JP4498178B2 - 電子写真感光体、製造方法、電子写真装置 - Google Patents

電子写真感光体、製造方法、電子写真装置 Download PDF

Info

Publication number
JP4498178B2
JP4498178B2 JP2005074349A JP2005074349A JP4498178B2 JP 4498178 B2 JP4498178 B2 JP 4498178B2 JP 2005074349 A JP2005074349 A JP 2005074349A JP 2005074349 A JP2005074349 A JP 2005074349A JP 4498178 B2 JP4498178 B2 JP 4498178B2
Authority
JP
Japan
Prior art keywords
layer
charge transport
group
photoreceptor
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005074349A
Other languages
English (en)
Other versions
JP2006259030A (ja
Inventor
英利 紙
宏 永目
鋭司 栗本
麻衣子 近藤
直博 戸田
顕洋 杉野
良一 北嶋
成人 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2005074349A priority Critical patent/JP4498178B2/ja
Publication of JP2006259030A publication Critical patent/JP2006259030A/ja
Application granted granted Critical
Publication of JP4498178B2 publication Critical patent/JP4498178B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Description

本発明は複写機、ファクシミリ、レーザープリンタ、ダイレクトデジタル製版機等の電子写真装置および電子写真用プロセスカートリッジに使用される電子写真感光体およびその製造方法に関する。
複写機、レーザープリンタなどに応用される電子写真装置で使用される電子写真感光体は、セレン、酸化亜鉛、硫化カドミウム等の無機感光体が主流であった時代から、現在では、地球環境への負荷低減、低コスト化、および設計自由度の高さで無機感光体よりも有利な有機感光体(OPC)が広く利用されるようになっている。
この有機感光体は層構成別に分類することができ、例えば、(1)ポリビニルカルバゾ−ル(PVK)に代表される光導電性樹脂やPVK−TNF(2,4,7−トリニトロフルオレノン)に代表される電荷移動錯体を導電性支持体上に設ける均質単層型、(2)フタロシアニンやペリレンなどの顔料を樹脂中に分散させたものを導電性支持体上に設ける分散単層型、(3)導電性支持体上に設ける感光層を、アゾ顔料などの電荷発生物質を含有する電荷発生層(CGL)と、トリフェニルアミンなどの電荷輸送物質を含有する電荷輸送層(CTL)に機能分離した積層型に分類することができる。
積層型の場合、電荷発生層の上に電荷輸送層を設ける構造と、これと逆の構造があり、前者が一般的で後者を特に逆層と呼ぶ場合がある。特に積層型は高感度化に有利であり、加えて、高感度化や高耐久化に対する設計上の自由度が高いこともあって、現在、有機感光体の多くがこの層構成を採っている。
近年、地球環境保全に配慮したモノづくりの重要度が急激に増加している。そこで、地球環境保全の貢献を考慮して、感光体のライフサイクル(原材料の製造、輸送から廃品処理にいたる全ての過程)を見直すと、感光体はサプライ製品(使い捨てされる製品)から機械部品へ転換することが重要となる。この対応として、感光体自体の設計および使いこなし面から、感光体の摩耗や創傷を抑制することが必要となる。同時に、感光体周りの感光体接触部材へ与えるダメージも少なくすることができれば、作像エンジンの経時劣化を抑制することが可能となり、結果、部品の交換頻度や装置自体の買い換えを抑制し、省資源化や大気汚染防止などの環境負荷低減に貢献することができる。
有機系感光体の耐摩耗性向上に対して、たとえば特許文献1に記載のごとく電荷輸送物質をポリカーボネート等の熱可塑性樹脂中に共重合させる手段が開示されている。
この手段によれば表面層に配合する低分子化合物の含有量を減量化することが可能になる。感光体の表面層に含有する低分子化合物は多くが剛性可塑剤(antiplasticizer)として作用するため、これを減量することで樹脂本来のフレキシビリティーが発現される。これにより機械的負荷に対する耐性を向上させることができる。加えて、樹脂自体に高度な電荷輸送性を具備することが可能であることから静電特性面のパフォーマンスも確保できるメリットを奏する。
しながら、この手段を適用する感光体は材料の共重合化における製造コストが割高となることから現在、実用化が困難な状況にある。
別の手段として、たとえば特許文献2に記載のごとく、電荷輸送層を機能分離し、表面側の電荷輸送層に高硬度フィラーを配合する手段が提案されている。
この手段によれば比較的低コストで機械的耐久性と電気的な負荷に対する耐性を有機感光体に付与することができる。
しかしながら、この手段を適用する感光体は電子写真プロセスにおけるクリーニング工程が不都合或いはクリーニングが不充分となるケースがある。加えて、高硬度フィラーを高度に配合する構成や高硬度フィラーが配合する電荷輸送層を厚膜化する構成を採る場合、感光体の感度特性面で劣化を来たしてしまうことから電子写真装置の設計自由度に制約を与えてしまうことがある。
他に有機系感光体と比較して無機系感光体であるアモルファスシリコン感光体は機械的強度に極めて優れる性状を示す。
しかしながら、誘電率が低いため帯電能に劣ること、画像ボケを抑制する目的でドラムヒーターを併用する必要のあるケースが多いため、電子写真装置の低消費電力化に不利となる欠点が指摘される。また製造コストも割高であり、以上を総じてアモルファスシリコン感光体を搭載する電子写真装置は一般にコストの高い製品となる。このため市場提供できる対象がごく一部に制約されてしまい、広く一般に市場提供することのできない欠点をもつ。
また、感光体の耐傷性向上に対する方策も十分とは言えない。感光体表面に傷が印加されると、この部位に異常画像を伴いやすく、また、クリーニング不良の原因ともなるため、感光体のロングライフ化を図るためには、耐傷性を向上する必要がある。
この方策の一つとして、耐摩耗性を向上させことで、ある程度、耐傷性を向上することができる。例えば、熱硬化オルガノシランなどの硬い膜を感光体表面層材料に用いた場合、創傷に対する余裕度が向上する。
金属等の表面に酸化物のコーティング膜を形成する技術としては、例えばケイフッ酸HSiFを使用した液浸法や、ゾル−ゲル法等が用いられている。ゾル−ゲル法には、金属の塩からコロイド状のゾルをつくってガラスにする方法と、例えば、金属アルコキシド等の有機金属化合物を加水分解してガラスとする二通りの方法がある。後者の方法は、一例として、金属アルコキシドのトリエトキシシランを、エチルアルコールと水に混合して加水分解して透明なゲルを得、アルコール、水を蒸発して収縮固化させる。得られた固化体を高温で熱処理してシリカガラスを得る技術である。
しかしながら、従来の技術はいずれも高温の熱処理工程を必要とする。有機金属化合物を加水分解するゾル−ゲル法においても、最終的に完全脱水するためには、1,100℃以上の加熱処理が必要で、その際の体積収縮も無視できない。
このような熱硬化オルガノシランを保護層に用いる感光体は幾つも提案されてきたが、体積収縮によるコーティング膜のひび割れを生ずることが極めて多く、製造工程における莫大な工夫を加えなければ製造できない事態となる。特にシリカ系熱架橋樹脂中に熱硬化性の電荷輸送成分を導入した場合、この傾向が顕著となる。
電子写真感光体の表面層をかかる温度まで加熱することは不可能であることと、ひび割れを予防するため、熱硬化膜は硬化不良を残した状態となる。このため、未反応サイトが残存し、この部位に水分が吸着する結果、画像流れを伴い易い課題を抱えていた。
特開平11−288113号公報 特開2002−229227号公報
本発明の課題は、感光体表面に単一または多成分系金属酸化物ガラス膜を成膜する際に生じるひび割れを防止し、更にこの膜を200℃以下の低温で加熱硬化しても画像ボケの生じない耐摩耗性に優れる電子写真感光体を提供することである。
上記の課題を解決するために、本発明による感光体最表面層に用いる単一または多成分系金属酸化物ガラス膜の製造方法は、以下の構成としたものである。即ち、加水分解可能な有機金属化合物を、水と有機溶媒とからなる反応液中において、ホウ素イオンの存在下にハロゲンイオンを触媒とし、pHを4.5〜5.0に調整しながら加水分解、脱水縮合させた後、反応生成物を基材表面に塗布し、200℃以下の温度でガラス化させることを特徴とする。
したがって、上記課題は、本発明の(1)「導電性支持体上に直接または下引き層を介して電荷発生層と電荷輸送層が形成された感光層に更に感光体最表面層を積層してなる電子写真感光体において、該感光体表面層は加水分解可能な有機金属化合物を、水と有機溶媒とからなる反応液中において、加水分解、脱水縮合させた後、反応生成物を基材表面に塗布し、200℃以下の温度でガラス化させた単一または多成分系金属酸化物ガラス膜であることを特徴とする電子写真感光体」、(2)「前記感光体最表面層の前記金属酸化物ガラス膜は、ポリグリシジルエーテル系硬化剤を用い、200℃以下の温度で形成されたものであることを特徴とする前記第(1)項に記載の電子写真感光体」、(3)「感光体最表面層に、下記構造の電荷輸送成分が含有されることを特徴とする前記第(1)項又は(2)項に記載の電子写真感光体;
Figure 0004498178

,Rは置換もしくは無置換のアリール基を表わす。R,Rは同一であっても異なってもよい。
また、Ar,ArおよびArで示されるアリレン基は、RおよびRと同様のアリール基からの2価基であり、同一であっても異なってもよい。」によって解決される。
また、上記課題は、本発明の(4)「導電性支持体上に直接または下引き層を介して電荷発生層と電荷輸送層が形成された感光層に更に感光体最表面層を積層してなる電子写真感光体の製造方法であって、該感光体表面層を、加水分解可能な有機金属化合物を水と有機溶媒とからなる反応液中において、加水分解、脱水縮合させた後、反応生成物を基材表面に塗布し、200℃以下の温度で単一または多成分系金属酸化物ガラス膜にガラス化させて形成する工程を含むことを特徴とする電子写真感光体の製造方法」、(5)「前記金属酸化物ガラス膜にガラス化させる工程が、ポリグリシジルエーテル系硬化剤を用い、200℃以下の温度で感光体最表面層ガラス膜を形成する工程であることを特徴とする前記第(4)項に記載の電子写真感光体の製造方法」、(6)「感光体最表面層に、下記構造の電荷輸送成分が含有されることを特徴とする前記第(4)項又は(5)項に記載の電子写真感光体の製造方法;
Figure 0004498178

,Rは置換もしくは無置換のアリール基を表わす。R,Rは同一であっても異なってもよい。
また、Ar,ArおよびArで示されるアリレン基は、RおよびRと同様のアリール基からの2価基であり、同一であっても異なってもよい。」、(7)「感光体最表面層の塗工液の主溶媒に炭素数1から5のアルコールを用いることを特徴とする前記第(4)項乃至(6)項のいずれかに記載の電子写真感光体の製造方法」によって解決される。
また、上記課題は、本発明の(8)「前記第(1)項乃至第(3)項のいずれかに記載の電子写真感光体と、帯電手段、露光手段、現像手段、転写手段、クリーニング手段のうちの少なくとも1つの手段とを有し、画像形成装置に着脱可能であることを特徴とするプロセスカートリッジ」、(9)「前記第(1)項乃至第(3)項のいずれかに記載の電子写真感光体を有することを特徴とする画像形成装置」によって解決される。
本発明の電子写真感光体は耐摩耗性に優れるのみならず、感光体表面の創傷を未然に防止する極めて優れた性状を示す。また、本発明の感光体は高耐久であるのみならず、メンテナンス性に優れた実用的価値に優れたものである。
本発明の方法において原料として用いられる有機金属化合物は、加水分解が可能なものであればよく、特に限定されない。好ましい有機金属化合物は金属アルコキシドであり、M(R12(OR11n−mなる一般式で表わされる。
式中Mは酸化数nの金属、R11およびR12はアルキル基、mは0〜(n−1)の整数を表わす。R11およびR12は同一でもよく、異なる基でもよい。なかでも好ましいのは、R11およびR12が炭素原子4個以下のアルキル基、即ちメチル基、エチル基、プロピル基、イソピロピル基、ブチル基、イソブチル基等の低級アルキル基が好適に用いられる。
金属アルコキシドとしては、例えば、リチウムエトキシド、ニオブエトキシド、マグネシウムイソプロポキシド、アルミニウムイソプロポキシド、亜鉛プロポキシド、テトラエトキシシラン、チタンイソプロポキシド、バリウムエトキシド、バリウムイソプロポキシド、トリエトキシボラン、ジルコニウムプロポキシド、ランタンプロポキシド、イットリウムプロポキシド、鉛イソプロポキシド等が挙げられる。これらの金属アルコキシドは何れも市販品があり、容易に入手することができる。金属アルコキシドはまた、部分的に加水分解して得られる低縮合物も市販されており、これを原料として使用することも可能である。
本発明において、上記の加水分解が可能な有機金属化合物はそのまま反応に用いてもよいが、反応の制御を容易にするため溶媒で希釈して用いることが望ましい。希釈溶媒は、上記の有機金属化合物を溶解することができ、かつ水と均一に混合することができるものであればよい。一般には脂肪族の低級アルコール、例えばメタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、エチレングリコール、プロピレングリコールおよびそれらの混合物等が好適に用いられる。また、ブタノールとセロソルブおよびブチルセロソルブ、あるいはキシロールとセロソルブアセテートとメチルイソブチルケトンおよびシクロヘキサン等の混合溶媒を使用することもできる。
前記有機金属化合物の中で金属がCa、Mg、Al等である場合には、反応液中の水と反応して水酸化物を生成したり、炭酸イオンCO 2−が存在すると炭酸塩を生成して沈澱を生ずるため、隠蔽剤としてトリエタノールアミンのアルコール溶液を添加することが望ましい。溶媒に混合溶解するときの有機金属化合物の濃度は、通常70(重量)%以下、特に5〜70wt%の範囲に希釈して使用することが望ましい。
本発明の方法において使用する反応液は、一般に水と有機溶媒とからなる。反応液に用いる有機溶媒としては、水および酸、アルカリと均一な溶液をつくるものであればよく、通常前記有機金属化合物の希釈に用いる脂肪族の低級アルコール類が好適である。低級アルコール類のなかでも、メタノール、エタノールより炭素数の多いプロパノール、イソプロパノール、ブタノールおよびイソブタノールが好ましい。これは、生成する金属酸化物ガラスの膜および球体微粒子の成長が安定であるためである。反応液を構成する水と有機溶媒の割合は、水の濃度として0.2〜50モル/リットルの範囲であればよい。
本発明の方法は、前記反応液中において、ホウ素イオンの存在下に、ハロゲンイオンを触媒として有機金属化合物を加水分解することを特徴とする。ホウ素イオンを与える化合物としては、トリアルコキシボランが用いられる。なかでもトリエトキシボランは好適である。反応液中のB3+イオン濃度は1.0〜10.0モル/リットルの範囲が好ましい。また、ハロゲンイオンはFおよびClもしくはこれらの混合物が用いられる。
用いる化合物としては、上記反応液中でFイオンおよびClイオンを生ずるものであればよく、例えばFイオン源にはフッ化水素アンモニウム、フッ化ナトリウム等、Clイオン源は塩化アンモニウム等が好適である。
反応液中の上記ハロゲンイオンの濃度は、製造しようとする金属酸化物ガラスの膜厚ないしは球体微粒子の径その他の条件によって異なるため、範囲限定が難しい。一般的には、触媒を含む反応液の合計重量に対して0.001〜2モル/kg、特に0.002〜0.3モル/kgの範囲が好ましい。ハロゲンイオンの濃度が0.001モル/kgより低いと、有機金属化合物の加水分解が十分に進行し難くなり、金属酸化物ガラスの球体粒子の生長が抑制され、また膜の形成が困難となる。またハロゲンイオンの濃度が2モル/kgを越えると、生成する金属酸化物ガラスが不均一になり易いためいずれも好ましくない。
なお、反応時に使用したホウ素に関しては、得られる金属酸化物の組成中にB成分として含有させる場合は、その含有量に応じた有機ホウ素化合物の計算量を添加したまま生成物とすればよく、またホウ素を除去したいときは、成膜後もしくは微粒子形成後、溶媒としてのメタノールの存在下、又はメタノールに浸漬して加熱すればホウ素はホウ素メチルエステルとして蒸発させて除去することができる。
有機金属化合物の加水分解反応は、通常所定量の有機金属化合物を所定量の水と有機溶媒との混合溶媒に混合溶解した主剤溶液と、所定量のハロゲンイオンを含有する所定量の反応液とを、所定の比で混合し十分に攪拌して均一な反応溶液とした後、酸またはアルカリで反応溶液のpHを希望の値に調整し、数時間熟成させる。ホウ素化合物は主剤溶液または反応液に予め所定量を混合溶解しておく。アルコキシボランを用いる場合は、他の有機金属化合物と共に主剤溶液に溶解するのが有利である。
反応溶液のpHは、目的によって選択しなければならない。即ち、金属酸化物ガラスの膜を目的とするときは、例えば塩酸等の酸を用いてpHを4.5〜5の範囲に調整して熟成させる。この場合は、例えば、指示薬としてメチルレッド+ブロモクレゾールグリーン等を用いると便利である。膜の形成は、熟成後の反応溶液をそのまま、または必要ならば適当な増粘剤を加えて基材表面に塗布し、200℃以下の温度に加熱して乾燥し、ガラス化させる。加熱に当たっては、特に50〜70℃の温度区間を注意して徐々に昇温して予備乾燥(溶媒揮散)工程を経た後さらに昇温する。この乾燥は特に無孔化膜の形成に重要である。
また、本発明の方法は、膜、粒子共に同一成分の同一濃度の主剤溶液および反応液(B3+およびハロゲンイオンを含む)を所定のpHに調整しながら逐次同一割合で追加添加することにより簡単に継続して製造することもできる。なお、上記した反応溶液の濃度は±50重量%の範囲で、水(酸またはアルカリを含む)の濃度は、±30重量%の範囲で、およびハロゲンイオンの濃度は±30重量%の範囲で変化させることができる。
感光体の感度特性を確保するために、感光体最表面層へ電荷輸送成分を含有させる場合、電荷輸送能に優れるα−フェニルスチルベン骨格を有する化合物を用いることが有効である。
特に以下の一般式に示す化合物は熱硬化性樹脂単量体との反応性に優れ、且つ、感度特性面でも良好な性能を示すものが多く有用といえる。
Figure 0004498178

,Rは置換もしくは無置換のアリール基を表わす。R、Rは同一であっても異なってもよい。
また、Ar,ArおよびArで示されるアリレン基は、RおよびRと同様のアリール基からの2価基であり、同一であっても異なってもよい。
,Rは置換もしくは無置換のアリール基を表わすが、その具体例としては以下のものを挙げることができ、同一であっても異なってもよい。
芳香族炭化水素基としては、フェニル基、縮合多環基としてナフチル基、ピレニル基、2−フルオレニル基、9,9−ジメチル−2−フルオレニル基、アズレニル基、アントリル基、トリフェニレニル基、クリセニル基、フルオレニリデンフェニル基、5H−ジベンゾ[a,d]シクロヘプテニリデンフェニル基、非縮合多環基としてビフェニリル基、ターフェニリル基、または、
Figure 0004498178
ここで、Wは−O−,−S−,−SO−,−SO−,−CO−及び以下の2価基を表わす。
Figure 0004498178
で表わされる。
複素環基としては、チエニル基、ベンゾチエニル基、フリル基、ベンゾフラニル基、カルバゾリル基などが挙げられる。
また、Ar,ArおよびArで示されるアリレン基は、RおよびRと同様のアリール基からの2価基であり、同一であっても異なってもよい。
上述のアリール基及びアリレン基は以下に示す基を置換基として有してもよい。また、上記一般式中のR106,R107,R108は、これら置換基と同じ意味を表わす。
(1)ハロゲン原子、トリフルオロメチル基、シアノ基、ニトロ基。
(2)アルキル基としては、好ましくはC1〜C12、とりわけC1〜C18、さらに好ましくはC1〜C4の直鎖または分岐鎖のアルキル基であり、これらのアルキル基はさらにフッ素原子、水酸基、シアノ基、C1〜C4のアルコキシ基、フェニル基、又はハロゲン原子、C1〜C4のアルキル基もしくはC1〜C4のアルコキシ基で置換されたフェニル基を含有しても良い。
具体的には、メチル基、エチル基、n−プロピル基、i−プロピル基、t−ブチル基、s−ブチル基、n−ブチル基、i−ブチル基、トリフルオロメチル基、2−ヒドロキシエチル基、2−シアノエチル基、2−エトキシエチル基、2−メトキシエチル基、ベンジル基、4−クロロベンジル基、4−メチルベンジル基、4−メトキシベンジル基、4−フェニルベンジル基などが挙げられる。
(3)アルコキシ基(−OR109)として、具体的には、メトキシ基、エトキシ基、n−プロポキシ基、i−プロポキシ基、t−ブトキシ基、n−ブトキシ基、s−ブトキシ基、i−ブトキシ基、2−ヒドロキシエトキシ基、2−シアノエトキシ基、ベンジルオキシ基、4−メチルベンジルオキシ基、トリフルオロメトキシ基などが挙げられる。
(4)アリールオキシ基としては、アリールオキシ基のアリール基部分としてフェニル基、ナフチル基を含むものが挙げられる。これは、C1〜C4のアルコキシ基、C1〜C4のアルキル基またはハロゲン原子を置換基として含有しても良い。具体的には、フェノキシ基、1−ナフチルオキシ基、2−ナフチルオキシ基、4−メチルフェノキシ基、4−メトキシフェノキシ基、4−クロロフェノキシ基、6−メチル−2−ナフチルオキシ基などが挙げられる。
(5)置換メルカプト基またはアリールメルカプト基としては、具体的にはメチルチオ基、エチルチオ基、フェニルチオ基、p−メチルフェニルチオ基などが挙げられる。
(6)
Figure 0004498178
式中、R110及びR111は各々独立にアルキル基またはアリール基を表わし、アリール基としては例えばフェニル基、ビフェニル基、またはナフチル基が挙げられ、これらはC1〜C4のアルコキシ基、C1〜C4のアルキル基またはハロゲン原子を置換基として含有しても良い。またアリール基上の炭素原子と共同で環を形成しても良い。具体的には、ジエチルアミノ基、N−メチル−N−フェニルアミノ基、N,N−ジフェニルアミノ基、N,N−ジ(p−トリル)アミノ基、ジベンジルアミノ基、ピペリジノ基、モルホリノ基、ユロリジル基などが挙げられる。
(7)メチレンジオキシ基、またはメチレンジチオ基などのアルキレンジオキシ基またはアルキレンジチオ基、などが挙げられる。
前記一般式の化合物はアルコール類やセロソルブ類などの溶媒に溶解し易く、これらの溶媒を用いて成膜すると、クリヤーで均一な成膜がし易く有用である。
以下、図面に沿って本発明で用いられる画像形成装置を説明する。
図1は、本発明の画像形成装置を説明するための概略図であり、後述するような変形例も本発明の範疇に属するものである。
図1において、感光体(11)は、少なくとも電荷発生物質と電荷輸送物質とを含有し、且つ、感光体表面に感光体最表面層が積層される電子写真感光体である。感光体(11)はドラム状の形状を示しているが、シート状、エンドレスベルト状のものであっても良い。
帯電手段(12)は、コロトロン、スコロトロン、固体帯電器(ソリッド・ステート・チャージャー)、帯電ローラーを始めとする公知の手段が用いられる。帯電手段(12)は、消費電力の低減の観点から、感光体に対し接触もしくは近接配置したものが良好に用いられる。中でも、帯電手段への汚染を防止するため、感光体と帯電手段表面の間に適度な空隙を有する感光体近傍に近接配置された帯電機構が望ましい。転写手段(16)には、一般に上記の帯電器を使用できるが、転写チャージャーと分離チャージャーを併用したものが効果的である。
露光手段(13)、除電手段(1A)等に用いられる光源には、蛍光灯、タングステンランプ、ハロゲンランプ、水銀灯、ナトリウム灯、発光ダイオード(LED)、半導体レーザー(LD)、エレクトロルミネッセンス(EL)などの発光物全般を挙げることができる。そして、所望の波長域の光のみを照射するために、シャープカットフィルター、バンドパスフィルター、近赤外カットフィルター、ダイクロイックフィルター、干渉フィルター、色温度変換フィルターなどの各種フィルターを用いることもできる。
現像手段(14)により感光体上に現像されたトナー(15)は、受像媒体(18)に転写されるが、全部が転写されるわけではなく、感光体上に残存するトナーも生ずる。このようなトナーは、クリーニング手段(17)により、感光体より除去される。クリーニング手段(17)は、ゴム製のクリーニングブレードやファーブラシ、マグファーブラシ等のブラシ等を用いることができる。
電子写真感光体に正(負)帯電を施し、画像露光を行なうと、感光体表面上には正(負)の静電潜像が形成される。これを負(正)極性のトナー(検電微粒子)で現像すれば、ポジ画像が得られるし、また正(負)極性のトナーで現像すれば、ネガ画像が得られる。かかる現像手段には、公知の方法が適用され、また、除電手段にも公知の方法が用いられる。
図2には、本発明による電子写真プロセスの別の例を示す。
図2において、感光体(11)は、少なくとも電荷発生物質と電荷輸送物質とを含有し、且つ、感光体表面に感光体最表面層が積層されることを特徴とする電子写真感光体である。感光体(11)はベルト状の形状を示しているが、ドラム状、シート状、エンドレスベルト状のものであっても良い。感光体(11)は駆動手段(1C)により駆動され、帯電手段(12)による帯電、露光手段(13)による像露光、現像(図示せず)、転写手段(16)による転写、クリーニング前露光手段(1B)によるクリーニング前露光、クリーニング手段(17)によるクリーニング、除電手段(1A)による除電が繰返し行なわれる。図2においては、感光体(11)(この場合は支持体が透光性である)の支持体側よりクリーニング前露光の光照射が行なわれる。
以上の電子写真プロセスは、本発明における実施形態を例示するものであって、もちろん他の実施形態も可能である。例えば、図2において支持体側よりクリーニング前露光を行っているが、これは感光層側から行なってもよいし、また、像露光、除電光の照射を支持体側から行なってもよい。一方、光照射工程は、像露光、クリーニング前露光、除電露光が図示されているが、他に転写前露光、像露光のプレ露光、およびその他公知の光照射工程を設けて、感光体に光照射を行なうこともできる。
また、以上に示すような画像形成手段は、複写機、ファクシミリ、プリンター内に固定して組み込まれていてもよいが、プロセスカートリッジの形でそれら装置内に組み込まれてもよい。本発明におけるプロセスカートリッジとは、感光体とスプレッディング部材を内蔵し、他に帯電手段、露光手段、現像手段、転写手段、クリーニング手段、除電手段を含んだ1つの装置(部品)である。プロセスカートリッジの形状は多く挙げられるが、一般的な例として、図3に示すものが挙げられる。感光体(11)はドラム状の形状を示しているが、シート状、エンドレスベルト状のものであっても良い。
図4には本発明による電子写真装置の別の例を示す。この電子写真装置では、感光体(11)の周囲に帯電手段(12)、露光手段(13)、ブラック(Bk)、シアン(C)、マゼンタ(M)、およびイエロー(Y)の各色トナー毎の現像手段(14Bk),(14C),(14M),(14Y)、中間転写体である中間転写ベルト(1F)、クリーニング手段(17)が順に配置されている。ここで、図中に示す「Bk」、「C」、「M」、「Y」の添字は上記のトナーの色に対応し、必要に応じて添字を付けたり適宜省略する。感光体(11)は、少なくとも電荷発生物質と電荷輸送物質とを含有し、且つ、感光体表面に感光体最表面層が積層されることを特徴とする電子写真感光体である。各色の現像手段(14Bk),(14C),(14M),(14Y)は各々独立に制御可能となっており、画像形成を行なう色の現像手段のみが駆動される。感光体(11)上に形成されたトナー像は中間転写ベルト(1F)の内側に配置された第1の転写手段(1D)により、中間転写ベルト(1F)上に転写される。第1の転写手段(1D)は感光体(11)に対して接離可能に配置されており、転写動作時のみ中間転写ベルト(1F)を感光体(11)に当接させる。各色の画像形成を順次行い、中間転写ベルト(1F)上で重ね合わされたトナー像は第2の転写手段(1E)により、受像媒体(18)に一括転写された後、定着手段(19)により定着されて画像が形成される。第2の転写手段(1E)も中間転写ベルト(1F)に対して接離可能に配置され、転写動作時のみ中間転写ベルト(1F)に当接する。
転写ドラム方式の電子写真装置では、転写ドラムに静電吸着させた転写材に各色のトナー像を順次転写するため、厚紙にはプリントできないという転写材の制限があるのに対し、図4に示すような中間転写方式の電子写真装置では中間転写体(1F)上で各色のトナー像を重ね合わせるため、転写材の制限を受けないという特長がある。このような中間転写方式は図4に示す装置に限らず、前述の図1、図2、図3および後述する図5(具体例を図6に記す。)に記す電子写真装置に適用することができる。
図5には本発明による電子写真装置の別の例を示す。
この電子写真装置は、トナーとしてイエロー(Y)、マゼンタ(M)、シアン(C)、ブラック(Bk)の4色を用いるタイプとされ、各色毎に画像形成部が配設されている。また、各色毎の感光体(11Y),(11M),(11C),(11Bk)が設けられている。この電子写真装置に用いられる感光体(11)は、少なくとも電荷発生物質と電荷輸送物質とを含有し、且つ、感光体表面に感光体最表面層が積層されることを特徴とする電子写真感光体である。各感光体(11Y),(11M),(11C),(11Bk)の周りには、帯電手段(12)、露光手段(13)、現像手段(14)、クリーニング手段(17)等が配設されている。また、直線上に配設された各感光体(11Y),(11M),(11C),(11Bk)の各転写位置に接離する転写材担持体としての搬送転写ベルト(1G)が駆動手段(1C)にて掛け渡されている。この搬送転写ベルト(1G)を挟んで各感光体(11Y),(11M),(11C),(11Bk)に対向する転写位置には転写手段(16)が配設されている。
図5の形態のようなタンデム方式の電子写真装置は、各色毎に感光体(11Y),(11M),(11C),(11Bk)を持ち、各色のトナー像を搬送転写ベルト(1G)に保持された受像媒体(18)に順次転写するため、感光体を一つしか持たないフルカラー画像形成装置に比べ、はるかに高速のフルカラー画像の出力が可能となる。
以下、図面を参照しつつ本発明の電子写真感光体について詳細に説明する。
図7は本発明の更に別の層構成を有する電子写真感光体の一例を模式的に示す断面図であり、導電性支持体(21)上に電荷発生層(25)と電荷輸送層(26)と感光体最表面層(28)が設けられている。
図8は本発明の更に別の層構成を有する電子写真感光体の一例を模式的に示す断面図であり、導電性支持体(21)と電荷発生層(25)の間に下引き層(24)が設けられ、電荷発生層(25)の上に電荷輸送層(26)と感光体最表面層(28)が設けられている。
導電性支持体(21)としては、体積抵抗1010Ω・cm以下の導電性を示すもの、例えばアルミニウム、ニッケル、クロム、ニクロム、銅、銀、金、白金、鉄などの金属、酸化スズ、酸化インジウムなどの酸化物を、蒸着又はスパッタリングによりフィルム状又は円筒状のプラスチック、紙などに被覆したもの、或いはアルミニウム、アルミニウム合金、ニッケル、ステンレスなどの板、及び、それらを、Drawing Ironing法、Impact Ironing法、Extruded Ironing法、Extruded Drawing法、切削法等の工法により素管化後、切削、超仕上げ、研磨などにより表面処理した管などを使用することができる。
本発明における感光層は、電荷発生層と電荷輸送層を順次積層させた積層型感光層が好適である。
積層型感光体における各層のうち、はじめに、電荷発生層(25)について説明する。電荷発生層は、積層型感光層の一部を指し、露光によって電荷を発生する機能をもつ。この層は含有される化合物のうち、電荷発生物質を主成分とする。電荷発生層は必要に応じてバインダー樹脂を用いることもある。電荷発生物質としては、無機系材料と有機系材料を用いることができる。
無機系材料としては、結晶セレン、アモルファス・セレン、セレン−テルル、セレン−テルル−ハロゲン、セレン−ヒ素化合物や、アモルファスシリコンなどが挙げられる。アモルファスシリコンにおいては、ダングリングボンドを水素原子又はハロゲン原子でターミネートしたものや、ホウ素原子、リン原子などをドープしたものが好ましく用いられる。
一方、有機系材料としては、公知の材料を用いることができ、例えば、チタニルフタロシアニン、クロロガリウムフタロシアニンなどの金属フタロシアニン、無金属フタロシアニン、アズレニウム塩顔料、スクエアリック酸メチン顔料、カルバゾール骨格を有する対称型若しくは非対称型のアゾ顔料、トリフェニルアミン骨格を有する対称型若しくは非対称型のアゾ顔料、ジフェニルアミン骨格を有する対称型若しくは非対称型のアゾ顔料、ジベンゾチオフェン骨格を有する対称型若しくは非対称型のアゾ顔料、フルオレノン骨格を有する対称型若しくは非対称型のアゾ顔料、オキサジアゾール骨格を有する対称型若しくは非対称型のアゾ顔料、ビススチルベン骨格を有する対称型若しくは非対称型のアゾ顔料、ジスチリルオキサジアゾール骨格を有する対称型若しくは非対称型のアゾ顔料、ジスチリルカルバゾール骨格を有する対称型若しくは非対称型のアゾ顔料、ペリレン系顔料、アントラキノン系又は多環キノン系顔料、キノンイミン系顔料、ジフェニルメタン及びトリフェニルメタン系顔料、ベンゾキノン及びナフトキノン系顔料、シアニン及びアゾメチン系顔料、インジゴイド系顔料、ビスベンズイミダゾール系顔料などが挙げられる。このうち、金属フタロシアニン、フルオレノン骨格を有する対称型若しくは非対称型のアゾ顔料、トリフェニルアミン骨格を有する対称型若しくは非対称型のアゾ顔料およびペリレン系顔料は電荷発生の量子効率が軒並み高く、本発明に用いる材料として好適である。これらの電荷発生物質は、単独でも2種以上の混合物として用いてもよい。
電荷発生層に必要に応じて用いられるバインダー樹脂としては、ポリアミド、ポリウレタン、エポキシ樹脂、ポリケトン、ポリカーボネート、ポリアリレート、シリコーン樹脂、アクリル樹脂、ポリビニルブチラール、ポリビニルホルマール、ポリビニルケトン、ポリスチレン、ポリ−N−ビニルカルバゾール、ポリアクリルアミドなどが挙げられる。このうちポリビニルブチラールが使用されることが多く、有用である。これらのバインダー樹脂は、単独でも2種以上の混合物として用いてもよい。
また、電荷発生層のバインダー樹脂として高分子電荷輸送物質を用いることができる。更に、必要に応じて低分子電荷輸送物質を添加してもよい。
電荷発生層に併用できる電荷輸送物質には電子輸送物質と正孔輸送物質とがあり、これらは更に低分子型の電荷輸送物質と高分子型の電荷輸送物質がある。
以下、本発明では高分子型の電荷輸送物質を高分子電荷輸送物質と称する。
電子輸送物質としては、例えばクロルアニル、ブロムアニル、テトラシアノエチレン、テトラシアノキノジメタン、2,4,7−トリニトロ−9−フルオレノン、2,4,5,7−テトラニトロ−9−フルオレノン、2,4,5,7−テトラニトロキサントン、2,4,8−トリニトロチオキサントン、2,6,8−トリニトロ−4H−インデノ〔1,2−b〕チオフェン−4−オン、1,3,7−トリニトロジベンゾチオフェン−5,5−ジオキサイドなどの電子受容性物質が挙げられる。
これらの電子輸送物質は、単独でも2種以上の混合物として用いてもよい。
正孔輸送物質としては、電子供与性物質が好ましく用いられる。
その例としては、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、トリフェニルアミン誘導体、9−(p−ジエチルアミノスチリルアントラセン)、1,1−ビス−(4−ジベンジルアミノフェニル)プロパン、スチリルアントラセン、スチリルピラゾリン、フェニルヒドラゾン類、α−フェニルスチルベン誘導体、チアゾール誘導体、トリアゾール誘導体、フェナジン誘導体、アクリジン誘導体、ベンゾフラン誘導体、ベンズイミダゾール誘導体、チオフェン誘導体などが挙げられる。
これらの正孔輸送物質は、単独でも2種以上の混合物として用いてもよい。
また、以下に表わされるような高分子電荷輸送物質を用いることができる。
たとえば、ポリ−N−ビニルカルバゾール等のカルバゾ−ル環を有する重合体、特開昭57−78402号公報等に例示されるヒドラゾン構造を有する重合体、特開昭63−285552号公報等に例示されるポリシリレン重合体、特開平8−269183号公報、特開平9−151248号公報、特開平9−71642号公報、特開平9−104746号、特開平9−328539号公報、特開平9−272735号公報、特開平9−241369号公報、特開平11−29634号公報、特開平11−5836号公報、特開平11−71453号公報、特開平9−221544号公報、特開平9−227669号公報、特開平9−157378号公報、特開平9−302084号公報、特開平9−302085号公報、特開平9−268226号公報、特開平9−235367号公報、特開平9−87376号公報、特開平9−110976号公報、特開2000−38442号公報に例示される芳香族ポリカーボネートが挙げられる。これらの高分子電荷輸送物質は、単独または2種以上の混合物として用いることができる。
以上の高分子電荷輸送物質は、単独でも2種以上の混合物として用いてもよい。
電荷発生層を形成する方法としては、大きく分けて真空薄膜作製法と溶液分散系からのキャスティング法がある。
前者の方法には、真空蒸着法、グロー放電分解法、イオンプレーティング法、スパッタリング法、反応性スパッタリング法、CVD(化学気相成長)法などがあり、上述した無機系材料や有機系材料からなる層が良好に形成できる。
また、キャスティング法によって電荷発生層を設けるには、上述した無機系又は有機系電荷発生物質を、必要ならばバインダー樹脂と共にテトラヒドロフラン、シクロヘキサノン、ジオキサン、ジクロロエタン、ブタノンなどの溶媒を用いてボールミル、アトライター、サンドミルなどにより分散し、分散液を適度に希釈して塗布すればよい。このうちの溶媒として、メチルエチルケトン、テトラヒドロフラン、シクロヘキサノンは、クロロベンゼンやジクロロメタン、トルエンおよびキシレンと比較して環境負荷の程度が低いため好ましい。塗布は、浸漬塗工法、スプレーコート法、ビードコート法などにより行なうことができる。
以上のようにして設けられる電荷発生層の膜厚は0.01〜5μm程度が適当であり、好ましくは0.05〜2μmである。
次に、電荷輸送層(26)について説明する。
電荷輸送層は電荷発生層で生成した電荷を注入、輸送し、帯電によって設けられた感光体の表面電荷を中和する機能を担う積層型感光層の一部を指す。電荷輸送層の主成分は電荷輸送成分とこれを結着するバインダー成分と言うことができる。
電荷輸送層は、電荷輸送成分とバインダー成分を主成分とする混合物ないし共重合体を適当な溶剤に溶解ないし分散し、これを塗布、乾燥することにより形成できる。塗工方法としては浸漬法、スプレー塗工法、リングコート法、ロールコータ法、グラビア塗工法、ノズルコート法、スクリーン印刷法等が採用される。
電荷輸送層の膜厚は、実用上、必要とされる感度と帯電能を確保する都合、15〜40μm程度が適当であり、好ましくは15〜30μm程度、解像力が要求される場合、25μm以下が適当である。また、同じ理由から感光体最表面層の厚み(N)と電荷輸送層の厚み(P)の比(N/P)が0.0125〜0.67の範囲となる膜厚であることが望ましい。
電荷輸送層の上層には、感光体最表面層が積層されているため、この構成における電荷輸送層の膜厚は、実使用上の膜削れを考慮した電荷輸送層の厚膜化の設計が不要であり、薄膜化も可能となる。
電荷輸送層塗工液を調製する際に使用できる分散溶媒としては、例えば、メチルエチルケトン、アセトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類、ジオキサン、テトラヒドロフラン、エチルセロソルブなどのエーテル類、トルエン、キシレンなどの芳香族類、クロロベンゼン、ジクロロメタンなどのハロゲン類、酢酸エチル、酢酸ブチルなどのエステル類等を挙げることができる。このうち、メチルエチルケトン、テトラヒドロフラン、シクロヘキサノンは、クロロベンゼンやジクロロメタン、トルエンおよびキシレンと比較して環境負荷の程度が低いため好ましい。これらの溶媒は単独としてまたは混合して用いることができる。
電荷輸送層のバインダー成分として用いることのできる高分子化合物としては、例えば、ポリスチレン、スチレン/アクリロニトリル共重合体、スチレン/ブタジエン共重合体、スチレン/無水マレイン酸共重合体、ポリエステル、ポリビニル、ポリ塩化ビニル、塩化ビニル/酢酸ビニル共重合体、ポリ酢酸ビニル、ポリ塩化ビニリデン、ポリアリレート、ポリカーボネート、酢酸セルロース樹脂、エチルセルロース樹脂、ポリビニルブチラール、ポリビニルホルマール、ポリビニルトルエン、アクリル樹脂、シリコーン樹脂、フッ素樹脂、エポキシ樹脂、メラミン樹脂、ウレタン樹脂、フェノール樹脂、アルキド樹脂などの熱可塑性又は熱硬化性樹脂が挙げられる。このうち、ポリスチレン、ポリエステル、ポリアリレート、ポリカーボネートは電荷輸送成分のバインダー成分として用いる場合、電荷移動特性が良好な性能を示すものが多く、有用である。また、電荷輸送層はこの上層に感光体最表面層が積層されるため、電荷輸送層は従来型の電荷輸送層に対する機械強度の必要性が要求されない。このため、ポリスチレンなど、透明性が高いものの機械強度が多少低い材料で従来技術では適用が難しいとされた材料も、電荷輸送層のバインダー成分として有効に利用することができる。
これらの高分子化合物は単独又は2種以上の混合物として、或いはそれらの原料モノマー2種以上からなる共重合体として、更には、電荷輸送物質と共重合化して用いることができる。
電荷輸送層の改質に際して電気的に不活性な高分子化合物を用いる場合にはフルオレン等の嵩高い骨格をもつカルドポリマー型のポリエステル、ポリエチレンテレフタレートやポリエチレンナフタレートなどのポリエステル、C型ポリカーボネートのようなビスフェノール型のポリカーボネートに対してフェノール成分の3,3’部位がアルキル置換されたポリカーボネート、ビスフェノールAのジェミナルメチル基が炭素数2以上の長鎖のアルキル基で置換されたポリカーボネート、ビフェニルまたはビフェニルエーテル骨格をもつポリカーボネート、ポリカプロラクトン、ポリカプロラクトンの様な長鎖アルキル骨格を有するポリカーボネート(例えば、特開平7−292095号公報に記載)やアクリル樹脂、ポリスチレン、水素化ブタジエンが有効である。
ここで電気的に不活性な高分子化合物とは、トリアリールアミン構造のような光導電性を示す化学構造を含まない高分子化合物を指す。
これらの樹脂を添加剤としてバインダー樹脂と併用する場合、光減衰感度の制約から、その添加量は、電荷輸送層の全固形分に対して50wt%以下とすることが好ましい。
電荷輸送物質に用いることのできる材料としては、上述の低分子型の電子輸送物質、正孔輸送物質及び高分子電荷輸送物質が挙げられる。
低分子型の電荷輸送物質を用いる場合、その使用量は40〜200phr、好ましくは70〜100phr程度が適当である。また、高分子電荷輸送物質を用いる場合、電荷輸送成分100重量部に対して樹脂成分が0〜200重量部、好ましくは80〜150重量部程度の割合で共重合された材料が好ましく用いられる。
また電荷輸送層に2種以上の電荷輸送物質を含有させる場合、これらのイオン化ポテンシャル差は小さい方が好ましく、具体的にはイオン化ポテンシャル差を0.10eV以下とすることにより、一方の電荷輸送物質が他方の電荷輸送物質の電荷トラップとなることを防止することができる。
電荷輸送層の上に感光体最表面層を積層する工程で意図せず、電荷輸送層の電荷輸送物質が感光体最表面層へ滲みだし、イオン化ポテンシャル差を0.1eV以下にすることが困難となるケースがある。これに対し、電荷輸送層の電荷輸送成分に高分子電荷輸送物質を含有させることで不具合を解消できることが多い。この目的では、高分子電荷輸送物質は低分子量体では滲みだしが生じてしまうため、その重量平均分子量は10000以上であることが好ましい。他方、重量平均分子量が高すぎると、平滑膜を得ることが困難となるため、その上限は200000程度が適当範囲となる。
なお、本発明における電荷輸送物質のイオン化ポテンシャル値は理研計器社製大気雰囲気型紫外線光電子分析装置AC−1により一般的な方法で計測して得られた数値である。
特に感光体最表面層を設けた感光体はこれを設けないものと比較して、感度特性上、不利となるケースが多い。これを補償するため、電荷輸送層の電荷移動度は高く、低電界領域における電荷移動度も十分に高くすることが好ましい。具体的には電荷輸送層の電荷移動時間が、電界強度160kV/cmの場合に1.2×10−5cm/V・sec以下で、且つ電荷移動度に対する電界強度依存性がβ≦1.6×10−3を満たすことが好ましい。
ここで、電荷移動度の電界強度依存性は次のようにして大小を判断することができる。
すなわち、電界強度を低い値から高い値へ変えた場合の電荷移動度の変化を、縦軸に電荷移動度(単位:cm/V・sec)、横軸に電界強度の平方根(単位:V1/2/cm1/2)として片対数グラフにプロットする。次に、プロットを結ぶ近似直線を引く。この具体例を図9に記す。この直線の傾きが大きくなるほど、電荷移動度の電界強度依存性が大きいと解釈される。この大きさを定量的に取り扱う数式として、本発明では以下の式(1)を用いる。
β=logμ/E1/2 ・・・・式(1)
式(1)におけるβが大きい電荷輸送層ほど、電荷移動度の電界強度依存性が高いと解釈される。多くの場合、βが大きい電荷輸送層は低電界領域での電荷移動度が低くなる。このとき、感光体の静電特性面の影響として、残留電位の上昇や帯電電位を下げて感光体を使用する場合、応答性が劣ってしまうケースが挙げられる。
この条件を満足する手段として、例えば、電荷輸送物質の含有量を増加させる、ないし、バインダー樹脂にポリスチレン高分子電荷輸送物質を用いることが有効である。特に電荷輸送物質として、多くの電荷輸送物質の中でもとりわけ電荷輸送能に優れるα―フェニルスチルベン化合物とポリスチレンとの固溶体や、同じくα−フェニルスチルベン化合物と上述の高分子電荷輸送物質との固溶体は現在、広く用いられている低分子電荷輸送物質とポリカーボネートとの固溶体と比較して1桁から2桁以上も電荷移動度を増大できるケースが多く有効である。
高感度化を満足させるには電荷輸送成分の配合量を70phr以上とすることが好ましい。また、電荷輸送物質としてα−フェニルスチルベン化合物、ベンジジン化合物、ブタジエン化合物の単量体、二量体およびこれらの構造を主鎖または側鎖に有する高分子電荷輸送物質は電荷移動度の高い材料が多く有用である。
また、必要により、電荷輸送層中に後述する酸化防止剤、可塑剤、滑剤、紫外線吸収剤などの低分子化合物およびレベリング剤を添加することもできる。これらの化合物は単独または2種以上の混合物として用いることができる。低分子化合物およびレベリング剤を併用すると感度劣化を来すケースが多い。このため、これらの使用量は概して、0.1〜20phr、好ましくは、0.1〜10phr、レベリング剤の使用量は、0.001〜0.1phr程度が適当である。
続いて、感光体最表面層(28)について説明する。
本発明における感光体最表面層は、少なくとも加水分解可能な有機金属化合物を水と有機溶媒とからなる反応液中において、ホウ素イオンの存在下でハロゲンイオンを触媒とし、pHを4.5〜5.0に調整しながら加水分解、脱水縮合させた後、反応生成物を電荷輸送層の上に塗布し、200℃以下の温度でガラス化した最表面層を表わす。この感光体最表面層は静電潜像形成に不具合の生じない設計が施されており、膜厚が1μm未満の薄膜で用いられるか、これ以上の膜厚を積層する場合は電荷輸送性が付与される。特に後者の感光体最表面層は電荷輸送成分が加えられる。
電荷輸送成分を含有する感光体最表面層の膜厚は1μm以上であることが好ましく、より好ましくは2μm以上である。他方、感光体最表面層膜厚を厚膜化していくとポアソン方程式に従う残留電位の蓄積により感光体最表面層内に空間電荷が形成されることとなる。結果、出力画像の画像濃度が薄くなる、あるいはポジ残像などの異常画像を出力してしまうことになる。
そこで感光体最表面層内の空間電荷の形成が実質的に出力画像に影響しない程度に膜厚を設定する必要がある。これを満足する具体的な膜厚としては、大抵2μm〜10μmとなる。
感光体最表面層用塗工液の分散溶媒は、例えば、電荷輸送層の説明で挙げたケトン類、エーテル類、芳香族化合物類、ハロゲン化合物類等である。このうち、メチルエチルケトン、テトラヒドロフラン、シクロヘキサノンは、クロロベンゼンやジクロロメタン、トルエンおよびキシレンと比較して環境負荷の程度が低いため好ましい。
また、最表面層を積層する工程で、意図せず、電荷輸送層に含有する電荷輸送成分が感光体最表面層へしみだすことがある。これが感光体最表面層の電荷輸送性に影響する場合は、感光体最表面層用塗工液の分散溶媒に電荷輸送層の貧溶媒を用いると良い。通常、エタノール、イソプロピルアルコールなどのアルコール類、エチルセロソルブ、ブチルセロソルブなどのセロソルブ類が有効である。
感光体最表面層に含有される電荷輸送成分として、電荷輸送層の説明に挙げた高分子電荷輸送物質、低分子電荷輸送物質、更に、反応性水酸基を含有する架橋性電荷輸送物質が挙げられる。このうち、反応性水酸基を含有する架橋性電荷輸送物質を含有させることは、最表面層樹脂膜の網目構造を密にし易く、感光体のロングライフ化に結びつくことが多いため有効である。
この架橋性電荷輸送物質の具体例としては、特開平7−228557号公報記載のビスフェノール化合物、特開平8−198825号公報記載のジアミン化合物、特開平9−31035号公報、特開平9−263569号公報、特開平9−268164号公報、および特開平10−7629号公報記載のジヒドロキシル基含有ジアミン化合物、特開平9−278723号公報および特開平10−7630号公報記載のヒドロキシル基含有アミン化合物、および特開平9−194442号公報記載のヒドロキシル基含有スチルベン化合物、特開平10−53569号公報記載のアミン化合物が極めて有効である。これらは上述する高分子電荷輸送物質の原料として用いられており、いずれも電荷輸送能に優れた実績を有し、且つ反応性も良好な材料である。また、特開2001−142243号公報および特開2002−6517号公報に例示される反応性電荷輸送物質も使用可能である。
感光体最表面層の電荷輸送成分には高分子電荷輸送物質を用いることが可能であるが、その重量平均分子量は10000以上200000以下とすることがより好ましい。
電荷輸送成分の含有率は概ね、最表面層用塗工液の全固形分重量の7.5wt%以上とすることが好ましい。上限は、塗工溶媒との溶解性や他の材料との反応性によって異なるが、40wt%前後となることが多い。
電荷輸送層と感光体最表面層に含有する電荷輸送物質が異なる場合、各層に含有する電荷輸送物質のイオン化ポテンシャル差は小さい方が好ましい。具体的には0.10eV以下であることが望ましい。同様に、感光体最表面層に2種以上の電荷輸送物質を用いる場合、これらのイオン化ポテンシャル差が0.10eV以下となる材料を選択することが好ましい。
また、必要により適当な酸化防止剤、可塑剤、滑剤、紫外線吸収剤などの低分子化合物およびレベリング剤を添加することもできる。これらの化合物は単独または2種以上の混合物として用いることができる。低分子化合物の使用量は、樹脂成分100重量部に対して0.1〜50重量部、好ましくは、0.1〜20重量部、レベリング剤の使用量は、樹脂成分100重量部に対して0.001〜5重量部程度が適当である。
また、必要により適当な酸化防止剤、可塑剤、滑剤、紫外線吸収剤などの低分子化合物およびレベリング剤を添加することもできる。これらの化合物は単独または2種以上の混合物として用いることができる。低分子化合物の使用量は、樹脂成分100重量部に対して0.1〜50重量部、好ましくは、0.1〜20重量部、レベリング剤の使用量は、樹脂成分100重量部に対して0.001〜5重量部程度が適当である。
感光体最表面層の形成方法として、浸漬法、スプレー塗工法、リングコート法、ロールコータ法、グラビア塗工法、ノズルコート法、スクリーン印刷法等が採用される。特にスプレー塗工法とリングコート法は生産上、品質の安定性を確保し易い方法であり好適である。
本発明に用いられる電子写真感光体には、導電性支持体と混合型感光層又は電荷発生層との間に下引き層24を設けることができる。下引き層は、接着性の向上、モワレの防止、上層の塗工性の改良、残留電位の低減、導電性支持体からの電荷注入の防止などの目的で設けられる。
下引き層は一般に樹脂を主成分とするが、これらの樹脂はその上に溶剤を用いて感光層を塗布することを考慮すると、一般の有機溶剤に対して耐溶解性の高い樹脂であることが望ましく、このような樹脂としては、ポリビニルアルコール、カゼイン、ポリアクリル酸ナトリウムなどの水溶性樹脂、共重合ナイロン、メトキシメチル化ナイロンなどのアルコール可溶性樹脂、ポリウレタン、メラミン樹脂、アルキッド−メラミン樹脂、エポキシ樹脂など三次元網目構造を形成する硬化型樹脂などが挙げられる。
また、下引き層には、酸化チタン、シリカ、アルミナ、酸化ジルコニウム、酸化スズ、酸化インジウムなどの金属酸化物、或いは金属硫化物、金属窒化物などの微粉末を加えてもよい。
これらの下引き層は、前述の感光層と同様、適当な溶媒及び塗工法を用いて形成することができる。
更に下引き層としては、シランカップリング剤、チタンカップリング剤、クロムカップリング剤などを使用して、例えばゾル−ゲル法などにより形成した金属酸化物層も有用である。
この他に、アルミナを陽極酸化により設けたもの、ポリパラキシリレン(パリレン)などの有機物、酸化ケイ素、酸化スズ、酸化チタン、ITO、セリアなどの無機物を真空薄膜作製法にて設けたものも下引き層として良好に使用できる。
下引き層の膜厚は0.1〜5μmが適当である。
また、本発明においては、感光体表面層のガスバリアー性向上、及び耐環境性改善のため、各層に酸化防止剤、可塑剤、紫外線吸収剤、低分子電荷輸送物質及びレベリング剤を添加することができる。
これらの化合物の代表的な材料を以下に記す。
各層に添加できる酸化防止剤として、例えば次の(a)〜(d)のものが挙げられるがこれらに限定されるものではない。
(a)フェノール系酸化防止剤
2,6−ジ−t−ブチル−p−クレゾール、2,4,6−トリ−t−ブチルフェノール、n−オクタデシル−3−(4’−ヒドロキシ−3’,5’−ジ−t−ブチルフェノール)プロピオネート、スチレン化フェノール、4−ヒドロキシメチル−2,6−ジ−t−ブチルフェノール、2,5−ジ−t−ブチルハイドロキノン、シクロヘキシルフェノール、ブチルヒドロキシアニソール、2,2’−メチレン−ビス(4−エチル−6−t−ブチルフェノール)、4,4’−i−プロピリデンビスフェノール、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、4,4’−メチレン−ビス(2,6−ジ−t−ブチルフェノール)、2,6−ビス(2’−ヒドロキシ−3’−t−ブチル−5’−メチルベンジル)−4−メチルフェノール、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、1,3,5−トリスメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、テトラキス[メチレン−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]メタン、トリス(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)イソシアネート、トリス[β−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニル−オキシエチル]イソシアネート、4,4’−チオビス(3−メチル−6−t−ブチルフェノール)、2,2’−チオビス(4−メチル−6−t−ブチルフェノール)、4,4’−チオビス(4−メチル−6−t−ブチルフェノール)
(b)アミン系酸化防止剤
フェニル−α−ナフチルアミン、フェニル−β−ナフチルアミン、N,N’−ジフェニル−p−フェニレンジアミン、N,N’−ジ−β−ナフチル−p−フェニレンジアミン、N−シクロヘキシル−N’−フェニル−p−フェニレンジアミン、N−フェニレン−N’−i−プロピル−p−フェニレンジアミン、アルドール−α−ナフチルアミン、6−エトキシ−2,2,4−トリメチル−1,2−ジハイドロキノリン
(c)硫黄系酸化防止剤
チオビス(β−ナフトール)、チオビス(N−フェニル−β−ナフチルアミン)、2−メルカプトベンゾチアゾール、2−メルカプトベンズイミダゾール、ドデシルメルカプタン、テトラメチルチウラムモノサルファイド、テトラメチルチウラムジサルファイド、ニッケルジブチルチオカルバメート、イソプロピルキサンテート、ジラウリルチオジプロピオネート、ジステアリルチオジプロピオネート
(d)リン系酸化防止剤
トリフェニルホスファイト、ジフェニルデシルホスファイト、フェニルイソデシルホスファイト、トリ(ノニルフェニル)ホスファイト、4,4’−ブチリデン−ビス(3−メチル−6−t−ブチルフェニル−ジトリデシルホスファイト)、ジステアリル−ペンタエリスリトールジホスファイト、トリラウリルトリチオホスファイト
各層に添加できる可塑剤として、例えば次の(a)〜(m)のものが挙げられるがこれらに限定されるものではない。
(a)リン酸エステル系可塑剤
リン酸トリフェニル、リン酸トリクレジル、リン酸トリオクチル、リン酸オクチルジフェニル、リン酸トリクロルエチル、リン酸クレジルジフェニル、リン酸トリブチル、リン酸トリ−2−エチルヘキシル、リン酸トリフェニルなど。
(b)フタル酸エステル系可塑剤
フタル酸ジメチル、フタル酸ジエチル、フタル酸ジイソブチル、フタル酸ジブチル、フタル酸ジヘプチル、フタル酸ジ−2−エチルヘキシル、フタル酸ジイソオクチル、フタル酸ジ−n−オクチル、フタル酸ジノニル、フタル酸ジイソノニル、フタル酸ジイソデシル、フタル酸ジウンデシル、フタル酸ジトリデシル、フタル酸ジシクロヘキシル、フタル酸ブチルベンジル、フタル酸ブチルラウリル、フタル酸メチルオレイル、フタル酸オクチルデシル、フマル酸ジブチル、フマル酸ジオクチルなど。
(c)芳香族カルボン酸エステル系可塑剤
トリメリット酸トリオクチル、トリメリット酸トリ−n−オクチル、オキシ安息香酸オクチルなど。
(d)脂肪族二塩基酸エステル系可塑剤
アジピン酸ジブチル、アジピン酸ジ−n−ヘキシル、アジピン酸ジ−2−エチルヘキシル、アジピン酸ジ−n−オクチル、アジピン酸−n−オクチル−n−デシル、アジピン酸ジイソデシル、アジピン酸ジカプリル、アゼライン酸ジ−2−エチルヘキシル、セバシン酸ジメチル、セバシン酸ジエチル、セバシン酸ジブチル、セバシン酸ジ−n−オクチル、セバシン酸ジ−2−エチルヘキシル、セバシン酸ジ−2−エトキシエチル、コハク酸ジオクチル、コハク酸ジイソデシル、テトラヒドロフタル酸ジオクチル、テトラヒドロフタル酸ジ−n−オクチルなど。
(e)脂肪酸エステル誘導体
オレイン酸ブチル、グリセリンモノオレイン酸エステル、アセチルリシノール酸メチル、ペンタエリスリトールエステル、ジペンタエリスリトールヘキサエステル、トリアセチン、トリブチリンなど。
(f)オキシ酸エステル系可塑剤
アセチルリシノール酸メチル、アセチルリシノール酸ブチル、ブチルフタリルブチルグリコレート、アセチルクエン酸トリブチルなど。
(g)エポキシ可塑剤
エポキシ化大豆油、エポキシ化アマニ油、エポキシステアリン酸ブチル、エポキシステアリン酸デシル、エポキシステアリン酸オクチル、エポキシステアリン酸ベンジル、エポキシヘキサヒドロフタル酸ジオクチル、エポキシヘキサヒドロフタル酸ジデシルなど。
(h)二価アルコールエステル系可塑剤
ジエチレングリコールジベンゾエート、トリエチレングリコールジ−2−エチルブチラートなど。
(i)含塩素可塑剤
塩素化パラフィン、塩素化ジフェニル、塩素化脂肪酸メチル、メトキシ塩素化脂肪酸メチルなど。
(j)ポリエステル系可塑剤
ポリプロピレンアジペート、ポリプロピレンセバケート、ポリエステル、アセチル化ポリエステルなど。
(k)スルホン酸誘導体
p−トルエンスルホンアミド、o−トルエンスルホンアミド、p−トルエンスルホンエチルアミド、o−トルエンスルホンエチルアミド、トルエンスルホン−N−エチルアミド、p−トルエンスルホン−N−シクロヘキシルアミドなど。
(l)クエン酸誘導体
クエン酸トリエチル、アセチルクエン酸トリエチル、クエン酸トリブチル、アセチルクエン酸トリブチル、アセチルクエン酸トリ−2−エチルヘキシル、アセチルクエン酸−n−オクチルデシルなど。
(m)その他
ターフェニル、部分水添ターフェニル、ショウノウ、2−ニトロジフェニル、ジノニルナフタリン、アビエチン酸メチルなど。
各層に添加できる紫外線吸収剤として、例えば次の(a)〜(f)のものが挙げられるがこれらに限定されるものではない。
(a)ベンゾフェノン系
2−ヒドロキシベンゾフェノン、2,4−ジヒドロキシベンゾフェノン、2,2’,4−トリヒドロキシベンゾフェノン、2,2’,4,4’−テトラヒドロキシベンゾフェノン、2,2’−ジヒドロキシ−4−メトキシベンゾフェノンなど。
(b)サルシレート系
フェニルサルシレート、2,4−ジ−t−ブチルフェニル−3,5−ジ−t−ブチル−4−ヒドロキシベンゾエートなど。
(c)ベンゾトリアゾール系
(2’−ヒドロキシフェニル)ベンゾトリアゾール、(2’−ヒドロキシ−5’−メチルフェニル)ベンゾトリアゾール、(2’−ヒドロキシ−3’−t−ブチル−5’−メチルフェニル)−5−クロロベンゾトリアゾールなど。
(d)シアノアクリレート系
エチル−2−シアノ−3,3−ジフェニルアクリレート、メチル−2−カルボメトキシ−3−(パラメトキシ)アクリレートなど。
(e)クエンチャー(金属錯塩系)
ニッケル〔2,2’−チオビス(4−t−オクチル)フェノレート〕ノルマルブチルアミン、ニッケルジブチルジチオカルバメート、コバルトジシクロヘキシルジチオホスフェートなど。
(f)HALS(ヒンダードアミン)
ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケート、1−[2−〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ〕エチル]−4−〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ〕−2,2,6,6−テトラメチルピリジン、8−ベンジル−7,7,9,9−テトラメチル−3−オクチル−1,3,8−トリアザスピロ〔4,5〕ウンデカン−2,4−ジオン、4−ベンゾイルオキシ−2,2,6,6−テトラメチルピペリジンなど。
各層に添加できる低分子電荷輸送物質は、電荷発生層25の説明に記載したものと同じものを用いることができる。
以下、実施例によって本発明を説明する。
本発明に関わる測定方法について述べる。
(1)膜厚測定
渦電流方式膜厚測定器FISCHER SCOPE mms(フィッシャー社製)により、感光体ドラム長手方向1cm間隔に膜厚を測定し、それらの平均値を感光層膜厚とした。
(2)感光体の表面粗さ測定
ドラム状の感光体表面を、東京精密社製ピックアップE−DT−S02Aを取り付けた触針式表面粗さ計(Surfcom、東京精密社製)により、10点平均あらさRz(JIS−‘82規格)を測定した。
実施例1(参考例)
肉厚0.8mm、φ30mmアルミニウムドラム上に、下記組成の下引き層用塗工液、電荷発生層用塗工液、電荷輸送層用塗工液を順次、塗布乾燥することにより、3.5μmの下引き層、0.3μmの電荷発生層、22μmの電荷輸送層を形成した。次に感光体最表面層塗工液をリングコートで塗工し、1.5μmの感光体最表面層を設け本発明の電子写真感光体を得た。感光体最表面層はリングコート法により塗工した。また乾燥条件は150℃30分とした。
〔下引き層用塗工液〕
アルキッド樹脂(ベッコゾール 1307−60−EL,大日本インキ化学工業製)
10重量部
メラミン樹脂(スーパーベッカミン G−821−60,大日本インキ化学工業製)
7重量部
酸化チタン(CR−EL 石原産業社製) 40重量部
メチルエチルケトン 200重量部
〔電荷発生層用塗工液〕
チタニルフタロシアニン(リコー社製) 20重量部
ポリビニルアルコール(エスレックB BX−1、積水化学工業社製)
10重量部
メチルエチルケトン 100重量部
〔電荷輸送層用塗工液〕
ポリカーボネート樹脂(パンライトTS−2050、帝人化成社製)
10重量部
下記構造の低分子電荷輸送物質 9.5重量部

Figure 0004498178

下記構造の安定剤 0.5重量部
Figure 0004498178

テトラヒドロフラン 79重量部
1%シリコーンオイル(KF50−100CS信越化学工業社製)テトラヒドロフラン溶液
1重量部
〔感光体最表面層塗工液〕
熱硬化性樹脂単量体(主剤)
(ヒートレスグラスGO−100−SX主剤、大橋化学工業社製) 7重量部
ポリグリシジルエーテル系硬化剤
(ヒートレスグラスGO−100−SX硬化剤、大橋化学工業社製)
0.7重量部
エチルセロソルブ 30重量部
実施例2
実施例1の感光体最表面層塗工液を下記のものに変えた以外は実施例1と同様にして感光体を得た。
〔感光体最表面層塗工液〕
熱硬化性樹脂単量体(主剤)
(ヒートレスグラスGO−100−SX主剤、大橋化学工業社製) 5重量部
ポリグリシジルエーテル系硬化剤
(ヒートレスグラスGO−100−SX硬化剤、大橋化学工業社製) 2重量部
下記構造の電荷輸送成分 3重量部
Figure 0004498178

エチルセロソルブ 40重量部
比較例1
実施例1の感光体最表面層を設けず、電荷輸送層の膜厚を25μmに変更した以外は実施例1と同様にして感光体を得た。
比較例2
実施例1の感光体最表面層塗工液を下記のものに変えた以外は実施例1と同様にして感光体を得た。
〔感光体最表面層塗工液〕
ポリカーボネート樹脂(パンライトTS−2050、帝人化成社製) 4重量部
下記構造の低分子電荷輸送物質 3重量部
Figure 0004498178

α−アルミナ(スミコランダムAA−03、住友化学工業社製) 3重量部
シクロヘキサノン 70重量部
テトラヒドロフラン 20重量部
以上のように作製した実施例1〜2、比較例1〜2の電子写真感光体を実装用にした後、電子写真装置(リコー社製:imagio MF2200)に搭載し、画素密度が600dpi×600dpiで画像濃度が6%となるテキストとグラフィック画像のパターンを連続999枚づつ印刷する条件で通算5万枚、コピー用紙(リコー社製マイペーパー)に複写印刷した。トナーおよび現像剤は純正品を用いた。電子写真装置の帯電手段はプロセスカートリッジに取り付けられている帯電ローラーをそのまま用いた。電子写真装置のプロセス状態をコントロールする回路(プロセスコントロール)は作動させて試験を行なった。
試験環境は、平均、23℃/54%RHであった。
試験終了後、感光体の摩耗量測定、感光体の表面粗さ測定、および露光部電位測定を行なった。
試験結果を表1に記す。
Figure 0004498178
実施例1、実施例2の感光体は耐摩耗性に優れるのみならず表面の傷が全く気にならない様相を呈していた。更に、実施例2の感光体はこれに加えて露光部電位の低い結果が得られている。
比較例1の感光体は摩耗量が大きく低寿命な感光体であると判断された。また、比較例2の感光体は比較例1の感光体よりも耐摩耗性に優れるが表面の凹凸が大きく、感光体の凸部に相当する箇所でクリーニングブレードのかけが見られた。このため、長期に亘りプロセスカートリッジを使い続けることは困難であり、クリーニングブレードなどのパーツを都度、交換する必要がある感光体であると見なされる。
本発明に係る電子写真装置の例を示す模式断面図である。 本発明に係る電子写真装置の別の例を示す模式断面図である。 本発明に係る電子写真装置の更に別の例を示す模式断面図である。 本発明に係る電子写真装置の更に別の例を示す模式断面図である。 本発明に係る電子写真装置の更に別の例を示す模式断面図である。 本発明に係る電子写真装置の更に別の例を示す模式断面図である。 本発明に係る電子写真感光体の層構成を示す断面図である。 本発明に係る電子写真感光体の別の層構成を示す断面図である。 電荷輸送層の電荷移動度に対する電界強度依存性を表わす一例図である。
符号の説明
11・・・電子写真感光体
12・・・帯電手段
13・・・露光手段
14・・・現像手段
15・・・トナー
16・・・転写手段
17・・・クリーニング手段
18・・・受像媒体
19・・・定着手段
1A・・・除電手段
1B・・・クリーニング前露光手段
1C・・・駆動手段
1D・・・第1の転写手段
1E・・・第2の転写手段
1F・・・中間転写体
1G・・・搬送転写ベルト
21・・・導電性支持体
24・・・下引き層
25・・・電荷発生層
26・・・電荷輸送層
28・・・感光体最表面層

Claims (2)

  1. 導電性支持体上に直接または下引き層を介して電荷発生層と電荷輸送層が形成された感光層に更に感光体最表面層を積層してなる電子写真感光体の製造方法であって、該感光体表面層を、金属アルコキシドの部分加水分解縮合物とシリカと下記構造の電荷輸送成分とエチルセロソルブを含有する塗工液を基材表面に塗布し、200℃以下の温度で多成分系金属酸化物ガラス膜にガラス化させて形成する工程を含むことを特徴とする電子写真感光体の製造方法。
    Figure 0004498178

    ,Rは置換もしくは無置換のアリール基を表わす。R,Rは同一であっても異なってもよい。
    また、Ar,ArおよびArで示されるアリレン基は、RおよびRと同様のアリール基からの2価基であり、同一であっても異なってもよい。
  2. 導電性支持体上に直接または下引き層を介して電荷発生層と電荷輸送層が形成された感光層に更に感光体最表面層を積層してなる電子写真感光体の製造方法であって、該感光体表面層を、金属アルコキシドを水と有機溶媒とからなる反応液中において、加水分解、脱水縮合させた反応生成物と下記構造の電荷輸送成分とエチルセロソルブを含有する塗工液を基材表面に塗布し、200℃以下の温度で単一または多成分系金属酸化物ガラス膜にガラス化させて形成する工程を含むことを特徴とする電子写真感光体の製造方法。
    Figure 0004498178

    ,Rは置換もしくは無置換のアリール基を表わす。R,Rは同一であっても異なってもよい。
    また、Ar,ArおよびArで示されるアリレン基は、RおよびRと同様のアリール基からの2価基であり、同一であっても異なってもよい。
JP2005074349A 2005-03-16 2005-03-16 電子写真感光体、製造方法、電子写真装置 Expired - Fee Related JP4498178B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005074349A JP4498178B2 (ja) 2005-03-16 2005-03-16 電子写真感光体、製造方法、電子写真装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005074349A JP4498178B2 (ja) 2005-03-16 2005-03-16 電子写真感光体、製造方法、電子写真装置

Publications (2)

Publication Number Publication Date
JP2006259030A JP2006259030A (ja) 2006-09-28
JP4498178B2 true JP4498178B2 (ja) 2010-07-07

Family

ID=37098398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005074349A Expired - Fee Related JP4498178B2 (ja) 2005-03-16 2005-03-16 電子写真感光体、製造方法、電子写真装置

Country Status (1)

Country Link
JP (1) JP4498178B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5111029B2 (ja) 2007-09-12 2012-12-26 株式会社リコー 電子写真感光体、並びにプロセスカートリッジ、及び画像形成装置
JP5063403B2 (ja) * 2008-02-22 2012-10-31 株式会社リコー 電子写真感光体の製造方法、並びにそれらの方法によって得られた電子写真感光体及び画像形成装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001142242A (ja) * 1999-11-17 2001-05-25 Konica Corp 電子写真感光体とその製造方法、該感光体を用いた画像形成方法、画像形成装置、及びプロセスカートリッジ
JP2002244326A (ja) * 2001-02-13 2002-08-30 Konica Corp 電子写真感光体、電子写真感光体の製造方法、画像形成方法、画像形成装置、及びプロセスカートリッジ
JP2003091087A (ja) * 2001-09-17 2003-03-28 Ricoh Co Ltd リサイクル層を設けた電子写真感光体、電子写真感光体のリサイクル方法、電子写真感光体の製造方法、画像形成装置並びに画像形成装置用プロセスカートリッジ
JP2004226770A (ja) * 2003-01-24 2004-08-12 Ricoh Co Ltd 電子写真感光体、及びそれを用いた画像形成方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0815886A (ja) * 1994-07-01 1996-01-19 F I T:Kk 電子写真感光体およびその製造方法およびそれを使用した 画像形成装置
JP3264218B2 (ja) * 1996-07-17 2002-03-11 富士ゼロックス株式会社 電子写真感光体
JPH10198060A (ja) * 1996-12-28 1998-07-31 Fuji Xerox Co Ltd 電子写真感光体、及び電子写真装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001142242A (ja) * 1999-11-17 2001-05-25 Konica Corp 電子写真感光体とその製造方法、該感光体を用いた画像形成方法、画像形成装置、及びプロセスカートリッジ
JP2002244326A (ja) * 2001-02-13 2002-08-30 Konica Corp 電子写真感光体、電子写真感光体の製造方法、画像形成方法、画像形成装置、及びプロセスカートリッジ
JP2003091087A (ja) * 2001-09-17 2003-03-28 Ricoh Co Ltd リサイクル層を設けた電子写真感光体、電子写真感光体のリサイクル方法、電子写真感光体の製造方法、画像形成装置並びに画像形成装置用プロセスカートリッジ
JP2004226770A (ja) * 2003-01-24 2004-08-12 Ricoh Co Ltd 電子写真感光体、及びそれを用いた画像形成方法

Also Published As

Publication number Publication date
JP2006259030A (ja) 2006-09-28

Similar Documents

Publication Publication Date Title
JP4566834B2 (ja) 静電潜像担持体、並びにプロセスカートリッジ、画像形成装置及び画像形成方法
JP4319553B2 (ja) 電子写真感光体、電子写真感光体の製造方法、電子写真装置、プロセスカートリッジ
JP5102646B2 (ja) 電子写真感光体とこれを搭載する電子写真用プロセスカートリッジ及び画像形成装置
JP4928230B2 (ja) 画像形成装置、画像形成方法、及びプロセスカートリッジ
US7964327B2 (en) Electrophotographic photoreceptor and method of preparing the photoreceptor, and image forming apparatus, image forming method and process cartridge using the photoreceptor
US6853823B2 (en) Electrophotographic photoreceptor and image forming apparatus using the photoreceptor
US20080085459A1 (en) Electrophotographic photoconductor, and electrophotographic apparatus
JP2004286890A (ja) 電子写真感光体、電子写真感光体の製造方法、画像形成装置及び画像形成装置用プロセスカートリッジ
EP1521124B1 (en) Electrophotographic photoreceptor, method of manufacturing electrophotographic photoreceptor, and electrophotographic apparatus and process cartridge using electrophotographic photoreceptor
JP4498178B2 (ja) 電子写真感光体、製造方法、電子写真装置
JP4785661B2 (ja) 電子写真感光体とその製造方法、及びプロセスカートリッジ、電子写真装置
JP2009053400A (ja) 画像形成装置、画像形成方法、及びプロセスカートリッジ
JP4762811B2 (ja) 電子写真感光体とその製造方法およびそれを搭載するプロセスカートリッジないし電子写真装置
JP2005173557A (ja) 電子写真装置及びプロセスカートリッジ
JP4187742B2 (ja) 電子写真感光体、その製造方法、電子写真方法、画像形成装置及び画像形成装置用プロセスカートリッジ
JP5234341B2 (ja) ジスチリルベンゼン化合物混合物及び該化合物混合物を用いた電子写真感光体
JP3891491B2 (ja) 電子写真感光体、及びそれを用いた画像形成方法
JP2006235211A (ja) 電子写真感光体の製造方法、電子写真感光体、プロセスカートリッジ、および電子写真装置
JP2005115360A (ja) 電子写真装置及びプロセスカートリッジ
JP2006047656A (ja) 電子写真感光体及びそれを用いた画像形成装置、画像形成方法、プロセスカートリッジ
JP5047696B2 (ja) 画像形成装置、画像形成方法、及びプロセスカートリッジ
JP5505720B2 (ja) 電子写真感光体、それを用いた電子写真方法、電子写真装置及びプロセスカートリッジ
JP5545469B2 (ja) 電子写真感光体、それを用いた電子写真方法、電子写真装置及びプロセスカートリッジ
JP2014178363A (ja) 電子写真感光体、画像形成方法、画像形成装置用プロセスカートリッジ
JP2006039100A (ja) 電子写真装置及びプロセスカートリッジ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100318

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100413

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4498178

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees