WO2012144178A1 - バックライトシステム - Google Patents

バックライトシステム Download PDF

Info

Publication number
WO2012144178A1
WO2012144178A1 PCT/JP2012/002583 JP2012002583W WO2012144178A1 WO 2012144178 A1 WO2012144178 A1 WO 2012144178A1 JP 2012002583 W JP2012002583 W JP 2012002583W WO 2012144178 A1 WO2012144178 A1 WO 2012144178A1
Authority
WO
WIPO (PCT)
Prior art keywords
driver
voltage
power supply
backlight system
current
Prior art date
Application number
PCT/JP2012/002583
Other languages
English (en)
French (fr)
Inventor
正浩 廣兼
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012144178A1 publication Critical patent/WO2012144178A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • H05B45/44Details of LED load circuits with an active control inside an LED matrix
    • H05B45/46Details of LED load circuits with an active control inside an LED matrix having LEDs disposed in parallel lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]

Definitions

  • the present disclosure relates to a backlight system used with a display panel.
  • the backlight system emits light from the back of the display panel.
  • the light of the backlight system is typically emitted by a light emitting diode (LED).
  • a switching regulator is used as a driver to drive the LED backlight.
  • the driver receives current from the power source that drives the LEDs.
  • a switching regulator according to the prior art is described in Patent Document 1, for example.
  • a period during which the input voltage to the driver is less than the rating (referred to as a power supply transient period) occurs.
  • the rush current flowing through the inductor of the driver may increase and trigger overcurrent protection. In such a case, the driver shuts down, causing a problem that the LED does not light up.
  • an object of the present invention is to provide a backlight system in which an excessive current does not flow through a driver inductor even during a transient period of a power supply.
  • a backlight system for lighting a light emitting diode (LED) includes a driver that controls a current flowing from a power source to the LED based on a voltage applied to a control node, and a gradually increasing voltage.
  • a controller to be provided to the control node.
  • the driver controls the amount of current flowing through the LED based on the voltage.
  • the magnitude of the LED current can be flexibly controlled according to the characteristics of the driver.
  • the controller includes a time constant circuit that defines a rising period of the current when the power supply is activated, and an operational amplifier that receives and amplifies an output from the time constant circuit.
  • the controller supplies the output of the operational amplifier to another driver different from the driver. With this configuration, a plurality of backlight units can be driven.
  • the driver selects either a standby mode or a normal mode based on the voltage. With this configuration, even a driver without a current control node can avoid an excessive current by mode switching.
  • the controller includes a time constant circuit that defines a rising period of the current when the power supply is activated.
  • FIG. 1 is a diagram illustrating a backlight system according to an embodiment of the present invention.
  • FIG. 2 is a timing chart of the backlight system.
  • FIG. 3 is a diagram illustrating a backlight system according to another embodiment of the present invention.
  • FIG. 4 is a view illustrating a backlight system according to still another embodiment of the present invention.
  • FIG. 5 is a timing chart of the backlight system.
  • FIG. 6 is a diagram showing an outline of the operation in the conventional backlight system.
  • FIG. 7 is a diagram showing an outline of the operation in the backlight system.
  • FIG. 1 is a diagram illustrating a backlight system 100 according to an embodiment of the present invention.
  • the backlight system 100 includes a backlight 110, a driver 120, and a controller 150.
  • the liquid crystal display (LCD) panel 115 functions as a display panel that displays images to the user.
  • LCD liquid crystal display
  • Other suitable types of display panels may be used in place of the LCD panel 115. Examples of such display panels include plasma displays and organic EL displays.
  • the backlight 110 is provided on the back surface of the LCD panel 115 when viewed from the user, and irradiates the back surface of the LCD panel 115 with light. Light from the backlight 110 passes through the LCD panel 115 and reaches the user. With such a configuration, the user can view an image on the LCD panel 115.
  • the backlight 110 is typically implemented with a white light emitting diode (LED) 112. Although the backlight 110 includes three LEDs 112 in FIG. 1, the backlight 110 is not limited to such a configuration. The number of the LEDs 112 may be any appropriate natural number depending on the size of the LCD panel 115 or the like.
  • local dimming may be performed to improve contrast.
  • Local dimming is also called area driving, area control, or the like.
  • one LCD panel may be divided into 240 areas of horizontal 20 ⁇ vertical 12 and controlled according to the displayed image. Each area has one backlight unit, and one backlight user unit has 12 LEDs.
  • Driver 120 receives power supply voltage VDD from positive node 132 of power supply 130 at input node IN, and outputs current I from output node OUT.
  • the ground node GND is connected to the negative node 134 of the power supply 130.
  • node means a node in an abstract sense in graph theory.
  • a node does not necessarily require physical parts and members.
  • a point on the substrate having no terminal may be a node.
  • the power supply 130 has a positive node 132 and a negative node 134.
  • the power supply 130 supplies a DC power supply voltage VDD, which is a constant voltage, between the positive node 132 and the negative node 134 in the steady state.
  • the power supply 130 is, for example, a step-up switching power supply.
  • the power source 130 is not limited to this specific type, and may be any power source that outputs any appropriate DC voltage.
  • the “transient state” of the power supply 130 refers to a state immediately after startup in which the power supply 130 outputs a voltage lower than the rated voltage.
  • the “steady state” of the power supply 130 means a state in which the transient state of the power supply 130 is settled. In this case, the power supply 130 receives a low DC voltage from, for example, a battery and outputs a high DC voltage.
  • the driver 120 controls the magnitude of the current I flowing through the LED 112 based on the voltage applied to the control node CTR. By controlling the magnitude of the current I, the brightness of the LED 112 is also controlled. For example, the higher the voltage applied to the control node CTR, the larger the current I output from the output node OUT.
  • the controller 150 provides the control node CTR with a voltage that gradually increases immediately after the power supply is activated.
  • the controller 150 includes a time constant circuit 160 and an operational amplifier 165.
  • the controller 150 includes resistors 151 and 152, a diode 153, and a capacitor 154. Resistors 151 and 152 having resistance values R1 and R2, respectively, are connected in series to divide the power supply voltage VDD. The voltage at the middle point of the resistors 151 and 152 charges the capacitor 161.
  • the time constant circuit 160 includes a capacitor 161 and a resistor 162.
  • the operational amplifier 165 is a non-inverting amplifier that receives and amplifies the output from the time constant circuit 160.
  • the operational amplifier 165 is called a voltage follower or unity gain amplifier because the phase of the output signal is the same as that of the input signal and the voltage amplification factor is 1.
  • the specific voltage amplification factor of the operational amplifier 165 may be changed according to the driver 120, for example.
  • FIG. 2 is a timing chart of the backlight system 100.
  • the horizontal axis represents time t, and the vertical axis represents power supply voltage VDD, driver undervoltage malfunction prevention (UVLO) operation / release, driver operation, and voltage VA at node A.
  • VDD driver undervoltage malfunction prevention
  • UVLO driver undervoltage malfunction prevention
  • the power supply voltage VDD does not rise steeply, and increases in a ramp shape from time t1 to time t4, for example. That is, the power supply 130 is in a transient state between time t1 and time t4. Conversely, after time t4, power supply 130 is in a steady state. At time t4, the power supply voltage VDD reaches the rated voltage.
  • the power supply voltage VDD reaches the voltage VDDmin.
  • the driver 120 may not operate normally when the power supply voltage VDD is lower than the voltage VDDmin. That is, when the power supply voltage VDD is lower than the voltage VDDmin, the current of VDD flowing through the driver 120 can be larger than the rating. This overcurrent is caused by the function of the switching regulator that attempts to output the rated voltage even though the driver 120 is supplied with a voltage lower than the rated voltage. As a result, the driver 120 may be shut down by the overcurrent protection function of the driver 120. Conversely, if the power supply voltage VDD is equal to or higher than the voltage VDDmin, the driver 120 operates normally.
  • the controller 150 sets the voltage VA at time t3 to a voltage Vr lower than the steady-state voltage Vfull.
  • Vfull When the voltage Vfull is applied to the control node CTR, the rated maximum current flows in the steady state of the driver 120.
  • the voltage Vr When the voltage Vr is applied to the control node CTR, for example, 80% of the rated maximum current flows in the steady state of the driver 120.
  • the UVLO function of the driver 120 is operating until the time t2 after the power supply 130 is activated (that is, after the time t1).
  • the UVLO function places the driver 120 in the standby mode until the power supply voltage VDD reaches the voltage Vuvlo when the power supply 130 is activated.
  • This UVLO function reduces the inrush current at the time of starting the power supply 130 and prevents the driver 120 from malfunctioning.
  • the driver 120 includes hardware for realizing the UVLO function therein.
  • the UVLO function soft-starts the driver 120 between time t2 and time t3. Since the power supply voltage VDD reaches VDDmin at time t3, the driver 120 shifts to the normal mode.
  • standby mode refers to a state in which the operation of the device 120 is substantially stopped.
  • Soft start refers to a stage prior to the transition to the normal mode by gradually starting up the device 120. Soft start realizes a smooth transition to normal mode.
  • the controller 150 applies a gradually increasing voltage to the control node CTR.
  • the current I flowing from the output node OUT can be limited.
  • the voltage VA applied to the control node CTR is lower than the predetermined voltage Vfull so that the current I does not trigger the overcurrent protection function of the driver 120.
  • Vr 0.8Vfull
  • the backlight system 100 can control the LED current I by the voltage VA applied to the control node CTR. Therefore, the magnitude of the LED current can be flexibly controlled according to the characteristics of the driver.
  • the “voltage that gradually increases” refers to a voltage that increases monotonously over a period of the same order as the transient period of the power supply 130 (that is, time t1 to time t4).
  • the voltage applied to the control node CTR typically follows a charging curve of the capacitor 161 as shown in FIG.
  • the voltage of the control node CTR is not limited to this, and may be a monotonically increasing voltage, for example. Specifically, the voltage of the control node CTR may increase linearly.
  • FIG. 3 is a diagram illustrating a backlight system 300 according to another embodiment of the present invention.
  • the backlight system 300 operates roughly in the same manner as the backlight system 100.
  • the backlight system 300 is different from the backlight system 100 in that the controller 150 drives the two drivers 320 and 321.
  • the power supply 130 supplies a DC voltage to the controller 150 and the drivers 320 and 321 through the positive node 132 and the negative node 134.
  • Each of the drivers 320 and 321 is the same as or similar to the driver 120.
  • Drivers 320 and 321 drive the backlights 310 and 311, respectively.
  • Each of the backlights 310 and 311 is the same as or similar to the backlight 110.
  • the backlights 310 and 311 typically irradiate the back of different areas of the LCD panel 115 with light.
  • the input nodes IN1 and IN2, the output nodes OUT1 and OUT2, the control nodes CTR1 and CTR2, and the ground nodes GND1 and GND2 of the drivers 320 and 321 are the input node IN, the output node OUT, the control node CTR, and the ground node GND of the driver 120, respectively. Correspond to each.
  • the single controller 150 drives the two drivers 320 and 321, but the number of drivers to be driven is not limited to two, and may be any appropriate number.
  • the LCD panel 115 can be divided into 16 areas, and the 16 backlights can irradiate the corresponding areas. In this case, 16 backlights can be turned on by a single controller 150 driving 16 drivers. Since different backlights illuminate different areas, the image quality of the LCD panel 115 can be improved.
  • the backlight system 300 operates in the same manner as the backlight system 100 described with reference to FIGS. That is, the controller 150 applies a gradually increasing voltage to the control nodes CTR1 and CTR2. Thereby, the backlight system 300 has the same effect as the backlight system 100. Specifically, the currents I1 and I2 flowing from the output nodes OUT1 and OUT2 can be limited. As a result, undesirable behavior such as malfunction of the power supply 130 can be prevented or reduced.
  • FIG. 4 is a view showing a backlight system 400 according to still another embodiment of the present invention.
  • the backlight system 400 operates roughly in the same manner as the backlight system 100.
  • Driver 420 receives power supply voltage VDD from positive node 132 of power supply 130 at input node IN, and outputs current I from output node OUT.
  • the ground node GND is connected to the negative node 134 of the power supply 130.
  • the driver 420 irradiates the LCD panel 115 with light by driving the backlight 110 with current I.
  • the driver 420 operates in the same manner as the driver 120, but is different from the driver 120 in that it has an enable node EN instead of the control node CTR. Specifically, driver 420 differs from driver 120 in that it selects one of the standby mode and the normal mode based on the voltage applied to enable node EN. When the voltage applied to enable node EN is equal to or higher than a predetermined voltage, driver 420 operates in the normal mode. Conversely, when the voltage applied to enable node EN is less than a predetermined voltage, driver 420 is in the standby mode. In this standby mode, the driver 420 stops operating.
  • the controller 450 provides a voltage that gradually increases to the control node CTR immediately after the power supply 130 is activated.
  • the controller 450 includes a time constant circuit 460.
  • the controller 450 includes resistors 451 and 452 and a diode 453. Resistors 451 and 452 having resistance values R1 and R2, respectively, are connected in series to divide the power supply voltage VDD. The voltage at the midpoint of resistors 451 and 452 charges capacitor 461.
  • the time constant circuit 460 includes a capacitor 461 and a resistor 462.
  • FIG. 5 is a timing chart of the backlight system 400.
  • the horizontal axis represents time t, and the vertical axis represents power supply voltage VDD, driver undervoltage malfunction prevention (UVLO) operation / release, voltage VA at node A, and driver operation.
  • VDD power supply voltage
  • UVLO driver undervoltage malfunction prevention
  • the power supply voltage VDD does not rise steeply, and increases in a ramp shape from time t1 to time t4, for example. That is, the power supply 130 is in a transient state between time t1 and time t4. Conversely, after time t4, power supply 130 is in a steady state. At time t4, the power supply voltage VDD reaches the rated voltage.
  • the power supply voltage VDD reaches the voltage VDDmin.
  • the driver 420 may not operate normally when the power supply voltage VDD is lower than the voltage VDDmin. That is, when the power supply voltage VDD is lower than the voltage VDDmin, the current flowing from the output node OUT of the driver 420 to the backlight 110 may be larger than the rating. This overcurrent is due to the function of the switching regulator that attempts to output the rated voltage even though the driver 420 can only receive a voltage lower than the rated voltage. As a result, the driver 420 may shut down due to the overcurrent protection function of the driver 420. Conversely, if the power supply voltage VDD is equal to or higher than the voltage VDDmin, the driver 420 operates normally.
  • the controller 450 sets the voltage VA at time t3 to a voltage Vth lower than the steady-state voltage Vfull.
  • voltage VA is equal to or higher than voltage Vth
  • driver 420 operates in the normal mode.
  • voltage VA is less than voltage Vth
  • driver 420 operates in the standby mode.
  • the UVLO function of the driver 420 is operating until the time t2 after the power supply 130 is activated (that is, after the time t1).
  • the UVLO function turns off the driver 420 until the power supply voltage VDD reaches the voltage Vuvlo when the power supply 130 is activated.
  • This UVLO function reduces the inrush current when the power supply 130 is activated, and prevents the driver 420 from malfunctioning.
  • the driver 420 includes hardware for realizing the UVLO function therein.
  • the UVLO function causes the driver 420 to stand by between time t2 and time t3. Since power supply voltage VDD reaches VDDmin at time t3, driver 420 transitions to the normal mode.
  • the controller 450 applies a gradually increasing voltage to the control node CTR.
  • the mode of the driver 420 can be switched.
  • the operation of driver 420 is set to the standby mode so that current I does not trigger the overcurrent protection function of driver 120 until power supply voltage VDD reaches voltage VDDmin (time t3).
  • the operation of the driver 420 is set to the normal mode. As a result, undesirable behavior such as malfunction of the driver 420 can be prevented or reduced.
  • Controller 450 consists of passive components. Therefore, the power supply 130 can operate relatively stably even in a transient state. Further, the controller 450 can reduce the cost and the complexity of the circuit as compared with the case where active components are used.
  • the voltage applied to the control node CTR typically follows a charging curve of the capacitor 461 as shown in FIG.
  • the voltage of the control node CTR is not limited to this, and may be a monotonically increasing voltage, for example. Specifically, the voltage of the control node CTR may increase linearly.
  • FIG. 6 is a diagram showing an outline of the operation in the conventional backlight system.
  • the horizontal axis represents time t
  • the vertical axis represents power supply voltage VDD, driver undervoltage malfunction prevention (UVLO) operation / release, driver operation, inductor current IL, and LED current ILED.
  • VDD power supply voltage
  • UVLO driver undervoltage malfunction prevention
  • ILED LED current ILED
  • FIG. 7 is a diagram showing an outline of the operation in the backlight system 100.
  • the horizontal axis represents time t, and the vertical axis represents power supply voltage VDD, driver undervoltage malfunction prevention (UVLO) operation / release, driver operation, inductor current IL, and LED current ILED.
  • VDD driver undervoltage malfunction prevention
  • UVLO driver undervoltage malfunction prevention
  • the LED current ILED also increases correspondingly.
  • the driver 120 is a soft start from time t1 to time t2, and operates in the normal mode after time t2. At this time t2, the LED current ILED is a current Ir lower than the maximum rated current Ifl. Therefore, unlike the inductor current IL of FIG.
  • the inductor current IL of the driver 120 gradually increases but does not exceed the overcurrent protection threshold OC. Therefore, undesirable behavior such as malfunction of the driver 120 can be prevented or reduced.
  • the effect described with reference to FIG. 7 can also be obtained by using the backlight systems 300 and 400.
  • various functions can be realized as individual elements. Conversely, a plurality of functions may be realized as a single element. For example, a plurality of functions may be realized as a single circuit element such as a single semiconductor chip or a single hybrid integrated circuit.
  • the operational amplifier 165 may be an individual component, but may be a part of the backlight system 100 formed on a semiconductor substrate.
  • the present invention is useful in that it can provide a backlight system in which an excessive current does not flow through the inductor of the driver even during a power supply transient period.
  • Backlight System 110 Backlight 112 Light Emitting Diode 115 Liquid Crystal Display Panel 120
  • Driver 130 Power Supply 150 Controller 151, 152, 162 Resistor 153 Diode 154 Capacitor 160 Time Constant Circuit 161 Capacitor 165 Operational Amplifier

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

電源の過渡期間においても、ドライバのインダクタに過大な電流が流れないバックライトシステムを提供する。発光ダイオード(LED)を点灯させるバックライトシステムであって、制御ノードに与えられる電圧に基づいて、電源から前記LEDに流れる電流を制御するドライバと、徐々に高くなる電圧を前記制御ノードに与えるコントローラとを備える。

Description

バックライトシステム
 本開示は、ディスプレイパネルと共に用いられるバックライトシステムに関する。
 バックライトシステムは、ディスプレイパネルの背面から光を照射するシステムである。バックライトシステムの光は、典型的には発光ダイオード(LED)によって発せられる。LEDバックライトを駆動するために、スイッチングレギュレータがドライバとして用いられる。ドライバはLEDを駆動する電流を電源から受け取る。従来技術によるスイッチングレギュレータは、例えば特許文献1に記載されている。
特開2005-354860号公報
 従来のドライバにおいて電源の立ち上がりが遅いと、ドライバへの入力電圧が定格に満たない期間(電源の過渡期間という)が生じる。この期間においてドライバのインダクタに流れるラッシュ電流が大きくなり、過電流保護をトリガすることがある。このような場合、ドライバがシャットダウンするのでLEDが点灯しないという問題を生じる。
 そこで本発明の目的は、電源の過渡期間においても、ドライバのインダクタに過大な電流が流れないバックライトシステムを提供することにある。
 本発明のある実施形態による発光ダイオード(LED)を点灯させるバックライトシステムは、制御ノードに与えられる電圧に基づいて、電源から前記LEDに流れる電流を制御するドライバと、徐々に高くなる電圧を前記制御ノードに与えるコントローラとを備える。この構成により、電源の過渡期間においても、ドライバのインダクタに過大な電流が流れないようにできる。
 ある実施形態において前記ドライバは、前記電圧に基づいて前記LEDに流れる電流の大きさを制御する。この構成により、ドライバの特性に応じて、LED電流の大きさをフレキシブルに制御できる。
 ある実施形態において前記コントローラは、前記電源の起動における前記電流の立ち上がり期間を規定する時定数回路、および前記時定数回路からの出力を受け取り増幅する演算増幅器を有する。この構成により、時定数回路が出力する電圧変動を安定してドライバに出力できる。
 ある実施形態において前記コントローラは、前記演算増幅器の出力を前記ドライバと異なる他のドライバにも供給する。この構成により、複数のバックライトユニットを駆動することができる。
 ある実施形態において前記ドライバは、前記電圧に基づいてスタンバイモードおよび通常モードのいずれかを選択する。この構成により、電流制御ノードがないドライバであっても、モード切換によって過大な電流を避けることができる。
 ある実施形態において前記コントローラは、前記電源の起動における前記電流の立ち上がり期間を規定する時定数回路を有する。この構成により、能動部品がなくてもドライバを制御できる。
 本発明によれば、電源の過渡期間においても、ドライバのインダクタに過大な電流が流れないバックライトシステムを提供することができる。
図1は、本発明のある実施形態によるバックライトシステムを示す図である。 図2は、バックライトシステムのタイミングチャートである。 図3は、本発明の他の実施形態によるバックライトシステムを示す図である。 図4は、本発明のさらに他の実施形態によるバックライトシステムを示す図である。 図5は、バックライトシステムのタイミングチャートである。 図6は、従来のバックライトシステムにおける動作の概略を示す図である。 図7は、バックライトシステムにおける動作の概略を示す図である。
 以下、本発明によるバックライトシステムの例示的実施形態について、図面を用いて詳細に説明する。図面において同一又は同様の構成要素は、同じ参照符号によって表される。
 (システムの構成)
 図1は、本発明のある実施形態によるバックライトシステム100を示す図である。バックライトシステム100は、バックライト110、ドライバ120、およびコントローラ150を含む。液晶ディスプレイ(LCD)パネル115は、ユーザに画像を表示するディスプレイパネルとして機能する。LCDパネル115の代わりに他の適切なタイプのディスプレイパネルが用いられ得る。そのようなディスプレイパネルの例には、プラズマディスプレイ、有機ELディスプレイがある。
 典型的には、バックライト110は、ユーザから見てLCDパネル115の背面に設けられ、LCDパネル115の背面に光を照射する。バックライト110からの光は、LCDパネル115を透過してユーザに届く。このような構成によりユーザはLCDパネル115上の画像を見ることができる。バックライト110は、典型的には白色発光ダイオード(LED)112で実現される。図1ではバックライト110は3個のLED112を有するが、バックライト110はこのような構成には限定されない。LED112の個数は、LCDパネル115の大きさなどに依存して、任意の適切な自然数であり得る。
 大画面のLCDパネルでは、コントラストを改善するために、ローカル・ディミング(局所減光)を行うことがある。ローカル・ディミングは、エリア駆動、エリア制御などとも呼ばれる。一例として、一つのLCDパネルは横20×縦12の240のエリアに分割され、表示される画像に応じて制御され得る。それぞれのエリアは1つのバックライトユニットを有し、1つのバックライトユーザニットは12個のLEDを有する。
 ドライバ120は、入力ノードINにおいて電源130の正極ノード132から電源電圧VDDを受け取り、出力ノードOUTから電流Iを出力する。グラウンドノードGNDは、電源130の負極ノード134に接続される。
 本明細書において「ノード」とはグラフ理論における、抽象的な意味でのノードをいう。ノードは必ずしも物理的な部品、部材を必要としない。例えば端子を有しない基板上のパターンの一点もノードであり得る。
 電源130は、正極ノード132および負極ノード134を有する。電源130は、その定常状態で、正極ノード132および負極ノード134の間に定電圧化された直流の電源電圧VDDを供給する。電源130は例えば昇圧型スイッチング電源である。電源130はこの具体的なタイプには限定されず、任意の適切な直流電圧を出力する電源ならよい。本明細書で電源130の「過渡状態」とは、電源130が定格電圧より低い電圧を出力している、起動直後の状態をいう。逆に電源130の「定常状態」とは、電源130の過渡状態が収まった状態をいう。この場合、電源130は、例えばバッテリーから低い直流電圧を受け取り、高い直流電圧を出力する。
 ドライバ120は、制御ノードCTRに与えられる電圧に基づいてLED112を流れる電流Iの大きさを制御する。電流Iの大きさを制御することによって、LED112の明るさも制御される。例えば、制御ノードCTRに与えられる電圧が高いほど、出力ノードOUTから出力される電流Iも大きい。
 コントローラ150は、電源が起動した直後において、徐々に高くなる電圧を制御ノードCTRに与える。コントローラ150は、時定数回路160および演算増幅器165を含む。コントローラ150は、抵抗151,152、ダイオード153、およびキャパシタ154を含む。それぞれ抵抗値R1,R2を有する抵抗151,152は、直列に接続されることによって、電源電圧VDDを分圧する。抵抗151,152の中点における電圧は、キャパシタ161を充電する。
 時定数回路160は、キャパシタ161および抵抗162を含む。時定数回路160は、電源の起動における電流Iの立ち上がり期間を規定する時定数τを決定する。具体的には、等式τ=C1×R3であり、ここでC1はキャパシタ161の容量を表し、R3は抵抗162の抵抗を表す。
 演算増幅器165は、時定数回路160からの出力を受け取り増幅する非反転増幅器である。演算増幅器165は、出力信号の位相が入力信号のそれと同一、かつ電圧増幅率は1であり、ボルテージ・フォロワまたはユニティ・ゲイン・アンプと呼ばれる。演算増幅器165の具体的な電圧増幅率は、例えばドライバ120に応じて変えてもよい。
 (タイミングチャート)
 図2は、バックライトシステム100のタイミングチャートである。横軸は時間tを、縦軸は電源電圧VDD、ドライバの低電圧誤動作防止(UVLO)の動作/解除、ドライバの動作、ノードAにおける電圧VAを示す。
 電源130が起動される時刻t1において、電源電圧VDDは急峻に立ち上がらず、例えば時刻t1~時刻t4にわたってランプ状に高くなる。つまり時刻t1~時刻t4の間は電源130は過渡状態にある。逆に時刻t4の後は電源130は定常状態にある。時刻t4において、電源電圧VDDは定格電圧に達する。
 時刻t3において電源電圧VDDは電圧VDDminに達する。ドライバ120は、電源電圧VDDが電圧VDDminより低いと正常に動作しないことがあり得る。すなわち、電源電圧VDDが電圧VDDminより低いと、ドライバ120に流れるVDDの電流が定格より大きくなり得る。この過電流は、ドライバ120が定格より低い電圧しか供給されてないにもかかわらず、定格の電圧を出力しようとするスイッチングレギュレータの機能に起因する。その結果、ドライバ120の過電流保護機能によってドライバ120がシャットダウンすることがあり得る。逆に、電源電圧VDDが電圧VDDmin以上であれば、ドライバ120は正常に動作する。
 ドライバ120の不要なシャットダウンを避けるために、コントローラ150は、時刻t3における電圧VAを定常状態の電圧Vfullよりも低い電圧Vrに設定する。電圧Vfullを制御ノードCTRに与えると、ドライバ120の定常状態において、定格最大電流が流れる。電圧Vrを制御ノードCTRに与えると、ドライバ120の定常状態において、例えば定格最大電流の80%が流れる。
 電源130の起動後(すなわち時刻t1の後)時刻t2までは、ドライバ120のUVLO機能が動作している。UVLO機能は、電源130の起動時に電源電圧VDDが電圧Vuvloに達するまで、ドライバ120をスタンバイモードにする。このUVLO機能は、電源130の起動時における突入電流を低減し、ドライバ120の誤動作を防ぐ。ドライバ120はUVLO機能を実現するハードウェアをその中に備える。UVLO機能は、ドライバ120を時刻t2~時刻t3の間にソフトスタートさせる。時刻t3において電源電圧VDDはVDDminに達するので、ドライバ120は通常モードに遷移する。
 本明細書で「スタンバイモード」とは、デバイス120の動作が実質的に停止している状態をいう。「ソフトスタート」とは、デバイス120を徐々にスタートアップすることによって、通常モードへ移行する前の段階をいう。ソフトスタートは、スムーズな通常モードへの遷移を実現する。
 本実施形態によれば、電源130の過渡状態(時刻t1~時刻t4)において、コントローラ150は、制御ノードCTRに徐々に高くなる電圧を与える。これにより出力ノードOUTから流れる電流Iを制限することができる。具体的には、UVLO機能が解除されるとき(時刻t2)に、電流Iがドライバ120の過電流保護機能をトリガしないように、制御ノードCTRに与えられる電圧VAを所定電圧Vfullよりも低い電圧Vrに設定する。その結果、ドライバ120の誤動作など好ましくない挙動を防止または低減できる。例えば、好ましくはVr=0.8Vfullの関係が満たされる。
 バックライトシステム100は、制御ノードCTRに与える電圧VAによって、LED電流Iを制御できる。したがってドライバの特性に応じて、LED電流の大きさをフレキシブルに制御できる。例えば本実施形態は上の関係Vr=0.8Vfullには限定されず、異なる関係を用いてもよい。
 本明細書で「徐々に高くなる電圧」とは、電源130の過渡期間(すなわち時刻t1~時刻t4)と同じオーダーの期間にわたって単調に高くなる電圧をいう。制御ノードCTRに与える電圧は、典型的には図2に示されるようなキャパシタ161の充電曲線に従う。しかし制御ノードCTRの電圧はこれには限定されず、例えば単調増加する電圧であってもよい。具体的には制御ノードCTRの電圧は、直線的に高くなってもよい。
 (変形例)
 図3は、本発明の他の実施形態によるバックライトシステム300を示す図である。バックライトシステム300もバックライトシステム100とおおまかには同様に動作する。バックライトシステム300は、コントローラ150が2つのドライバ320,321を駆動する点でバックライトシステム100とは異なる。電源130は、正極ノード132および負極ノード134を通して、コントローラ150およびドライバ320,321に直流電圧を供給する。
 ドライバ320,321のそれぞれは、ドライバ120と同じまたは同様である。ドライバ320,321は、それぞれバックライト310,311を駆動する。バックライト310,311のそれぞれは、バックライト110と同じまたは同様である。バックライト310,311は、典型的にはLCDパネル115の異なる領域の背面に光を照射する。ドライバ320,321の入力ノードIN1,IN2、出力ノードOUT1,OUT2、制御ノードCTR1,CTR2、およびグラウンドノードGND1,GND2は、ドライバ120の入力ノードIN、出力ノードOUT、制御ノードCTR、およびグラウンドノードGNDにそれぞれ対応する。
 バックライトシステム300においては、単一のコントローラ150が2つのドライバ320,321を駆動するが、駆動するドライバの個数は2に限定されず、任意の適切な個数であり得る。例えば、LCDパネル115が16個の領域に分割され、16個のバックライトが対応する領域に光を照射し得る。この場合、単一のコントローラ150が16個のドライバを駆動することによって、16個のバックライトを点灯し得る。異なる領域には異なるバックライトが光を照射するので、LCDパネル115の画像品質が改善され得る。
 バックライトシステム300は、図1および図2を参照して説明したバックライトシステム100と同様に動作する。すなわち、コントローラ150は、制御ノードCTR1,CTR2に徐々に高くなる電圧を与える。これによりバックライトシステム300は、バックライトシステム100と同様の効果を有する。具体的には出力ノードOUT1,OUT2から流れる電流I1,I2を制限することができる。その結果、電源130の誤作動など好ましくない挙動を防止または低減できる。
 図4は、本発明のさらに他の実施形態によるバックライトシステム400を示す図である。バックライトシステム400もバックライトシステム100とおおまかには同様に動作する。
 ドライバ420は、入力ノードINにおいて電源130の正極ノード132から電源電圧VDDを受け取り、出力ノードOUTから電流Iを出力する。グラウンドノードGNDは、電源130の負極ノード134に接続される。ドライバ420は、電流Iでバックライト110を駆動することによって、LCDパネル115に光を照射する。
 ドライバ420はドライバ120と同様に動作するが、制御ノードCTRの代わりにイネーブルノードENを有する点でドライバ120とは異なる。具体的にはドライバ420は、イネーブルノードENに与えられる電圧に基づいてスタンバイモードまたは通常モードの一つを選択する点でドライバ120と異なる。イネーブルノードENに与えられる電圧が所定の電圧以上であるときは、ドライバ420は通常モードで動作する。逆に、イネーブルノードENに与えられる電圧が所定の電圧未満であるときは、ドライバ420はスタンバイモードである。このスタンバイモードにおいては、ドライバ420は動作を停止している。
 コントローラ450は、電源130が起動した直後において、徐々に高くなる電圧を制御ノードCTRに与える。コントローラ450は、時定数回路460を含む。コントローラ450は、抵抗451,452、およびダイオード453を含む。それぞれ抵抗値R1,R2を有する抵抗451,452は、直列に接続されることによって、電源電圧VDDを分圧する。抵抗451,452の中点における電圧は、キャパシタ461を充電する。
 時定数回路460は、キャパシタ461および抵抗462を含む。時定数回路460は、電源130の起動における電流Iの立ち上がり期間を規定する時定数τを決定する。具体的には、等式τ=C1×R3であり、ここでC1はキャパシタ461の容量を表し、R3は抵抗462の抵抗を表す。
 図5は、バックライトシステム400のタイミングチャートである。横軸は時間tを、縦軸は電源電圧VDD、ドライバの低電圧誤動作防止(UVLO)の動作/解除、ノードAにおける電圧VA、ドライバの動作を示す。
 電源130が起動される時刻t1において、電源電圧VDDは急峻に立ち上がらず、例えば時刻t1~時刻t4にわたってランプ状に高くなる。つまり時刻t1~時刻t4の間は電源130は過渡状態にある。逆に時刻t4の後は電源130は定常状態にある。時刻t4において、電源電圧VDDは定格電圧に達する。
 時刻t3において電源電圧VDDは電圧VDDminに達する。ドライバ420は、電源電圧VDDが電圧VDDminより低いと正常に動作しないことがあり得る。すなわち、電源電圧VDDが電圧VDDminより低いと、ドライバ420の出力ノードOUTからバックライト110に流れる電流が定格より大きくなり得る。この過電流は、ドライバ420が定格より低い電圧しか受け取れないにもかかわらず、定格の電圧を出力しようとするスイッチングレギュレータの機能に起因する。その結果、ドライバ420の過電流保護機能によってドライバ420がシャットダウンすることがあり得る。逆に、電源電圧VDDが電圧VDDmin以上であれば、ドライバ420は正常に動作する。
 ドライバ420の不要なシャットダウンを避けるために、コントローラ450は、時刻t3における電圧VAを定常状態の電圧Vfullよりも低い電圧Vthに設定する。電圧VAが電圧Vth以上であるときは、ドライバ420は、通常モードで動作する。逆に、電圧VAが電圧Vth未満であるときは、ドライバ420は、スタンバイモードで動作する。
 電源130の起動後(すなわち時刻t1の後)時刻t2までは、ドライバ420のUVLO機能が動作している。UVLO機能は、電源130の起動時に電源電圧VDDが電圧Vuvloに達するまで、ドライバ420をオフにする。このUVLO機能は、電源130の起動時における突入電流を低減し、ドライバ420の誤動作を防ぐ。ドライバ420はUVLO機能を実現するハードウェアをその中に備える。UVLO機能は、ドライバ420を時刻t2~時刻t3の間にスタンバイさせる。時刻t3において電源電圧VDDはVDDminに達するので、ドライバ420は通常モードに遷移する。
 本実施形態によれば、電源130の過渡状態(時刻t1~時刻t4)において、コントローラ450は、制御ノードCTRに徐々に高くなる電圧を与える。これによりドライバ420のモードを切り換えることができる。具体的には、電源電圧VDDが電圧VDDminに達するとき(時刻t3)まで、電流Iがドライバ120の過電流保護機能をトリガしないように、ドライバ420の動作をスタンバイモードに設定する。換言すれば、いったん電源電圧VDDが電圧VDDminに達すれば、電流Iがドライバ120の過電流保護機能をトリガすることはないので、ドライバ420の動作を通常モードに設定する。その結果、ドライバ420の誤動作など好ましくない挙動を防止または低減できる。
 コントローラ450は受動部品からなる。そのため電源130の過渡状態においても比較的安定して動作できる。またコントローラ450は能動部品を使う場合に比べてコストや回路の複雑さを低減することができる。
 制御ノードCTRに与える電圧は、典型的には図5に示されるようなキャパシタ461の充電曲線に従う。しかし制御ノードCTRの電圧はこれには限定されず、例えば単調増加する電圧であってもよい。具体的には制御ノードCTRの電圧は、直線的に高くなってもよい。
 (作用・効果)
 図6は、従来のバックライトシステムにおける動作の概略を示す図である。横軸は時間tを、縦軸は電源電圧VDD、ドライバの低電圧誤動作防止(UVLO)の動作/解除、ドライバの動作、インダクタ電流IL、LED電流ILEDを示す。従来のシステムでも電源が起動した後に、電源電圧VDDはランプ状に高くなる。ある程度、電源電圧VDDが高くなると(時刻t1)、UVLOが解除されるのでドライバはソフトスタートを開始する。ドライバ内のインダクタを流れる電流ILは時刻t1から直線的に増加し、やがて過電流保護の閾値OCを超える(時刻t2)。その後、時刻t3においてドライバはシャットダウンされるので、LED電流ILEDも流れなくなる。ドライバがシャットダウンされるとバックライトも消えるので、画像の明るさが低減してしまう。
 図7は、バックライトシステム100における動作の概略を示す図である。横軸は時間tを、縦軸は電源電圧VDD、ドライバの低電圧誤動作防止(UVLO)の動作/解除、ドライバの動作、インダクタ電流IL、LED電流ILEDを示す。バックライトシステム100では、図2に示したように、ノードAにおける電圧VAが徐々に高くなるので、これに対応してLED電流ILEDも増加する。ドライバ120は時刻t1~t2においてはソフトスタートであり、時刻t2以降は通常モードで動作する。この時刻t2においては、LED電流ILEDは、最大定格電流Ifullに比べて低い電流Irである。そのため図6のインダクタ電流ILとは異なり、ドライバ120のインダクタ電流ILは、徐々に増加はするが、過電流保護の閾値OCを超えない。したがってドライバ120の誤動作など好ましくない挙動を防止または低減できる。図7を参照して説明した効果は、バックライトシステム300,400を利用することによっても得られる。
 上述の説明で、さまざまな機能は、個別の要素として実現され得る。逆に、複数の機能が単一の要素として実現されてもよい。例えば複数の機能は、単一の半導体チップ、単一のハイブリッド集積回路など、単一の回路要素として実現されてもよい。例えば、演算増幅器165は個別部品であってもよいが、半導体基板上に形成されたバックライトシステム100の一部であってもよい。
 当業者には理解されるように、上述のさまざまな要素(ハードウェアの要素、ソフトウェアのステップなど)は、その一部が省略されてもよい。逆に、付加的な要素を用いてもよい。
 上に説明されてきたものには、本発明のさまざまな例が含まれる。本発明を記載する目的では、要素や手順の考えられるあらゆる組み合わせを記載することは当然のことながら不可能であるが、当業者なら本発明の多くのさらなる組み合わせおよび順列が可能であることがわかるだろう。したがって本発明は、特許請求の範囲の精神および範囲に入るそのような改変、変更および変形例を全て含むよう意図される。
 本発明は、電源の過渡期間においても、ドライバのインダクタに過大な電流が流れないバックライトシステムを提供できる点で有用である。
100 バックライトシステム
110 バックライト
112 発光ダイオード
115 液晶ディスプレイパネル
120 ドライバ
130 電源
150 コントローラ
151,152,162 抵抗
153 ダイオード
154 キャパシタ
160 時定数回路
161 キャパシタ
165 演算増幅器

Claims (6)

  1.  発光ダイオード(LED)を点灯させるバックライトシステムであって、
     制御ノードに与えられる電圧に基づいて、電源から前記LEDに流れる電流を制御するドライバと、
     徐々に高くなる電圧を前記制御ノードに与えるコントローラと
    を備えるバックライトシステム。
  2.  前記ドライバは、前記電圧に基づいて前記電流の大きさを制御する
    請求項1に記載のバックライトシステム。
  3.  前記コントローラは、
     前記電源の起動における前記電流の立ち上がり期間を規定する時定数回路、および
     前記時定数回路からの出力を受け取り増幅する演算増幅器
    を有する、請求項2に記載のバックライトシステム。
  4.  前記コントローラは、前記演算増幅器の出力を前記ドライバと異なる他のドライバにも供給する
    請求項3に記載のバックライトシステム。
  5.  前記ドライバは、前記電圧に基づいてスタンバイモードおよび通常モードのいずれかを選択する
    請求項1に記載のバックライトシステム。
  6.  前記コントローラは、前記電源の起動における前記電流の立ち上がり期間を規定する時定数回路を有する
    請求項5に記載のバックライトシステム。
PCT/JP2012/002583 2011-04-22 2012-04-13 バックライトシステム WO2012144178A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011096085 2011-04-22
JP2011-096085 2011-04-22

Publications (1)

Publication Number Publication Date
WO2012144178A1 true WO2012144178A1 (ja) 2012-10-26

Family

ID=47041312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002583 WO2012144178A1 (ja) 2011-04-22 2012-04-13 バックライトシステム

Country Status (1)

Country Link
WO (1) WO2012144178A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3232738A4 (en) * 2014-12-12 2018-08-15 Rohm Co., Ltd. Lighting device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04255462A (ja) * 1991-02-08 1992-09-10 Nec Ic Microcomput Syst Ltd スイッチング電源回路
JPH10232722A (ja) * 1997-02-18 1998-09-02 Nitsuko Corp 直流電源回路
JP2005354860A (ja) * 2004-06-14 2005-12-22 Fuji Electric Device Technology Co Ltd 昇降圧型dc−dcコンバータの制御装置
JP2007194478A (ja) * 2006-01-20 2007-08-02 Matsushita Electric Ind Co Ltd 発光ダイオード駆動装置
JP2010040509A (ja) * 2008-08-05 2010-02-18 O2 Micro Inc 光源に電力を供給するための駆動回路
JP2011029615A (ja) * 2009-07-02 2011-02-10 Fujitsu Semiconductor Ltd Led駆動回路及び半導体装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04255462A (ja) * 1991-02-08 1992-09-10 Nec Ic Microcomput Syst Ltd スイッチング電源回路
JPH10232722A (ja) * 1997-02-18 1998-09-02 Nitsuko Corp 直流電源回路
JP2005354860A (ja) * 2004-06-14 2005-12-22 Fuji Electric Device Technology Co Ltd 昇降圧型dc−dcコンバータの制御装置
JP2007194478A (ja) * 2006-01-20 2007-08-02 Matsushita Electric Ind Co Ltd 発光ダイオード駆動装置
JP2010040509A (ja) * 2008-08-05 2010-02-18 O2 Micro Inc 光源に電力を供給するための駆動回路
JP2011029615A (ja) * 2009-07-02 2011-02-10 Fujitsu Semiconductor Ltd Led駆動回路及び半導体装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3232738A4 (en) * 2014-12-12 2018-08-15 Rohm Co., Ltd. Lighting device
US10194499B2 (en) 2014-12-12 2019-01-29 Rohm Co., Ltd. Lighting device
US10660168B2 (en) 2014-12-12 2020-05-19 Rohm Co., Ltd. Lighting device
US11229102B2 (en) 2014-12-12 2022-01-18 Rohm Co., Ltd. Lighting device

Similar Documents

Publication Publication Date Title
JP4985669B2 (ja) 発光ダイオード駆動回路
TWI509959B (zh) 電子電路及提供調節電壓給負載之方法
US7224128B2 (en) Device for driving light emitting diode strings
US7622871B2 (en) Light emitting diode driver circuit with shunt switch
US20150156846A1 (en) Over-current protection circuit, led backlight driving circuit and liquid crystal device
JP4983735B2 (ja) 電源制御用半導体集積回路
KR101712210B1 (ko) Pwm 제어 회로 및 이를 이용한 led 구동회로
JP2007258671A (ja) 発光ダイオードの駆動回路
TW200531318A (en) Light emitting element driving device, and mobile apparatus having light emitting elements
TW200822800A (en) Light emitting diode driver and display using the same
JP2009104848A (ja) バックライト用led駆動回路
JP5937455B2 (ja) Led駆動回路
JP2010063332A (ja) 負荷駆動装置
KR20140089938A (ko) 백라이트 유닛 및 그것을 포함하는 표시 장치
JP2010124676A (ja) 電源装置
WO2016051739A1 (ja) 点灯装置
EP2209353A2 (en) Light source driving apparatus
US20120098441A1 (en) LED Driving System and Driving Method Thereof
JP2006314168A (ja) 液晶表示装置の電源回路
US20110089853A1 (en) Electronic driver apparatus for large area solid-state leds
KR101932366B1 (ko) 액정 디스플레이 장비를 위한 led 백라이트 소스 및 액정 디스플레이 장비
WO2012144178A1 (ja) バックライトシステム
JP2012009651A (ja) 電流駆動装置
US8084961B2 (en) Backlight module control system and control method thereof
WO2014069366A1 (ja) 発光ダイオード駆動回路、表示装置、照明装置および液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12774142

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12774142

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP