EL element 11 of this example includes a substrate 2, an anode 3, a cathode 4, and a light emitting unit 20 disposed between the anode 3 and the cathode 4.
  • the light emitting unit 20 has the light emitting layer 5.
  • a hole transport zone 6 is provided between the light emitting layer 5 and the anode 3, and an electron transport zone 7 is provided between the light emitting layer 5 and the cathode 4.
  • a hole blocking layer 8 is provided adjacent to the light emitting layer 5 on the cathode 4 side of the light emitting layer 5.
  • the holes are confined in the light emitting layer 5 and the exciton generation efficiency in the light emitting layer 5 can be further increased.
  • the hole blocking layer 8 can also be considered as a part of the electron transport zone 7.
  • An electron blocking layer (not shown) may be provided on the anode 3 side of the light emitting layer 5 so that electrons are confined in the light emitting layer 5 to further increase the exciton generation efficiency in the light emitting layer 5.
  • FIG. 3 is a schematic view showing still another example of the layer structure of the organic EL device according to the embodiment of the present invention.
  • the organic EL element 12 of the present example includes a substrate 2, an anode 3, a cathode 4, and a light emitting unit 30 disposed between the anode 3 and the cathode 4.
  • the light emitting unit 20 has the light emitting layer 5.
  • the hole transport zone disposed between the anode 3 and the light emitting layer 5 is formed from a first hole transport layer 6a and a second hole transport layer 6b. Further, an electron transporting zone disposed between the light emitting layer 5 and the cathode 4 is formed by the first electron transporting layer 7a and the second electron transporting layer 7b.
  • the organic EL element 12 a combination of a single-layer electron transport layer and a plurality of hole transport layers may be used, or a single layer of a hole transport layer and a plurality of electron transport layers may be combined. Further, the organic EL element 12 may be provided with a hole blocking layer or an electron blocking layer.
  • a host combined with a fluorescent dopant is called a fluorescent host
  • a host combined with a phosphorescent dopant is called a phosphorescent host
  • the fluorescent host and the phosphorescent host are not distinguished only by the molecular structure. That is, the phosphorescent host means a material for forming a phosphorescent layer containing a phosphorescent dopant, and does not mean that it cannot be used as a material for forming a fluorescent layer. The same applies to the fluorescent host.
  • Substrate The substrate is used as a support for the organic EL device.
  • a plate of glass, quartz, plastic, or the like can be used.
  • a flexible substrate may be used.
  • the flexible substrate include a plastic substrate made of polycarbonate, polyarylate, polyether sulfone, polypropylene, polyester, polyvinyl fluoride, polyvinyl chloride, and the like.
  • an inorganic vapor-deposited film can be used.
  • Anode It is preferable to use a metal, an alloy, an electrically conductive compound, a mixture thereof, or the like having a large work function (specifically, 4.0 eV or more) for the anode formed on the substrate.
  • a metal, an alloy, an electrically conductive compound, a mixture thereof, or the like having a large work function (specifically, 4.0 eV or more) for the anode formed on the substrate.
  • ITO indium oxide-tin oxide
  • ITO indium tin oxide
  • indium oxide-tin oxide containing silicon or silicon oxide indium oxide-zinc oxide
  • indium oxide containing tungsten oxide and zinc oxide Graphene and the like
  • gold Au
  • platinum Pt
  • nickel Ni
  • tungsten W
  • Cr chromium
  • Mo molybdenum
  • iron Fe
  • Co cobalt
  • Cu copper
  • palladium Pd
  • titanium Ti
  • a nitride of the metal for example, titanium nitride
  • indium oxide-zinc oxide is a target obtained by adding 1 to 10 wt% of zinc oxide to indium oxide
  • tungsten oxide and indium oxide containing zinc oxide is 0.5 to 5 wt% of tungsten oxide to indium oxide. %
  • a target containing 0.1 to 1% by weight of zinc oxide can be formed by a sputtering method.
  • it may be manufactured by a vacuum evaporation method, a coating method, an inkjet method, a spin coating method, or the like.
  • the hole injection layer formed in contact with the anode is formed using a material that facilitates hole injection regardless of the work function of the anode, a material generally used as an electrode material (for example, metal , An alloy, an electrically conductive compound, a mixture thereof, or an element belonging to Group 1 or 2 of the periodic table).
  • An element belonging to Group 1 or Group 2 of the periodic table that is a material having a small work function, that is, an alkali metal such as lithium (Li) or cesium (Cs), and magnesium (Mg), calcium (Ca), or strontium.
  • Alkaline earth metals such as (Sr) and alloys containing these (eg, MgAg, AlLi), rare earth metals such as europium (Eu), ytterbium (Yb) and alloys containing these can also be used.
  • a vacuum evaporation method or a sputtering method can be used.
  • a coating method, an inkjet method, or the like can be used.
  • the hole injection layer is a layer containing a material having a high hole injection property (a hole injection material).
  • the hole injecting material can be used alone or in combination of two or more in the hole injecting layer.
  • molybdenum oxide titanium oxide, vanadium oxide, rhenium oxide, ruthenium oxide, chromium oxide, zirconium oxide, hafnium oxide, tantalum oxide, silver oxide, tungsten oxide Substances, manganese oxides and the like can be used.
  • High molecular compounds (oligomers, dendrimers, polymers, etc.) can also be used.
  • poly (N-vinylcarbazole) (abbreviation: PVK)
  • poly (4-vinyltriphenylamine) (abbreviation: PVTPA)
  • PVTPA poly (4-vinyltriphenylamine)
  • PTPDMA poly [N- (4- ⁇ N ′-[4- (4-diphenylamino)) Phenyl] phenyl-N'-phenylaminodiphenyl) methacrylamide]
  • PTPDMA poly [N, N'-bis (4-butylphenyl) -N, N'-bis (phenyl) benzidine]
  • Poly-TPD poly [N, N'-bis (4-butylphenyl) -N, N'-bis (phenyl) benzidine]
  • a polymer compound to which an acid is added such as poly (3,4-ethylenedioxythiophene) / poly (styrenesulfonic acid) (PEDOT / PSS) and polyaniline / poly (styrenesulfonic acid) (PAni / PSS) is used. You can also.
  • acceptor material such as a hexaazatriphenylene (HAT) compound represented by the following formula (K) in combination with another compound.
  • HAT hexaazatriphenylene
  • R 21 to R 26 each independently represent a cyano group, —CONH 2 , a carboxy group, or —COOR 27 (R 27 is an alkyl group having 1 to 20 carbon atoms or 3 to 20 carbon atoms) And two adjacent groups selected from R 21 and R 22 , R 23 and R 24 , and R 25 and R 26 are bonded to each other and represented by —CO—O—CO—.
  • R 27 examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, a cyclopentyl group, and a cyclohexyl group.
  • Hole transport layer is a layer containing a material having a high hole transporting property (a hole transporting material).
  • a hole transporting material can be used alone or in combination.
  • the hole transporting material for example, an aromatic amine compound, a carbazole derivative, an anthracene derivative, or the like can be used.
  • aromatic amine compound examples include 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (abbreviation: NPB) and N, N′-bis (3-methylphenyl) -N , N'-Diphenyl- [1,1'-biphenyl] -4,4'-diamine (abbreviation: TPD), 4-phenyl-4 '-(9-phenylfluoren-9-yl) triphenylamine (abbreviation: BAFLP), 4,4′-bis [N- (9,9-dimethylfluoren-2-yl) -N-phenylamino] biphenyl (abbreviation: DFLDPBi), 4,4 ′, 4 ′′ -tris (N, N -Diphenylamino) triphenylamine (abbreviation: TDATA), 4,4 ′, 4 ′′ -tris [N- (3-methylphenyl) -
  • carbazole derivative examples include 4,4′-di (9-carbazolyl) biphenyl (abbreviation: CBP), 9- [4- (9-carbazolyl) phenyl] -10-phenylanthracene (abbreviation: CzPA), and 9-phenyl-3- [4- (10-phenyl-9-anthryl) phenyl] -9H-carbazole (abbreviation: PCzPA).
  • CBP 4,4′-di (9-carbazolyl) biphenyl
  • CzPA 9- [4- (9-carbazolyl) phenyl] -10-phenylanthracene
  • PCzPA 9-phenyl-3- [4- (10-phenyl-9-anthryl) phenyl] -9H-carbazole
  • anthracene derivative examples include 2-t-butyl-9,10-di (2-naphthyl) anthracene (abbreviation: t-BuDNA), 9,10-di (2-naphthyl) anthracene (abbreviation: DNA), and , 9,10-diphenylanthracene (abbreviation: DPAnth).
  • High molecular compounds such as poly (N-vinylcarbazole) (abbreviation: PVK) and poly (4-vinyltriphenylamine) (abbreviation: PVTPA) can also be used.
  • PVK poly (N-vinylcarbazole)
  • PVTPA poly (4-vinyltriphenylamine)
  • a compound other than the above may be used as long as it has a higher hole transporting property than an electron transporting property.
  • the hole transport layer may have a single layer structure or a multilayer structure including two or more layers.
  • the hole transport layer may have a two-layer structure including a first hole transport layer (on the anode side) and a second hole transport layer (on the cathode side).
  • the light-emitting layer is a layer containing a material having a high light-emitting property (dopant material), and various materials can be used.
  • a fluorescent material or a phosphorescent material can be used as a dopant material.
  • the fluorescent material is a compound that emits light from a singlet excited state
  • the phosphorescent material is a compound that emits light from a triplet excited state.
  • pyrene derivatives As a blue fluorescent light emitting material that can be used for the light emitting layer, pyrene derivatives, styrylamine derivatives, chrysene derivatives, fluoranthene derivatives, fluorene derivatives, diamine derivatives, triarylamine derivatives, and the like can be used.
  • N, N′-bis [4- (9H-carbazol-9-yl) phenyl] -N, N′-diphenylstilbene-4,4′-diamine (abbreviation: YGA2S)
  • 4- (9H -Carbazol-9-yl) -4 '-(10-phenyl-9-anthryl) triphenylamine (abbreviation: YGAPA)
  • 4- (10-phenyl-9-anthryl) -4'-(9-phenyl-9H) -Carbazol-3-yl) triphenylamine abbreviation: PCBAPA
  • an aromatic amine derivative or the like can be used.
  • Tetracene derivatives, diamine derivatives and the like can be used as the red fluorescent light emitting material that can be used for the light emitting layer.
  • N, N, N ′, N′-tetrakis (4-methylphenyl) tetracene-5,11-diamine abbreviation: p-mPhTD
  • 7,14-diphenyl-N N, N ′, N'-tetrakis (4-methylphenyl) acenaphtho [1,2-a] fluoranthene-3,10-diamine
  • p-mPhAFD tetrakis (4-methylphenyl) acenaphtho [1,2-a] fluoranthene-3,10-diamine
  • a metal complex such as an iridium complex, an osmium complex, and a platinum complex is used.
  • a metal complex such as an iridium complex, an osmium complex, and a platinum complex
  • a metal complex such as an iridium complex, an osmium complex, and a platinum complex.
  • FIr6 bis [2- (4 ′, 6′-difluorophenyl) pyridinato-N, C2 ′] iridium (III) tetrakis (1-pyrazolyl) borate
  • FIrpic bis [2- (4 ′) , 6'-Difluorophenyl) pyridinato-N, C2 '] iridium (III) picolinate
  • FIrpic bis [2- (3', 5'bistrifluoromethylphenyl) pyridinato-N, C2 '] iridium (III ) Picolinate (abbreviation: I
  • an iridium complex or the like is used as a green phosphorescent material that can be used for the light emitting layer.
  • a metal complex such as an iridium complex, a platinum complex, a terbium complex, and a europium complex is used.
  • a metal complex such as an iridium complex, a platinum complex, a terbium complex, and a europium complex is used.
  • Tb (acac) 3 (Phen) tris (1,3-diphenyl-1,3-propanedionato) (monophenanthroline) europium (III) (abbrevi
  • the light-emitting layer may have a structure in which the above-described dopant material is dispersed in another material (host material).
  • a material having a higher lowest unoccupied orbital level (LUMO level) and a lower highest occupied orbital level (HOMO level) than the dopant material is preferably used.
  • Examples of the host material include (1) a metal complex such as an aluminum complex, a beryllium complex, or a zinc complex; (2) heterocyclic compounds such as oxadiazole derivatives, benzimidazole derivatives, and phenanthroline derivatives; (3) condensed aromatic compounds such as carbazole derivatives, anthracene derivatives, phenanthrene derivatives, pyrene derivatives, and chrysene derivatives; (4) An aromatic amine compound such as a triarylamine derivative or a condensed polycyclic aromatic amine derivative is used.
  • a metal complex such as an aluminum complex, a beryllium complex, or a zinc complex
  • heterocyclic compounds such as oxadiazole derivatives, benzimidazole derivatives, and phenanthroline derivatives
  • condensed aromatic compounds such as carbazole derivatives, anthracene derivatives, phenanthrene derivatives, pyrene derivatives, and chrysene derivatives
  • anthracene compound it is preferable to use the following anthracene compound as a host material.
  • the electron transport zone is composed of an electron injection layer, an electron transport layer, a hole blocking layer, and the like.
  • any one of these layers contains the compound (1), and more preferably at least one of the electron transport layer and the hole blocking layer contains the compound (1).
  • any layer in the electron transport zone, particularly the electron transport layer is preferably an alkali metal, an alkaline earth metal, a rare earth metal, an oxide of an alkali metal, a halide of an alkali metal, an oxide of an alkaline earth metal.
  • a group consisting of a halide of an alkaline earth metal, an oxide of a rare earth metal, a halide of a rare earth metal, an organic complex containing an alkali metal, an organic complex containing an alkaline earth metal, and an organic complex containing a rare earth metal Contains one or more selected from
  • Electron transport layer is a layer containing a material having a high electron transport property (electron transport material).
  • the compound (1) or a combination of the compound (1) and another electron-transporting material can be used for the electron transport layer.
  • electron transporting materials for example, (1) metal complexes such as aluminum complexes, beryllium complexes, and zinc complexes; (2) heteroaromatic compounds such as imidazole derivatives, benzimidazole derivatives, azine derivatives, carbazole derivatives, phenanthroline derivatives, (3) A polymer compound can be used.
  • Examples of the metal complex include tris (8-quinolinolato) aluminum (III) (abbreviation: Alq), tris (4-methyl-8-quinolinolato) aluminum (abbreviation: Almq3), bis (10-hydroxybenzo [h] quinolinato ) Beryllium (abbreviation: BeBq 2 ), bis (2-methyl-8-quinolinolato) (4-phenylphenolato) aluminum (III) (abbreviation: BAlq), bis (8-quinolinolato) zinc (II) (abbreviation: Znq) ), Bis [2- (2-benzoxazolyl) phenolato] zinc (II) (abbreviation: ZnPBO) and bis [2- (2-benzothiazolyl) phenolato] zinc (II) (abbreviation: ZnBTZ).
  • Alq tris (8-quinolinolato) aluminum
  • Almq3 tris (4-methyl-8-quinolinolato) aluminum
  • heteroaromatic compound examples include 2- (4-biphenylyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole (abbreviation: PBD) and 1,3-bis [5 -(Ptert-butylphenyl) -1,3,4-oxadiazol-2-yl] benzene (abbreviation: OXD-7), 3- (4-tert-butylphenyl) -4-phenyl-5- (4 -Biphenylyl) -1,2,4-triazole (abbreviation: TAZ), 3- (4-tert-butylphenyl) -4- (4-ethylphenyl) -5- (4-biphenylyl) -1,2,4 -Triazole (abbreviation: p-EtTAZ), bathophenanthroline (abbreviation: BPhen), bathocuproine (abbreviation: BCP), 4,4'-bis (5-methylbenz
  • polymer compound examples include poly [(9,9-dihexylfluorene-2,7-diyl) -co- (pyridine-3,5-diyl)] (abbreviation: PF-Py) and poly [(9, 9-dioctylfluorene-2,7-diyl) -co- (2,2′-bipyridine-6,6′-diyl)] (abbreviation: PF-BPy).
  • the above material is a material having an electron mobility of 10 ⁇ 6 cm 2 / Vs or more. Note that a material other than the above may be used for the electron transport layer as long as the material has a higher electron transport property than a hole transport property.
  • the electron transport layer may be a single layer or a multilayer including two or more layers.
  • the electron transport layer may be a layer including a first electron transport layer (on the anode side) and a second electron transport layer (on the cathode side).
  • the first electron transport layer may be called a hole blocking layer.
  • the two or more electron transport layers are each formed of the above-described electron transport material.
  • the compound (1) may be contained in one of the first electron transport layer and the second electron transport layer, or may be contained in both. In one embodiment of the present invention, the compound (1) is preferably contained in the second electron transport layer. In another embodiment, the compound (1) is preferably contained in the first electron transport layer. In the embodiment, the compound (1) is preferably contained in the first electron transport layer and the second electron transport layer.
  • the electron injection layer is a layer containing a material having a high electron injection property.
  • the electron injection layer includes lithium (Li), cesium (Cs), calcium (Ca), lithium fluoride (LiF), cesium fluoride (CsF), calcium fluoride (CaF2), lithium oxide (LiOx), and the like.
  • An alkali metal, an alkaline earth metal, or a compound thereof can be used.
  • a material in which an alkali metal, an alkaline earth metal, or a compound thereof is contained in a material having an electron transporting property specifically, a material in which magnesium (Mg) is contained in Alq may be used. In this case, electron injection from the cathode can be performed more efficiently.
  • a composite material in which an organic compound and an electron donor (donor) are mixed may be used for the electron injection layer.
  • a composite material is excellent in an electron injecting property and an electron transporting property because an organic compound receives an electron from an electron donor.
  • the organic compound is preferably a material excellent in transporting received electrons.
  • a material (metal complex, heteroaromatic compound, or the like) constituting the above-described electron transport layer is used. be able to.
  • the electron donor any material may be used as long as it has an electron donating property to an organic compound.
  • alkali metals, alkaline earth metals, and rare earth metals are preferable, and examples thereof include lithium, cesium, magnesium, calcium, erbium, and ytterbium.
  • an alkali metal oxide or an alkaline earth metal oxide is preferable, and examples thereof include lithium oxide, calcium oxide, and barium oxide.
  • a Lewis base such as magnesium oxide can be used.
  • an organic compound such as tetrathiafulvalene (abbreviation: TTF) can be used.
  • TTF tetrathiafulvalene
  • the compound (1) may be contained in the electron injection layer.
  • Cathode For the cathode, it is preferable to use a metal, an alloy, an electrically conductive compound, a mixture thereof, or the like having a low work function (specifically, 3.8 eV or less).
  • a cathode material include elements belonging to Group 1 or Group 2 of the periodic table, that is, alkali metals such as lithium (Li) and cesium (Cs), and magnesium (Mg) and calcium (Ca). ), Strontium (Sr), and the like, and alloys containing these (eg, MgAg, AlLi), rare earth metals such as europium (Eu), ytterbium (Yb), and alloys containing these.
  • a vacuum evaporation method or a sputtering method can be used.
  • a silver paste or the like When a silver paste or the like is used, a coating method, an inkjet method, or the like can be used.
  • a cathode is formed using various conductive materials such as Al, Ag, ITO, graphene, indium oxide-tin oxide containing silicon or silicon oxide, regardless of the magnitude of the work function. can do. These conductive materials can be formed by a sputtering method, an inkjet method, a spin coating method, or the like.
  • an insulating layer composed of an insulating thin film layer may be inserted between the pair of electrodes.
  • the material used for the insulating layer include aluminum oxide, lithium fluoride, lithium oxide, cesium fluoride, cesium oxide, magnesium oxide, magnesium fluoride, calcium oxide, calcium fluoride, aluminum nitride, titanium oxide, and silicon oxide. , Germanium oxide, silicon nitride, boron nitride, molybdenum oxide, ruthenium oxide, vanadium oxide and the like. Note that a mixture or a laminate of these may be used.
  • the space layer for example, when laminating a fluorescent light emitting layer and a phosphorescent light emitting layer, do not diffuse the exciton generated in the phosphorescent light emitting layer into the fluorescent light emitting layer, or for the purpose of adjusting the carrier balance, This is a layer provided between the fluorescent light emitting layer and the phosphorescent light emitting layer. Further, the space layer can be provided between a plurality of phosphorescent light emitting layers.
  • the “carrier” here means a charge carrier in a substance. Since the space layer is provided between the light-emitting layers, it is preferable that the space layer be a material having both an electron transporting property and a hole transporting property.
  • the triplet energy is preferably 2.6 eV or more in order to prevent triplet energy from diffusing in the adjacent phosphorescent light emitting layer.
  • the material used for the space layer include the same materials as those used for the above-described hole transport layer.
  • a blocking layer such as an electron blocking layer, a hole blocking layer, and an exciton blocking layer may be provided adjacent to the light emitting layer.
  • the electron blocking layer is a layer that prevents electrons from leaking from the light emitting layer to the hole transport layer
  • the hole blocking layer is a layer that prevents holes from leaking from the light emitting layer to the electron transport layer.
  • the exciton blocking layer has a function of preventing excitons generated in the light emitting layer from diffusing into the surrounding layers and confining the excitons in the light emitting layer.
  • the hole blocking layer preferably contains the compound (1).
  • Each layer of the organic EL element can be formed by a conventionally known vapor deposition method, coating method, or the like.
  • evaporation methods such as vacuum evaporation method and molecular beam evaporation method (MBE method), or dipping method, spin coating method, casting method, bar coating method, roll coating method using a solution of a compound forming a layer, etc.
  • MBE method molecular beam evaporation method
  • dipping method spin coating method
  • casting method bar coating method
  • roll coating method using a solution of a compound forming a layer etc.
  • each layer is not particularly limited, generally, if the thickness is too small, defects such as pinholes are likely to occur. On the other hand, if the thickness is too large, a high driving voltage is required and efficiency is deteriorated. Therefore, the thickness is usually 5 nm to 10 ⁇ m. 10 nm to 0.2 ⁇ m is more preferable.
  • the organic EL element can be used for display components such as an organic EL panel module, a display device such as a television, a mobile phone, and a personal computer, and an electronic device such as a lighting device and a light emitting device of a vehicle lamp.
  • display components such as an organic EL panel module, a display device such as a television, a mobile phone, and a personal computer, and an electronic device such as a lighting device and a light emitting device of a vehicle lamp.
  • Organic EL devices were prepared as follows, and the EL device performance of each device was evaluated.
  • the evaluation method of the EL element performance is as follows.
  • LT95 95% Lifetime (LT95) Evaluation A voltage was applied to the organic EL elements manufactured in Examples and Comparative Examples so that the current density became 50 mA / cm 2, and the 95% life (LT95) was evaluated.
  • LT95 refers to a time (hr) until the luminance decreases to 95% of the initial luminance during constant current driving.
  • LT90 refers to a time (hr) until the luminance decreases to 90% of the initial luminance during constant current driving.
  • Example 1 A 25 mm ⁇ 75 mm ⁇ 1.1 mm glass substrate with an ITO transparent electrode (manufactured by Geomatec Co., Ltd.) was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes, followed by UV ozone cleaning for 30 minutes. The thickness of the ITO transparent electrode was 130 nm.
  • the glass substrate with the ITO transparent electrode after cleaning is mounted on a substrate holder of a vacuum evaporation apparatus, and the above compound HT-a and the above compound HI-a are first co-evaporated so as to cover the ITO transparent electrode to form a 10 nm-thick film.
  • a hole injection layer was formed. The concentration of the compound HI-a in the hole injection layer was 3.0% by mass.
  • the compound HT-a first hole transport layer material
  • the compound EBL-a second hole transport layer material
  • the compound BH-a host material
  • BD-a dopant material
  • Example 1 The device configuration of Example 1 is schematically shown as follows.
  • Examples 2 to 8 and Comparative Examples 1 to 3 The organic EL devices of Examples 2 to 8 and Comparative Examples 1 to 3 were implemented in the same manner as in Example 1 except that the compound ET-1 (material of the first electron transport layer) in Example 1 was replaced with the compounds and comparative compounds shown in Table 1. It was produced in the same manner as in Example 1. The 95% lifetime (LT95) evaluation of each organic EL element was performed. Table 1 shows the results.
  • Example 9 A 25 mm ⁇ 75 mm ⁇ 1.1 mm glass substrate with an ITO transparent electrode (manufactured by Geomatec Co., Ltd.) was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes, followed by UV ozone cleaning for 30 minutes. The thickness of the ITO transparent electrode was 130 nm.
  • the glass substrate with the ITO transparent electrode after washing is mounted on a substrate holder of a vacuum evaporation apparatus, and the above-mentioned compound HT-b and the above-mentioned compound HI-a are first co-evaporated so as to cover the ITO transparent electrode.
  • a hole injection layer was formed. The concentration of the compound HI-a in the hole injection layer was 3.0% by mass.
  • the compound HT-b first hole transport layer material
  • the compound EBL-b second hole transport layer material
  • the compound BH-b host material
  • BD-a dopant material
  • a compound ET-1 (first electron transport layer material) was deposited on the light emitting layer to form a 5 nm-thick first electron transport layer.
  • the compound ET-b (second electron transport layer material) and Liq were co-evaporated on the first electron transport layer to form a 20 nm-thick second electron transport layer.
  • the concentration of Liq in the second electron transport layer material was 50.0% by mass.
  • LiF was deposited on the second electron transport layer to form a 1 nm-thick LiF film.
  • metal Al was deposited on this LiF film to form a metal Al cathode having a thickness of 80 nm.
  • an organic EL device was obtained.
  • the element configuration of the ninth embodiment is schematically shown as follows.
  • Examples 10 to 11 and Comparative Examples 4 to 6 The organic EL devices of Examples 10 to 11 and Comparative Examples 4 to 6 were implemented in the same manner as in Example 9 except that the compound ET-1 (material of the first electron transport layer) in Example 9 was replaced with the compounds and comparative compounds shown in Table 2. It was produced in the same manner as in Example 9. The 95% lifetime (LT95) evaluation of each organic EL element was performed. Table 2 shows the results.
  • Example 12 A 25 mm ⁇ 75 mm ⁇ 1.1 mm glass substrate with an ITO transparent electrode (manufactured by Geomatec Co., Ltd.) was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes, followed by UV ozone cleaning for 30 minutes. The thickness of the ITO transparent electrode was 130 nm.
  • the glass substrate with the ITO transparent electrode after washing was mounted on a substrate holder of a vacuum evaporation apparatus, and the above compound HI-b was first deposited so as to cover the ITO transparent electrode to form a 5 nm-thick hole injection layer.
  • the compound HT-c first hole transport layer material
  • the compound EBL-a (second hole transport layer material) was deposited on the first hole transport layer to form a second hole transport layer having a thickness of 10 nm.
  • the compound BH-a (host material) and BD-a (dopant material) were co-evaporated on the second hole transport layer to form a 25 nm-thick light emitting layer.
  • the concentration of the compound BD-a in the light emitting layer was 4.0% by mass.
  • a compound ET-1 (first electron transport layer material) was deposited on the light emitting layer to form a first electron transport layer having a thickness of 10 nm.
  • the compound ET-c (second electron transport layer material) and Li were co-evaporated to form a 15 nm-thick second electron transport layer.
  • the concentration of Li in the second electron transport layer material was 4.0% by mass.
  • metal Al was deposited on the second electron transport layer to form a metal Al cathode having a thickness of 80 nm.
  • an organic EL device was obtained.
  • the element configuration of the twelfth embodiment is schematically shown as follows.
  • Comparative Example 7 The organic EL device of Comparative Example 7 was produced in the same manner as in Example 12, except that the compound ET-1 (first electron transport layer material) in Example 5 was replaced with the compounds shown in Table 2 and a comparative compound. . The above 90% lifetime (LT90) evaluation was performed on the organic EL device. Table 3 shows the results.
  • the organic EL device containing any of the compounds ET-1 to ET-8 of the formula (1A) of the present invention has a long life.
  • the organic EL device containing the compound ET-1, ET-3 to ET-6, or ET-8 which also corresponds to the formula (1) of the present invention is an organic EL device containing the compound ET-2 or ET-7. It shows an even longer life compared to.
  • the organic EL device containing any of the comparative compounds ET-A, ET-B, and ET-C has an insufficient lifetime.

Abstract

下記式(1)で表される化合物等。 ( R1~R24、R31~R35、A1、及びA2は明細書で定義したとおりであり、 nは0~3の整数であり、 A1がベンゼンのn+1価の残基である場合、nは1以上の整数である。 nが0のとき、(A2)0は水素である。)

Description

化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び、電子機器
 本発明は、化合物、それを用いた有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び、電子機器に関する。
 一般に有機エレクトロルミネッセンス素子(以下、“有機EL素子”と記載することもある)は陽極、陰極、及び陽極と陰極に挟まれた有機層から構成されている。両電極間に電圧が印加されると、陰極側から電子、陽極側から正孔が発光領域に注入され、注入された電子と正孔は発光領域において再結合して励起状態を生成し、励起状態が基底状態に戻る際に光を放出する。したがって、電子又は正孔を効率よく発光領域に輸送し、電子と正孔との再結合を促進する化合物の開発は高性能有機EL素子を得る上で重要である。
 有機EL素子に使用する化合物を記載した文献として、特許文献1や特許文献2が挙げられる。
国際公開第2003/080760号 国際公開第2016/181846号
 従来、有機EL素子製造用の材料として多くの化合物が報告されているが、有機EL素子の特性をさらに向上させる化合物が依然として求められている。
 本発明は、前記の課題を解決するためになされたもので、有機EL素子の高性能化、より具体的には長寿命化を実現する化合物、有機EL素子の高性能化より具体的には長寿命化が実現された有機EL素子、そのような有機EL素子を含む電子機器を提供すること目的とする。
 本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、下記式(1)及び式(1A)で表される化合物は、高性能化された有機EL素子を実現し得ること、より具体的には、長寿命化を実現する有機EL素子を実現し得ることを見出し、本発明を完成した。
 一態様において、本発明は、陽極、陰極、及び該陽極と該陰極の間に配置された有機層を含む有機エレクトロルミネッセンス素子であって、
 前記有機層が、発光層、及び該発光層と該陰極の間に配置された第1の層を含み、
 前記第1の層が下記式(1A)で表される化合物(以下、化合物(1A)と称することもある)を含む、有機エレクトロルミネッセンス素子を提供する。
Figure JPOXMLDOC01-appb-C000007
(式中、
 R~R24は、それぞれ独立に、水素原子、または置換基であり、当該置換基は置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の環形成原子数5~30のヘテロアリール基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数5~50のシクロアルキル基、又はシアノ基であり、
 R31とR32、R32とR33、R33とR34、及びR34とR35の少なくとも1組は、それぞれ独立に、互いに結合して、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素環、置換もしくは無置換の環形成原子数5~30の複素環、又は置換もしくは無置換の環形成炭素数5~50の脂肪族炭化水素環を形成するか、又は、R31とR32、R32とR33、R33とR34、及びR34とR35は互いに結合して環を形成せず、互いに結合して環を形成しない場合、R31~R35は、それぞれ独立に、水素原子、または置換基であり、当該置換基は置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の環形成原子数5~30のヘテロアリール基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数5~50のシクロアルキル基、又はシアノ基であり、
 Aは、環形成炭素数6~30の芳香族炭化水素の置換もしくは無置換のn+1価の残基、又は環形成原子数5~30の芳香族複素環化合物の置換もしくは無置換のn+1価の残基であり、
 Aは、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の環形成原子数5~30のヘテロアリール基、又はシアノ基であり、
 nは0~3の整数である。
 nが0のとき、(Aは水素である。)
 他の態様において、本発明は、下記式(1)で表される化合物(以下、化合物(1)と称することもある)を提供する。
Figure JPOXMLDOC01-appb-C000008
(式中、
 R~R24は、それぞれ独立に、水素原子、または置換基であり、当該置換基は置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の環形成原子数5~30のヘテロアリール基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数5~50のシクロアルキル基、又はシアノ基であり、
 R31とR32、R32とR33、R33とR34、及びR34とR35の少なくとも1組は、それぞれ独立に、互いに結合して、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素環、置換もしくは無置換の環形成原子数5~30の複素環、又は置換もしくは無置換の環形成炭素数5~50の脂肪族炭化水素環を形成するか、又は、R31とR32、R32とR33、R33とR34、及びR34とR35は互いに結合して環を形成せず、互いに結合して環を形成しない場合、R31~R35は、それぞれ独立に、水素原子、または置換基であり、当該置換基は置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の環形成原子数5~30のヘテロアリール基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数5~50のシクロアルキル基、又はシアノ基であり、
 Aは、環形成炭素数6~30の芳香族炭化水素の置換もしくは無置換のn+1価の残基、又は環形成原子数5~30の芳香族複素環化合物の置換もしくは無置換のn+1価の残基であり、
 Aは、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の環形成原子数5~30のヘテロアリール基、又はシアノ基であり、
 nは0~3の整数であり、
 Aがベンゼンのn+1価の残基である場合、nは1以上の整数である。
 nが0のとき、(Aは水素である。)
 さらに他の態様において、本発明は、前記化合物(1)を含む有機エレクトロルミネッセンス素子用材料及び有機エレクトロルミネッセンス素子を提供する。
 さらに他の態様において、本発明は、前記有機エレクトロルミネッセンス素子を含む電子機器を提供する。
 化合物(1)又は化合物(1A)は、高性能化された有機EL素子を実現する。より具体的には、長寿命化された有機EL素子を実現する。
本発明の実施形態に係る有機EL素子の層構成の一例を示す概略図である。 本発明の実施態様に係る有機EL素子の層構成の他の例を示す概略図である。 本発明の実施態様に係る有機EL素子の層構成のさらに他の例を示す概略図である。
 本明細書において、「置換もしくは無置換の炭素数XX~YYのZZ基」という表現における「炭素数XX~YY」は、ZZ基が無置換である場合の炭素数を表すものであり、置換されている場合の置換基の炭素数は含めない。
 本明細書において、「置換もしくは無置換の原子数XX~YYのZZ基」という表現における「原子数XX~YY」は、ZZ基が無置換である場合の原子数を表すものであり、置換されている場合の置換基の原子数は含めない。
 本明細書において、「置換もしくは無置換のZZ基」という場合における「無置換ZZ基」とは、ZZ基の水素原子が置換基で置換されていないことを意味する。
 本明細書において、「水素原子」とは、中性子数が異なる同位体、すなわち、軽水素(protium)、重水素(deuterium)、及び三重水素(tritium)を包含する。
 本明細書において、「環形成炭素数」とは、原子が環状に結合した構造の化合物(例えば、単環化合物、縮合環化合物、架橋化合物、炭素環化合物、複素環化合物)の当該環自体を構成する原子のうちの炭素原子の数を表す。当該環が置換基によって置換される場合、置換基に含まれる炭素は環形成炭素には含まない。以下で記される「環形成炭素数」については、特筆しない限り同様とする。例えば、ベンゼン環は環形成炭素数が6であり、ナフタレン環は環形成炭素数が10であり、ピリジン環は環形成炭素数5であり、フラン環は環形成炭素数4である。また、ベンゼン環やナフタレン環に置換基として例えばアルキル基が置換している場合、当該アルキル基の炭素数は、環形成炭素数の数に含めない。また、フルオレン環に置換基として例えばフルオレン環が結合している場合(スピロフルオレン環を含む)、置換基としてのフルオレン環の炭素数は環形成炭素数に含めない。
 本明細書において、「環形成原子数」とは、原子が環状に結合した構造(例えば単環、縮合環、環集合)の化合物(例えば単環化合物、縮合環化合物、架橋化合物、炭素環化合物、複素環化合物)の当該環自体を構成する原子の数を表す。環を構成しない原子(例えば環を構成する原子の結合手を終端する水素原子)や、当該環が置換基によって置換される場合の置換基に含まれる原子は環形成原子数には含まない。以下で記される「環形成原子数」については、特筆しない限り同様とする。例えば、ピリジン環の環形成原子数は6であり、キナゾリン環の環形成原子数は10であり、フラン環の環形成原子数は5である。ピリジン環やキナゾリン環の環形成炭素原子にそれぞれ結合している水素原子や置換基を構成する原子は、環形成原子数の数に含めない。また、フルオレン環に置換基として例えばフルオレン環が結合している場合(スピロビフルオレン環を含む)、置換基としてのフルオレン環の原子数は環形成原子数の数に含めない。
 本明細書中、好ましいとする態様(例えば、化合物、各種基、数値範囲等)は、他のあらゆる態様(例えば、化合物、各種基、数値範囲等)と任意に組み合わせることができ、また、好ましいとする態様(より好ましい態様、さらに好ましい態様、特に好ましい態様を含む。)の組み合わせはより好ましいと言える。
1.化合物
 本発明の一態様に係る化合物(1)は式(1)で表される。
Figure JPOXMLDOC01-appb-C000009
 当該一態様に係る化合物(1)は、好ましくは下記式(2)~(4)のいずれか、より好ましくは式(2)~(3)のいずれかで表される化合物である。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 また、当該一態様に係る化合物(1)は、好ましくは下記式(5)~(17)のいずれかで表される化合物であり、より好ましくは下記式(5)~(10)のいずれかで表される化合物であり、さらに好ましくは下記式(6)~(8)のいずれかで表される化合物であり、よりさらに好ましくは下記式(6)~(7)のいずれかで表される化合物である。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
 次に、式(1)~式(17)の各記号を説明する。
 なお、本明細書に記載の環形成炭素数6~30のアリール基、環形成炭素数6~30の芳香族炭化水素環、環形成炭素数6~30の芳香族炭化水素;
環形成原子数5~30のヘテロアリール基、環形成原子数5~30の芳香族複素環化合物、環形成原子数5~30の複素環;
炭素数1~50のアルキル基;
環形成炭素数5~50のシクロアルキル基、環形成炭素数5~50の脂肪族炭化水素環;
「置換もしくは無置換」というときの任意の置換基;
は、特に断らない限り、以下の意味を有する。
 すなわち、本明細書に記載の環形成炭素数6~30のアリール基は、例えば、フェニル基、ビフェニリル基、ターフェニリル基、ビフェニレニル基、ナフチル基、アントリル基、ベンゾアントリル基、フェナントリル基、ベンゾフェナントリル基、フェナレニル基、ピセニル基、ペンタフェニル基、ピレニル基、クリセニル基、ベンゾクリセニル基、フルオレニル基、フルオランテニル基、ペリレニル基、トリフェニレニル基、又は、ベンゾトリフェニレニル基である。
 好ましくは、フェニル基、ナフチル基、フェナントリル基、ベンゾフェナントリル基、フルオレニル基、トリフェニレニル基、ピレニル基、フルオランテニル基、又は、ベンゾトリフェニレニル基であり、より好ましくは、フェニル基、ナフチル基、フルオレニル基、フェナントリル基、又は、トリフェレニル基である。
 該ナフチル基は1-ナフチル基及び2-ナフチル基を含む。
 該フェナントリル基は1-、2-、3-、4-、又は9-フェナントリル基であり、好ましくは2-又は9-フェナントリル基である。
 該トリフェニレニル基は、好ましくは2-トリフェニレニル基である。
 環形成炭素数6~30の芳香族炭化水素環は、好ましくはベンゼン、ビフェニル、ターフェニル、ナフタレン、アントラセン、ベンゾアントラセン、フェナントレン、ベンゾフェナントレン、フェナレン、ピセン、ペンタフェン、ピレン、クリセン、ベンゾクリセン、フルオレン、フルオランテン、ペリレン、又はトリフェニルであり、より好ましくはベンゼン、ビフェニル、ナフタレン、又はフェナントレンである。
 環形成炭素数6~30の芳香族炭化水素は、上記環形成炭素数6~30の芳香族炭化水素環と同様である。
 環形成原子数5~30のヘテロアリール基において、該環形成ヘテロ原子は、例えば、窒素原子、硫黄原子及び酸素原子から選択される。該ヘテロアリール基の自由結合手は環形成炭素原子上に存在するか、又は、物理的に可能な場合には、環形成窒素原子上に存在する。
 該環形成原子数5~30のヘテロアリール基は、例えば、ピロリル基、フリル基、チエニル基、ピリジル基、イミダゾピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、オキサゾリル基、チアゾリル基、ピラゾリル基、イソオキサゾリル基、イソチアゾリル基、オキサジアゾリル基、チアジアゾリル基、トリアゾリル基、テトラゾリル基、インドリル基、イソインドリル基、インドリジニル基、キノリジニル基、キノリル基、イソキノリル基、シンノリル基、フタラジニル基、キナゾリニル基、キノキサリニル基、ベンゾイミダゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、インダゾリル基、ベンゾイソキサゾリル基、ベンゾイソチアゾリル基、フェナントリジニル基、アクリジニル基、フェナントロリニル基、フェナジニル基、フェノチアジニル基、フェノキサジニル基、キサンテニル基、ベンゾフラニル基、イソベンゾフラニル基、ナフトベンゾフラニル基、ジベンゾフラニル基、ベンゾチオフェニル基(ベンゾチエニル基、以下同様)、イソベンゾチオフェニル基(イソベンゾチエニル基、以下同様)、ナフトベンゾチオフェニル基(ナフトベンゾチエニル基、以下同様)、ジベンゾチオフェニル基(ジベンゾチエニル基、以下同様)、又はカルバゾリル基である。
 好ましくは、ベンゾフラニル基、イソベンゾフラニル基、ナフトベンゾフラニル基、ジベンゾフラニル基、ベンゾチオフェニル基、イソベンゾチオフェニル基、ナフトベンゾチオフェニル基、ジベンゾチオフェニル基、カルバゾリル基(9-カルバゾリル基、又は、1-、2-、3-又は4-カルバゾリル基)である。
 環形成原子数5~30の芳香族複素環化合物は、好ましくはピロール、フラン、チオフェン、ピリジン、ピリダジン、ピリミジン、ピラジン、トリアジン、イミダゾール、オキサゾール、チアゾール、ピラゾール、イソオキサゾール、イソチアゾール、オキサジアゾール、チアジアゾール、トリアゾール、テトラゾール、インドール、イソインドール、ベンゾフラン、イソベンゾフラン、ベンゾチオフェン、イソベンゾチオフェン、インドリジン、キノリジン、キノリン、イソキノリン、シンノリン、フタラジニン、キナゾリン、キノキサリン、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、インダゾール、ベンズイソキサゾール、ベンズイソチアゾール、ジベンゾフラン、ジベンゾチオフェン、カルバゾール、フェナントリジン、アクリジン、フェナントロリン、フェナジン、フェノチアジン、フェノキサジン、キサンテン、又はベンゾニトリルであり、より好ましくはピリジン、ジベンゾフラン、ジベンゾチオフェン、カルバゾール、又はベンゾニトリルである。
 環形成原子数5~30の複素環は、好ましくは、上記環形成原子数5~30の芳香族複素環化合物からベンゼン環を除いた構造である。詳しくは後述する。
 炭素数1~50のアルキル基は、好ましくは1~18のアルキル基、より好ましくは1~8のアルキル基である。前記炭素数1~50のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基(異性体基を含む)、ヘキシル基(異性体基を含む)、ヘプチル基(異性体基を含む)、オクチル基(異性体基を含む)、ノニル基(異性体基を含む)、デシル基(異性体基を含む)、ウンデシル基(異性体基を含む)、及びドデシル基(異性体基を含む)などが挙げられる。これらの中でも、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基及びペンチル基(異性体基を含む)が好ましく、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基及びt-ブチル基がより好ましく、メチル基、エチル基、イソプロピル基及びt-ブチル基が特に好ましい。
 環形成炭素数5~50のシクロアルキル基は、例えば、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、アダマンチル基などが挙げられる。これらの中でも、シクロペンチル基、シクロヘキシル基が好ましい。
 環形成炭素数5~50の脂肪族炭化水素環は、例えば、シクロペンテン環、シクロペンタジエン環、シクロヘキセン環、シクロヘキサジエン環、又は、前記環形成炭素数6~30の芳香族炭化水素環を部分的に水素化して得られる脂肪族環である。
 「置換もしくは無置換」というときの任意の置換基は、特に断らない限り、ハロゲン原子;シアノ基;ニトロ基;炭素数1~30、好ましくは1~18、より好ましくは1~8のアルキル基;環形成炭素数3~30、好ましくは3~10、より好ましくは3~8、さらに好ましくは5又は6のシクロアルキル基;環形成炭素数6~30、好ましくは6~25、より好ましくは6~18のアリール基;炭素数7~36、好ましくは7~26、より好ましくは7~20のアラルキル基;炭素数1~30、好ましくは1~18、より好ましくは1~8のアルコキシ基;環形成炭素数6~30、好ましくは6~25、より好ましくは6~18のアリールオキシ基;炭素数1~30、好ましくは1~18、より好ましくは1~8のアルキル基及び環形成炭素数6~30、好ましくは6~25、より好ましくは6~18のアリール基から選ばれる置換基を有するモノ、ジ又はトリ置換シリル基;炭素数1~30、好ましくは1~18、より好ましくは1~8ハロアルキル基;炭素数1~30、好ましくは1~18、より好ましくは1~8のハロアルコキシ基;及び、環形成原子数5~30、好ましくは5~24、より好ましくは5~13のヘテロアリール基からなる群より選ばれる。
 前記任意の置換基は、好ましくは、炭素数1~30のアルキル基、環形成炭素数3~30のシクロアルキル基、環形成炭素数6~30のアリール基、炭素数1~30のアルキル基及び環形成炭素数6~30のアリール基から選ばれる置換基を有するモノ、ジ又はトリ置換シリル基、及び、環形成原子数5~30のヘテロアリール基からなる群から選ばれ;より好ましくは、炭素数1~30のアルキル基、環形成炭素数6~30のアリール基、及び、環形成原子数5~30のヘテロアリール基からなる群から選ばれ;更に好ましくは炭素数1~30のアルキル基又は環形成炭素数6~30のアリール基であり、特に好ましくは炭素数1~30のアルキル基である。
 R~R24は、それぞれ独立に、水素原子、または置換基であり、当該置換基は置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の環形成原子数5~30のヘテロアリール基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数5~50のシクロアルキル基、又はシアノ基である。R~R24は、好ましくは水素原子である。
 ここで、環形成炭素数6~30のアリール基、環形成原子数5~30のヘテロアリール基、炭素数1~50のアルキル基、環形成炭素数5~50のシクロアルキル基、及び「置換もしくは無置換」というときの任意の置換基の詳細は、前述したとおりである。
 R31とR32、R32とR33、R33とR34、及びR34とR35の少なくとも1組は、それぞれ独立に、互いに結合して、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素環、置換もしくは無置換の環形成原子数5~30の複素環、又は置換もしくは無置換の環形成炭素数5~50の脂肪族炭化水素環を形成するか、又は、R31とR32、R32とR33、R33とR34、及びR34とR35は互いに結合して環を形成せず、互いに結合して環を形成しない場合、R31~R35は、それぞれ独立に、水素原子、または置換基であり、当該置換基は置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の環形成原子数5~30のヘテロアリール基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数5~50のシクロアルキル基、又はシアノ基である。R31~R35は、好ましくは水素原子である。
 ここで、環形成炭素数6~30の芳香族炭化水素環、環形成原子数5~30の複素環、環形成炭素数5~50の脂肪族炭化水素環、環形成炭素数6~30のアリール基、環形成原子数5~30のヘテロアリール基、炭素数1~50のアルキル基、環形成炭素数5~50のシクロアルキル基、及び「置換もしくは無置換」というときの任意の置換基の詳細は、前述したとおりである。
 また、環形成原子数5~30の複素環は、R31とR32、R32とR33、R33とR34、及びR34とR35の少なくとも1組と、これらR31~R35が結合された式(1)~(17)におけるベンゼン環とによって、前記芳香族複素環化合物と同様の構造を構成することが好ましい。
 Aは、環形成炭素数6~30の芳香族炭化水素の置換もしくは無置換のn+1価の残基、又は環形成原子数5~30の芳香族複素環化合物の置換もしくは無置換のn+1価の残基であり、好ましくは環形成炭素数6~30の芳香族炭化水素の無置換のn+1価の残基、又は環形成原子数5~30の芳香族複素環化合物の無置換のn+1価の残基である。
 ここで、環形成炭素数6~30の芳香族炭化水素、環形成原子数5~30の芳香族複素環化合物、及び「置換もしくは無置換」というときの任意の置換基の詳細は、前述したとおりである。
 Aは、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の環形成原子数5~30のヘテロアリール基、又はシアノ基であり、好ましくは無置換の環形成炭素数6~30のアリール基、無置換の環形成原子数5~30のヘテロアリール基、又はシアノ基であり、より好ましくは無置換の環形成炭素数6~30のアリール基、又は無置換の環形成原子数5~30のヘテロアリール基である。
 ここで、環形成炭素数6~30のアリール基、環形成原子数5~30のヘテロアリール基、及び「置換もしくは無置換」というときの任意の置換基の詳細は、前述したとおりである。
 nは0~3の整数であり、好ましくは0又は1であり、より好ましくは1である。
 なお、Aがベンゼンのn+1価の残基である場合、nは1以上の整数である。nが0のとき、(Aは水素である。
 前記式(1)~式(17)において、好ましくはR~R24及びR31~R35は水素原子であり、Aは、形成炭素数6~30の芳香族炭化水素の無置換のn+1価の残基、又は環形成原子数5~30の芳香族複素環化合物の無置換のn+1価の残基であり、Aは無置換の環形成炭素数6~30のアリール基又は無置換の環形成原子数5~30のヘテロアリール基である。
 前記式(2)において、R~R24及びR31~R35は、前記と同じである。
 R41~R42は、それぞれ独立に、前記Rと同じである。
 mは0又は1であり、好ましくは0である。
 mが0のときXは存在せず、2つのベンゼン環は架橋されない。
 mが1のときXはO又はSである。
 pは0~5の整数であり、好ましくは0又は1であり、より好ましくは0である。
 qは0~4の整数であり、好ましくは0又は1であり、より好ましくは0である。
 前記式(3)において、R~R24及びR31~R35は、前記と同じである。
 A及びnは、前記と同じである。
 R43は、前記Rと同じである。
 uは、0~(5-n)の整数であり、好ましくは0又は1であり、より好ましくは0である。
 前記式(4)において、R~R24及びR31~R35は、前記と同じである。
 R44は、水素原子又はシアノ基であり、好ましくは水素原子である。
 YはCH又はNであり、好ましくはCHである。
 ZはCH又はNであり、好ましくはCHである。
 v及びwは、それぞれ独立に0又は1であり、好ましくはv及びwの少なくとも1つが0、他方が0又は1であり、より好ましくはそれぞれ0である。
 前記式(5)において、R~R24及びR31~R35は、前記と同じである。
 R45~R49は、前記Rと同じである。
 前記式(6)において、R~R24及びR31~R35は、前記と同じである。
 R51~R55のうちの1つはaと結合する単結合であり、aと結合しないR51~R55は、それぞれ独立に、前記Rと同じである。
 R56~R60は、それぞれ独立に、前記Rと同じである。
 前記式(7)において、R~R24及びR31~R35は、前記と同じである。
 R51~R55のうちの1つはbと結合する単結合であり、bと結合しないR51~R55は、それぞれ独立に、前記Rと同じである。
 R61~R65のうちの1つはcと結合する単結合であり、cと結合しないR61~R65は、それぞれ独立に、前記Rと同じである。
 前記式(8)において、R~R24及びR31~R35は、前記と同じである。
 R61~R65のうちの1つはdと結合する単結合であり、dと結合しないR61~R65は、それぞれ独立に、前記Rと同じである。
 前記式(9)において、R~R24及びR31~R35は、前記と同じである。
 R71~R78のうちの1つはeと結合する単結合であり、eと結合しないR71~R78は、それぞれ独立に、前記Rと同じである。
 前記式(10)において、R~R24及びR31~R35は、前記と同じである。
 R71~R78のうちの1つはeと結合する単結合であり、eと結合しないR71~R78は、それぞれ独立に、前記Rと同じである。
 前記式(11)において、R~R24及びR31~R35は、前記と同じである。
 R81~R88のうちの1つはfと結合する単結合であり、fと結合しないR81~R88は、それぞれ独立に、前記Rと同じである。
 前記式(12)において、R~R24及びR31~R35は、前記と同じである。
 R81~R88のうちの1つはgと結合する単結合であり、R81~R88のうちの1つはhと結合する単結合であり、g及びhと結合しないR81~R88は、それぞれ独立に、前記Rと同じである。
 R89~R93は、それぞれ独立に、前記Rと同じである。
 前記式(13)において、R~R24及びR31~R35は、前記と同じである。
 R51~R55のうちの1つはiと結合する単結合であり、iと結合しないR51~R55は、それぞれ独立に、前記Rと同じである。
 R81~R88のうちの1つはjと結合する単結合であり、jと結合しないR81~R88は、それぞれ独立に、前記Rと同じである。
 前記式(14)において、R~R24及びR31~R35は、前記と同じである。
 R94~R103のうちの1つはkと結合する単結合であり、kと結合しないR94~R103は、それぞれ独立に、前記Rと同じである。
 前記式(15)において、R~R24及びR31~R35は、前記と同じである。
 R51~R55のうちの1つはlと結合する単結合であり、lと結合しないR51~R55は、それぞれ独立に、前記Rと同じである。
 R71~R78のうちの1つはmと結合する単結合であり、mと結合しないR71~R78は、それぞれ独立に、前記Rと同じである。
 前記式(16)において、R~R24及びR31~R35は、前記と同じである。
 R51~R55のうちの1つはnと結合する単結合であり、nと結合しないR51~R55は、それぞれ独立に、前記Rと同じである。
 R71~R78のうちの1つはоと結合する単結合であり、оと結合しないR71~R78は、それぞれ独立に、前記Rと同じである。
 前記式(17)において、R~R24及びR31~R35は、前記と同じである。
 R51~R55のうちの1つはpと結合する単結合であり、pと結合しないR51~R55は、それぞれ独立に、前記Rと同じである。
 R111~R118は、それぞれ独立に、前記Rと同じである。
 式(1)~式(17)において、下記式(18)で表される基は、好ましくは下記式(a)~(l)で表され、より好ましくは式(a)、(b)、(e)、又は(i)で表され、さらに好ましくは式(a)、(b)、又は(e)で表され、よりさらに好ましくは式(a)で表される。
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
 式(1)~式(17)において、-A-(Aで表される基は、好ましくは下記式(m)~(x)で表され、より好ましくは式(m)、(n)、(o)、(p)、(q)又は(r)で表され、さらに好ましくは式(m)又は(q)で表される。
Figure JPOXMLDOC01-appb-C000028
 式(1)~式(17)で表される化合物中の水素原子のうちの少なくとも1つは重水素原子であってもよい。
 R~R24の少なくとも1つが重水素原子であってもよい。
 R~R24の水素原子は、すべて重水素原子であってもよい。また、R~R24のすべてが重水素原子であってもよい。
 Aで表される基が水素原子を有し、かつ当該水素原子のうち少なくとも1つは重水素原子であってもよい。
 nは0であり、Aで表される基は無置換であり、Aで表される基が有する水素原子は、すべて重水素原子であってもよい。
 nは1であり、Aで表される基が水素原子を有し、かつ当該水素原子のうち少なくとも1つは重水素原子であり、Aで表される基が水素原子を有し、かつ当該水素原子のうち少なくとも1つは重水素原子であってもよい。
 nは1であり、Aで表される基は無置換であり、Aで表される基が有する水素原子は、すべて重水素原子であり、Aで表される基は無置換であり、Aで表される基が有する水素原子は、すべて重水素原子であってもよい。
 R31~R35の少なくとも1つが重水素原子であってもよい。
 R31~R35のすべてが重水素原子であってもよい。
 本発明に係る化合物は、下記式(D1)~(D6)で表される化合物であってもよい。
Figure JPOXMLDOC01-appb-C000029
 式(D1)中、R1a~R8a、R1b~R8b、R1c~R8c、R1d~R5d、R1x~R3x、及びR1e~R5eは水素原子であり、かつ当該水素原子のうちの1個以上37個以下が重水素原子である。
Figure JPOXMLDOC01-appb-C000030
 式(D2)中、R1a~R8a、R1b~R8b、R1c~R8c、R1d~R5d、R1x~R3x、及びR1f~R9fは水素原子であり、かつ当該水素原子のうちの1個以上41個以下が重水素原子である。
Figure JPOXMLDOC01-appb-C000031
 式(D3)中、R1a~R8a、R1b~R8b、R1c~R8c、R1d~R5d、R1x~R3x、及びR1g~R9gは水素原子であり、かつ当該水素原子のうちの1個以上41個以下が重水素原子である。
Figure JPOXMLDOC01-appb-C000032
 式(D4)中、R1a~R8a、R1b~R8b、R1c~R8c、R1d~R5d、R1x~R3x、R1f~R5f、及びR7f~R9fは水素原子であり、かつ当該水素原子のうちの1個以上40個以下が重水素原子である。
Figure JPOXMLDOC01-appb-C000033
 式(D5)中、R1a~R8a、R1b~R8b、R1c~R8c、R1d~R5d、R1x~R3x、及びR1h~R7hは水素原子であり、かつ当該水素原子のうちの1個以上39個以下が重水素原子である。
Figure JPOXMLDOC01-appb-C000034
 式(D6)中、R1a~R8a、R1b~R8b、R1c~R8c、R1d~R5d、R1x~R3x、及びR1j~R7jは水素原子であり、かつ当該水素原子のうちの1個以上39個以下が重水素原子である。
 本発明に係る化合物の具体例(具体例化合物)を以下に挙げるが、特にこれらに制限されるものではない。
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
 化合物(1)の製造方法は特に制限されず、当業者であれば以下の実施例に記載する方法により、あるいは、該方法を公知の合成方法を参考にして変更した方法により容易に製造することができる。
2.有機EL素子用材料
 本発明の有機EL素子用材料は、化合物(1)を含む。本発明の有機EL素子用材料における化合物(1)の含有量は、特に制限されず、例えば、化合物(1)が含まれる層の全質量に対して、1質量%以上(100%を含む)であり、10質量%以上(100%を含む)であることが好ましく、50質量%以上(100%を含む)であることがより好ましく、80質量%以上(100%を含む)であることがさらに好ましく、90質量%以上(100%を含む)であることが特に好ましい。本発明の有機EL素子用材料は、有機EL素子の製造に有用である。
3.有機EL素子
 次に、本発明の有機EL素子について説明する。
3-1.第一態様に係る有機EL素子
 本発明の第一態様に係る有機EL素子は、陰極、陽極、及び、陰極と陽極の間に有機層を含む。該有機層は発光層を含み、該有機層の少なくとも一層が前述の式(1)で表される化合物(1)を含む。
 化合物(1)が含まれる有機層の例としては、陽極と発光層との間に設けられる正孔輸送帯域(正孔注入層、正孔輸送層、電子阻止層、励起子阻止層等)、発光層、スペース層、陰極と発光層との間に設けられる電子輸送帯域(電子注入層、電子輸送層、正孔阻止層等)等が挙げられるが、これらに限定されるものではない。化合物(1)は、好ましくは蛍光又は燐光EL素子の電子輸送帯域又は発光層の材料、より好ましくは電子輸送帯域の材料、さらに好ましくは電子輸送層又は正孔阻止層の材料として用いられる。
3-2.第二態様に係る有機EL素子
 また、本発明の第二態様に係る有機EL素子は、陽極、陰極、及び当該陽極と当該陰極の間に配置された有機層を含む有機エレクトロルミネッセンス素子であって、当該有機層が、発光層、及び当該発光層と当該陰極の間に配置された第1の層を含み、当該第1の層が下記式(1A)で表される化合物(1A)を含む、有機エレクトロルミネッセンス素子である。
Figure JPOXMLDOC01-appb-C000044
 式中、
 R~R24は、それぞれ独立に、水素原子、または置換基であり、当該置換基は置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の環形成原子数5~30のヘテロアリール基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数5~50のシクロアルキル基、又はシアノ基であり、
 R31とR32、R32とR33、R33とR34、及びR34とR35の少なくとも1組は、それぞれ独立に、互いに結合して、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素環、置換もしくは無置換の環形成原子数5~30の複素環、又は置換もしくは無置換の環形成炭素数5~50の脂肪族炭化水素環を形成するか、又は、R31とR32、R32とR33、R33とR34、及びR34とR35は互いに結合して環を形成せず、互いに結合して環を形成しない場合、R31~R35は、それぞれ独立に、水素原子、または置換基であり、当該置換基は置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の環形成原子数5~30のヘテロアリール基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数5~50のシクロアルキル基、又はシアノ基であり、
 Aは、環形成炭素数6~30の芳香族炭化水素の置換もしくは無置換のn+1価の残基、又は環形成原子数5~30の芳香族複素環化合物の置換もしくは無置換のn+1価の残基であり、
 Aは、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の環形成原子数5~30のヘテロアリール基、又はシアノ基であり、
 nは0~3の整数である。nが0のとき、(Aは水素である。
 すなわち、第二態様に係る有機EL素子は、第一態様に係る有機EL素子と比べて、下記の相違点1及び相違点2を有する点において相違している。
相違点1:
第一態様における化合物(1)は、「Aがベンゼンのn+1価の残基である場合、nは1以上の整数である。」との限定が有るのに対して、第二態様における化合物(1A)は、当該限定が無い。
相違点2:
第一態様では、有機層の少なくとも一層が化合物(1)を含むのに対して、第二態様では、有機層のうち、発光層と陰極の間に配置された第1の層が化合物(1A)を含む。
 すなわち、上記相違点1として、第二態様における化合物(1A)は、Aがベンゼンのn+1価の残基である場合、nは1以上の整数であってもよく、nは0であってもよい。ただし、Aがベンゼンのn+1価の残基である場合、nは1以上の整数であることが好ましい。
 第二態様における化合物(1A)は、好ましくは前記「1.化合物」に記載した化合物(1)と同様である。
 また、第二態様における化合物(1A)の具体例は、好ましくは前記「1.化合物」に具体例として挙げた化合物(具体例化合物)及び下記式(19)で表される化合物であるが、より好ましくは前記「1.化合物」に挙げた化合物である。
Figure JPOXMLDOC01-appb-C000045
 上記相違点2として、第二態様に係る有機EL素子は、第1の層が上記化合物(1A)を含む。化合物(1A)は、第1の層の他に、他の層に含まれていてもよく他の層に含まれていなくてもよいが、化合物(1A)は第1の層のみに含まれているのが好ましい。
 第1の層は、発光層に隣接している層であることが好ましい。
 有機層の例としては、陽極と発光層との間に設けられる正孔輸送帯域(正孔注入層、正孔輸送層、電子阻止層、励起子阻止層等)、発光層、スペース層、陰極と発光層との間に設けられる電子輸送帯域(電子注入層、電子輸送層、正孔阻止層等)等が挙げられるが、第二態様に係る有機EL素子にあっては、化合物(1A)が、有機層のうち発光層と陰極の間に配置された第1の層に含まれる。化合物(1A)は、好ましくは蛍光又は燐光EL素子の電子輸送帯域、さらに好ましくは電子輸送層又は正孔阻止層の材料として用いられる。
3-3.第一態様及び第二態様に係る有機EL素子
 本発明の第一態様及び第二態様に係る有機EL素子は、蛍光又は燐光発光型の単色発光素子であっても、蛍光/燐光ハイブリッド型の白色発光素子であってもよいし、単独の発光ユニットを有するシンプル型であっても、複数の発光ユニットを有するタンデム型であってもよく、中でも、蛍光発光型の素子であることが好ましい。ここで、「発光ユニット」とは、有機層を含み、そのうちの少なくとも一層が発光層であり、注入された正孔と電子が再結合することにより発光する最小単位をいう。
 例えば、シンプル型有機EL素子の代表的な素子構成としては、以下の素子構成を挙げることができる。
(1)陽極/発光ユニット/陰極
 また、上記発光ユニットは、燐光発光層や蛍光発光層を複数有する積層型であってもよく、その場合、各発光層の間に、燐光発光層で生成された励起子が蛍光発光層に拡散することを防ぐ目的で、スペース層を有していてもよい。シンプル型発光ユニットの代表的な層構成を以下に示す。括弧内の層は任意である。
(a)(正孔注入層/)正孔輸送層/蛍光発光層(/電子輸送層/電子注入層)
(b)(正孔注入層/)正孔輸送層/燐光発光層(/電子輸送層/電子注入層)
(c)(正孔注入層/)正孔輸送層/第1蛍光発光層/第2蛍光発光層(/電子輸送層/電子注入層)
(d)(正孔注入層/)正孔輸送層/第1燐光発光層/第2燐光発光層(/電子輸送層/電子注入層)
(e)(正孔注入層/)正孔輸送層/燐光発光層/スペース層/蛍光発光層(/電子輸送層/電子注入層)
(f)(正孔注入層/)正孔輸送層/第1燐光発光層/第2燐光発光層/スペース層/蛍光発光層(/電子輸送層/電子注入層)
(g)(正孔注入層/)正孔輸送層/第1燐光発光層/スペース層/第2燐光発光層/スペース層/蛍光発光層(/電子輸送層/電子注入層)
(h)(正孔注入層/)正孔輸送層/燐光発光層/スペース層/第1蛍光発光層/第2蛍光発光層(/電子輸送層/電子注入層)
(i)(正孔注入層/)正孔輸送層/電子阻止層/蛍光発光層(/電子輸送層/電子注入層)
(j)(正孔注入層/)正孔輸送層/電子阻止層/燐光発光層(/電子輸送層/電子注入層)
(k)(正孔注入層/)正孔輸送層/励起子阻止層/蛍光発光層(/電子輸送層/電子注入層)
(l)(正孔注入層/)正孔輸送層/励起子阻止層/燐光発光層(/電子輸送層/電子注入層)
(m)(正孔注入層/)第1正孔輸送層/第2正孔輸送層/蛍光発光層(/電子輸送層/電子注入層)
(n)(正孔注入層/)第1正孔輸送層/第2正孔輸送層/燐光発光層(/電子輸送層/電子注入層)
(o)(正孔注入層/)第1正孔輸送層/第2正孔輸送層/蛍光発光層/第1電子輸送層/第2電子輸送層(/電子注入層)
(p)(正孔注入層/)第1正孔輸送層/第2正孔輸送層/燐光発光層/第1電子輸送層/第2電子輸送層(/電子注入層)
(q)(正孔注入層/)正孔輸送層/蛍光発光層/正孔阻止層(/電子輸送層/電子注入層)
(r)(正孔注入層/)正孔輸送層/燐光発光層/正孔阻止層(/電子輸送層/電子注入層)
(s)(正孔注入層/)正孔輸送層/蛍光発光層/励起子阻止層(/電子輸送層/電子注入層)
(t)(正孔注入層/)正孔輸送層/燐光発光層/励起子阻止層(/電子輸送層/電子注入層)
 上記各燐光又は蛍光発光層は、それぞれ互いに異なる発光色を示すものとすることができる。具体的には、上記積層発光ユニット(f)において、(正孔注入層/)正孔輸送層/第1燐光発光層(赤色発光)/第2燐光発光層(緑色発光)/スペース層/蛍光発光層(青色発光)/電子輸送層といった層構成等が挙げられる。
 なお、各発光層と正孔輸送層あるいはスペース層との間には、適宜、電子阻止層を設けてもよい。また、各発光層と電子輸送層との間には、適宜、正孔阻止層を設けてもよい。電子阻止層や正孔阻止層を設けることで、電子又は正孔を発光層内に閉じ込めて、発光層における電荷の再結合確率を高め、発光効率を向上させることができる。
 タンデム型有機EL素子の代表的な素子構成としては、以下の素子構成を挙げることができる。
(2)陽極/第1発光ユニット/中間層/第2発光ユニット/陰極
 ここで、上記第1発光ユニット及び第2発光ユニットとしては、例えば、それぞれ独立に上述の発光ユニットから選択することができる。
 上記中間層は、一般的に、中間電極、中間導電層、電荷発生層、電子引抜層、接続層、中間絶縁層とも呼ばれ、第1発光ユニットに電子を、第2発光ユニットに正孔を供給する、公知の材料構成を用いることができる。
 図1は、本発明の実施形態に係る有機EL素子の層構成の一例を示す概略図である。本例の有機EL素子1は、基板2、陽極3、陰極4、及び該陽極3と陰極4との間に配置された発光ユニット10とを有する。発光ユニット10は、発光層5を有する。発光層5と陽極3との間に正孔輸送帯域6(正孔注入層、正孔輸送層等)、発光層5と陰極4との間に電子輸送帯域7(電子注入層、電子輸送層等)を有する。
 図2は、本発明の実施形態に係る有機EL素子の層構成の他の例を示す概略図である。本例の有機EL素子11は、基板2、陽極3、陰極4、及び該陽極3と陰極4との間に配置された発光ユニット20とを有する。発光ユニット20は、発光層5を有する。発光層5と陽極3との間に正孔輸送帯域6、発光層5と陰極4との間に電子輸送帯域7を有する。また、発光層5の陰極4側に、発光層5に隣接して正孔阻止層8を設けている。これにより、正孔を発光層5に閉じ込めて、発光層5における励起子の生成効率をより高めることができる。なお、正孔阻止層8は電子輸送帯域7の一部とみることもできる。発光層5の陽極3側に電子阻止層(図示せず)を設けて、電子を発光層5に閉じ込めて発光層5における励起子の生成効率をさらに高めるようにしてもよい。
 図3は、本発明の実施形態に係る有機EL素子の層構成のさらに他の例示す概略図である。本例の有機EL素子12は、基板2、陽極3、陰極4、及び該陽極3と陰極4との間に配置された発光ユニット30とを有する。発光ユニット20は、発光層5を有する。陽極3と発光層5の間に配置された正孔輸送帯域は、第1正孔輸送層6a及び第2正孔輸送層6bから形成されている。また、発光層5と陰極4の間に配置された電子輸送帯域は、第1電子輸送層7a及び第2電子輸送層7bから形成されている。有機EL素子12において、単層の電子輸送層と複数層からなる正孔輸送層の組み合わせとしてもよいし、単層の正孔輸送層と複数層からなる電子輸送層の組み合わせとしてもよい。また、有機EL素子12に、正孔阻止層や電子阻止層を設けてもよい。
 なお、本願明細書において、蛍光ドーパント(蛍光発光材料)と組み合わされたホストを蛍光ホストと称し、燐光ドーパントと組み合わされたホストを燐光ホストと称する。蛍光ホストと燐光ホストは分子構造のみにより区分されるものではない。すなわち、燐光ホストとは、燐光ドーパントを含有する燐光発光層を形成する材料を意味し、蛍光発光層を形成する材料として利用できないことを意味しているわけではない。蛍光ホストについても同様である。
 以下、有機EL素子を構成する各層及び各部材について説明する。
基板
 基板は、有機EL素子の支持体として用いられる。基板としては、例えば、ガラス、石英、プラスチックなどの板を用いることができる。また、可撓性基板を用いてもよい。可撓性基板としては、例えば、ポリカーボネート、ポリアリレート、ポリエーテルスルフォン、ポリプロピレン、ポリエステル、ポリフッ化ビニル、ポリ塩化ビニルからなるプラスチック基板等が挙げられる。また、無機蒸着フィルムを用いることもできる。
陽極
 基板上に形成される陽極には、仕事関数の大きい(具体的には4.0eV以上)金属、合金、電気伝導性化合物、及びこれらの混合物などを用いることが好ましい。具体的には、例えば、酸化インジウム-酸化スズ(ITO:Indium Tin Oxide)、珪素もしくは酸化珪素を含有した酸化インジウム-酸化スズ、酸化インジウム-酸化亜鉛、酸化タングステン及び酸化亜鉛を含有した酸化インジウム、グラフェン等が挙げられる。この他、金(Au)、白金(Pt)、ニッケル(Ni)、タングステン(W)、クロム(Cr)、モリブデン(Mo)、鉄(Fe)、コバルト(Co)、銅(Cu)、パラジウム(Pd)、チタン(Ti)、又は前記金属の窒化物(例えば、窒化チタン)等が挙げられる。
 これらの材料は、通常、スパッタリング法により成膜される。例えば、酸化インジウム-酸化亜鉛は、酸化インジウムに対し1~10wt%の酸化亜鉛を加えたターゲットを、酸化タングステン及び酸化亜鉛を含有した酸化インジウムは、酸化インジウムに対し酸化タングステンを0.5~5wt%、酸化亜鉛を0.1~1wt%含有したターゲットを用いることにより、スパッタリング法で形成することができる。その他、真空蒸着法、塗布法、インクジェット法、スピンコート法などにより作製してもよい。
 陽極に接して形成される正孔注入層は、陽極の仕事関数に関係なく正孔注入が容易である材料を用いて形成されるため、電極材料として一般的に使用される材料(例えば、金属、合金、電気伝導性化合物、及びこれらの混合物、元素周期表の第1族又は第2族に属する元素)を用いることができる。
 仕事関数の小さい材料である、元素周期表の第1族又は第2族に属する元素、すなわちリチウム(Li)やセシウム(Cs)等のアルカリ金属、及びマグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)等のアルカリ土類金属、及びこれらを含む合金(例えば、MgAg、AlLi)、ユーロピウム(Eu)、イッテルビウム(Yb)等の希土類金属及びこれらを含む合金等を用いることもできる。なお、アルカリ金属、アルカリ土類金属、及びこれらを含む合金を用いて陽極を形成する場合には、真空蒸着法やスパッタリング法を用いることができる。さらに、銀ペーストなどを用いる場合には、塗布法やインクジェット法などを用いることができる。
正孔注入層
 正孔注入層は、正孔注入性の高い材料(正孔注入性材料)を含む層である。正孔注入性材料を単独で又は複数組み合わせて正孔注入層に用いることができる。
 正孔注入性材料としては、モリブデン酸化物、チタン酸化物、バナジウム酸化物、レニウム酸化物、ルテニウム酸化物、クロム酸化物、ジルコニウム酸化物、ハフニウム酸化物、タンタル酸化物、銀酸化物、タングステン酸化物、マンガン酸化物等を用いることができる。
 低分子の有機化合物である4,4’,4’’-トリス(N,N-ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4’’-トリス[N-(3-メチルフェニル)-N-フェニルアミノ]トリフェニルアミン(略称:MTDATA)、4,4’-ビス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]ビフェニル(略称:DPAB)、4,4’-ビス(N-{4-[N’-(3-メチルフェニル)-N’-フェニルアミノ]フェニル}-N-フェニルアミノ)ビフェニル(略称:DNTPD)、1,3,5-トリス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]ベンゼン(略称:DPA3B)、3-[N-(9-フェニルカルバゾール-3-イル)-N-フェニルアミノ]-9-フェニルカルバゾール(略称:PCzPCA1)、3,6-ビス[N-(9-フェニルカルバゾール-3-イル)-N-フェニルアミノ]-9-フェニルカルバゾール(略称:PCzPCA2)、3-[N-(1-ナフチル)-N-(9-フェニルカルバゾール-3-イル)アミノ]-9-フェニルカルバゾール(略称:PCzPCN1)等の芳香族アミン化合物等も正孔注入層材料として挙げられる。
 高分子化合物(オリゴマー、デンドリマー、ポリマー等)を用いることもできる。例えば、ポリ(N-ビニルカルバゾール)(略称:PVK)、ポリ(4-ビニルトリフェニルアミン)(略称:PVTPA)、ポリ[N-(4-{N’-[4-(4-ジフェニルアミノ)フェニル]フェニル-N’-フェニルアミノ}フェニル)メタクリルアミド](略称:PTPDMA)、ポリ[N,N’-ビス(4-ブチルフェニル)-N,N’-ビス(フェニル)ベンジジン](略称:Poly-TPD)などの高分子化合物が挙げられる。また、ポリ(3,4-エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸)(PEDOT/PSS)、ポリアニリン/ポリ(スチレンスルホン酸)(PAni/PSS)等の酸を添加した高分子化合物を用いることもできる。
 さらに、下記式(K)で表されるヘキサアザトリフェニレン(HAT)化合物などのアクセプター材料を他の化合物と組み合わせて用いることも好ましい。
Figure JPOXMLDOC01-appb-C000046
(上記式(K)において、R21~R26は、それぞれ独立にシアノ基、-CONH、カルボキシ基、又は-COOR27(R27は炭素数1~20のアルキル基又は炭素数3~20のシクロアルキル基を表す)を表す。また、R21及びR22、R23及びR24、及びR25及びR26から選ばれる隣接する2つが互いに結合して-CO-O-CO-で示される基を形成してもよい。)
 R27としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。
正孔輸送層
 正孔輸送層は、正孔輸送性の高い材料(正孔輸送性材料)を含む層である。正孔輸送材料を単独又は複数組み合わせて用いることができる。正孔輸送性材料としては、例えば、芳香族アミン化合物、カルバゾール誘導体、アントラセン誘導体等を使用する事ができる。
 芳香族アミン化合物としては、例えば、4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(略称:NPB)やN,N’-ビス(3-メチルフェニル)-N,N’-ジフェニル-[1,1’-ビフェニル]-4,4’-ジアミン(略称:TPD)、4-フェニル-4’-(9-フェニルフルオレン-9-イル)トリフェニルアミン(略称:BAFLP)、4,4’-ビス[N-(9,9-ジメチルフルオレン-2-イル)-N-フェニルアミノ]ビフェニル(略称:DFLDPBi)、4,4’,4”-トリス(N,N-ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4”-トリス[N-(3-メチルフェニル)-N-フェニルアミノ]トリフェニルアミン(略称:MTDATA)、及び、4,4’-ビス[N-(スピロ-9,9’-ビフルオレン-2-イル)-N―フェニルアミノ]ビフェニル(略称:BSPB)が挙げられる。これらの芳香族アミン化合物は、10-6cm/Vs以上の正孔移動度を有する。
 カルバゾール誘導体としては、例えば、4,4’-ジ(9-カルバゾリル)ビフェニル(略称:CBP)、9-[4-(9-カルバゾリル)フェニル]-10-フェニルアントラセン(略称:CzPA)、及び、9-フェニル-3-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール(略称:PCzPA)が挙げられる。
 アントラセン誘導体としては、例えば、2-t-ブチル-9,10-ジ(2-ナフチル)アントラセン(略称:t-BuDNA)、9,10-ジ(2-ナフチル)アントラセン(略称:DNA)、及び、9,10-ジフェニルアントラセン(略称:DPAnth)が挙げられる。
 ポリ(N-ビニルカルバゾール)(略称:PVK)やポリ(4-ビニルトリフェニルアミン)(略称:PVTPA)等の高分子化合物を用いることもできる。
 但し、電子輸送性よりも正孔輸送性の方が高い化合物であれば、上記以外の化合物を用いてもよい。
 正孔輸送層は、単層構造でもよく、2以上の層を含む多層構造でもよい。例えば、正孔輸送層は第1正孔輸送層(陽極側)と第2正孔輸送層(陰極側)を含む2層構造であってもよい。
発光層のドーパント材料
 発光層は、発光性の高い材料(ドーパント材料)を含む層であり、種々の材料を用いることができる。例えば、蛍光発光材料や燐光発光材料をドーパント材料として用いることができる。蛍光発光材料は一重項励起状態から発光する化合物であり、燐光発光材料は三重項励起状態から発光する化合物である。
 発光層に用いることができる青色系の蛍光発光材料として、ピレン誘導体、スチリルアミン誘導体、クリセン誘導体、フルオランテン誘導体、フルオレン誘導体、ジアミン誘導体、トリアリールアミン誘導体等が使用できる。具体的には、N,N’-ビス[4-(9H-カルバゾール-9-イル)フェニル]-N,N’-ジフェニルスチルベン-4,4’-ジアミン(略称:YGA2S)、4-(9H-カルバゾール-9-イル)-4’-(10-フェニル-9-アントリル)トリフェニルアミン(略称:YGAPA)、4-(10-フェニル-9-アントリル)-4’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBAPA)などが挙げられる。
 発光層に用いることができる緑色系の蛍光発光材料として、芳香族アミン誘導体等を使用できる。具体的には、N-(9,10-ジフェニル-2-アントリル)-N,9-ジフェニル-9H-カルバゾール-3-アミン(略称:2PCAPA)、N-[9,10-ビス(1,1’-ビフェニル-2-イル)-2-アントリル]-N,9-ジフェニル-9H-カルバゾール-3-アミン(略称:2PCABPhA)、N-(9,10-ジフェニル-2-アントリル)-N,N’,N’-トリフェニル-1,4-フェニレンジアミン(略称:2DPAPA)、N-[9,10-ビス(1,1’-ビフェニル-2-イル)-2-アントリル]-N,N’,N’-トリフェニル-1,4-フェニレンジアミン(略称:2DPABPhA)、N-[9,10-ビス(1,1’-ビフェニル-2-イル)]-N-[4-(9H-カルバゾール-9-イル)フェニル]-N-フェニルアントラセン-2-アミン(略称:2YGABPhA)、N,N,9-トリフェニルアントラセン-9-アミン(略称:DPhAPhA)などが挙げられる。
 発光層に用いることができる赤色系の蛍光発光材料として、テトラセン誘導体、ジアミン誘導体等が使用できる。具体的には、N,N,N’,N’-テトラキス(4-メチルフェニル)テトラセン-5,11-ジアミン(略称:p-mPhTD)、7,14-ジフェニル-N,N,N’,N’-テトラキス(4-メチルフェニル)アセナフト[1,2-a]フルオランテン-3,10-ジアミン(略称:p-mPhAFD)などが挙げられる。
 発光層に用いることができる青色系の燐光発光材料として、イリジウム錯体、オスミウム錯体、白金錯体等の金属錯体が使用される。具体的には、ビス[2-(4’,6’-ジフルオロフェニル)ピリジナト-N,C2’]イリジウム(III)テトラキス(1-ピラゾリル)ボラート(略称:FIr6)、ビス[2-(4’,6’-ジフルオロフェニル)ピリジナト-N,C2’]イリジウム(III)ピコリナート(略称:FIrpic)、ビス[2-(3’,5’ビストリフルオロメチルフェニル)ピリジナト-N,C2’]イリジウム(III)ピコリナート(略称:Ir(CF3ppy)2(pic))、ビス[2-(4’,6’-ジフルオロフェニル)ピリジナト-N,C2’]イリジウム(III)アセチルアセトナート(略称:FIracac)などが挙げられる。
 発光層に用いることができる緑色系の燐光発光材料として、イリジウム錯体等が使用される。トリス(2-フェニルピリジナト-N,C2’)イリジウム(III)(略称:Ir(ppy)3)、ビス(2-フェニルピリジナト-N,C2’)イリジウム(III)アセチルアセトナート(略称:Ir(ppy)2(acac))、ビス(1,2-ジフェニル-1H-ベンゾイミダゾラト)イリジウム(III)アセチルアセトナート(略称:Ir(pbi)2(acac))、ビス(ベンゾ[h]キノリナト)イリジウム(III)アセチルアセトナート(略称:Ir(bzq)2(acac))などが挙げられる。
 発光層に用いることができる赤色系の燐光発光材料として、イリジウム錯体、白金錯体、テルビウム錯体、ユーロピウム錯体等の金属錯体が使用される。具体的には、ビス[2-(2’-ベンゾ[4,5-α]チエニル)ピリジナト-N,C3’]イリジウム(III)アセチルアセトナート(略称:Ir(btp)2(acac))、ビス(1-フェニルイソキノリナト-N,C2’)イリジウム(III)アセチルアセトナート(略称:Ir(piq)2(acac))、(アセチルアセトナート)ビス[2,3-ビス(4-フルオロフェニル)キノキサリナト]イリジウム(III)(略称:Ir(Fdpq)2(acac))、2,3,7,8,12,13,17,18-オクタエチル-21H,23H-ポルフィリン白金(II)(略称:PtOEP)等の有機金属錯体が挙げられる。
 また、トリス(アセチルアセトナート)(モノフェナントロリン)テルビウム(III)(略称:Tb(acac)3(Phen))、トリス(1,3-ジフェニル-1,3-プロパンジオナト)(モノフェナントロリン)ユーロピウム(III)(略称:Eu(DBM)3(Phen))、トリス[1-(2-テノイル)-3,3,3-トリフルオロアセトナト](モノフェナントロリン)ユーロピウム(III)(略称:Eu(TTA)3(Phen))等の希土類金属錯体は、希土類金属イオンからの発光(異なる多重度間の電子遷移)であるため、燐光発光材料として用いることができる。
発光層のホスト材料
 発光層は、上述したドーパント材料を他の材料(ホスト材料)に分散させた構成としてもよい。ホスト材料としては、ドーパント材料よりも最低空軌道準位(LUMO準位)が高く、最高占有軌道準位(HOMO準位)が低い材料を用いることが好ましい。
 ホスト材料としては、例えば
(1)アルミニウム錯体、ベリリウム錯体、又は亜鉛錯体等の金属錯体、
(2)オキサジアゾール誘導体、ベンゾイミダゾール誘導体、又はフェナントロリン誘導体等の複素環化合物、
(3)カルバゾール誘導体、アントラセン誘導体、フェナントレン誘導体、ピレン誘導体、又はクリセン誘導体等の縮合芳香族化合物、
(4)トリアリールアミン誘導体又は縮合多環芳香族アミン誘導体等の芳香族アミン化合物が使用される。
 例えば、トリス(8-キノリノラト)アルミニウム(III)(略称:Alq)、トリス(4-メチル-8-キノリノラト)アルミニウム(III)(略称:Almq3)、ビス(10-ヒドロキシベンゾ[h]キノリナト)ベリリウム(II)(略称:BeBq2)、ビス(2-メチル-8-キノリノラト)(4-フェニルフェノラト)アルミニウム(III)(略称:BAlq)、ビス(8-キノリノラト)亜鉛(II)(略称:Znq)、ビス[2-(2-ベンゾオキサゾリル)フェノラト]亜鉛(II)(略称:ZnPBO)、ビス[2-(2-ベンゾチアゾリル)フェノラト]亜鉛(II)(略称:ZnBTZ)などの金属錯体;
 2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾール(略称:PBD)、1,3-ビス[5-(p-tert-ブチルフェニル)-1,3,4-オキサジアゾール-2-イル]ベンゼン(略称:OXD-7)、3-(4-ビフェニリル)-4-フェニル-5-(4-tert-ブチルフェニル)-1,2,4-トリアゾール(略称:TAZ)、2,2’,2’’-(1,3,5-ベンゼントリイル)トリス(1-フェニル-1H-ベンゾイミダゾール)(略称:TPBI)、バソフェナントロリン(略称:BPhen)、バソキュプロイン(略称:BCP)などの複素環化合物;
 9-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール(略称:CzPA)、3,6-ジフェニル-9-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール(略称:DPCzPA)、9,10-ビス(3,5-ジフェニルフェニル)アントラセン(略称:DPPA)、9,10-ジ(2-ナフチル)アントラセン(略称:DNA)、2-tert-ブチル-9,10-ジ(2-ナフチル)アントラセン(略称:t-BuDNA)、9,9’-ビアントリル(略称:BANT)、9,9’-(スチルベン-3,3’-ジイル)ジフェナントレン(略称:DPNS)、9,9’-(スチルベン-4,4’-ジイル)ジフェナントレン(略称:DPNS2)、3,3’,3’’-(ベンゼン-1,3,5-トリイル)トリピレン(略称:TPB3)、9,10-ジフェニルアントラセン(略称:DPAnth)、6,12-ジメトキシ-5,11-ジフェニルクリセンなどの縮合芳香族化合物;及び
 N,N-ジフェニル-9-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール-3-アミン(略称:CzA1PA)、4-(10-フェニル-9-アントリル)トリフェニルアミン(略称:DPhPA)、N,9-ジフェニル-N-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール-3-アミン(略称:PCAPA)、N,9-ジフェニル-N-{4-[4-(10-フェニル-9-アントリル)フェニル]フェニル}-9H-カルバゾール-3-アミン(略称:PCAPBA)、N-(9,10-ジフェニル-2-アントリル)-N,9-ジフェニル-9H-カルバゾール-3-アミン(略称:2PCAPA)、4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(略称:NPB又はα-NPD)、N,N’-ビス(3-メチルフェニル)-N,N’-ジフェニル-[1,1’-ビフェニル]-4,4’-ジアミン(略称:TPD)、4,4’-ビス[N-(9,9-ジメチルフルオレン-2-イル)-N-フェニルアミノ]ビフェニル(略称:DFLDPBi)、4,4’-ビス[N-(スピロ-9,9’-ビフルオレン-2-イル)-N―フェニルアミノ]ビフェニル(略称:BSPB)などの芳香族アミン化合物を用いることができる。ホスト材料は複数種用いてもよい。
 特に、青色蛍光素子の場合には、下記のアントラセン化合物をホスト材料として用いることが好ましい。
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
 電子輸送帯域は、電子注入層、電子輸送層、正孔阻止層等から構成される。これらのいずれかの層に上記化合物(1)を含むことが好ましく、電子輸送層及び正孔阻止層の少なくとも一方に上記化合物(1)を含むことがより好ましい。また、電子輸送帯域のいずれかの層、特に電子輸送層は、好ましくは、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属を含有する有機錯体、アルカリ土類金属を含有する有機錯体、及び希土類金属を含有する有機錯体からなる群から選択される1以上を含有する。
電子輸送層
 電子輸送層は電子輸送性の高い材料(電子輸送性材料)を含む層である。電子輸送層には、化合物(1)や、化合物(1)と他の電子輸送性材料とを組み合わせて用いることができる。他の電子輸送性材料としては、例えば、
(1)アルミニウム錯体、ベリリウム錯体、亜鉛錯体等の金属錯体、
(2)イミダゾール誘導体、ベンゾイミダゾール誘導体、アジン誘導体、カルバゾール誘導体、フェナントロリン誘導体等の複素芳香族化合物、
(3)高分子化合物を使用することができる。
 金属錯体としては、例えば、トリス(8-キノリノラト)アルミニウム(III)(略称:Alq)、トリス(4-メチル-8-キノリノラト)アルミニウム(略称:Almq3)、ビス(10-ヒドロキシベンゾ[h]キノリナト)ベリリウム(略称:BeBq2)、ビス(2-メチル-8-キノリノラト)(4-フェニルフェノラト)アルミニウム(III)(略称:BAlq)、ビス(8-キノリノラト)亜鉛(II)(略称:Znq)、ビス[2-(2-ベンゾオキサゾリル)フェノラト]亜鉛(II)(略称:ZnPBO)、ビス[2-(2-ベンゾチアゾリル)フェノラト]亜鉛(II)(略称:ZnBTZ)が挙げられる。
 複素芳香族化合物としては、例えば、2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾール(略称:PBD)、1,3-ビス[5-(ptert-ブチルフェニル)-1,3,4-オキサジアゾール-2-イル]ベンゼン(略称:OXD-7)、3-(4-tert-ブチルフェニル)-4-フェニル-5-(4-ビフェニリル)-1,2,4-トリアゾール(略称:TAZ)、3-(4-tert-ブチルフェニル)-4-(4-エチルフェニル)-5-(4-ビフェニリル)-1,2,4-トリアゾール(略称:p-EtTAZ)、バソフェナントロリン(略称:BPhen)、バソキュプロイン(略称:BCP)、4,4’-ビス(5-メチルベンゾオキサゾール-2-イル)スチルベン(略称:BzOs)が挙げられる。
 高分子化合物としては、例えば、ポリ[(9,9-ジヘキシルフルオレン-2,7-ジイル)-co-(ピリジン-3,5-ジイル)](略称:PF-Py)、ポリ[(9,9-ジオクチルフルオレン-2,7-ジイル)-co-(2,2’-ビピリジン-6,6’-ジイル)](略称:PF-BPy)が挙げられる。
 上記材料は、10-6cm/Vs以上の電子移動度を有する材料である。なお、正孔輸送性よりも電子輸送性の高い材料であれば、上記以外の材料を電子輸送層に用いてもよい。
 電子輸送層は、単層でもよく、2以上の層を含む多層でもよい。例えば、電子輸送層は第1電子輸送層(陽極側)と第2電子輸送層(陰極側)を含む層であってもよい。第1電子輸送層を正孔阻止層と呼ぶ場合がある。2以上の電子輸送層は、それぞれ前記電子輸送性材料により形成される。
 2層構造の電子輸送層において、化合物(1)を第1電子輸送層と第2電子輸送層の一方に含んでいてもよいし、双方に含んでいてもよい。
 本発明の一態様においては、化合物(1)が第2電子輸送層に含まれるのが好ましく、他の態様においては、化合物(1)が第1電子輸送層に含まれるのが好ましく、さらに他の態様においては、化合物(1)が第1電子輸送層と第2電子輸送層に含まれるのが好ましい。
電子注入層
 電子注入層は、電子注入性の高い材料を含む層である。電子注入層には、リチウム(Li)、セシウム(Cs)、カルシウム(Ca)、フッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF2)、リチウム酸化物(LiOx)等のアルカリ金属、アルカリ土類金属、又はそれらの化合物を用いることができる。その他、電子輸送性を有する材料にアルカリ金属、アルカリ土類金属、又はそれらの化合物を含有させたもの、具体的にはAlq中にマグネシウム(Mg)を含有させたもの等を用いてもよい。なお、この場合には、陰極からの電子注入をより効率よく行うことができる。
 あるいは、電子注入層に、有機化合物と電子供与体(ドナー)とを混合してなる複合材料を用いてもよい。このような複合材料は、有機化合物が電子供与体から電子を受け取るため、電子注入性及び電子輸送性に優れている。この場合、有機化合物としては、受け取った電子の輸送に優れた材料であることが好ましく、具体的には、例えば上述した電子輸送層を構成する材料(金属錯体や複素芳香族化合物等)を用いることができる。電子供与体としては、有機化合物に対し電子供与性を示す材料であればよい。具体的には、アルカリ金属、アルカリ土類金属及び希土類金属が好ましく、リチウム、セシウム、マグネシウム、カルシウム、エルビウム、イッテルビウム等が挙げられる。また、アルカリ金属酸化物やアルカリ土類金属酸化物が好ましく、リチウム酸化物、カルシウム酸化物、バリウム酸化物等が挙げられる。また、酸化マグネシウムのようなルイス塩基を用いることもできる。また、テトラチアフルバレン(略称:TTF)等の有機化合物を用いることもできる。電子注入層に上記化合物(1)が含まれていてもよい。
陰極
 陰極には、仕事関数の小さい(具体的には3.8eV以下)金属、合金、電気伝導性化合物、及びこれらの混合物などを用いることが好ましい。このような陰極材料の具体例としては、元素周期表の第1族又は第2族に属する元素、すなわちリチウム(Li)やセシウム(Cs)等のアルカリ金属、及びマグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)等のアルカリ土類金属、及びこれらを含む合金(例えば、MgAg、AlLi)、ユーロピウム(Eu)、イッテルビウム(Yb)等の希土類金属及びこれらを含む合金等が挙げられる。
 なお、アルカリ金属、アルカリ土類金属、これらを含む合金を用いて陰極を形成する場合には、真空蒸着法やスパッタリング法を用いることができる。また、銀ペーストなどを用いる場合には、塗布法やインクジェット法などを用いることができる。
 なお、電子注入層を設けることにより、仕事関数の大小に関わらず、Al、Ag、ITO、グラフェン、珪素もしくは酸化珪素を含有した酸化インジウム-酸化スズ等様々な導電性材料を用いて陰極を形成することができる。これらの導電性材料は、スパッタリング法やインクジェット法、スピンコート法等を用いて成膜することができる。
絶縁層
 有機EL素子は、超薄膜に電界を印加するために、リークやショートによる画素欠陥が生じやすい。これを防止するために、一対の電極間に絶縁性の薄膜層からなる絶縁層を挿入してもよい。
 絶縁層に用いられる材料としては、例えば、酸化アルミニウム、弗化リチウム、酸化リチウム、弗化セシウム、酸化セシウム、酸化マグネシウム、弗化マグネシウム、酸化カルシウム、弗化カルシウム、窒化アルミニウム、酸化チタン、酸化珪素、酸化ゲルマニウム、窒化珪素、窒化ホウ素、酸化モリブデン、酸化ルテニウム、酸化バナジウム等が挙げられる。なお、これらの混合物や積層物を用いてもよい。
スペース層
 上記スペース層とは、例えば、蛍光発光層と燐光発光層とを積層する場合に、燐光発光層で生成する励起子を蛍光発光層に拡散させない、あるいは、キャリアバランスを調整する目的で、蛍光発光層と燐光発光層との間に設けられる層である。また、スペース層は、複数の燐光発光層の間に設けることもできる。なお、ここでいう「キャリア」とは、物質中の電荷担体の意味である。
 スペース層は発光層間に設けられるため、電子輸送性と正孔輸送性を兼ね備える材料であることが好ましい。また、隣接する燐光発光層内の三重項エネルギーの拡散を防ぐため、三重項エネルギーが2.6eV以上であることが好ましい。スペース層に用いられる材料としては、上述の正孔輸送層に用いられるものと同様のものが挙げられる。
阻止層
 電子阻止層、正孔阻止層、励起子阻止層などの阻止層を発光層に隣接して設けてもよい。電子阻止層とは発光層から正孔輸送層へ電子が漏れることを防ぐ層であり、正孔阻止層とは発光層から電子輸送層へ正孔が漏れることを防ぐ層である。励起子阻止層は発光層で生成した励起子が周辺の層へ拡散することを防止し、励起子を発光層内に閉じ込める機能を有する。上述したように、正孔阻止層に上記化合物(1)を含んでいることが好ましい。
 前記有機EL素子の各層は従来公知の蒸着法、塗布法等により形成することができる。例えば、真空蒸着法、分子線蒸着法(MBE法)などの蒸着法、あるいは、層を形成する化合物の溶液を用いた、ディッピング法、スピンコーティング法、キャスティング法、バーコート法、ロールコート法等の塗布法による公知の方法で形成することができる。
 各層の膜厚は特に制限されないが、一般に膜厚が薄すぎるとピンホール等の欠陥が生じやすく、逆に厚すぎると高い駆動電圧が必要となり効率が悪くなるため、通常5nm~10μmであり、10nm~0.2μmがより好ましい。
 前記有機EL素子は、有機ELパネルモジュール等の表示部品、テレビ、携帯電話、パーソナルコンピュータ等の表示装置、及び、照明、車両用灯具の発光装置等の電子機器に使用できる。
 以下、実施例を用いて本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。
 下記実施例において化合物(1A)又は化合物(1)として用いた化合物ET-1、ET-2、ET-3、ET-4、ET-5、ET-6、ET-7、及びET-8は、以下のとおりである。
Figure JPOXMLDOC01-appb-C000050
下記比較例において、化合物(1A)又は化合物(1)に代えて用いた化合物ET-A、ET-B、及びET-Cは、以下のとおりである。
Figure JPOXMLDOC01-appb-C000051
 下記実施例及び比較例で用いた他の化合物は、以下のとおりである。
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
<有機EL素子の作製>
 有機EL素子を以下のように作製して、各素子のEL素子性能を評価した。
 EL素子性能の評価方法は次のとおりである。
95%寿命(LT95)評価
 実施例及び比較例で作製した有機EL素子について、電流密度が50mA/cmとなるように有機EL素子に電圧を印加し、95%寿命(LT95)の評価を行った。ここでLT95とは、定電流駆動時において、輝度が初期輝度の95%に低下するまでの時間(hr)をいう。
90%寿命(LT90)評価
 実施例及び比較例で作製した有機EL素子について、電流密度が50mA/cmとなるように有機EL素子に電圧を印加し、90%寿命(LT90)の評価を行った。ここでLT90とは、定電流駆動時において、輝度が初期輝度の90%に低下するまでの時間(hr)をいう。
実施例1
 25mm×75mm×1.1mmのITO透明電極付きガラス基板(ジオマテック株式会社製)をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行った。ITO透明電極の厚さは130nmとした。
 洗浄後のITO透明電極付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まずITO透明電極を覆うようにして上記化合物HT-aと上記化合物HI-aとを共蒸着して膜厚10nmの正孔注入層を形成した。化合物HI-aの正孔注入層中の濃度は3.0質量%であった。
 次に、この正孔注入層上に、上記化合物HT-a(第1正孔輸送層材料)を蒸着して膜厚80nmの第1正孔輸送層を形成した。
 次に、この第1正孔輸送層上に、上記化合物EBL-a(第2正孔輸送層材料)を蒸着して膜厚5nmの第2正孔輸送層を形成した。
 次に、この第2正孔輸送層上に、上記化合物BH-a(ホスト材料)とBD-a(ドーパント材料)とを共蒸着し、膜厚25nmの発光層を形成した。化合物BD-aの発光層中の濃度は4.0質量%であった。
 次に、この発光層の上に、化合物ET-1(第1電子輸送層材料)を蒸着して膜厚5nmの第1電子輸送層を形成した。
 次に、この第1電子輸送層の上に、上記化合物ET-a(第2電子輸送層材料)を蒸着して膜厚20nmの第2電子輸送層を形成した。
 次に、この第2電子輸送層上に、LiFを蒸着して膜厚1nmのLiF膜を形成した。
 そして、このLiF膜上に金属Alを蒸着して膜厚80nmの金属Al陰極を形成した。
 このようにして、有機EL素子を得た。
 実施例1の素子構成を略式的に示すと、次のとおりである。
ITO(130)/HT-a:HI-a=97:3(10)/HT-a(80)/EBL-a(5)/BH-a:BD-a=96:4(25)/化合物ET-1(5)/ET-a(20)/LiF(1)/Al(80)
 なお、“/”は、層と層との境界を示す。括弧内の数字は、膜厚(単位:nm)を示す。また、割合は、質量基準である。下記実施例及び下記比較例の対応する記載についても同様である。
 有機EL素子について、上記95%寿命(LT95)評価を行った。その結果を表1に示す。
実施例2~8及び比較例1~3
 実施例2~8及び比較例1~3の有機EL素子は、実施例1における化合物ET-1(第1電子輸送層材料)を表1に記載の化合物及び比較化合物に置き換えたこと以外は実施例1と同様にして作製した。
 各有機EL素子について、上記95%寿命(LT95)評価を行った。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000055
実施例9
 25mm×75mm×1.1mmのITO透明電極付きガラス基板(ジオマテック株式会社製)をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行った。ITO透明電極の厚さは130nmとした。
 洗浄後のITO透明電極付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まずITO透明電極を覆うようにして上記化合物HT-bと上記化合物HI-aとを共蒸着して膜厚10nmの正孔注入層を形成した。化合物HI-aの正孔注入層中の濃度は3.0質量%であった。
 次に、この正孔注入層上に、上記化合物HT-b(第1正孔輸送層材料)を蒸着して膜厚80nmの第1正孔輸送層を形成した。
 次に、この第1正孔輸送層上に、上記化合物EBL-b(第2正孔輸送層材料)を蒸着して膜厚5nmの第2正孔輸送層を形成した。
 次に、この第2正孔輸送層上に、上記化合物BH-b(ホスト材料)とBD-a(ドーパント材料)とを共蒸着し、膜厚25nmの発光層を形成した。化合物BD-aの発光層中の濃度は4.0質量%であった。
 次に、この発光層の上に、化合物ET-1(第1電子輸送層材料)を蒸着して膜厚5nmの第1電子輸送層を形成した。
 次に、この第1電子輸送層の上に、上記化合物ET-b(第2電子輸送層材料)及びLiqを共蒸着して膜厚20nmの第2電子輸送層を形成した。Liqの第2電子輸送層材料中の濃度は50.0質量%であった。
 次に、この第2電子輸送層上に、LiFを蒸着して膜厚1nmのLiF膜を形成した。
 そして、このLiF膜上に金属Alを蒸着して膜厚80nmの金属Al陰極を形成した。
 このようにして、有機EL素子を得た。
 実施例9の素子構成を略式的に示すと、次のとおりである。
ITO(130)/HT-b:HI-a=97:3(10)/HT-b(80)/EBL-b(5)/BH-b:BD-a=96:4(25)/ET-1(5)/ET-b:Liq=50:50(20)/LiF(1)/Al(80)
 有機EL素子について、上記95%寿命(LT95)評価を行った。その結果を表2に示す。
実施例10~11及び比較例4~6
 実施例10~11及び比較例4~6の有機EL素子は、実施例9における化合物ET-1(第1電子輸送層材料)を表2に記載の化合物及び比較化合物に置き換えたこと以外は実施例9と同様にして作製した。
 各有機EL素子について、上記95%寿命(LT95)評価を行った。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000056
実施例12
 25mm×75mm×1.1mmのITO透明電極付きガラス基板(ジオマテック株式会社製)をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行った。ITO透明電極の厚さは130nmとした。
 洗浄後のITO透明電極付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まずITO透明電極を覆うようにして上記化合物HI-bを蒸着して膜厚5nmの正孔注入層を形成した。
 次に、この正孔注入層上に、上記化合物HT-c(第1正孔輸送層材料)を蒸着して膜厚80nmの第1正孔輸送層を形成した。
 次に、この第1正孔輸送層上に、上記化合物EBL-a(第2正孔輸送層材料)を蒸着して膜厚10nmの第2正孔輸送層を形成した。
 次に、この第2正孔輸送層上に、上記化合物BH-a(ホスト材料)とBD-a(ドーパント材料)とを共蒸着し、膜厚25nmの発光層を形成した。化合物BD-aの発光層中の濃度は4.0質量%であった。
 次に、この発光層の上に、化合物ET-1(第1電子輸送層材料)を蒸着して膜厚10nmの第1電子輸送層を形成した。
 次に、この第1電子輸送層の上に、上記化合物ET-c(第2電子輸送層材料)及びLiを共蒸着して膜厚15nmの第2電子輸送層を形成した。Liの第2電子輸送層材料中の濃度は4.0質量%であった。
 そして、この第2電子輸送層上に金属Alを蒸着して膜厚80nmの金属Al陰極を形成した。
 このようにして、有機EL素子を得た。
 実施例12の素子構成を略式的に示すと、次のとおりである。
ITO(130)/HI-b(5)/HT-c(80)/EBL-a(10)/BH-a:BD-a=96:4(25)/ET-1(10)/ET-c:Li=96:4(15)/Al(80)
 有機EL素子について、上記90%寿命(LT90)評価を行った。その結果を表3に示す。
比較例7
 比較例7の有機EL素子は、実施例5における化合物ET-1(第1電子輸送層材料)を表2に記載の化合物及び比較化合物に置き換えたこと以外は実施例12と同様にして作製した。
 有機EL素子について、上記90%寿命(LT90)評価を行った。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000057
 表1~3の結果から明らかなように、本発明の式(1A)の化合物ET-1~ET-8のいずれかを含む有機EL素子は、高寿命を示す。特に、本発明の式(1)にも該当する化合物ET-1、ET-3~ET-6、又はET-8を含む有機EL素子は、化合物ET-2又はET-7を含む有機EL素子と比べて、さらなる高寿命を示す。
 一方、比較化合物ET-A、ET-B、及びET-Cのいずれかを含む有機EL素子は、寿命が不十分である。
 実施例と比較例の比較から、式(1A)、(1)~(17)に共通の母骨格、すなわち、1つのベンゼン環の特定の4個の環内炭素原子に対して、3個のカルバゾール骨格の9位と、ベンゼン環骨格で2位が置換された1個のピリミジン骨格の4位とが結合されており、かつ当該ピリミジン骨格の6位が特定の構造によって置換されてなる母骨格を有する化合物は、高寿命を示すことが分かる。
合成例1 化合物ET-1の合成
(1-1)中間体Aの合成
Figure JPOXMLDOC01-appb-C000058
 4-([1,1'-ビフェニル]-4-イル)-6-クロロ-2-フェニルピリミジン7.5g、3,4,5-トリフルオロフェニルボロン酸4.6g、PdCl(Amphos)0.45g、1,2-ジメトキシエタン(DME)220mL、2M炭酸ナトリウム水溶液33mLをフラスコに入れ、アルゴンガスで置換した後、還流条件下で7時間加熱攪拌した。室温に戻してから析出した固体を濾集し、シリカゲルカラムクロマトグラフィーで精製することにより、中間体A9.2g(収率96%)を白色固体として得た。
(1-2)化合物ET-1の合成
Figure JPOXMLDOC01-appb-C000059
 中間体A3.0g、カルバゾール5.7g、炭酸セシウム13.4g、N-メチルピロリドン(NMP)35mLをフラスコに入れ、アルゴンガスで置換した後、155℃で2日間加熱攪拌した。室温に戻してから、メタノールを反応液に加えて析出した固体を濾集した。固体を水、アセトンで洗浄した後、トルエンでの再結晶による精製を繰り返し、化合物ET-1を4.7g(収率78%)、白色固体として得た。マススペクトル分析の結果、m/e=880であり、目的物であることを確認した。
合成例2 化合物ET-2の合成
(2-1)中間体Bの合成
Figure JPOXMLDOC01-appb-C000060
 4-クロロ-2,6-ジフェニルピリミジン4.1g、3,4,5-トリフルオロフェニルボロン酸3.0g、PdCl(Amphos)0.55g、1,2-ジメトキシエタン(DME)150mL、2M炭酸ナトリウム水溶液25mLをフラスコに入れ、アルゴンガスで置換した後、還流条件下で7時間加熱攪拌した。室温に戻してから析出した固体を濾集し、シリカゲルカラムクロマトグラフィーで精製することにより、中間体B5.1g(収率90%)を白色固体として得た。
(2-2)化合物ET-2の合成
Figure JPOXMLDOC01-appb-C000061
 中間体B3g、カルバゾール6.9g、炭酸セシウム16.2g、N-メチルピロリドン(NMP)80mLをフラスコに入れ、アルゴンガスで置換した後、155℃で2日間加熱攪拌した。室温に戻してから、メタノールを反応液に加えて析出した固体を濾集した。固体を水、アセトンで洗浄した後、トルエンでの再結晶による精製を繰り返し、化合物ET-2を5.7g(収率86%)、白色固体として得た。マススペクトル分析の結果、m/e=803であり、目的物であることを確認した。
合成例3 化合物ET-3の合成
(3-1)中間体Cの合成
Figure JPOXMLDOC01-appb-C000062
 4,6-ジクロロ-2-フェニルピリミジン5.0g、m-ビフェニルボロン酸4.4g、PdCl(PPh)0.16g、トルエン200mL、2M炭酸ナトリウム水溶液25mLをフラスコに入れ、アルゴンガスで置換した後、還流条件下で7時間加熱攪拌した。室温に戻してから析出した固体を濾集し、シリカゲルカラムクロマトグラフィーで精製することにより、中間体C4.7g(収率61%)を白色固体として得た。
 続いて、合成例1と同様の手順で化合物ET-3を合成した。
 マススペクトル分析の結果、m/e=880であり、目的物であることを確認した。
Figure JPOXMLDOC01-appb-C000063
合成例4 化合物ET-4の合成
(4-1)中間体Dの合成
Figure JPOXMLDOC01-appb-C000064
 4,6-ジクロロ-2-フェニルピリミジン5.0g、2-(4-(3-pyridyl)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane6.3g、PdCl(PPh)0.16g、トルエン200mL、2M炭酸ナトリウム水溶液25mLをフラスコに入れ、アルゴンガスで置換した後、還流条件下で7時間加熱攪拌した。室温に戻してから析出した固体を濾集し、シリカゲルカラムクロマトグラフィーで精製することにより、中間体D5.3g(収率69%)を白色固体として得た。
 続いて、合成例1と同様の手順で化合物ET-4を合成した。
 マススペクトル分析の結果、m/e=881であり、目的物であることを確認した。
Figure JPOXMLDOC01-appb-C000065
合成例5 化合物ET-5の合成
(5-1)中間体Eの合成
Figure JPOXMLDOC01-appb-C000066
 合成例3の(3-1)と同様の手順で中間体Eを合成した。
 続いて、合成例1と同様の手順で化合物ET-5を合成した。
 マススペクトル分析の結果、m/e=910であり、目的物であることを確認した。
Figure JPOXMLDOC01-appb-C000067
合成例6 化合物ET-6の合成
 合成例1の(1-2)について、カルバゾールの代わりにカルバゾール-d8を用いて、同様の手順で化合物ET-6を合成した。
 マススペクトル分析の結果、m/e=904であり、目的物であることを確認した。
Figure JPOXMLDOC01-appb-C000068
合成例7 化合物ET-7の合成
(7-1)中間体Fの合成
Figure JPOXMLDOC01-appb-C000069
 合成例3の(3-1)と同様の手順で中間体Fを合成した。
 続いて、合成例1と同様の手順で化合物ET-7を合成した。
 マススペクトル分析の結果、m/e=809であり、目的物であることを確認した。
Figure JPOXMLDOC01-appb-C000070
合成例8 化合物ET-8の合成
(8-1)中間体Gの合成
Figure JPOXMLDOC01-appb-C000071
 合成例3の(3-1)と同様の手順で中間体Gを合成した。
 続いて、合成例1と同様の手順で化合物ET-8を合成した。
 マススペクトル分析の結果、m/e=889であり、目的物であることを確認した。
Figure JPOXMLDOC01-appb-C000072
 1、11、12 有機EL素子
 2 基板
 3 陽極
 4 陰極
 5 発光層
 6 正孔輸送帯域(正孔輸送層)
 6a 第1正孔輸送層
 6b 第2正孔輸送層
 7 電子輸送帯域(電子輸送層)
 7a 第1電子輸送層
 7b 第2電子輸送層
 8 正孔阻止層
 10、20、30 発光ユニット
 

Claims (31)

  1.  陽極、陰極、及び該陽極と該陰極の間に配置された有機層を含む有機エレクトロルミネッセンス素子であって、
     前記有機層が、発光層、及び該発光層と該陰極の間に配置された第1の層を含み、
     前記第1の層が下記式(1A)で表される化合物を含む、有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000001

    (式中、
     R~R24は、それぞれ独立に、水素原子、または置換基であり、当該置換基は置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の環形成原子数5~30のヘテロアリール基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数5~50のシクロアルキル基、又はシアノ基であり、
     R31とR32、R32とR33、R33とR34、及びR34とR35の少なくとも1組は、それぞれ独立に、互いに結合して、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素環、置換もしくは無置換の環形成原子数5~30の複素環、又は置換もしくは無置換の環形成炭素数5~50の脂肪族炭化水素環を形成するか、又は、R31とR32、R32とR33、R33とR34、及びR34とR35は互いに結合して環を形成せず、互いに結合して環を形成しない場合、R31~R35は、それぞれ独立に、水素原子、または置換基であり、当該置換基は置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の環形成原子数5~30のヘテロアリール基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数5~50のシクロアルキル基、又はシアノ基であり、
     Aは、環形成炭素数6~30の芳香族炭化水素の置換もしくは無置換のn+1価の残基、又は環形成原子数5~30の芳香族複素環化合物の置換もしくは無置換のn+1価の残基であり、
     Aは、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の環形成原子数5~30のヘテロアリール基、又はシアノ基であり、
     nは0~3の整数である。
     nが0のとき、(Aは水素である。)
  2.  前記式(1A)において、Aがベンゼンのn+1価の残基である場合、nは1以上の整数である、請求項1に記載の有機エレクトロルミネッセンス素子。
  3.  Aが表す環形成炭素数6~30の芳香族炭化水素の置換もしくは無置換のn+1価の残基において、該環形成炭素数6~30の芳香族炭化水素が、ベンゼン、ビフェニル、ターフェニル、ナフタレン、アントラセン、ベンゾアントラセン、フェナントレン、ベンゾフェナントレン、フェナレン、ピセン、ペンタフェン、ピレン、クリセン、ベンゾクリセン、フルオレン、フルオランテン、ペリレン、又はトリフェニルであり、
     Aが表す環形成原子数5~30の芳香族複素環化合物の置換もしくは無置換のn+1価の残基において、該環形成原子数5~30の芳香族複素環化合物が、ピロール、フラン、チオフェン、ピリジン、ピリダジン、ピリミジン、ピラジン、トリアジン、イミダゾール、オキサゾール、チアゾール、ピラゾール、イソオキサゾール、イソチアゾール、オキサジアゾール、チアジアゾール、トリアゾール、テトラゾール、インドール、イソインドール、ベンゾフラン、イソベンゾフラン、ベンゾチオフェン、イソベンゾチオフェン、インドリジン、キノリジン、キノリン、イソキノリン、シンノリン、フタラジニン、キナゾリン、キノキサリン、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、インダゾール、ベンズイソキサゾール、ベンズイソチアゾール、ジベンゾフラン、ジベンゾチオフェン、カルバゾール、フェナントリジン、アクリジン、フェナントロリン、フェナジン、フェノチアジン、フェノキサジン、キサンテン、又はベンゾニトリルである、請求項1又は2に記載の有機エレクトロルミネッセンス素子。
  4.  Aが表す環形成炭素数6~30の芳香族炭化水素の置換もしくは無置換のn+1価の残基において、該環形成炭素数6~30の芳香族炭化水素が、ベンゼン、ビフェニル、ナフタレン、又はフェナントレン、であり、
     Aが表す環形成原子数5~30の芳香族複素環化合物の置換もしくは無置換のn+1価の残基において、該環形成原子数5~30の芳香族複素環化合物が、ピリジン、ジベンゾフラン、ジベンゾチオフェン、カルバゾール、又はベンゾニトリルである、請求項1~3のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  5.  Aが表す置換もしくは無置換の環形成炭素数6~30のアリール基において、環形成炭素数6~30のアリール基が、ベンゼン、ビフェニル、ターフェニル、ナフタレン、アントラセン、ベンゾアントラセン、フェナントレン、ベンゾフェナントレン、フェナレン、ピセン、ペンタフェン、ピレン、クリセン、ベンゾクリセン、フルオレン、フルオランテン、ペリレン、又はトリフェニルの1価の残基であり、
     Aが表す置換もしくは無置換の環形成原子数5~30のヘテロアリール基において、環形成原子数5~30のヘテロアリール基が、ピロール、フラン、チオフェン、ピリジン、ピリダジン、ピリミジン、ピラジン、トリアジン、イミダゾール、オキサゾール、チアゾール、ピラゾール、イソオキサゾール、イソチアゾール、オキサジアゾール、チアジアゾール、トリアゾール、テトラゾール、インドール、イソインドール、ベンゾフラン、イソベンゾフラン、ベンゾチオフェン、イソベンゾチオフェン、インドリジン、キノリジン、キノリン、イソキノリン、シンノリン、フタラジニン、キナゾリン、キノキサリン、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、インダゾール、ベンズイソキサゾール、ベンズイソチアゾール、ジベンゾフラン、ジベンゾチオフェン、カルバゾール、フェナントリジン、アクリジン、フェナントロリン、フェナジン、フェノチアジン、フェノキサジン、キサンテン、又はベンゾニトリルの1価の残基である、請求項1~4のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  6.  Aが表す置換もしくは無置換の環形成炭素数6~30のアリール基において、環形成炭素数6~30のアリール基が、ベンゼン、ビフェニル、ナフタレン、又はフェナントレンの1価の残基であり、
     Aが表す置換もしくは無置換の環形成原子数5~30のヘテロアリール基において、環形成原子数5~30のヘテロアリール基が、ピリジン、ジベンゾフラン、ジベンゾチオフェン、カルバゾール、又はベンゾニトリルの1価の残基である、請求項1~5のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  7.  R~R24及びR31~R35が置換基である場合の置換基が、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30のアリール基、又は置換もしくは無置換の炭素数1~50のアルキル基であり、
     R~R24、R31~R35、A、及びAにおいて、「置換もしくは無置換」というときの任意の置換基は、それぞれ独立に、無置換の環形成炭素数6~30のアリール基、又は無置換の炭素数1~50のアルキル基である、請求項1~6のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  8.  R~R24及びR31~R35は水素原子であり、
     Aは、環形成炭素数6~30の芳香族炭化水素の無置換のn+1価の残基、又は環形成原子数5~30の芳香族複素環化合物の無置換のn+1価の残基であり、
     Aは、無置換の環形成炭素数6~30のアリール基、又は無置換の環形成原子数5~30のヘテロアリール基である、請求項1~7のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  9.  前記式(1A)で表される化合物が、下記式(2)で表される化合物である、請求項1~8のいずれか1項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000002

    (式中、
     R~R24及びR31~R35は、前記と同じであり、
     R41~R42は、それぞれ独立に、前記Rと同じであり、
     mは0又は1であり、
     mが0のときXは存在せず、2つのベンゼン環は架橋されず、
     mが1のときXはO又はSであり、
     pは0~5の整数であり、
     qは0~4の整数である。)
  10.  前記式(1A)で表される化合物が、下記式(3)で表される化合物である、請求項1~8に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000003

    (式中、
     R~R24及びR31~R35は、前記と同じであり、
     A及びnは、前記と同じであり、
     R43は、前記Rと同じであり、
     uは、0~(5-n)の整数である。)
  11.  前記式(1A)で表される化合物において、化合物中の水素原子のうちの少なくとも1つは重水素原子である、請求項1~10のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  12.  R~R24のすべてが重水素原子である、請求項1~11のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  13.  nは0であり、
     Aで表される基は無置換であり、
     Aで表される基が有する水素原子は、すべて重水素原子である、請求項1~12のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  14.  nは1であり、
     Aで表される基は無置換であり、
     Aで表される基が有する水素原子は、すべて重水素原子であり、
     Aで表される基は無置換であり、
     Aで表される基が有する水素原子は、すべて重水素原子である、請求項1~12のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  15.  前記第1の層が、前記発光層に隣接している、請求項1~14のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  16.  下記式(1)で表される化合物。
    Figure JPOXMLDOC01-appb-C000004

    (式中、
     R~R24は、それぞれ独立に、水素原子、または置換基であり、当該置換基は置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の環形成原子数5~30のヘテロアリール基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数5~50のシクロアルキル基、又はシアノ基であり、
     R31とR32、R32とR33、R33とR34、及びR34とR35の少なくとも1組は、それぞれ独立に、互いに結合して、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素環、置換もしくは無置換の環形成原子数5~30の複素環、又は置換もしくは無置換の環形成炭素数5~50の脂肪族炭化水素環を形成するか、又は、R31とR32、R32とR33、R33とR34、及びR34とR35は互いに結合して環を形成せず、互いに結合して環を形成しない場合、R31~R35は、それぞれ独立に、水素原子、または置換基であり、当該置換基は置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の環形成原子数5~30のヘテロアリール基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数5~50のシクロアルキル基、又はシアノ基であり、
     Aは、環形成炭素数6~30の芳香族炭化水素の置換もしくは無置換のn+1価の残基、又は環形成原子数5~30の芳香族複素環化合物の置換もしくは無置換のn+1価の残基であり、
     Aは、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の環形成原子数5~30のヘテロアリール基、又はシアノ基であり、
     nは0~3の整数であり、
     Aがベンゼンのn+1価の残基である場合、nは1以上の整数である。
     nが0のとき、(Aは水素である。)
  17.  Aが表す環形成炭素数6~30の芳香族炭化水素の置換もしくは無置換の1価もしくは2価の残基において、該環形成炭素数6~30の芳香族炭化水素が、ベンゼン、ビフェニル、ターフェニル、ナフタレン、アントラセン、ベンゾアントラセン、フェナントレン、ベンゾフェナントレン、フェナレン、ピセン、ペンタフェン、ピレン、クリセン、ベンゾクリセン、フルオレン、フルオランテン、ペリレン、又はトリフェニルであり、
     Aが表す環形成原子数5~30の芳香族複素環化合物の置換もしくは無置換の1価もしくは2価の残基において、該環形成原子数5~30の芳香族複素環化合物が、ピロール、フラン、チオフェン、ピリジン、ピリダジン、ピリミジン、ピラジン、トリアジン、イミダゾール、オキサゾール、チアゾール、ピラゾール、イソオキサゾール、イソチアゾール、オキサジアゾール、チアジアゾール、トリアゾール、テトラゾール、インドール、イソインドール、ベンゾフラン、イソベンゾフラン、ベンゾチオフェン、イソベンゾチオフェン、インドリジン、キノリジン、キノリン、イソキノリン、シンノリン、フタラジニン、キナゾリン、キノキサリン、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、インダゾール、ベンズイソキサゾール、ベンズイソチアゾール、ジベンゾフラン、ジベンゾチオフェン、カルバゾール、フェナントリジン、アクリジン、フェナントロリン、フェナジン、フェノチアジン、フェノキサジン、キサンテン、又はベンゾニトリルである、請求項16に記載の化合物。
  18.  Aが表す環形成炭素数6~30の芳香族炭化水素の置換もしくは無置換の1価もしくは2価の残基において、該環形成炭素数6~30の芳香族炭化水素が、ベンゼン、ビフェニル、ナフタレン、又はフェナントレンであり、
     Aが表す環形成原子数5~30の芳香族複素環化合物の置換もしくは無置換の1価もしくは2価の残基において、該環形成原子数5~30の芳香族複素環化合物が、ピリジン、ジベンゾフラン、ジベンゾチオフェン、カルバゾール、又はベンゾニトリルである、請求項16又は17に記載の化合物。
  19.  Aが表す置換もしくは無置換の環形成炭素数6~30のアリール基において、環形成炭素数6~30のアリール基が、ベンゼン、ビフェニル、ターフェニル、ナフタレン、アントラセン、ベンゾアントラセン、フェナントレン、ベンゾフェナントレン、フェナレン、ピセン、ペンタフェン、ピレン、クリセン、ベンゾクリセン、フルオレン、フルオランテン、ペリレン、又はトリフェニルの1価の残基であり、
     Aが表す置換もしくは無置換の環形成原子数5~30のヘテロアリール基において、環形成原子数5~30のヘテロアリール基が、ピロール、フラン、チオフェン、ピリジン、ピリダジン、ピリミジン、ピラジン、トリアジン、イミダゾール、オキサゾール、チアゾール、ピラゾール、イソオキサゾール、イソチアゾール、オキサジアゾール、チアジアゾール、トリアゾール、テトラゾール、インドール、イソインドール、ベンゾフラン、イソベンゾフラン、ベンゾチオフェン、イソベンゾチオフェン、インドリジン、キノリジン、キノリン、イソキノリン、シンノリン、フタラジニン、キナゾリン、キノキサリン、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、インダゾール、ベンズイソキサゾール、ベンズイソチアゾール、ジベンゾフラン、ジベンゾチオフェン、カルバゾール、フェナントリジン、アクリジン、フェナントロリン、フェナジン、フェノチアジン、フェノキサジン、キサンテン、又はベンゾニトリルの1価の残基である、請求項16~18のいずれか1項に記載の化合物。
  20.  Aが表す置換もしくは無置換の環形成炭素数6~30のアリール基において、環形成炭素数6~30のアリール基が、ベンゼン、ビフェニル、ナフタレン、又はフェナントレンの1価の残基であり、
     Aが表す置換もしくは無置換の環形成原子数5~30のヘテロアリール基において、環形成原子数5~30のヘテロアリール基が、ピリジン、ジベンゾフラン、ジベンゾチオフェン、カルバゾール、又はベンゾニトリルの1価の残基である、請求項16~19のいずれか1項に記載の化合物。
  21.  R~R24及びR31~R35が置換基である場合の置換基が、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30のアリール基、又は置換もしくは無置換の炭素数1~50のアルキル基であり、
     R~R24、R31~R35、A、及びAにおいて、「置換もしくは無置換」というときの任意の置換基は、それぞれ独立に、無置換の環形成炭素数6~30のアリール基、又は無置換の炭素数1~50のアルキル基である、請求項16~20のいずれか1項に記載の化合物。
  22.  R~R24及びR31~R35は水素原子であり、
     Aは、環形成炭素数6~30の芳香族炭化水素の無置換のn+1価の残基、又は環形成原子数5~30の芳香族複素環化合物の無置換のn+1価の残基であり、
     Aは、無置換の環形成炭素数6~30のアリール基、又は無置換の環形成原子数5~30のヘテロアリール基である、請求項16~21のいずれか1項に記載の化合物。
  23.  前記式(1)で表される化合物が、下記式(2)で表される化合物である、請求項16~22のいずれか1項に記載の化合物。
    Figure JPOXMLDOC01-appb-C000005

    (式中、
     R~R24及びR31~R35は、前記と同じであり、
     R41~R42は、それぞれ独立に、前記Rと同じであり、
     mは0又は1であり、
     mが0のときXは存在せず、2つのベンゼン環は架橋されず、
     mが1のときXはO又はSであり、
     pは0~5の整数であり、
     qは0~4の整数である。)
  24.  前記式(1)で表される化合物が、下記式(3)で表される化合物である、請求項16~22のいずれか1項に記載の化合物。
    Figure JPOXMLDOC01-appb-C000006

    (式中、
     R~R24及びR31~R35は、前記と同じであり、
     A及びnは、前記と同じであり、
     R43は、前記Rと同じであり、
     uは、0~(5-n)の整数である。)
  25.  前記式(1)で表される化合物において、化合物中の水素原子のうちの少なくとも1つは重水素原子である、請求項16~24のいずれか1項に記載の化合物。
  26.  R~R24のすべてが重水素原子である、請求項16~25のいずれか1項に記載の化合物。
  27.  nは0であり、
     Aで表される基は無置換であり、
     Aで表される基が有する水素原子は、すべて重水素原子である、請求項16~26のいずれか1項に記載の化合物。
  28.  nは1であり、
     Aで表される基は無置換であり、
     Aで表される基が有する水素原子は、すべて重水素原子であり、
     Aで表される基は無置換であり、
     Aで表される基が有する水素原子は、すべて重水素原子である、請求項16~26のいずれか1項に記載の化合物。
  29.  請求項16~28のいずれか1項に記載の化合物を含む有機エレクトロルミネッセンス素子用材料。
  30.  陽極、陰極、及び該陽極と該陰極の間に配置された有機層を有し、該有機層が発光層を含む有機エレクトロルミネッセンス素子であって、
     該有機層の少なくとも1層が請求項16~28のいずれか1項に記載の化合物を含む、有機エレクトロルミネッセンス素子。
  31.  請求項1~15及び30のいずれか1項に記載の有機エレクトロルミネッセンス素子を含む電子機器。
     
PCT/JP2019/034437 2018-09-07 2019-09-02 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び、電子機器 WO2020050217A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/273,563 US11903308B2 (en) 2018-09-07 2019-09-02 Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018168361 2018-09-07
JP2018-168361 2018-09-07
JP2019-061161 2019-03-27
JP2019061161 2019-03-27

Publications (1)

Publication Number Publication Date
WO2020050217A1 true WO2020050217A1 (ja) 2020-03-12

Family

ID=69723271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034437 WO2020050217A1 (ja) 2018-09-07 2019-09-02 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び、電子機器

Country Status (2)

Country Link
US (1) US11903308B2 (ja)
WO (1) WO2020050217A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020050127A1 (ja) * 2018-09-05 2020-03-12 国立大学法人九州大学 ベンゾニトリル誘導体、発光材料およびそれを用いた発光素子

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011049511A (ja) * 2009-07-31 2011-03-10 Fujifilm Corp 有機電界発光素子
JP2011071474A (ja) * 2009-07-31 2011-04-07 Fujifilm Corp 電荷輸送材料及び有機電界発光素子
JP2012019172A (ja) * 2010-07-09 2012-01-26 Fujifilm Corp 有機電界発光素子
JP2014216576A (ja) * 2013-04-26 2014-11-17 出光興産株式会社 有機エレクトロルミネッセンス素子および電子機器
WO2016181846A1 (ja) * 2015-05-08 2016-11-17 コニカミノルタ株式会社 π共役系化合物、有機エレクトロルミネッセンス素子材料、発光材料、発光性薄膜、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2018035129A (ja) * 2015-10-27 2018-03-08 国立大学法人山形大学 ピリミジン誘導体、それよりなる発光材料及びそれを用いた有機el素子

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3747827B2 (ja) 2001-09-12 2006-02-22 セイコーエプソン株式会社 画像形成装置
US8759818B2 (en) * 2009-02-27 2014-06-24 E I Du Pont De Nemours And Company Deuterated compounds for electronic applications

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011049511A (ja) * 2009-07-31 2011-03-10 Fujifilm Corp 有機電界発光素子
JP2011071474A (ja) * 2009-07-31 2011-04-07 Fujifilm Corp 電荷輸送材料及び有機電界発光素子
JP2012019172A (ja) * 2010-07-09 2012-01-26 Fujifilm Corp 有機電界発光素子
JP2014216576A (ja) * 2013-04-26 2014-11-17 出光興産株式会社 有機エレクトロルミネッセンス素子および電子機器
WO2016181846A1 (ja) * 2015-05-08 2016-11-17 コニカミノルタ株式会社 π共役系化合物、有機エレクトロルミネッセンス素子材料、発光材料、発光性薄膜、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2018035129A (ja) * 2015-10-27 2018-03-08 国立大学法人山形大学 ピリミジン誘導体、それよりなる発光材料及びそれを用いた有機el素子

Also Published As

Publication number Publication date
US11903308B2 (en) 2024-02-13
US20210359217A1 (en) 2021-11-18

Similar Documents

Publication Publication Date Title
JP6454226B2 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
WO2018164265A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
JP7155249B2 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
JPWO2019027040A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
WO2017022730A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
KR20210077690A (ko) 유기 일렉트로루미네센스 소자 및 전자 기기
WO2019198806A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び、電子機器
WO2019216411A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
WO2017022727A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
WO2020096001A1 (ja) 化合物及びそれを用いた有機エレクトロルミネッセンス素子
JP2018108939A (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
WO2021033730A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2016204151A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
JP2018108941A (ja) 化合物、これを用いた有機エレクトロルミネッセンス素子用材料、及びこれを用いた有機エレクトロルミネッセンス素子並びに電子機器
WO2016056640A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
WO2020050217A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び、電子機器
KR20220120560A (ko) 화합물, 유기 전기발광 소자용 재료, 유기 전기발광 소자 및 전자 기기
JP2020043182A (ja) 有機エレクトロルミネッセンス素子及び電子機器
JP7411122B2 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
JP2019199442A (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び、電子機器
JP7351039B2 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2022210821A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2023228828A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2023199960A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2022163735A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19856814

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19856814

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP