JP4484711B2 - 高珪素方向性電磁鋼板の製造方法 - Google Patents

高珪素方向性電磁鋼板の製造方法 Download PDF

Info

Publication number
JP4484711B2
JP4484711B2 JP2004551260A JP2004551260A JP4484711B2 JP 4484711 B2 JP4484711 B2 JP 4484711B2 JP 2004551260 A JP2004551260 A JP 2004551260A JP 2004551260 A JP2004551260 A JP 2004551260A JP 4484711 B2 JP4484711 B2 JP 4484711B2
Authority
JP
Japan
Prior art keywords
steel sheet
powder
annealing
electrical steel
oriented electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004551260A
Other languages
English (en)
Other versions
JP2006501371A (ja
JP2006501371A5 (ja
Inventor
キュ セオン チョイ
ジョン ソー ウー
ジャエ クワン キム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020020069648A external-priority patent/KR100900662B1/ko
Priority claimed from KR1020020074327A external-priority patent/KR100946069B1/ko
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2006501371A publication Critical patent/JP2006501371A/ja
Publication of JP2006501371A5 publication Critical patent/JP2006501371A5/ja
Application granted granted Critical
Publication of JP4484711B2 publication Critical patent/JP4484711B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/30Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes using a layer of powder or paste on the surface
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/18Solid state diffusion of only metal elements or silicon into metallic material surfaces using liquids, e.g. salt baths, liquid suspensions
    • C23C10/20Solid state diffusion of only metal elements or silicon into metallic material surfaces using liquids, e.g. salt baths, liquid suspensions only one element being diffused
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/34Embedding in a powder mixture, i.e. pack cementation
    • C23C10/36Embedding in a powder mixture, i.e. pack cementation only one element being diffused
    • C23C10/44Siliconising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/34Embedding in a powder mixture, i.e. pack cementation
    • C23C10/36Embedding in a powder mixture, i.e. pack cementation only one element being diffused
    • C23C10/44Siliconising
    • C23C10/46Siliconising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Description

本発明は方向性電磁鋼板の製造時磁気的特性、とりわけ鉄損を改善させられる高珪素方向性電磁鋼板の製造に関するものであって、より詳しくは焼鈍分離剤を含む浸珪拡散用粉末塗布剤を鋼板表面に塗布した後拡散焼鈍することによって素材における高珪素化により商用周波数ばかりでなく高周波磁気特性の極めて優れた電磁鋼板を製造できる高珪素方向性電磁鋼板の製造方法に関するものである。
電磁鋼板は方向性電磁鋼板と無方向性電磁鋼板とに大別されるが、通常方向性電磁鋼板とは3%Si成分を含有することを特徴とし、結晶粒の方位が(110)[001]方向に整列された集合組織を有し、この製品は圧延方向へ極めて優れた磁気的特性を有するので、この特性を利用して変圧器、電動機、発電機及びその他電子機器などの鉄心材料に用いられる。
最近、電気機器の多様化につれて高周波領域で作動する機器への需要が増加しながら、高周波で磁気的特性の優れる鉄心素材に対するニーズが高まってきている。
一方、Fe-Si合金において珪素含量が増加するほど鉄損中履歴損、磁歪、保磁力、磁気異方性が減少し最大透磁率が増加するので高珪素鋼製品は優れた軟磁性材料ということができる。この際、磁歪の減少及び最大透磁率の増大は珪素含量の増加に応じて無限に増加するわけではなく6.5%Si鋼において最高値を示し、また6.5%Si鋼は商用周波数ばかりでなく高周波領域でも磁気的特性が最高状態に達することは以前から周知のことである。こうした高珪素鋼は、その優れた高周波数台の磁気的特性を利用してガスタービン用発電機、電車電源、誘導加熱装置、無停電電源装置などの高周波リアクターとメッキ電源、溶接機、X-線電源などの高周波変圧器に主に適用され、主に方向性珪素鋼板の代替材とされており、その他にもモータの消耗電力を減らし効率を高める用途に適用可能である。
ところで、Fe-Si鋼において珪素含量が増加するほど珪素鋼板の延伸率は急激に低くなるので、3.5%以上の珪素を含有する珪素鋼板を冷間圧延法で製造することはほぼ不可能とされている。したがって、珪素含量が高いほど優れた磁気的特性が得られるとの事実を知っているにも拘らず、現存技術においては冷間圧延法の限界とされ、冷間圧延法の限界を克服できる新たな代替技術の研究が以前から試みられてきた。
今まで高珪素鋼板の製造方法として知られる技術は日本特開昭56-3625号などの単ロールまたは双ロールを利用した高珪素鋼の直接鋳造法があり、日本特開昭62-103321号などの適正温度の加熱状態で圧延する温間圧延法、日本特開平5-171281号などの内部に高珪素鋼を装入し外部に低珪素鋼を装入した状態で圧延するクラッド圧延法が挙げられるが、こうした技術は未だ商用化されていない実状である。
現在、高珪素化製品として量産中の技術は、3%級無方向性製品をSiCl4ガスを利用した化学蒸着法(CVD法)により珪素成分を素材表面に富化してから拡散焼鈍し高珪素鋼を製造する技術であって、この技術は日本特開昭62-227078及び米国USP3423253などに開示されている。しかし、化学蒸着後拡散焼鈍処理法は化学蒸着技術自体の困難から従来の3%Si鋼製品に比して約5倍以上の高価格販売を免れなく、優れた磁気的特性を有する製品であるにも拘らず大衆化及び実用化に困難がある。
現在、市販される電磁鋼板製品中高珪素鋼製品としては、6.5%珪素含量の無方向性電磁鋼板が生産販売されるばかりであって、これは結晶粒の方位が不規則的に配列されており磁化方向別磁性の偏差が小さい回転機用に利用されるが、圧延方向の磁性のみ主に利用する変圧器用などに優れた特性を示す方向性電磁鋼板材の高珪素化製品は未だ実用化されない実状である。したがって、高珪素化による優れた磁気特性を有する方向性電磁鋼板を生産しようと数々の試みが為されてきたが生産に成功したという情報は未だ無い。
したがって、本発明は上述した従来の技術を解決するために設けられたもので、焼鈍分離剤を含む所定の組成の浸珪拡散用粉末塗布剤をスラリー状態で、脱炭焼鈍した鋼板の表面に塗布した後、拡散焼鈍させることにより高珪素化させ、従来材より一層優れた高周波磁気特性を有する高珪素方向性電磁鋼板の製造方法を提供することを目的とする。
上記目的を成し遂げるための本発明は、Siを2.9〜3.3重量%含有する方向性電磁鋼板用鋼スラブを再加熱し熱間圧延して熱延鋼板を形成し、該熱延鋼板を焼鈍して得た焼鈍鋼板を冷間圧延してその厚さを調整し、得られた冷延鋼板を脱炭焼鈍して、得られた脱炭焼鈍鋼板を2次再結晶させるために仕上げ焼鈍する工程から成る方向性電磁鋼板の製造工程において、さらに、
上記脱炭焼鈍鋼板は、重量%で、C:0.045〜0.062%、Si:2.9〜3.3%、Mn:0.08〜0.16%、Al:0.022〜0.032%、及びN:0.006〜0.008%、残りの鉄及び不可避な不純物からなり、上記脱炭焼鈍鋼板の表面に、MgO粉末100重量部;及び、上記MgO粉末基準で、その粒度が-325meshで、Si:25〜70重量%、残部Fe及び不可避な不純物からなるFe-Si系化合物焼成粉末0.5〜120重量部からなる浸珪拡散用粉末塗布剤をスラリー状態で塗布した後乾燥させ、該乾燥された脱炭焼鈍鋼板を窒素と水素の混合ガス雰囲気下において1200℃まで加熱し、続いて100%水素雰囲気において1200℃で20時間以上均熱した後冷却することを特徴とする高珪素方向性電磁鋼板の製造方法に関するものである。
以下、本発明を説明する。
方向性電磁鋼板の製造工程は、メーカー毎に多少工程に違いはあるものの、通常として製鋼における成分調整、連鋳スラブ製造、連鋳スラブの再加熱、再加熱された連鋳スラブの熱間圧延、得られた熱延鋼板を焼鈍して、得られた焼鈍鋼板を冷間圧延により厚さ調整、得られた冷延鋼板を脱炭焼鈍して、この鋼板を2次再結晶のために高温焼鈍し、絶縁膜をこの鋼板上に最終コーティングする工程から成る。こうした製造工程は量産体制を基本とする工程であり、量産体制に重要な因子は冷間圧延法への生産体制の確立である。しかし、上述したように、電磁鋼板内珪素含量が増加するほど鉄損、磁歪、保磁力、磁気異方性が減少し最大透磁率が増加するので優れた磁気的特性をあらわすが、珪素含量の増加に応じて機械的特性である延伸率が急激に減少するので量産可能な冷間圧延法により電磁鋼板の製造が可能な素材Si含量は3.3%程と知られている。
したがって、本発明者は量産可能な冷間圧延法を利用する通常の方向性電磁鋼板製造工程を利用して高Si鋼板を製造できる方法について研究を重ね、その結果、焼鈍分離剤であるMgO粉末に所定の粒度及びSi含量を有するよう組成されたFe-Si系焼成粉末が混合された粉末塗布剤を水等に分散させスラリーに製造した後、これを脱炭及び窒化焼鈍を終えた電磁鋼板表面に塗布し、次いで仕上げ高温焼鈍中拡散焼鈍することにより高珪素化と同時に2次再結晶による磁気的特性が完成され、磁気的特性の極めて優れた方向性電磁鋼板が製造されることに想到し本発明を提案するに至った。
即ち、本発明は通常の方向性電磁鋼板の製造工程において、2次再結晶形成のための高温焼鈍時、素材同士のくっ付き(sticking)を防止するために不可避に鋼板表面に焼鈍分離剤を塗布する工程において、焼鈍分離剤の主成分であるMgO粉末に所定の粒度及びSi含量を有するよう組成されたFe-Si系焼成粉末を添加して塗布することにより、後続する高温焼鈍工程を通して高Si方向性電磁鋼板を製造できるのである。言い換えれば、本発明は従来の冷間圧延法を利用した方向性電磁鋼板の製造工程をそのまま使用しながらも、磁気的特性の大変優れた高珪素方向性電磁鋼板を製造できるのである。
先ず、本発明の浸珪粉末塗布剤について具体的に説明する。
Si金属を通常950℃以上の高温の水素または窒素雰囲気下においてFe金属と接触させると、Si原子はFe金属素材内部に拡散しFe原子は初期Si金属部に拡散する相互拡散反応を起こし、両濃度を均一にする性質がある。したがって、Si金属粉末を電磁鋼板の素材部に接触させ高温で焼鈍すると、Si粉末の濃度が方向性電磁鋼板表面のSi濃度である3%レベルより遥かに高いことから、金属Siと素材Feの相互移動により相互拡散反応が進められていることがわかる。
しかし、FeとSiの相互拡散速度を比較すると、Si拡散速度がFe拡散速度に比して1000〜1200℃温度領域で約2倍ほど速いので相互不均一な拡散状態であるカーケンダル効果(Kirkendall Effect)という現象が起こり、これにより反応部界面には不均一状態の欠陥ができるか、反応部表面にFeSi2、FeSi、Fe5Si3またはFe3Si等の諸化合物が生成され反応部表面に存在し、磁気的特性を劣化させる要因として作用する。したがって、金属Si粉末のみを浸珪剤に使用する場合、高温拡散焼鈍を通して表面欠陥の無い均一な組成の高珪素方向性電磁鋼板製品を生産することは事実上不可能であった。
したがって、本発明者は上記問題点を解決するためにSi粉末とFe粉末を利用した拡散原理などに対する研究を重ね、その結果、上述した拡散反応部における諸欠陥がFeに比べて速いSiの拡散速度に起因することに想到し本発明を提案するまでに至ったのである。
即ち、本発明はできる限りFeに対してSiの拡散を相対的に抑制できるよう、浸珪剤に用いるSi含有粉末剤の粒度及び組成を制御することを特徴とする。言い換えれば、本発明は鋼板表面の拡散反応部にFeとSiとが結合した複合化合物を殆ど形成すること無く、Si原子がFe原子と相互同一量ずつ置換される拡散が可能なように、所定の粒度と組成を有するよう制御されたFe-Si系焼成粉末を提供し、こうした焼成粉末を通常の方向性電磁鋼板の製造工程において焼鈍分離剤MgO粉末と混合し浸珪塗布剤に使用することを特徴とする。
これを具体的に説明すれば次のとおりである。
先ず、本発明においては、Si成分の拡散速度をより遅くするためにSi金属単独粉末を浸珪拡散用塗布剤に使用せず、Si金属がFe金属と結合した化合物形態であるFeSi2、FeSi、Fe5Si3またはFe3Si状態のFe-Si系化合物形態に形成して浸珪拡散用塗布剤の基本成分に用いる。
本発明に利用するFe-Si系粉末は、Fe粉末とSi粉末とを相互混合して窒素や水素または水素と窒素の混合ガス下において1000〜1200℃の温度で5〜10時間焼成して製造することができるが、これに特に制限されるわけではなく、様々な方法により製造可能である。この際、Fe粉末とSi粉末の配合量に応じて焼成粉末の化合物成分が変化し、理論的には50%Si+50%Feの場合FeSi2の化合物ができ、 34%Si+66%Feの場合はFeSiの化合物、25%Si+75%Feの場合はFe5Si3の化合物、14%Si+86%Feの場合はFe3Siの化合物が存在するようになる。しかし、実際焼成時は初期混合状態に応じて諸化合物が少しずつ混在しかねない。とりわけ、FeとSi粉末の混合による焼成反応の際、Si粉末とFe粉末とが接触する表面から相互拡散し浸入する状態で反応が進む。したがって、多少Si配合量が多くても殆どの焼成粉末表面はFeが拡散された状態のFeSi2化合物やFeSi化合物が存在し、その内部に純Siが存在する状態となるので、その表面には殆どFe成分と結合されたFe-Si系化合物が存在するようになる。
本発明はこうして得られたFe-Si系焼成粉末においてSi成分含量を25〜70重量%に制限する。もし、Si含量が25重量%未満であると、Si自体含量が過少のため拡散速度が遅くなりすぎ、またSi密度が高いと現場において素材表面にコーティング作業する際分散性が低調になりかねない。そして、Si含量が70重量%を超過すると主成分がFeSi2及び過剰の金属Siの混合物として存在するので金属Si成分が素材表面に接触し拡散焼鈍時表面に欠陥部ができる可能性が高くなり、しかも浸珪量の制御が困難になりかねない。即ち、Fe-Si系焼成粉末においてSi成分含量を25〜70重量%に制限しなければ実質的にFeSi2、FeSi、Fe5Si3またはFe3Siを主成分として成るFe-Si系複合化合物焼成粉末を製造することができない。より好ましくは、上記Fe-Si系複合化合物焼成粉末の重量に対してFeSi2+FeSiを90重量%以上含むように制限する。
さらに、上記のように製造したFe-Si系焼成粉末を焼鈍分離剤のMgO粉末と混合して電磁鋼板の塗布剤に用いる場合、こうした混合粉末をスラリー状態に製造し、これをロールコーターを利用して鋼板表面にコーティングすることが生産現場では最も経済的である。しかし、浸珪剤のFe-Si系焼成粉末の粒度ができる限り微細であってこそ現場でのコーティング作業時塗布作業性に優れ拡散反応時の表面形状管理の面から有利である。しかし、上記焼成反応の完了したFe-Si系焼成粉末は高温長時間反応において多少融着し合う半塊状で存在するのでその粉末の粒度を微細に管理する必要がある。
したがって、本発明においてはこれを考慮してFe-Si系焼成粉末の粒径を微細化する。こうした粉末の粒度が微細化されるほどスラリー状態への相互分散性が良く現場塗布作業の際コーティング性に優れ、またこのようにその粒度が微細なFe-Si系焼成粉末を鋼板表面に塗布することにより素材と金属粉末との表面接触面積、即ち相互反応面積を単板で接触する際に比して30%以下に縮小することができる。但し、微粒粉末化作業の際生産性及び微粒化費用を考慮してその粒度を-325meshに限定する。
また、本発明の粉末塗布剤は上記のように得られたFe-Si系焼成粉末を焼鈍分離剤であるMgO粉末に混合して組成される。具体的には、本発明の粉末塗布剤は、焼鈍分離剤の主成分であるMgO:100重量部に、上記Fe-Si系焼成粉末:0.5〜120重量部を混合して組成される。この際、焼成粉末の添加量が0.5重量部未満であると浸珪量がほぼ無いか過少で、また120重量部を超過するとMgOとの分散性が悪くなり焼鈍時塗布量の管理が困難で、素材部位別浸珪量の管理が困難で好ましくない。
次いで、上記粉末塗布剤を利用した本発明の高珪素方向性電磁鋼板の製造工程を説明する。
上述したように、本発明は鋼スラブの製造、この鋼スラブの再加熱、この再加熱された鋼スラブの熱間圧延、得られた熱延鋼板を焼鈍して得られた焼鈍鋼板を冷間圧延により厚さ調整、得られた冷延鋼板を脱炭焼鈍して、この鋼板を2次再結晶のため高温焼鈍し、この鋼板に絶縁膜を最終コーティングする工程から成る通常の方向性電磁鋼板製造工程を利用するが、本発明はこうした具体的な製造工程に制限されるわけではない。例えば、本発明は熱延板焼鈍工程が省略されるか、脱炭焼鈍と共に窒化処理する工程を含む方向性電磁鋼板製造工程にも適用することができる。
本発明は電磁鋼板製造に用いられる初期鋼スラブの組成成分を制限するものではないが、上記浸珪拡散用粉末塗布剤がスラリー形態で塗布される鋼板は、少なくともSiを2.9〜3.3重量%含有する。何故ならば、その含有量が2.9%未満であると鉄損特性が悪くなり、3.3%を超過すると鋼が脆弱になり冷間圧延性が極めて悪くなるからである。また、上記鋼板は重量%でC:0.045〜0.062%、Si:2.9〜3.3%、Mn:0.08〜0.16%、Al:0.022〜0.032%、N:0.006〜0.008%、残りの鉄及び不可避な不純物を含んで組成されたものである。
本発明は、上記鋼スラブを熱間圧延性と磁気的特性確保の面を考慮して1150℃〜1340℃の範囲で再加熱し、次いで熱間圧延し2.0〜2.3mm厚さの熱間圧延鋼板を製造する。そして1100℃以下の温度で熱延板焼鈍し、酸洗及び冷間圧延により最終厚さの0.20〜0.30mm厚さに調整し、0.20mm製品の場合2回の熱延板焼鈍と冷間圧延で最終厚さまで調節する。以後、水素及び窒素混合の湿潤雰囲気下840〜890℃付近で脱炭処理を施すことにより脱炭焼鈍処理された鋼板を得ることができる。但し、こうした製造工程は既に周知される通常的なものであって本発明はこうした具体的な工程条件に制限されるわけではない。
本発明は、こうした脱炭焼鈍処理された鋼板を素地鋼板に用いるが、こうした素地鋼板の表面には薄い酸化層が形成されている。しかし、こうした酸化層は浸珪拡散焼鈍工程中相互拡散反応の妨害膜として作用し、素材内へのSi原子の拡散量を減らす役目を果たすので、鉄損特性の優れた電磁鋼板製造により有利に働くことができる。
具体的には、MgO粉末にFe-Si系複合化合物焼成粉末を混合して得られた粉末塗布剤を水に分散させスラリー状態に製造した後、これをロールコーターで上記脱炭及び窒化焼鈍処理された鋼板の表面に塗布する。この際、鋼板に塗布される塗布量は下記関係式により決定することが好ましい。
(関係式1)
Y-0.25≦塗布量≦Y+0.25
(関係式2)
Y(g/m2)=28(x1-x2)/(A-14.4)B+0.8
ここで、AはFe-Si系粉末中Si量(%)、Bは焼鈍分離剤組成物中Fe-Si系粉末の配合比、x1は素材の目標Si量(%)、そしてx2は素材の初期Si量(%)である。
このように塗布剤の塗布された鋼板は乾燥後巻取されて大型コイルに製造されるが、本発明はこの際乾燥温度を200〜700℃に制限することが好ましい。乾燥温度が200℃未満では乾燥時間が長すぎて生産性が良くなく、700℃を超過すると素材表面に酸化物ができる恐れがあるからである。
以後、上記乾燥された鋼板を通常的な条件で仕上げ高温焼鈍する。即ち、本発明においては窒素と水素の混合ガス雰囲気下で1200℃まで昇温し、続いて100%水素雰囲気において1200℃で20時間以上均熱した後冷却する通常の方向性電磁鋼板の高温焼鈍工程を利用することができる。
但し、こうした仕上げ高温焼鈍工程中上記粉末塗布剤の被覆された鋼板を拡散焼鈍してより優れた磁気的特性を確保するためには下記条件を考慮することがより好ましい。
第一、一般にこうした高温焼鈍工程中約1100℃までの温度区間において2次再結晶が完成する。したがって、Fe-Si系複合化合物塗布剤によるSi拡散反応は上記磁性が完成する1100℃以降から進行するよう誘導することがより好ましい。したがって、本発明においては昇温開始から1100℃までの昇温区間中は100%窒素ガス雰囲気において加熱して浸珪素量を0.25%以下にできる限り最少化するよう制御することが好ましい。こうした高温焼鈍昇温過程において雰囲気ガス中窒素ガス比を高めることにより素材表面に薄い酸化膜を形成しSiの内部拡散を効果的に抑制できるからである。
第二、本発明は、上記2次再結晶の完了した1100℃以後には雰囲気ガスを10%以下の窒素を含有する水素雰囲気として焼鈍することが浸珪素化の極大化を目標とした珪素含量調整の面からより好ましい。
こうすることで、高温焼鈍工程中1100℃までの昇温区間においてはガラス皮膜形成開始と共に2次再結晶を完成し、以後1100℃〜1200℃の昇温区間及び1200℃の長時間均熱時に浸珪素拡散反応を完了しガラス皮膜を形成することができる。
そして、上記高温焼鈍処理された鋼板の表面の未反応組成物を酸溶液で除去してからマグネシウム、アルミニウム及びカルシウムの混合燐酸塩とコロイダルシリカ成分に微量の無水クローム酸を添加して成る絶縁コーティング剤を塗布することにより、最良の磁性を有する高珪素方向性電磁鋼板製品を得ることができる。
以下、実施例を通して本発明についてより詳しく説明する。
(実施例1)
重量%でSi:3.05%、C:0.046%、P:0.015%、溶存Al:0.026%、N:0.0073%、S:0.005%、Mn:0.11%、Cu:0.12%、残りのFe及び不可避に混入される不純成分を含み組成される鋼スラブを1190℃の温度で再加熱し、1100℃以下の温度で熱延板焼鈍した後酸洗した。次いで、その最終厚さが0.20〜0.30mmとなるよう熱延鋼板を冷間圧延し、その0.20mm厚さ材には最終冷間圧延率の確保のため圧延途中更なる熱延板焼鈍を施した。そして、得られた冷延鋼板を水素及び窒素の混合ガス湿潤雰囲気下において880℃の焼鈍温度で脱炭処理して残留炭素量を調節し、同時に素材表面の総酸素量が610ppmの脱炭焼鈍された鋼板を得た。
次いで、得られた脱炭焼鈍鋼板のうち一枚には、仕上げ高温焼鈍のために焼鈍分離剤組成物として従来正常製品の製造条件であるMgO:100重量部にTiO2粉末3%を添加して成る焼鈍分離剤を塗布して方向性電磁鋼板を製造した。そして、残りの脱炭焼鈍鋼板の表面には、下記表1のように組成及び粒度などを異ならせた粉末塗布剤を水に分散させスラリー状態にさせてから、これをロールコーターで鋼板表面に塗布し、以後700℃以下の温度で乾燥後巻取して大型コイルを製造した。
上記のように巻取した方向性電磁鋼板を40%窒素+60%水素の雰囲気ガスを含有した焼鈍炉において1200℃まで昇温させ、以後1200℃、100%水素雰囲気において25時間均熱後冷却した。そして、このように焼鈍処理した鋼板表面の未反応物を塩酸溶液により除去した後、マグネシウム、アルミニウム及びカルシウムの混合燐酸塩とコロイダルシリカ成分に微量の無水クローム酸を添加して成る絶縁コーティング剤を塗布して絶縁皮膜層を形成し、最終方向性電磁鋼板製品を製造した。
こうして製造された製品の素材Si含量と磁気的特性を調べ、磁気的特性は単板測定器で鉄損値及び磁速密度(B8)値を調査し、その結果を表1に示した。ここで、焼鈍分離塗布剤の塗布状態はコーティング物の外観状態を目視観察した結果で、製品の鉄損W17/50は50Hz、1.7Teslaにおける鉄心損失を、W10/400は400Hz、1.0Teslaにおいて、W5/1000は1000Hz、0.5Teslaにおける鉄心損失を示し、磁速密度B8は800A-turn/mの磁化力を受けたとき発生する単位面積あたりの磁束数をTeslaで示し、素材Si量は湿式分析結果値である。
Figure 0004484711
上記表1から分かるように、MgO粉末に所定の粒度と組成を有するよう制御されたFe-Si系焼成粉末を混合して得た塗布剤を使って製造した電磁鋼板(3〜5、10及び12〜13)は、素材内へのSi拡散により初期に3%であったSi量が3.9〜4.6%まで増加し、磁気的特性値も商用周波数台の鉄損であるW17/50値ばかりか高周波数台のW10/400及びW5/1000においても通常材(1)の場合より鉄損値がずっと低い優れた磁気的特性値を示した。
これに比して、Si含有量が15%レベルの電磁鋼板(2)の場合、塗布量が少なく素材のSi浸珪量が少なく鉄心損失の改善程度が低いが、Siが80%及び100%の電磁鋼板(6〜7)の場合は、塗布量が多く素材のSi量は高くなるものの素材表面に大量の欠陥ができ鉄心損失が大幅に増加したので本発明の範囲から除いた。
また、Fe-Si系焼成粉末の粒度が本発明の範囲を外れた電磁鋼板(8〜9)はスラリー液の分散特性が悪い為塗布状態が薄く不均一になり、浸珪後の磁性は比較的良好であるが部位別特性値があったので本発明の範囲から除いた。
一方、MgO粉末に比べてFe-Si系粉末の添加量が少ない電磁鋼板(11)は素材浸珪量が殆ど無く磁性改善が不可能で、添加量の多すぎる電磁鋼板(14)はスラリー分散状態が不良で塗布状態が不均一で、こうして磁性特性が悪く位置別偏差があったので本発明の範囲から除いた。
(実施例2)
重量%でSi:3.20%、C:0.045%、P:0.014%、溶存Al:0.027%、N:0.0075%、S:0.005%、Mn:0.10%、Cu:0.12%、残りのFe及び不可避に混入される不純成分を含んで組成される鋼スラブを1150℃の温度で再加熱し、1100℃の温度で熱延板焼鈍した後酸洗した。次いで、その最終厚さが0.23mmとなるよう熱延鋼板に冷間圧延を施した。そして、得られた冷延鋼板を水素及び窒素の混合ガス湿潤雰囲気下において880℃の焼鈍温度で同時脱炭処理し脱炭焼鈍鋼板を得た。
次いで、上記のように得られた脱炭焼鈍鋼板に、MgO:100重量部に対してその粒度が-325meshで50%Siを含有したFe-Si系焼成粉末25重量部を混合して組成された浸珪剤組成物を水に分散させスラリー状態にさせた後、これをロールコーターで鋼板表面に塗布した後、700℃以下の温度で乾燥させてから巻取して大型コイルを製造した。
上記のように巻取した鋼板を2次再結晶による磁性確保及び浸珪素化のために下記表2のように仕上げ焼鈍した。具体的に、600℃以下の温度で一定時間低温均熱することを含み昇温速度を時間あたり15℃で加熱しながら1200℃まで昇温し、次いで1200℃で25時間均熱後冷却する熱サイクルを経過する過程における諸高温焼鈍条件を下記表2のように異ならせた。一方、こうした焼鈍過程中1100℃において一部試片を取り出して素材中Si量増加量を調べ、その結果をやはり表2にあらわした。
さらに、こうして高温焼鈍処理した鋼板表面の未反応物を塩酸溶液により除去した後、マグネシウム、アルミニウム及びカルシウムの混合燐酸塩とコロイダルシリカ成分に微量の無水クローム酸を添加して成る絶縁コーティング剤を塗布して絶縁皮膜層を形成し、最終方向性電磁鋼板製品を製造した。
上記のように製造された製品の素材Si含量と磁気的特性を調べ、コーティング物の外観状態、磁気的特性判断基準などは実施例1と同一な基準で評価した。
Figure 0004484711
*ガス1:1100℃昇温まで焼鈍ガス雰囲気をN2/(N2+H2)の比(%)で表示したもの。
ガス2:1100℃以後から終了までの焼鈍ガス雰囲気をN2/(N2+H2)の比(%)で表示したもの。
上記表2から分かるように、高温焼鈍条件をより最適に制御することにより、焼鈍完了後素材内のSi量が4.2〜4.5%まで浸珪素化されると共に、W17/50:0.71〜0.72、W5/1000:6.4〜6.5の優れた鉄損特性を得られる。
なお、本発明が上述した好ましき実施例に基づき説明されたとしても、本発明がこうした実施例の記載内容に制限されるわけではない。添付の請求項に記載された技術的範囲を外れずに様々な改造や変化が可能なことは本願の属する技術分野において通常の知識を有する者にとっては自明であり、したがってそれらも全て本願発明の保護範囲に属することは当然であろう。
上述したように、本発明は従来の一般の製造工程法を利用しながらも、仕上げ高温焼鈍工程前に焼鈍分離剤であるMgO組成物を塗布する代わりに所定の浸珪拡散用被覆組成物を鋼板に塗布後拡散焼鈍することにより優れた磁気的特性を有する0.2〜0.30mm厚さの方向性電磁鋼板を低原価で製造することができる。

Claims (4)

  1. Siを2.9〜3.3重量%含有する方向性電磁鋼板用鋼スラブを再加熱し熱間圧延して熱延鋼板を形成し、該熱延鋼板を焼鈍して得た焼鈍鋼板を冷間圧延してその厚さを調整し、得られた冷延鋼板を脱炭焼鈍して、得られた脱炭焼鈍鋼板を2次再結晶させるために仕上げ焼鈍する工程から成る方向性電磁鋼板の製造工程において、さらに、
    上記脱炭焼鈍鋼板は、重量%で、C:0.045〜0.062%、Si:2.9〜3.3%、Mn:0.08〜0.16%、Al:0.022〜0.032%、及びN:0.006〜0.008%、残りの鉄及び不可避な不純物からなり、上記脱炭焼鈍鋼板の表面に、MgO粉末100重量部;及び、上記MgO粉末基準で、その粒度が-325meshで、Si:25〜70重量%、残部Fe及び不可避な不純物からなるFe-Si系化合物焼成粉末0.5〜120重量部からなる浸珪粉末塗布剤をスラリー状態で塗布後乾燥させ、該乾燥された脱炭焼鈍鋼板を窒素と水素の混合ガス雰囲気下において1200℃まで加熱し、続いて100%水素雰囲気において1200℃で20時間以上均熱した後冷却することを特徴とする高珪素方向性電磁鋼板の製造方法。
  2. 上記Fe-Si系化合物焼成粉末はFeSi2、FeSi、Fe5Si3またはFe3Siを含んで組成され、上記Fe-Si系化合物焼成粉末の重量に対してFeSi2+FeSi焼成粉末を90重量%以上で含むことを特徴とする請求項1に記載の高珪素方向性電磁鋼板の製造方法。
  3. 上記粉末塗布剤のスラリーが塗布された脱炭焼鈍鋼板を200〜700℃で乾燥させることを特徴とする請求項1に記載の高珪素方向性電磁鋼板の製造方法。
  4. 上記乾燥された脱炭焼鈍鋼板を、昇温開始から1100℃までの昇温区間中には100%窒素ガス雰囲気において加熱して浸珪素量を0.25%以下に制御し、上記2次再結晶の完了した1100℃以後には雰囲気ガスを10%以下の窒素を含有する水素雰囲気として加熱することを特徴とする請求項1に記載の高珪素方向性電磁鋼板の製造方法。
JP2004551260A 2002-11-11 2003-11-11 高珪素方向性電磁鋼板の製造方法 Expired - Lifetime JP4484711B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020020069648A KR100900662B1 (ko) 2002-11-11 2002-11-11 침규확산용 분말도포제 및 이를 이용한 고규소 방향성전기강판 제조방법
KR1020020074327A KR100946069B1 (ko) 2002-11-27 2002-11-27 자성이 우수한 고규소 방향성 전기강판 제조방법
PCT/KR2003/002413 WO2004044252A1 (en) 2002-11-11 2003-11-11 Method for manufacturing high silicon grain-oriented electrical steel sheet with superior core loss property

Publications (3)

Publication Number Publication Date
JP2006501371A JP2006501371A (ja) 2006-01-12
JP2006501371A5 JP2006501371A5 (ja) 2007-10-11
JP4484711B2 true JP4484711B2 (ja) 2010-06-16

Family

ID=32314152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004551260A Expired - Lifetime JP4484711B2 (ja) 2002-11-11 2003-11-11 高珪素方向性電磁鋼板の製造方法

Country Status (5)

Country Link
US (1) US7282102B2 (ja)
EP (1) EP1570094B1 (ja)
JP (1) JP4484711B2 (ja)
DE (1) DE60320448T2 (ja)
WO (1) WO2004044252A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7645543B2 (en) * 2002-10-15 2010-01-12 Polyplus Battery Company Active metal/aqueous electrochemical cells and systems
DE102005004037B3 (de) * 2005-01-27 2006-06-14 Thyssenkrupp Steel Ag Verfahren zum Herstellen von magnetischem Band oder Tafeln
KR100779365B1 (ko) * 2006-03-27 2007-11-23 홍순진 절전형 외부 전원용 아답타
JP5262436B2 (ja) * 2008-08-27 2013-08-14 Jfeスチール株式会社 磁気測定方法および装置
CN102735712B (zh) * 2012-06-15 2014-08-27 电子科技大学 一种基于微井的气体传感器阵列及其制作方法
KR101480498B1 (ko) * 2012-12-28 2015-01-08 주식회사 포스코 방향성 전기강판 및 그 제조방법
CN110520552B (zh) * 2017-04-27 2021-06-29 杰富意钢铁株式会社 合金化热浸镀锌钢板的制造方法和连续热浸镀锌装置
DE102018200387A1 (de) * 2018-01-11 2019-07-11 Robert Bosch Gmbh Elektroblechpaket und Verfahren zu seiner Herstellung
CN110317938B (zh) * 2018-03-29 2021-02-19 宝山钢铁股份有限公司 一种高硅晶粒取向电工钢板的制造方法
CN115029609B (zh) * 2022-06-24 2023-06-16 张家港中美超薄带科技有限公司 一种生产高牌号无取向硅钢的方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2157902A (en) * 1938-01-04 1939-05-09 Globe Steel Tubes Co Impregnation of metals with silicon
DE1237154B (de) * 1961-11-29 1967-03-23 Licentia Gmbh Verfahren zur Herstellung von warm- und kaltgewalzten Fe-Si-Elektroblechen
US3423253A (en) 1968-02-23 1969-01-21 Allegheny Ludlum Steel Method of increasing the silicon content of wrought grain oriented silicon steel
US4073668A (en) 1976-09-15 1978-02-14 Bethlehem Steel Corporation Method of producing silicon steel strip
JPS6032705B2 (ja) 1979-06-23 1985-07-30 昇 津屋 極めて保磁力の低い(100)面内無方向性高珪素鋼薄帯とその製造方法
JPS6152358A (ja) * 1984-08-17 1986-03-15 Nippon Steel Corp 耐高温腐食性および耐水蒸気酸化性を向上させた浸けい処理鋼管
KR910000010B1 (ko) 1985-06-14 1991-01-19 닛뽄 고오깐 가부시끼가이샤 연자기특성이 우수한 규소철판의 제조방법
JPH0663031B2 (ja) 1985-10-22 1994-08-17 新日本製鐵株式会社 熱間圧延での耳割れが少なく磁気特性の優れた一方向性電磁鋼板の製造方法
JPS62227078A (ja) 1986-03-28 1987-10-06 Nippon Kokan Kk <Nkk> 連続ラインにおける高珪素鋼帯の製造方法
JPS6326329A (ja) * 1986-07-18 1988-02-03 Nippon Kokan Kk <Nkk> 化学気相蒸着処理方法
JPS63246125A (ja) 1987-04-02 1988-10-13 松下電器産業株式会社 電気掃除機
US4904500A (en) 1987-06-08 1990-02-27 Exxon Research And Engineering Company Diffusion of elements into steel by catalyzed oxide reduction
KR920010227B1 (ko) * 1989-12-28 1992-11-21 포항종합제철 주식회사 고자속밀도 방향성 전기강판의 소둔분리도포제
JPH0598398A (ja) * 1991-10-07 1993-04-20 Kawasaki Steel Corp 高けい素方向性けい素鋼板及びその製造方法
JPH05171281A (ja) 1991-12-17 1993-07-09 Sumitomo Metal Ind Ltd 高珪素鋼板の製造方法
KR950001433B1 (ko) 1992-04-30 1995-02-24 삼성전관주식회사 D플립플롭 회로
JP2659655B2 (ja) * 1992-09-04 1997-09-30 新日本製鐵株式会社 磁気特性の優れた厚い板厚の方向性電磁鋼板
KR960006026B1 (ko) * 1993-11-09 1996-05-08 포항종합제철주식회사 우수한 자기특성을 갖는 방향성 전기강판의 제조방법
JP2959400B2 (ja) * 1994-06-20 1999-10-06 日本鋼管株式会社 高珪素鋼帯の連続製造方法
KR100256342B1 (ko) * 1995-12-21 2000-05-15 이구택 자성 및 탈탄성이 우수한 방향성전기강판의 제조방법
WO1999046417A1 (fr) * 1998-03-12 1999-09-16 Nkk Corporation Tole d'acier au silicium et son procede de fabrication
US5993568A (en) * 1998-03-25 1999-11-30 Nkk Corporation Soft magnetic alloy sheet having low residual magnetic flux density
JPH11315366A (ja) * 1998-05-07 1999-11-16 Nkk Corp 傾斜磁性材料の製造方法
JP3707268B2 (ja) * 1998-10-28 2005-10-19 Jfeスチール株式会社 方向性電磁鋼板の製造方法

Also Published As

Publication number Publication date
DE60320448D1 (de) 2008-05-29
US7282102B2 (en) 2007-10-16
US20050247374A1 (en) 2005-11-10
DE60320448T2 (de) 2009-05-07
EP1570094A4 (en) 2006-10-11
JP2006501371A (ja) 2006-01-12
WO2004044252A1 (en) 2004-05-27
EP1570094B1 (en) 2008-04-16
EP1570094A1 (en) 2005-09-07

Similar Documents

Publication Publication Date Title
KR100900662B1 (ko) 침규확산용 분말도포제 및 이를 이용한 고규소 방향성전기강판 제조방법
JP6463458B2 (ja) 方向性電磁鋼板用予備コーティング剤組成物、これを含む方向性電磁鋼板およびその製造方法
KR100967049B1 (ko) 고규소 강판 제조방법
JP4484711B2 (ja) 高珪素方向性電磁鋼板の製造方法
JP4484710B2 (ja) 浸珪拡散被覆組成物及びこれを利用した高珪素電磁鋼板の製造方法
JP2006501371A5 (ja) 高珪素方向性電磁鋼板の製造方法
JP2006503189A5 (ja) 浸珪拡散被覆組成物及びこれを利用した高珪素電磁鋼板の製造方法
WO2017111432A1 (ko) 방향성 전기강판 및 이의 제조방법
KR100957930B1 (ko) 자기특성이 우수한 고규소 무방향성 전기강판 제조방법
KR100900661B1 (ko) 침규확산 피복조성물 및 이를 이용한 고규소 전기강판제조방법
KR100711470B1 (ko) 고주파 철손 특성이 우수한 고규소 방향성 전기강판제조방법
KR100946069B1 (ko) 자성이 우수한 고규소 방향성 전기강판 제조방법
KR100900660B1 (ko) 분말도포성 및 표면특성이 우수한 침규확산용 피복제조성물
KR100480001B1 (ko) 타발성이 우수한 방향성전기강판의 제조방법
KR101060913B1 (ko) 철손특성이 우수한 고규소 방향성 전기강판의 제조방법
KR100905652B1 (ko) 침규확산 피복조성물 및 이를 이용한 고규소 전기강판제조방법
KR20190077773A (ko) 방향성 전기강판용 소둔 분리제 조성물, 방향성 전기강판 및 그의 제조방법
KR100479994B1 (ko) 타발특성이 우수한 저온재가열 방향성전기강판의 제조방법
KR100946070B1 (ko) 고규소 전기강판 제조방법
KR970007031B1 (ko) 안정화된 자기적 특성을 갖는 방향성 전기강판의 제조방법
KR101059216B1 (ko) 그라스피막특성이 우수한 방향성 전기강판 제조방법
JP2022513169A (ja) 方向性電磁鋼板およびその製造方法
JPS62133021A (ja) グラス皮膜の密着性がよくかつ鉄損の低い方向性電磁鋼板およびその製造法
JP2001200317A (ja) 良好な被膜を有する低鉄損方向性電磁鋼板の製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20070822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100323

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250