JP4487649B2 - 昇降圧型dc−dcコンバータの制御装置 - Google Patents

昇降圧型dc−dcコンバータの制御装置 Download PDF

Info

Publication number
JP4487649B2
JP4487649B2 JP2004175481A JP2004175481A JP4487649B2 JP 4487649 B2 JP4487649 B2 JP 4487649B2 JP 2004175481 A JP2004175481 A JP 2004175481A JP 2004175481 A JP2004175481 A JP 2004175481A JP 4487649 B2 JP4487649 B2 JP 4487649B2
Authority
JP
Japan
Prior art keywords
soft start
circuit
signal
output
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004175481A
Other languages
English (en)
Other versions
JP2005354860A (ja
Inventor
保徳 中橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2004175481A priority Critical patent/JP4487649B2/ja
Publication of JP2005354860A publication Critical patent/JP2005354860A/ja
Application granted granted Critical
Publication of JP4487649B2 publication Critical patent/JP4487649B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters

Description

本発明は、入力直流電圧を任意の大きさの直流電圧に非反転で変換する昇降圧型DC−DCコンバータの制御装置に関する。
図4は、従来の昇降圧型DC−DCコンバータの一例を示す回路構成図である。本昇降圧型DC−DCコンバータはコンバータ部10と、制御IC200およびその外付け回路部21からなる制御装置により構成されている。コンバータ部10は、入力端子INとの接地との間に直列接続された半導体スイッチQ1(PチャネルMOSFET)と転流ダイオードD1およびインダクタLからなる降圧回路11、並びに出力端子OUTと接地との間に直列接続された半導体スイッチQ2(NチャネルMOSFET)と転流ダイオードD2およびインダクタからなる昇圧回路12を備えていて、これら降圧回路11と昇圧回路12とは、半導体スイッチQ1と転流ダイオードD1の接続点と半導体スイッチQ2と転流ダイオードD2の接続点とがインダクタLを介して互いに接続されている。Cinは入力端子INと接地の間に接続されて入力電圧を安定させるためのコンデンサである。
入力端子INには図示しないバッテリ等の直流電源が接続されて入力電圧Vinが供給されている。この昇降圧型DC−DCコンバータは、直流入力電圧を任意の直流電圧に非反転で変換するものであって、出力コンデンサCoutが半導体スイッチQ2と転流ダイオードD2の直列回路に対して並列に設けられ、出力端子OUTから出力コンデンサCoutの両端電圧を直流出力電圧Voutとして出力するように構成されている。
抵抗R1,R2から構成される電圧検出手段は直流出力電圧Voutを抵抗分圧する。抵抗R1,R2の接続部から得られる分圧信号は制御IC200の端子FBを介して演算増幅器31の反転入力端子に入力される。演算増幅器31の非反転入力端子には基準電圧源Vrefより出力される基準電圧が入力され、演算増幅器31はこれらの入力信号を比較することにより第1のエラー信号Verr1を生成し、コンパレータ35の非反転入力端子に入力する。エラー信号Verr1はまたレベルシフト回路33に入力されて一定電圧△Vlsレベルシフトした第2のエラー信号Verr2が生成される。第2のエラー信号Verr2はコンパレータ36の非反転入力端子に入力される。定電流源32とコンデンサCsはソフトスタート信号を生成するためのものであり、定電流源32から供給される定電流を端子CSを介してコンデンサCsに積分することにより、端子CSに時間と共に直線的に増加するソフトスタート信号が得られる。端子CSのソフトスタート信号はコンパレータ35,36のもう一つの非反転入力端子に入力される。三角波発振器34は所定の上限レベルと所定の下限レベルとの間で上昇と下降を繰り返す三角波を発生するもので、三角波発振器34より出力される三角波Voscはコンパレータ35,36の非反転入力端子に接続される。コンパレータ35,36はそれぞれ2つの非反転入力端子に入力される信号のうちレベルが小さい方の信号と反転入力端子に入力される信号の比較を行うもので、反転入力端子側の信号の方が大きければLo(ローレベル)の信号を出力し、非反転入力端子側の信号の方が大きければHi(ハイレベル)の信号を出力する。
ドライバ37は制御IC200の端子VCC1を介して入力電圧Vinをその電源として供給され、コンパレータ35の出力の論理を反転して半導体スイッチQ1を駆動する信号を生成し、制御IC200の端子OUT1Aを介して半導体スイッチQ1のゲートに入力する。ドライバ37は入力電圧Vinを電源としていることから、その出力電圧のハイレベルはVinと等しいものになる。
ドライバ38は制御IC200の端子VCC2を介して出力電圧Voutをその電源として供給され、コンパレータ36の出力の論理を反転せずに半導体スイッチQ2を駆動する信号を生成し、制御IC200の端子OUT1Bを介して半導体スイッチQ2のゲートに入力する。ドライバ38は出力電圧Voutを電源としていることから、その出力電圧のハイレベルはVoutと等しいものになる。
以上の構成からなる昇降圧型のDC−DCコンバータの動作について説明する。まず、コンデンサCsによる積分動作が完了している定常動作時について説明する。この場合、コンパレータ35,36においてソフトスタート信号は最大の値となっているため比較動作に無関係となっていて、コンパレータ35,36は三角波Voscと第1の誤差信号Verr1または第2の誤差信号Verr2との比較だけを行っている。すなわち、コンパレータ35は第1の誤差信号Verr1と三角波Voscを比較して半導体スイッチQ1のオンオフ信号を生成することにより降圧回路11の動作を制御し、コンパレータ36は第2の誤差信号Verr2と三角波Voscを比較して半導体スイッチQ2のオンオフ信号を生成することにより昇圧回路12の動作を制御して、所望の直流出力電圧Voutを得るものである。
以下では、半導体スイッチQ1のオン時比率をD1、半導体スイッチQ2のオン時比率をD2として、昇降圧型DC−DCコンバータの入力電圧Vinと出力電圧Voutとの関係について図5を参照しながら考察する。
まず、半導体スイッチQ2を常時オフ(すなわち、D2=0)とすると、入力電圧Vinと出力電圧Voutとが次式(1)で表される降圧型DC−DCコンバータとして動作する。これは図5(a)の場合に相当する。図5(a)に示すように、Verr1とVerr2のレベルが低いとVerr2が常に三角波Voscより小さくなり、OUT1Bが常にLo、すなわち半導体スイッチQ2が常時オフになる。
(数1)
Vout=D1×Vin (0≦D1≦1) ・・・(1)
また、半導体スイッチQ1を常時オン(すなわち、D1=1)とすると、入力電圧Vinと出力電圧Voutとが次式(2)で表される昇圧型DC−DCコンバータとして動作する。これは図5(c)の場合に相当する。図5(c)に示すように、Verr1とVerr2のレベルが高いとVerr1が常に三角波Voscより大きくなり、OUT1Aが常にLo、すなわち半導体スイッチQ2が常時オンになる。
(数2)
Vout=Vin/(1−D2) (0≦D2≦1) ・・・(2)
さらに、降圧回路11と昇圧回路12を同時に動作させた場合、入力電圧Vinと出力電圧Voutとが次式(3)で表される昇降圧型DC−DCコンバータとして動作する。これは図5(b)の場合に相当する。これは三角波Voscの振幅△VoscがVerr1からVerr2へのシフト量△Vlsより大きく、かつVerr1とVerr2のレベルが三角波Voscと同程度で、Verr1とVerr2が両方とも三角波Voscとクロスする場合である。この場合は半導体スイッチQ1,Q2ともスイッチング動作を行う。
(数3)
Vout=(D1/(1−D2))×Vin
(0≦D1≦1,0≦D2≦1) ・・・(3)
昇降圧型DC−DCコンバータは、Vin>Voutでは(1)式で表される降圧型DC−DCコンバータとして動作し、Vin<Voutでは(2)式で表される昇圧型DC−DCコンバータとして動作する。Vin=Voutの近傍においては(3)式で表される昇降圧動作を行う。
次にソフトスタート機能について説明する。
PWM型のスイッチングレギュレータでは、レギュレータが起動した直後は出力電圧が不足しているためエラー信号Verrが最大値をとり、スイッチング素子(図4における半導体スイッチQ1,Q2に相当)のオン時比率が最大となる駆動パルスが出力される。しかし、起動直後では出力コンデンサ(図4のコンデンサCoutに相当)が未充電であるため、見かけ上出力電流は短絡状態とほぼ等しくなるため、インダクタ(図4のインダクタLに相当)に流れる電流が際限なく大きくなる、いわゆるラッシュ電流が発生する状態になる。従い、インダクタやスイッチング素子に大電流が流れ、これらの素子が劣化もしくは破壊されるおそれがある。そこで起動時にレベルが時間と共に上昇または下降するソフトスタート信号を用いてスイッチング素子のオン幅を徐々に広げていくソフトスタート機能により、インダクタに流れる電流を徐々に増加させ、出力コンデンサも徐々に充電されていく方式がとられる。従来の昇降圧型DC−DCコンバータに対するソフトスタートとしては、降圧回路11と昇圧回路12に同じソフトスタート信号を適用するものが開示されている(例えば、特許文献1参照)。このような従来の昇降圧型DC−DCコンバータにおいては、定電流回路32から供給される定電流を図4のコンデンサCsで積分して得られる電圧がソフトスタート信号としてコンパレータ35,36の非反転入力端子に共通に入力される。コンデンサCsの両端電圧は初期値としてゼロクリアされていて、その後上述のように定電流回路32から供給される定電流を図4のコンデンサCsで積分することにより、時間と共に増加するソフトスタート信号を得ることができる。この三角波Voscと比較することによりソフトスタート機能を実現する。
特開2003−70238号公報 (第5頁、図5−6)
特許文献1には、降圧回路11と昇圧回路12のスイッチング素子が、図6(c),(d)のOUT1A(降圧回路11のスイッチング素子の制御信号),OUT1B(昇圧回路12のスイッチング素子の制御信号)で示されるように、同じタイミングでオン・オフするソフトスタート制御が開示されている。図6は、説明の簡単化のためにVerr1およびVerr2を無視した、もしくはVerr1およびVerr2が非常に大きい場合に相当する波形図であり、図6(b)に示すように三角波Voscとソフトスタート信号であるCS端子の電圧(以下CS電圧と略記)を比較することにより、信号OUT1A,OUT1Bすなわち降圧回路11と昇圧回路12のスイッチング素子のオン・オフを決定している。時間と共に増加するCS電圧と三角波Voscの大小関係を比較して、CS電圧の方が小さければスイッチング素子をオフ、CS電圧の方が大きければスイッチング素子をオンする信号を生成することにより、徐々にオンの幅が広がっていくパルス列を作ることができる。このように、降圧回路11,昇圧回路12ともにオンの幅が殆どゼロの状態から始まり徐々にオンの幅が広がっていくソフトスタート動作を行えば、起動時における出力コンデンサの充電電流の急増を防止する、言い換えればラッシュ電流の発生を防止することができるため、図6(a)に示すように出力電圧Voutが滑らかに上昇していく。
しかしながら、昇圧回路12のスイッチング素子をドライブする信号OUT1Bが図6(d)のようにオンの幅が殆どゼロの状態から始まることができるのは、ドライバ37が図4のように出力電圧Voutから電源供給を受けるのではなく、入力電圧Vinから電源供給を受ける場合である。
図4のようにドライバ37が出力電圧Voutから電源供給を受ける場合は、出力電圧Voutがドライバ37における論理閾値(約1V)を超えるまでドライバ37が動作せず、図7(d)に示すように出力電圧Voutが論理閾値を超えてから初めてドライバ37が動作して昇圧回路12のスイッチング素子をドライブする信号OUT1Bを出力する。ドライバ37の電源としてVinではなくVoutを適用するのは、DC−DCコンバータが昇圧動作をする場合に備えてのことである。すなわち、ドライバ37の電源がVinであると、昇圧回路12のスイッチング素子をドライブする信号OUT1Bの最大電圧はVinまでにしかならないが、これではVout>Vinのときに半導体スイッチQ2の電流駆動能力が不十分なものになってしまうおそれがあるためである。
半導体スイッチQ2の電流駆動能力を上げるためには、オン時の半導体スイッチQ2のゲート電圧をできるだけ高いものにしておく必要があり、そのためにドライバ37の電源として出力電圧Voutを供給する必要があるが、その場合は図7(d)のOUT1Bに従い昇圧回路12のスイッチング素子Q2がオンの幅がゼロとはみなされない状態からスイッチング動作を開始してしまう。この場合、半導体スイッチQ1,Q2にラッシュ電流が発生してしまうという問題がある。例えば、入力電圧Vinが小さく昇圧モードで起動する場合、昇圧回路12の半導体スイッチQ2が50%程度のオン時比率でスイッチング動作を開始すると、ラッシュ電流が発生する危険がある。すなわち、ソフトスタートモードにおいて半導体スイッチQ1,Q2がともにオン・オフ動作を行っていると、インダクタLに流れる電流はオン時に△I1=Vin・Ton/L増加し、オフ時に△I2=Vout・Toff/L減少するから、オン・オフ1周期では△I=△I1−△I2増加することになり、△I>0という条件が成り立つとインダクタLの電流が増加を続け、ラッシュ電流が発生する危険がある(Ton,Toffはそれぞれ図7に示すように半導体スイッチQ1,Q2のオン時間およびオフ時間)。これは、TonとToffがほぼ等しくなるオン時比率50%程度のときにVoutが想定値より低いような場合に起こりうる現象である。
半導体スイッチQ1だけがオン・オフし、半導体スイッチQ2がオフのままである図7のt=t0〜t1の期間では、半導体スイッチQ1のオン時に△I01=(Vin−Vout)・Ton/L増加し、オフ時に△I02=Vout・Toff/L減少することになり、半導体スイッチQ2もオン・オフしている場合に比べ電流の増加量が抑えられることになる。Voutが小さいため電流の減少量△I02は小さく、インダクタLに流れる電流はTonの期間で△I01増加し、Toffの期間はTonで増加した電流をほぼ維持することになる。このインダクタLに流れる電流が出力コンデンサCoutに積分されてVoutが上昇していくので、Voutを速く上昇させるにはTonでの電流増加を大きくすることがポイントになる。しかしながら、半導体スイッチQ2がオフのままである図7のt=t0〜t1の期間では、△I1=Vin・Ton/Lではなく△I01=(Vin−Vout)・Ton/Lで増加するため、Voutの増加が想定値(設計値)より低くなってしまうことがある。この場合に、上述の△I>0という条件が成り立ってラッシュ電流が発生する危険がある。ラッシュ電流が発生すると、図7のt=t1以降に示すようにVoutも急激に増加することになる。
本発明はこのような点に鑑みてなされたものであり、悪条件においてもソフトスタート時にラッシュ電流が発生することのない、昇降圧型DC−DCコンバータの制御装置を提供することにある。
そこで、上記課題を解決するために、請求項1に係る発明は、第1のスイッチング素子を有する降圧回路と第2のスイッチング素子を有する昇圧回路が入力端子と出力端子の間に設けられたDC−DCコンバータを制御して、定常時は前記入力端子に入力される直流入力電圧を目標電圧値に等しい直流出力電圧に変換して前記出力端子から出力し、起動時は前記第1および第2のスイッチング素子のオン時比率を時間の経過と共に漸増するソフトスタート動作を前記降圧回路と昇圧回路のそれぞれで行うことにより前記直流出力電圧を前記目標電圧値より充分低いレベルから前記目標電圧値に向け緩やかに立ち上げるソフトスタートを行う昇降圧型DC−DCコンバータの制御装置において、前記昇圧回路のソフトスタート動作を前記降圧回路のソフトスタート動作より遅れて開始し、前記起動時にレベルが時間と共に上昇または下降する第1および第2のソフトスタート信号を生成するソフトスタート信号生成手段、所定の上限レベルと下限レベルの間で上昇と下降を繰り返す発振信号を生成する発振手段、前記起動時に前記第1のソフトスタート信号と前記発振信号の比較結果に基づき前記降圧回路のソフトスタート動作を制御する第1の比較制御手段、前記起動時に前記第2のソフトスタート信号と前記発振信号の比較結果に基づき前記昇圧回路のソフトスタート動作を制御する第2の比較制御手段、を有し、前記第1のソフトスタート信号が所定値に達してから前記第2のソフトスタート信号のレベルの上昇または下降を開始し、前記直流出力電圧を検出する電圧検出回路と、前記電圧検出手段の出力電圧値を基準電圧値と比較して第1の誤差信号を出力する誤差増幅回路と、第1の誤差信号を一定電圧レベルシフトして第2の誤差信号を得る第1のレベルシフト回路を備え、前記第1のスイッチング素子がPチャネルMOSFETであり、前記第2のスイッチング素子がNチャネルMOSFETであり、前記第1の比較制御手段が前記第1の誤差信号および前記第1のソフトスタート信号と前記発振信号とを比較する第1のコンパレータ回路および該第1のコンパレータ回路の出力に基づき前記PチャネルMOSFETのゲートに駆動信号を出力する第1のドライブ回路を有し、前記第2の比較制御手段が前記第2の誤差信号および前記第2のソフトスタート信号と前記発振信号とを比較する第2のコンパレータ回路および該第2のコンパレータ出力回路の出力に基づき前記NチャネルMOSFETのゲートに駆動信号を出力する第1のドライブ回路を有することを特徴とする。
請求項に係る発明は、請求項に係る発明において、前記ソフトスタート信号生成手段がコンデンサおよび該コンデンサを充電して前記第1のソフトスタート信号を生成する定電流回路、および第1のソフトスタート信号を一定電圧レベルシフトして第2のソフトスタート信号を得る第2のレベルシフト回路を有することを特徴とする。
請求項に係る発明は、請求項に係る発明において、前記ソフトスタート信号生成手段が、第1のソフトスタート信号生成する第1のカウンタおよび第1のD/Aコンバータ、第2のソフトスタート信号生成する第2のカウンタおよび第2のD/Aコンバータとを有し、前記第1のカウンタのカウント値が所定値に達してから前記第2のカウンタのカウント動作を開始することを特徴とする。
昇降圧型DC−DCコンバータにおいて、入力電圧Vinより高い出力電圧Voutを得る場合の起動時においても、降圧回路のソフトスタート動作が完了もしくはほぼ完了し、DC−DCコンバータの入力電圧Vinと出力電圧Voutがほぼ等しくなってから昇圧回路のソフトスタート動作を開始するようにしたため、ラッシュ電流を大幅に低減することができる。
以下、本発明の実施形態として、昇圧を行う場合でも、出力電圧Voutが十分高くなってから、すなわち最初は降圧回路のみでソフトスタート動作を行い出力電圧が降圧回路で得られる上限Vinに等しいかもしくはその近傍になってから、昇圧回路の半導体スイッチのソフトスタート動作を開始させるものについて、図面を参照して詳細に説明する。
図1は、本発明の第1の実施形態を示す回路図であり、図4と共通する部分は同一符号を付して、その説明は省略する。また、図2にその波形図を示す。制御IC20は図4の制御IC200に対し、レベルシフト回路40が追加され、その出力が上述のCS電圧の替わりにコンパレータ36の非反転入力端子に接続されているものになっている。すなわち、降圧回路11に対しては、コンデンサCsの両端電圧であるCS1がソフトスタート信号として与えられ、昇圧回路12に対してはCS1をレベルシフト回路40によりVSFTレベルシフトしたCS2がソフトスタート信号として与えられることになる。なお、ソフトスタート信号CS2のレベルは制御IC20の基準電位(接地)以下にはなれないので、ソフトスタート信号CS2のレベルの変化はソフトスタート信号CS1がVSFTに達してから開始することになる。レベルシフト回路40によるレベルシフト量VSFTを三角波Voscの振幅△Voscと同程度の大きさにすることにより、図2に示すように時刻t=t1にて降圧回路11のソフトスタート動作を完了してから(t1までは半導体スイッチQ2がオフのままであるため、昇降圧DC−DCコンバータは降圧回路11のみが動作している)、半導体スイッチQ2のオン・オフすなわち昇圧回路12のソフトスタート動作が開始する。昇圧回路12のソフトスタート動作が開始する前に降圧回路11のソフトスタート動作が完了していて、出力電圧Voutが十分高くなっているため、オンの幅が殆どゼロの状態から始まる昇圧回路12のソフトスタート動作を開始することができ、昇圧回路12が動作を開始してもラッシュ電流が発生することもない。
図3は、本発明の第2の実施形態を示す回路図であり、図1と共通する部分は同一符号を付して、その説明は省略する。また、その波形図は図2と同様であるので省略する。第2の実施の形態は、ソフトスタート信号を定電流をコンデンサに積分して得るアナログ方式ではなく、カウンタとD/Aコンバータによるデジタル方式で生成するものである。そのため、外付け回路21aには図1,4の外付け回路21にあったコンデンサCsが省かれている。さらに制御IC20aには図1の制御IC20にあった定電流源32,レベルシフト回路40も省かれている。コンデンサCs,定電流源32,レベルシフト回路40に替わってソフトスタート信号CS1,CS2を生成するのが、降圧用カウンタ50,第1のD/Aコンバータ51,昇圧用カウンタ52,第2のD/Aコンバータ53,デコーダ54,インバータゲート55およびANDゲート56,57である。また、CLKは一定周波数のクロック信号である。降圧用カウンタ50からはn本の信号線からなるデータラインが第1のD/Aコンバータ51およびデコーダ54に入力される。第1のD/Aコンバータ51は降圧用カウンタ50から入力されるnビットのデジタルデータをアナログ信号に変換してソフトスタート信号CS1としてコンパレータ35の非反転入力に入力する。昇圧用カウンタ52からはn本の信号線からなるデータラインが第2のD/Aコンバータ53およびに入力される。第2のD/Aコンバータ53は昇圧用カウンタ52から入力されるnビットのデジタルデータをアナログ信号に変換してソフトスタート信号CS2としてコンパレータ36の非反転入力に入力する。デコーダ54は降圧用カウンタ50から入力されるnビットのデジタルデータが所定値になったらHiを、それ以外はLoを出力するものである。デコーダ54の出力はANDゲート57に入力されるとともに、インバータゲート55により反転されてANDゲート56に入力される。ANDゲート56,57にはクロック信号CLKが共通に入力されるとともに、その出力はそれぞれ降圧用カウンタ50および昇圧用カウンタ52にカウントクロックとして入力される。
この回路部分の動作は以下のとおりである。まず図示しない制御回路により降圧用カウンタ50および昇圧用カウンタ52が初期リセットされる。リセットが解除されると、デコーダ54の出力はLoであるので、降圧用カウンタ50のカウント動作のみが開始される。降圧用カウンタのカウント値は単調に増加していくので、降圧回路11に与えられるソフトスタート信号CS1も図2と同様に単調に増加していく。降圧用カウンタ51のカウント値が所定値に達するまではデコーダ54の出力がLoであるため昇圧用カウンタ52はカウントクロックが入力されず、昇圧用カウンタ52のカウント値は初期値のまま、すなわちCS2が生成されない状態となっている。降圧用カウンタ51のカウント値が所定値に達するとデコーダ54の出力がHiになると、今度はカウントクロックが昇圧用カウンタのみに入力されるようになるため、図2と同様に昇圧回路12用ソフトスタート信号CS2が降圧回路11用ソフトスタート信号CS1に遅れて生成されることになる。ここでデコーダ54が検出する所定値を調整することにより、実施例1と同様の動作を実現することができる。
なお、上述の説明においてソフトスタート信号を単調増加するものとして説明してきたが、電圧検出手段の出力レベルやドライバ37,38の論理を適宜反転させることにより、単調減少するソフトスタート信号を適用することも可能である。
本発明の第1の実施形態を示す回路図である。 第1の実施形態の動作を説明するための波形図である。 本発明の第2の実施形態を示す回路図である。 従来の昇降圧型DC−DCコンバータの回路構成図である。 従来の昇降圧型DC−DCコンバータの動作を説明するための波形図である。 昇圧回路12のスイッチング素子を駆動するドライブ回路の電源が入力電圧から供給されている、従来の昇降圧型DC−DCコンバータのソフトスタート動作について説明するための波形図である。 昇圧回路12のスイッチング素子を駆動するドライブ回路の電源が出力電圧から供給されている、従来の昇降圧型DC−DCコンバータのソフトスタート動作について説明するための波形図である。
符号の説明
10 コンバータ部
11 降圧回路
12 昇圧回路
20,20a 制御IC
21,21a 外付け回路部
31 演算増幅器
32 定電流源
33,40 レベルシフト回路
34 三角波発振器
35,36 コンパレータ
37,38 ドライバ
50 降圧用カウンタ
52 昇圧用カウンタ
51,53 D/Aコンバータ
54 デコーダ
55 インバータゲート
56,57 ANDゲート
Q1 半導体スイッチ(PチャネルMOSFET)
Q2 半導体スイッチ(NチャネルMOSFET)
D1,D2 ダイオード
L インダクタ
Cout 出力コンデンサ
Cs コンデンサ
R2,R2 抵抗
Vin 入力電圧
Vout 出力電圧
Vref 基準電圧
CS1,CS2 ソフトスタート信号
Verr1,Verr2 エラー信号

Claims (3)

  1. 第1のスイッチング素子を有する降圧回路と第2のスイッチング素子を有する昇圧回路が入力端子と出力端子の間に設けられたDC−DCコンバータを制御して、定常時は前記入力端子に入力される直流入力電圧を目標電圧値に等しい直流出力電圧に変換して前記出力端子から出力し、起動時は前記第1および第2のスイッチング素子のオン時比率を時間の経過と共に漸増するソフトスタート動作を前記降圧回路と昇圧回路のそれぞれで行うことにより前記直流出力電圧を前記目標電圧値より充分低いレベルから前記目標電圧値に向け緩やかに立ち上げるソフトスタートを行う昇降圧型DC−DCコンバータの制御装置において、
    前記昇圧回路のソフトスタート動作を前記降圧回路のソフトスタート動作より遅れて開始し、
    前記起動時にレベルが時間と共に上昇または下降する第1および第2のソフトスタート信号を生成するソフトスタート信号生成手段、所定の上限レベルと下限レベルの間で上昇と下降を繰り返す発振信号を生成する発振手段、前記起動時に前記第1のソフトスタート信号と前記発振信号の比較結果に基づき前記降圧回路のソフトスタート動作を制御する第1の比較制御手段、前記起動時に前記第2のソフトスタート信号と前記発振信号の比較結果に基づき前記昇圧回路のソフトスタート動作を制御する第2の比較制御手段、を有し、
    前記第1のソフトスタート信号が所定値に達してから前記第2のソフトスタート信号のレベルの上昇または下降を開始し、
    前記直流出力電圧を検出する電圧検出回路と、前記電圧検出手段の出力電圧値を基準電圧値と比較して第1の誤差信号を出力する誤差増幅回路と、第1の誤差信号を一定電圧レベルシフトして第2の誤差信号を得る第1のレベルシフト回路を備え、
    前記第1のスイッチング素子がPチャネルMOSFETであり、前記第2のスイッチング素子がNチャネルMOSFETであり、前記第1の比較制御手段が前記第1の誤差信号および前記第1のソフトスタート信号と前記発振信号とを比較する第1のコンパレータ回路および該第1のコンパレータ回路の出力に基づき前記PチャネルMOSFETのゲートに駆動信号を出力する第1のドライブ回路を有し、前記第2の比較制御手段が前記第2の誤差信号および前記第2のソフトスタート信号と前記発振信号とを比較する第2のコンパレータ回路および該第2のコンパレータ出力回路の出力に基づき前記NチャネルMOSFETのゲートに駆動信号を出力する第1のドライブ回路を有することを特徴とする昇降圧型DC−DCコンバータの制御装置。
  2. 前記ソフトスタート信号生成手段がコンデンサおよび該コンデンサを充電して前記第1のソフトスタート信号を生成する定電流回路、および第1のソフトスタート信号を一定電圧レベルシフトして第2のソフトスタート信号を得る第2のレベルシフト回路を有することを特徴とする請求項に記載の昇降圧型DC−DCコンバータの制御装置。
  3. 前記ソフトスタート信号生成手段が、第1のソフトスタート信号生成する第1のカウンタおよび第1のD/Aコンバータ、第2のソフトスタート信号生成する第2のカウンタおよび第2のD/Aコンバータとを有し、前記第1のカウンタのカウント値が所定値に達してから前記第2のカウンタのカウント動作を開始することを特徴とする請求項に記載の昇降圧型DC−DCコンバータの制御装置。
JP2004175481A 2004-06-14 2004-06-14 昇降圧型dc−dcコンバータの制御装置 Active JP4487649B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004175481A JP4487649B2 (ja) 2004-06-14 2004-06-14 昇降圧型dc−dcコンバータの制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004175481A JP4487649B2 (ja) 2004-06-14 2004-06-14 昇降圧型dc−dcコンバータの制御装置

Publications (2)

Publication Number Publication Date
JP2005354860A JP2005354860A (ja) 2005-12-22
JP4487649B2 true JP4487649B2 (ja) 2010-06-23

Family

ID=35588835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004175481A Active JP4487649B2 (ja) 2004-06-14 2004-06-14 昇降圧型dc−dcコンバータの制御装置

Country Status (1)

Country Link
JP (1) JP4487649B2 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100819851B1 (ko) * 2006-06-09 2008-04-08 한국과학기술원 직류/직류 스탭-업 컨버터 및 그 제어 방법.
TWI353102B (en) * 2006-06-16 2011-11-21 Fujitsu Semiconductor Ltd Step-up/step-down type dc-dc converter, and contro
JP4761209B2 (ja) * 2006-10-16 2011-08-31 株式会社安川電機 電気二重層コンデンサを適用した電力変換装置および電気二重層コンデンサの充電方法
KR100946795B1 (ko) 2007-12-28 2010-03-11 인하대학교 산학협력단 저전력 버퍼를 이용한 스텝다운 dc-dc 변환기
JP5641555B2 (ja) * 2009-05-27 2014-12-17 レノボ・イノベーションズ・リミテッド(香港) Dcdcコンバータおよびその起動制御方法
JP5563425B2 (ja) * 2010-10-21 2014-07-30 富士通テレコムネットワークス株式会社 電源装置
WO2012144178A1 (ja) * 2011-04-22 2012-10-26 シャープ株式会社 バックライトシステム
JP5713291B2 (ja) * 2011-06-28 2015-05-07 ニチコン株式会社 Ac/dc変換装置
JP5949543B2 (ja) * 2012-12-28 2016-07-06 株式会社オートネットワーク技術研究所 昇降圧回路
US9203383B2 (en) 2013-03-14 2015-12-01 Sandisk Technologies Inc. Digital soft start with continuous ramp-up
JP6543908B2 (ja) * 2014-10-14 2019-07-17 株式会社オートネットワーク技術研究所 変圧装置
DE102015115637A1 (de) * 2015-09-16 2017-03-16 Borgwarner Ludwigsburg Gmbh Verfahren zum Begrenzen des Einschaltstromes eines Aufwärtswandlers
EP3322092A1 (de) * 2016-11-14 2018-05-16 Siemens Schweiz AG Verstärkerschaltung und verfahren zum betrieb einer verstärkerschaltung
CN108712074B (zh) * 2018-05-30 2019-09-27 上海建桥学院 升降压dc-dc变换器及其软起动控制方法
JP7059140B2 (ja) * 2018-07-19 2022-04-25 住友電気工業株式会社 電力変換装置

Also Published As

Publication number Publication date
JP2005354860A (ja) 2005-12-22

Similar Documents

Publication Publication Date Title
JP4997891B2 (ja) Dc−dcコンバータ及びdc−dcコンバータの制御方法
JP5195182B2 (ja) 電流モード制御型スイッチングレギュレータ
JP5504685B2 (ja) スイッチングレギュレータ及びその動作制御方法
KR101131262B1 (ko) 전류 모드 제어형 스위칭 레귤레이터
JP5287030B2 (ja) Dc−dcコンバータおよび制御方法
JP5211959B2 (ja) Dc−dcコンバータ
US7804285B2 (en) Control of operation of switching regulator to select PWM control or PFM control based on phase comparison
TWI442687B (zh) Comparator mode DC-to-DC converter
JP5091027B2 (ja) スイッチングレギュレータ
JP5332248B2 (ja) 電源装置
JP4791762B2 (ja) スイッチングレギュレータの制御回路およびそれを利用した電源装置、電子機器
JP4487649B2 (ja) 昇降圧型dc−dcコンバータの制御装置
JP4857925B2 (ja) 多出力型dc/dcコンバータ
JP2008228514A (ja) スイッチングレギュレータ及びその動作制御方法
EP2283569A1 (en) Current-mode control switching regulator and operations control method thereof
JP5456495B2 (ja) 昇降圧型のスイッチング電源の制御回路、昇降圧型のスイッチング電源、及び昇降圧型のスイッチング電源の制御方法
JP2009225642A (ja) 電源装置および半導体集積回路装置
JP5304173B2 (ja) 電源電圧制御回路及びdc−dcコンバータ
JP4938425B2 (ja) スイッチング制御回路
JP5515390B2 (ja) スイッチング電源装置
JP4686285B2 (ja) スイッチング制御回路、dc−dcコンバータ
JP4310982B2 (ja) 非絶縁型降圧コンバータおよびそれを用いた電子装置
JP4983275B2 (ja) Dc/dcコンバータ
JP2006174630A (ja) スイッチング電源の制御方法、制御回路および電源装置
JP5071145B2 (ja) 制御回路および電源制御用半導体集積回路並びにdc−dcコンバータ

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070215

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100322

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4487649

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250