WO2017111432A1 - 방향성 전기강판 및 이의 제조방법 - Google Patents

방향성 전기강판 및 이의 제조방법 Download PDF

Info

Publication number
WO2017111432A1
WO2017111432A1 PCT/KR2016/014945 KR2016014945W WO2017111432A1 WO 2017111432 A1 WO2017111432 A1 WO 2017111432A1 KR 2016014945 W KR2016014945 W KR 2016014945W WO 2017111432 A1 WO2017111432 A1 WO 2017111432A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
grain
annealing
oriented electrical
electrical steel
Prior art date
Application number
PCT/KR2016/014945
Other languages
English (en)
French (fr)
Inventor
한규석
고현석
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to US16/065,072 priority Critical patent/US20180371571A1/en
Priority to CN201680075431.1A priority patent/CN108431244B/zh
Priority to JP2018532632A priority patent/JP6622919B2/ja
Priority to EP16879299.2A priority patent/EP3395959B1/en
Priority to PL16879299T priority patent/PL3395959T3/pl
Publication of WO2017111432A1 publication Critical patent/WO2017111432A1/ko
Priority to US17/554,245 priority patent/US20220106657A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • It relates to a grain-oriented electrical steel sheet and a method of manufacturing the same.
  • a grain-oriented electrical steel sheet is a soft magnetic material having excellent magnetic properties in the rolling direction composed of grains having a Goss orientation, which has a crystal orientation of ⁇ 110 ⁇ ⁇ 001>.
  • These oriented electrical steel sheets are usually rolled to a final thickness of 0.15 to 0.35 mm through hot rolling, hot rolled sheet annealing, and hot rolled after slab heating, followed by hot annealing for primary recrystallization annealing and secondary recrystallization. do.
  • hot annealing rate is slower, it is known that the degree of integration of the Goss orientation which is secondary recrystallized is high, so that the magnetic properties are excellent.
  • Normal orientation temperature increase rate of the high-temperature annealing of the electrical steel sheet requires only 2 ⁇ 3 days, take more than 40 hours, as well as purification annealing, the temperature was raised by 15 ° C or less per hour, so that the energy consumption can be severe process.
  • the current final high temperature annealing process is subjected to batch annealing in a coil state, the following difficulties occur in the process.
  • the temperature difference between the outer and inner coil portions of the coil due to the heat treatment in the coil state is not applicable to the same heat treatment pattern in each portion, and the magnetic deviation of the outer and inner coil portions occurs.
  • MgO is coated on the surface, and various surface defects occur during the process of forming the base coating during high temperature annealing, thereby reducing the error rate.
  • Providing a slab comprising Si: 4.0% or less (excluding 0%), C: 0.001% to 0.4% and Mn: 0.001 to 2.0%, the balance comprising F e and other unavoidable impurities ; Reheating the slab; Hot rolling the slab to produce a hot rolled steel sheet; Annealing the hot rolled steel sheet; Primary cold rolling of the hot rolled hot rolled steel sheet; Decarburizing annealing the cold rolled steel sheet; Secondary rolling of the steel sheet on which decarburization annealing is completed; And finally annealing the cold rolled steel sheet; The final annealed steel sheet has a magnetic domain size (2L) present in the grains smaller than the thickness (D) of the steel sheet (2L ⁇ D).
  • the slab may contain up to 1% by weight of Si (excluding 0% by weight).
  • the slab may further comprise A1 of 0.01 wt% or less (excluding 0 wt%).
  • the reheating temperature of the slab can be from 105 CTC to 1350 ° C.
  • the reduction ratio in the first step rolling and the second step rolling may be 50% to 70%, respectively.
  • the step of decarburizing annealing the cold rolled steel sheet and the step of secondary rolling the steel sheet on which decarburization annealing is completed may be repeated two or more times.
  • Decarburizing annealing may be carried out in an atmosphere containing hydrogen at a dew point temperature of 0 ° C or more at a temperature of 800 ° C to 1150 ° C.
  • the final annealing step is carried out in an atmosphere of dew point temperature 10 ° C to 70 ° C at a temperature of 850 ° C to 1150 ° C and at a temperature of 900 ° C to 1200 ° C and dew point temperature below 10 ° C It can be performed in a mixed gas atmosphere containing hydrogen and nitrogen.
  • the first step is carried out in less than 300 seconds
  • the second step is from 60 seconds to
  • the final annealing step may be performed continuously.
  • the carbon content in the electrical steel sheet may be 0.003% by weight or less (excluding 0% by weight).
  • the final annealing finished steel sheet may have a volume fraction of 50% or more of grains having an orientation within 15 degrees from the ⁇ 110 ⁇ ⁇ 001> orientation.
  • the final annealing finished steel sheet may have a volume fraction of 50% or more of the grain size of 20 to 1000 / im.
  • the grain-oriented electrical steel sheet according to an embodiment of the present invention contains a weight%, Si: 4.0% or less (except 0%), C: 0.003% or less (except 0%), and Mn: 0.001 to 2.0% And the balance contains Fe and other inevitable impurities, and the magnetic domain size 2L present in the crystal grains is smaller than the thickness D of the steel sheet.
  • Si may be 1.0% by weight or less (excluding 0% by weight).
  • A1 may be further included 0.01 wt% or less (excluding 0 wt%).
  • the magnetic domain size (2L) present in the grains may be 10 to 500.
  • the volume fraction of the grains having an orientation within 15 degrees from the ⁇ 110 ⁇ ⁇ 001> orientation may be at least 50%.
  • the volume fraction of the grains having a particle size of 20 to 1000 may be 50% or more.
  • Figure 1 is a photograph showing the microstructure and magnetic domain of the grain-oriented electrical steel sheet prepared in Example 1.
  • first, second and third are used to refer to various parts, components, regions, layers and / or sections, but are not limited to these. These The terms are only used to distinguish one part, component, region, layer or section from another part, component, region, layer or section. Accordingly, the first part, component, region, layer or section described below may be referred to as the second part, component, region, layer or section without departing from the scope of the present invention.
  • the required characteristics of oriented electrical steel sheets used for power conversion as core materials of transformers are high magnetic flux density and low iron loss characteristics. High The magnetic flux density characteristics not only increase power conversion efficiency, but also increase the magnetic flux density of the design, thereby reducing the transformer size by using fewer core materials.
  • iron loss which is a loss generated by the directional steel sheet itself in the power change process, there is an advantage that can enjoy a transformer no-load loss.
  • the loss of electrical steel sheet itself caused by the degree of magnetization of the grain-oriented electrical steel sheet, and the loss is small when the grain-oriented electrical steel sheet is free of impurities or defects and has a high degree of integration in the Goss orientation.
  • Traditional eddy current loss is a loss caused by eddy currents generated in the steel sheet itself in the process of magnetizing directional electrical steel. By increasing the Si content and reducing the thickness of the steel sheet, it minimizes the eddy current of the steel sheet and enjoys the loss. This has been going on.
  • Another abnormal eddy current loss is a loss related to the movement and rotation of the directional magnetic steel domain (magnet ic domain) under the alternating current in which the transformer operates, and the loss decreases as the magnetic domain size (2L) becomes smaller. There is this.
  • the study to improve the abnormal eddy current loss is relatively more recent than the previous study on the hysteresis loss and the traditional eddy current loss.
  • the laser is irradiated to the surface of the steel sheet to apply local stress to the surface of the steel sheet to temporarily refine the magnetic domain.
  • the method has been developed to give permanent pattern microstructure through structural domain change by applying a certain pattern of curvature to the surface of steel sheet.
  • Another method of finer magnetic domain has been developed by applying a coating material having a different coefficient of expansion to the surface of the steel sheet to impart a tension due to the difference of expansion coefficient on the surface of the steel sheet.
  • the inventors of the present invention have repeatedly studied to reduce the abnormal eddy current loss of the grain-oriented electrical steel sheet and then reduce the grain size of the grain-oriented electrical steel sheet. It has been found that it is possible to reduce the size and thereby significantly reduce the total iron loss of the oriented electrical steel sheet.
  • the size of the ordinary domain has a relationship with the grain size and the following formula (1). Size of domain (2L) cc (size of grain) 1/2 (1)
  • the abnormal eddy current loss is said to have a relationship with the traditional eddy current loss as shown in Equation (2) below.
  • 2L is the size of the domain
  • d is the thickness of the steel sheet.
  • Equation (2) if the size of the magnetic domain is reduced under the assumption that the thickness of the steel sheet is constant, the abnormal eddy current loss is also reduced.
  • the hysteresis loss is reduced due to the excellent magnetization characteristics through the recrystallization of the Goss orientation, and the conventional eddy current loss is reduced by increasing the Si content and the sheet thickness, and finally, the Goss orientation grain size is reduced. It is necessary to reduce eddy current losses by more than a finer size by the size, the magnetic domain refinement.
  • the method for manufacturing a grain-oriented electrical steel sheet may further include other steps.
  • Mn 0.001 to 2.0%, the remainder providing a slab comprising Fe and other inevitably shaken impurities.
  • Silicon (Si) improves iron loss by lowering the magnetic anisotropy and increasing the resistivity of oriented electrical steel sheets.
  • Si improves iron loss by lowering the magnetic anisotropy and increasing the resistivity of oriented electrical steel sheets.
  • Si can be effective to add more than a certain amount because the addition of Si can further improve the iron loss. Therefore, Si content can be added to the Si 4 increase% range which is the content which can be hot rolled. If the Si content is too large, brittleness during cold rolling may increase, which may cause a problem in that cold rolling is impossible. More specifically, Si may be included in an amount of 1 wt% or less (excluding 0 wt%).
  • Carbon (C) is an element that promotes austenite phase transformation, and is an important element for producing a grain-oriented electrical steel sheet having excellent magnetic properties by making the hot-rolled structure of the grain-oriented electrical steel sheet uniform and promoting the formation of Goss orientation grains during cold rolling.
  • C when C is present in the final product, it causes magnetic aging and degrades magnetic properties. Therefore, C should be present in the final manufactured electrical steel sheet at 0.003% by weight or less.
  • C In order to promote phase transformation and recrystallization of Goss orientation grains by C addition, C must be added in the slab more than 0.001 weight 3 ⁇ 4>, and the effect is uneven at lower contents. Due to the hot rolled structure, secondary recrystallization is unstable.
  • Manganese (Mn), like Si, has the effect of reducing the iron loss by increasing the resistivity, and like C is an important element for miniaturizing the grain size in the hot rolling and annealing process by promoting austenite phase transformation.
  • phase transformation does not occur in the same way as the effect of C, resulting in coarsening of slabs and hot-rolled tissues, resulting in less grain size of the final product and insignificant improvement in iron loss due to increased resistivity. .
  • phase transformation does not occur in the same way as the effect of C, resulting in coarsening of slabs and hot-rolled tissues, resulting in less grain size of the final product and insignificant improvement in iron loss due to increased resistivity. .
  • Mn Oxi de manganese oxide
  • Fe 2 Si0 4 As manganese oxide (Mn Oxi de) is formed in addition to Fe 2 Si0 4 , decarburization is not performed smoothly in the final annealing process. Therefore, the preferred amount of Mn added
  • the amount of Mn added may be 0.01 to 1.0% by weight.
  • aluminum (A1) is treated as an unavoidable impurity. That is, A1 can minimize its content in slabs and steel sheets. Specifically, when A1 is further included, the range may be limited to 0.01% by weight or less.
  • the aforementioned components are the basic components of the present invention, and inevitably included or other alloying elements that can improve the magnetic properties are added, which may weaken the effect of iron loss improvement by miniaturization of Goss orientation grains, which is a feature of the present invention. Can not.
  • Slab reheating temperature is 1050 ° C Can be to 1350 ° C eu slab and the rolling load is increased if the temperature is low during reheating, rose up, the slab washing (washing) developed with high-temperature oxide to form a low melting point is higher, the temperature silsuyul the dropping addition, the hot-rolled tissue Problems may occur that are coarse and adversely affect magnetism. Therefore, it is possible to control the slab reheating temperature in the above-described range.
  • hot-rolled slabs of which the reheating is completed are manufactured.
  • the hot rolled steel sheet may be manufactured by hot rolling within a temperature range in which an austenite phase is present. At low temperatures where no austenite phase is present, not only the rolling load increases but also the grain refinement effect due to phase transformation cannot be obtained.
  • the hot rolled sheet is annealed.
  • the hot rolled sheet may be annealed above the temperature at which recrystallization and phase transformation are possible. Specifically it to a temperature of 850 to 1150 ° C 'to the annealing of hot-rolled sheet in order to prevent the low-melting-point oxide layer generated according to the high-temperature heating.
  • the atmosphere may be an atmosphere containing hydrogen gas and a dew point temperature of 0 ° C or higher at which decarburization reaction of the hot rolled sheet may occur.
  • the hot rolled steel sheet annealed hot rolled is first rolled.
  • the steel sheet may be pickled and cold rolled.
  • the rolling reduction can be 50% to 70%.
  • the cold rolled steel sheet is subjected to decarburization annealing.
  • the cold rolled steel sheet is subjected to annealing for recrystallization, at which time annealing is carried out at a temperature of 800 ° C. to 1150 ° C., a dew point temperature of 0 ° C. or higher, and an atmosphere containing hydrogen gas. If the temperature is too low, decarburization is difficult, and if the temperature is too high, a thick oxide layer is formed, rather decarburization reaction can be inhibited. If the dew point temperature is too low, decarburization reaction may be inhibited. More specifically, the dew point temperature may be 10 to 70 ° C.
  • the cold rolled steel sheet which completed decarburization annealing is secondary cold rolled.
  • the reduction ratio may be 50% to 70%.
  • Decarburizing annealing the cold rolled steel sheet and secondary rolling the steel sheet on which the decarburization annealing is completed The step may be repeated two or more times. For example, when repeated twice, the first step may be performed in the order of rolling, decarburizing annealing, secondary cold rolling, decarburizing annealing, tertiary cold rolling, or final annealing.
  • each decarburization process is performed at a temperature of 800 ° C to 1150 ° C, a dew point temperature of 0 ° C or higher, so that decarburization reaction can occur.
  • Annealing is performed in an atmosphere containing hydrogen gas.
  • the final annealing may be performed continuously after the secondary rolling.
  • the final annealing step is carried out in an atmosphere of 10 ° C to 70 ° C dew point at a temperature of 850 ° C to 1150 ° C and at a temperature of 900 ° C to 1200 ° C and a dew point temperature of 10 ° C or less It may include a second step performed in a mixed gas atmosphere containing hydrogen and nitrogen.
  • the first step may be performed in 300 seconds or less, and the second step may be performed in 60 to 300 seconds.
  • the cold rolled sheet is subjected to decarburization annealing so that the amount of carbon steel remains 40 to 60% by weight relative to the minimum amount of carbon in the slab. Therefore, in the first step during final annealing, the crystal grains formed in the surface layer portion diffuse into the carbon as the carbon is released. In the first step, decarburization may be performed so that the carbon amount in the steel sheet is 0.01% by weight or less. Then, in the second stage, the aggregated structure with the goth orientation diffused in the first stage is grown.
  • the goth texture is different from when grains are grown by conventional abnormal grain growth.
  • the grain size of the grains may be within 1 mm 3. Therefore, it can have a microstructure composed of g 0SS azimuth grains having a very small grain size compared to the conventional grain-oriented electrical steel sheet.
  • the amount of carbon in the finished steel sheet may be 0.003 wt% or less.
  • the finished grain-oriented electrical steel sheet is insulated from the insulating coating solution if necessary. After application it may be dried.
  • MgO coating layer is present because the conventional annealing separator based on MgO during the final annealing in the form of a batch (Batch), but the grain-oriented electrical steel sheet according to an embodiment of the present invention is not a batch form Since the final annealing can be carried out there may be no MgO coating layer.
  • the grains of the Goss orientation (orientation within 15 degrees from the ⁇ 110 ⁇ ⁇ 001> orientation) generated through one embodiment of the present invention tend to increase more as cold rolling and decarbonization annealing are repeated, and at least two cold When rolling and decarburizing annealing are performed, the volume fraction of the grains having the Goss orientation in the steel sheet increases to at least 50%.
  • the crystal grains produced through one embodiment of the present invention have a particle diameter of less than 5 mm, and the volume fraction of the crystal grains having a diameter of 1000 to more than 50%. As a result, the size of the domains present in the grains becomes very small.
  • the size of the magnetic domain found in the conventional grain-oriented electrical steel sheet is usually larger than the thickness of the steel sheet, but the steel sheet manufactured according to an embodiment of the present invention has a magnetic domain size (2L) present in the grains smaller than the thickness (D) of the steel sheet. do.
  • the composition of the grain-oriented electrical steel sheet is the same as that of the above-described slab, and since the composition range is not substantially changed in the manufacturing process of the grain-oriented electrical steel sheet, redundant description is omitted. However, as described above, since the carbon is decarburized during the decarburization annealing and final annealing, the carbon content is 0.003% by weight or less.
  • the volume fraction of the grains having the Goss orientation in the steel sheet is increased to at least 50%, so that the iron loss and the magnetic flux density are excellent.
  • the grain size of the grain-oriented electrical steel sheet in the grain-oriented electrical steel sheet is 20 to 100 ⁇ m. It is more than 50% and does not exceed 5 ⁇ max.
  • the size of the magnetic domain present in the steel sheet is smaller than the thickness of the steel sheet. Due to such a fine magnetic domain structure, the abnormal eddy current loss of the steel sheet produced by the present invention is significantly reduced than the abnormal eddy current loss of the grain-oriented electrical steel sheet manufactured by the conventional method to greatly improve the total iron loss.
  • the magnetic domain size (2L) present in the crystal grains is 10 to
  • the mixture was subjected to annealing for 2 minutes in a wet mixed gas atmosphere (dew point temperature of 60 ° C) at a temperature of 1000 ° c, followed by drying of nocrc (dew point o ° c). Annealing was performed for 3 minutes in a gas atmosphere.
  • the grain fractions of the grains having an error within 15 degrees from the ideal ⁇ 110 ⁇ ⁇ 001> orientation were measured using a conventional crystal orientation measurement method.
  • the fraction of Goss orientation grains in the final product should be at least 50% in the case of the intermediate annealing where at least one decarburization occurs during the hot rolling to the final thickness after performing the hot-rolled sheet annealing. It was possible to obtain a fine magnetic domain size. This high Goss orientation fraction and fine magnetic domain size resulted in excellent magnetic flux density and low iron loss in the final product.
  • Slabs containing C: 0., Mn: 0.05% by weight and consisting of the balance Fe and unavoidable impurities were prepared with varying Si content as shown in Table 2 below.
  • the slab was heated at a temperature of 1150 ° C and then hot rolled to a thickness of 3 kPa, then subjected to hot-rolled sheet annealing at an annealing temperature of 950 ° C, cooled, pickled, and cold rolled at a reduction ratio of 60%.
  • the rolled plate was subjected to recrystallization and decarburization annealing again in a mixed gas atmosphere of hydrogen and nitrogen at a dew point temperature of 60 ° C at a temperature of 900 ° C.
  • step 1 After the same rolling and decarbonization annealing was repeated two more times. Then finally subjected to decarburization annealing 180 seconds (step 1) in heunhap gas atmosphere of hydrogen and nitrogen, dew point 60 ° C at a temperature of 950 ° C and then cold-rolled to a sheet thickness 0.23mm, a 1000 ° C dry (dew point Heat treatment (step 2) was performed for 100 seconds in a hydrogen atmosphere of 0 ° C).
  • step 2 shows the magnetic characteristics of the final annealed steel sheet according to the Si content change. Table 2
  • the Si content of 4 wt% or less secured a microstructure with a final grain size of 1000 or less through a plurality of intermetallic rolling and decarbonization annealing, wherein the size of the magnetic domain was smaller than that of the steel sheet.
  • excellent iron loss was secured.
  • Si content exceeded 4% by weight, the brittleness increased, making it difficult to cold roll to the final thickness due to sheet fracture during cold rolling. Also, the decarburization was not performed during the decarbonization annealing time. .
  • a slab containing 3.0% by weight, C: 0.25, Mn: 0.5% by weight, residual Fe and unavoidable impurities is heated at a temperature of 1200 ° C., and then hot rolled to a thickness of 2.5 ⁇ , followed by an annealing temperature of 1100 °. C, dew point, hot-rolled sheet annealing in a hydrogen and nitrogen mixed gas atmosphere at a temperature of 40 ° C, cooled, and then pickled.
  • Primary cold rolling was carried out at a reduction ratio of 65%. The cold rolled plate was then subjected to decarburization annealing again in a wet mixed gas atmosphere of hydrogen and nitrogen at a dew point temperature of 60 ° C. at a temperature of 1050 ° C.
  • step 1 decarbonization (step 1) by changing the annealing temperature as shown in Table 3 in a wet mixed gas atmosphere of hydrogen and nitrogen at a dew point temperature of 65 ° C so that the carbon content is 0.003% by weight or less.
  • step 2 decarbonization annealing was followed by further heating, followed by finishing heat treatment (step 2) in a dry hydrogen atmosphere at a dew point of 1150 ° C. at 0 ° C.
  • step 2 Grain size and magnetic domain size using Kerr mi croscopy of the finished annealing steel sheet were measured and shown in Table 3 below in comparison with the magnetic properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

본 발명의 일 실시예에 의한 방향성 전기강판의 제조방법은 중량 %로, Si : 4.0% 이하 (0%를 제외함), C: 0.001% 내지 0.4% 및 Mn : 0.001 내지 2.0%를 함유하고, 잔부는 Fe 및 기타 불가피하게 혼입되는 불순물을 포함하는 슬라브를 제공하는 단계; 슬라브를 재가열하는 단계; 슬라브를 열간 압연하여 열연 강판을 제조하는 단계; 열연 강판을 열연판 소둔하는 단계; 열연판 소둔된 열연 강판을 1차 냉간 압연하는 단계; 냉간 압연된 강판을 탈탄 소둔하는 단계; 탈탄 소둔이 완료된 강판을 2차 냉간 압연하는 단계; 및 넁간 압연이 완료된 강판을 최종 소둔하는 단계; 를 포함하고, 최종 소둔이 끝난 강판은 결정립 내에 존재하는 자구크기 (2L)가 강판의 두께 (D)보다 작다 (2L < D)

Description

【명세서】
.【발명의 명칭】
방향성 전기강판 및 이의 제조방법
【기술분야】
방향성 전기강판 및 이의 제조방법에 관한 것이다.
【발명의 배경이 되는 기술】
방향성 전기강판은 강판의 결정방위가 { 110}<001>인 일명 고스 (Goss ) 방위를 갖는 결정립들로 이루어진 압연방향의 자기적 특성이 뛰어난 연자성 재료이다.
이러한 방향성 전기강판은 슬라브 가열 후 열간 압연, 열연판 소둔, 넁간 압연을 통하여 통상 0. 15 내지 0.35 mm 의 최종두께로 압연된 다음, 1차 재결정 소둔과 2차 재결정 형성을 위하여 고온소둔을 거쳐 제조된다. 이때, 고온소둔시에는 승온율이 느릴수록 2차 재결정되는 Goss 방위의 집적도가 높아져 자성이 우수한 것으로 알려져 있다. 통상 방향성 전기강판의 고온소둔 중 승온율은 시간당 15 °C 이하로써 승온으로만 2~3일이 소요될'뿐만 아니라 40시간 이상의 순화소둔이 필요하므로 에너지 소모가 심한 공정이라고 할 수 있다. 또한 현재의 최종 고온소둔 공정은 코일 상태에서 배치 (Batch)형태의 소둔을 실시하기 때문에 공정상의 다음과 같은 어려움이 발생하게 된다. 첫째, 코일상태에서의 열처리로 인한 코일의 외권부와 내권부 온도 편차가 발생하여 각 부분에서 동일한 열처리 패턴을 적용할 수 없어 외권부와 내권부의 자성편차가 발생한다. 둘째ᅳ 탈탄 소둔 후 MgO를 표면에 코팅하고 고온소둔 중 Base coat ing을 형성하는 과정에서 다양한 표면 결함이 발생하기 때문에 실수율을 떨어뜨리게 된다. 셋째, 탈탄 소둔이 끝난 탈탄판을 코일형태로 감은 후 고온소둔 후 다시 평탄화소둔을 거쳐 절연코팅을 하기 때문에 생산공정이 3단계로 나누어지게 됨으로써 실수율이 떨어지는 문제점이 발생한다.
【발명의 내용】
【해결하고자 하는 과제】
본 발명의 일 실시예에서는 방향성 전기강판의 제조방법 및 이에 와하여 제조된 방향성 전기강판을 제공하고자 한다. - 【과제의 해결 수단】
본 발명의 일 실시예에 의한 방향성 전기강판의 제조방법은 중량 ¾>로,
Si : 4.0% 이하 (0%를 제외함), C : 0.001% 내지 0.4% 및 Mn : 0.001 내지 2.0%를 함유하고, 잔부는 Fe 및 기타 불가피하게 흔입되는 불순물을 포함하는 슬라브를 제공하는 단계; 슬라브를 재가열하는 단계; 슬라브를 열간 압연하여 열연 강판을 제조하는 단계; 열연 강판을 열연판 소둔하는 단계; 열연판 소둔된 열연 강판을 1차 냉간 압연하는 단계; 냉간 압연된 강판을 탈탄 소둔하는 단계; 탈탄 소둔이 완료된 강판을 2차 넁간 압연하는 단계; 및 냉간 압연이 완료된 강판을 최종 소둔하는 단계; 를 포함하고, 최종 소둔이 끝난 강판은 결정립 내에 존재하는 자구크기 (2L)가 강판의 두께 (D)보다 작다 (2L < D) .
' 슬라브는 Si를 1 중량 % 이하 (0중량 %를 제외함) 포함할수 있다.
슬라브는 A1를 0.01 중량 % 이하 (0증량 %를 제외함) 더 포함할 수 있다. 슬라브의 재가열 온도는 105CTC 내지 1350 °C가 될 수 있다.
1차 넁간 압연하는 단계 및 2차 넁간 압연하는 단계에서의 압하율은 각각 50% 내지 70%이 될 수 있다.
냉간 압연된 강판을 탈탄 소둔하는 단계 및 탈탄 소둔이 완료된 강판을 2차 넁간 압연하는 단계는 2회 이상 반복될 수 있다.
탈탄 소둔하는 단계는 800°C 내지 1150°C의 온도에서 이슬점 온도 0°C 이상의 수소를 포함하는 분위기에서 실시할 수 있다.
최종 소둔하는 단계는 850 °C 내지 1150 °C의 온도에서 이슬점 온도 10 °C 내지 70°C의 분위기에서 실시하는 제 1 단계 및 900°C 내지 1200 °C의 온도에서 및 이슬점 온도 10 °C 이하의 수소 및 질소를 포함하는 흔합가스 분위기에서 실시할 수 있다.
제 1 단계는 300초 이하로 실시되며, 상기 제 2 단계는 60초 내지
300초 동안 실시할 수 있다.
냉간 압연하는 단계 이후 최종 소둔하는 단계는 연속하여 이루어질 수 있다.
최종 소둔 단계 이후 전기강판 내의 탄소량은 0.003 중량 % 이하 (0 중량 %를 제외함)가 될 수 있다. 최종 소둔이 끝난 강판은 {110}<001> 방위로부터 15도 이내의 방위를 갖는 결정립의 부피분율이 50% 이상이 될 수 있다.
최종 소둔이 끝난 강판은 입경이 20 내지 1000/im인 결정립의 부피분율이 50% 이상일 수 있다.
본 발명의 일 실시예에 의한 방향성 전기강판은 중량 %로, Si : 4.0% 이하 (0%를 제외함), C : 0.003% 이하 (0%를 제외함) 및 Mn : 0.001내지 2.0%를 함유하고, 잔부는 Fe 및 기타 불가피하게 흔입되는 불순물을 포함하고, 결정립 내에 존재하는 자구크기 (2L)는 강판의 두께 (D)보다 작다.
Si를 1.0중량 % 이하 (0중량 %를 제외함) 포함할 수 있다.
A1를 0.01 중량 % 이하 (0중량 %를 제외함) 더 포함할수 있다.
결정립 내에 존재하는 자구크기 (2L)는 10 내지 500 일 수 있다.
{110}<001> 방위로부터 15도 이내의 방위를 갖는 결정립의 부피분율이 50% 이상일 수 있다.
입경이 20 내지 1000 인 결정립의 부피분율이 50% 이상일 수 있다.
[발명의 효과】
본 발명의 일 실시예에 의하면, 최종 소둔시 코일 상태에서 배치 (Batch)형태의 소둔을 실시하지 않고 연속적인 소둔을 실시할 수 있는 방향성 전기강판의 제조 방법을 제공할 수 있다.
또한, 본 발명의 일 실시예에 의하면, 단시간의 소둔만으로도 방향성 전기강판을 생산할수 있다.
또한, 본 발명의 일 실시예에 의하면, 결정립 성장 억제제를 사용하지 않는 방향성 전기강판을 제공할수 있다.
또한, 본 발명의 일 실시예에 의하면, 침질 소둔을 생략할 수 있다. 【도면꾀 간단한 설명】 ᅳ
도 1은 실시예 1에서 제조한 방향성 전기강판의 미세조직 및 자구를 나타내는사진이다.
【발명을 실시하기 위한 구체적인 내용】
제 1, 제 2 및 제 3 등의 용어들은 다양한 부분, 성분, 영역, 층 및 /또는 섹션들을 설땅하기 위해 사용되나 이들에 한정되지 않는다. 이들 용어들은 어느 부분, 성분, 영역, 층 또는 섹션을 다른 부분, 성분, 영역, 층 또는 섹션과 구별하기 위해서만 사용된다. 따라서, 이하에서 서술하는 제 1 부분, 성분, 영역, 층 또는 섹션은 본 발명의 범위를 벗어나지 않는 범위 내에서 제 2 부분, 성분, 영역, 층 또는 섹션으로 언급될 수 있다.
여기서 사용되는 전문 용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 명세서에서 사용되는 "포함하는" 의 의미는 특정 특성 , 영역, 정수, 단계, 동작, 요소 및 /또는 성분을 구체화하며, 다른 특성, 영역, 정수, 단계, 동작, 요소 및 /또는 성분의 존재나 부가를 제외시키는 것은 아니다.
어느 부분이 다른 부분의 "위에" 또는 "상에" 있다고 언급하는 경우, 이는 바로 다른 부분의 위에 또는 상에 있을 수 있거나 그 사이에 다른 부분이 수반될 수 있다. 대조적으로 어느 부분이 다른 부분의 "바로 위에" 있다고 언급하는 경우, 그 사이에 다른 부분이 개재되지 않는다.
다르게 정의하지는 않았지만, 여기에 사용되는 기술용어 및 과학용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 보통 사용되는 사전에 정의된 용어들은 관련기술문헌과 현재 개시된 내용에 부합하는 의미를 가지는 것으로 추가 해석되고, 정의되지 않는 한 이상적이거나 매우 공식적인 의미로 해석되지 않는다.
또한, 특별히 언급하지 않는 한 %는 중량 %를 의미하며, lppm은
0.00이중량 %이다.
이하, 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 일반적으로 변압기의 코아소재로서 전력변환에 사용되는 방향성 전기강판의 요구 특성은 높은 자속밀도와 낮은 철손특성이다. 높은 자속밀도 특성은 전력변환 효율을 높힐 수 있을 뿐만 아니라, 설계자속밀도를 높이는 것이 가능하여 적은 코아소재를 사용하여 변압기 크기를 줄일 수 있는 이점이 있다. 아을러, 전력 변화과정에서 방향성 전기강판 자체적으로 발생하는 손실인 철손의 경우, 변압기 무부하 손실을 즐일 수 있는 이점이 있다.
이제까지 방향성 전기강판에 관한 연구 및— 기술개발은 거의 대부분 철손을 감소시키기 위해서 진행되어 왔다. 방향성 전기강판의 철손은 크게 다음과 같이 이력손실 (Hysteres i s Loss ) , 전통적 와전류손실 (Cl ass i cal Eddy Current Loss) 및 이상.와전류 손실 (Anomalous Eddy Current Loss)로 구분된다.
이력손실의 경우, 방향성 전기강판이 자화정도에 의해서 발생하는 전기강판 자체의 손실로서, 방향성 전기강판에 불순물이나 결함이 없고 Goss 방위의 집적도가 높은 경우 손실이 작게된다.
전통적 와전류손실은 방향성 .전기강판이 자화과정에서 강판 자체에 발생하는 맴돌이 전류에 의하여 발생하는 손실로서, Si함량을 높이고, 강판의 두께를 감소시킴으로써 강판의 맴돌이 전류를 최소화 하여 손실을 즐이는 노력이 진행되어 왔다. 또 다른 이상 와전류손실은, 변압기가 작동하는 교류하에서 방향성 전기강판 자구 (magnet i c domain)의 이동과 회전에 관련된 손실로서, 자구크기 (Magnet i c domain s i ze , 2L)가 미세할수록 손실이 감소하는 특성이 있다. 이상 와전류손실을 개선하기 위한 연구는 앞서 이력손실과 전통적 와전류손실에 대한 연구보다 상대적으로 최근에 진행된 연구로서, 레이저를 강판 표면에 조사함으로써 강판표면에 국부적인 응력을 부여하여 일시적으로 자구를 미세화하는 방법과 강판표면에 일정한 패턴의 굴곡을 부여하여 구조적 자구변화를 통한 영구적 자구미세화 방법등이 개발되어 왔다. 또 다른 자구미세화 방법으로 강판표면에 팽창계수가 다른 코팅물질을 도포함으로써 강판표면에 팽창계수차이에 의한 장력을 부여하여 자구를 미세화하는 방법까지 개발되어 왔다.
본 발명자들은 방향성 전기강판의 이상 와전류손실을 줄이기 위한 연구를 거듭한 끝에 방향성 전기강판의 결정립 크기를 줄이면, 자구의 크기를 감소시킬 수 있게 되고 그에 따라서 방향성 전기강판의 전체 철손을 획기적으로 줄이는 것이 가능하다는 사실을 발견하였다.
통상자구의 크기는 결정립 크기와 하기 식 ( 1)과 같은 관계에 있다. 자구의 크기 (2L) cc (결정립의 크기) 1/2 ( 1)
즉, 결정립의 크기가 작을수록 자구의 크기는 작아지게 되고 그에 따라서 이상 와전류손실은 감소하게 된다.
이상 와전류손실은 전통적 와전류손실과 하기 식 (2)와 같은 관계에 있다고 한다.
Wea = [ 1.63* (2L/d) 一 l] *Wec (2)
식 (2)에세 Wea은 이상 와전류손실, Wee은 전통적인 와전류손실,
2L은 자구의 크기, d는 강판의 두께를 나타낸다.
식 (2)에서와 같이, 강판의 두께가 일정하다는 가정하에 자구의 크기가 감소하면 이상 와전류손실도 감소하게 된다.
Goss 방위 결정립들의 크기를 줄이게 되면, 결정립 크기와 자구의 크기 관계식 ( 1)에 근거하여 획기적으로 자구의 크기를 감소 시키는 것이 가능하며, 그에 따라서, 방향성 전기강판의 철손을 획기적으로 감소 시킬 수 있게 된다.
종합하여, 방향성 전기강판의 철손을 저감하기 위해서는 Goss 방위의 재결정립 형성을 통한 뛰어난 자화특성에 따른 이력손실 저감과 Si함량 증가와 강판 두께 감소에 의한 전통적인 와전류손실 저감 그리고, 최종적으로 Goss방위 결정립의 크기를' 미세화함으로서 자구의 크기를 미세화 시켜 이상 와전류손실을 감소시키는 것이 필요하다. 방향성 전기강판의 전체 손실을 줄이기 위해서는 모든 이력손실, 전통적 와전류손실 그리고 이상 와전류손실 모두를 감소시키는 것이 바람직하지만, 경우에 따라서는 이력손실이나 전통적인 와전류 손실의 획기적인 개선이 없음에도 불구하고 Goss 방위 결정립 크기를 최소화하여 이상 와전류손실만을 크게 개선시킴으로써 생산이 용이하며 자기특성이 우수한 방향성 전기강판을 제조할 수가 있다.
본 발명의 일 실시예에 의한 방향성 전기강판의 제조방법은 증량 %로, Si : 4.0% 이하 (0%를 제외함) , C : 0.001% 내지 0.4% 및 Mn : 0.001내지 2.0%를 함유하고, 잔부는 Fe 및 기타 불가피하게 흔입되는 불순물을 포함하는 슬라브를 제공하는 단계; 슬라브를 재가열하는 단계; 슬라브를 열간 압연하여 열연 강판을 제조하는 단계; 열연 강판을 열연판 소둔하는 단계; 열연판 소둔된 열연 강판을 1차 냉간 압연하는 단계; 넁간 압연된 강판을 탈탄 소둔하는 단계; 탈탄 소둔이 완료된 강판을 2차 냉간 압연하는 단계; 및 넁간 압연이 완료된 강판을 최종 소둔하는 단계; 를 포함한다. 이외에, 필요에 따라 방향성 전기강판의 제조 방법은 다른 단계들을 더 포함할 수 있다.
이하.에서는 각 단계별로 상세히 설명한다.
먼저, 중량 %로, Si : 4.0% 이하 (0%를 제외함), C : 0.001% 내지 0.4% 및
Mn : 0.001 내지 2.0%를 함유하고, 잔부는 Fe 및 기타 불가피하게 흔입되는 블순물을 포함하는 슬라브를 제공한다.
조성을 한정한 이유는 하기와 같다.
실리콘 (Si )는 방향성 전기강판의 자기이방성을 낮추고 비저항을 증가시켜 철손을 개선한다. 본 발명의 일 실시예에서는 최종 제품 결정립의 크기를 작게 하여 이상 와전류손실을 크게 감소시키는 것이 특징이지만, Si을 첨가하면 첨가할수록 철손을 더욱 개선시킬 수 있으므로 일정량 이상 첨가하는 것이 효과적일 수 있다. 따라서, 넁간압연이 가능한 함량인 Si 4 증량 % 범위까지, Si 함량을 첨가할 수 있다. Si함량이 너무 많은 경우에는 냉연시 취성이 증가하여 냉간압연이 불가능해지는 문제가 생길 수 있다. 더욱구체적으로 Si를 1 중량 % 이하 (0 증량 % 제외)로 포함할수 있다. 탄소 (C)는 오스테나이트 상변태를 촉진하는 원소로서, 방향성 전기강판의 열연조직을 균일하게 만들고 냉간압연시 Goss 방위의 결정립 형성을 촉진하여 자성이 우수한 방향성 전기강판을 제조하는데 중요한 원소이다. 하지만, 최종제품에 C가 존재하게 되면 자기시효 현상을 일으켜 자기특성을 떨어뜨리기 때문에, 최종 제조된 전기강판에는 C가 0.003 중량 % 이하로 존재하여야만 한다. C첨가에 의한 상변태 및 Goss 방위 결정립의 재결정을 촉진 하기 위해서는 슬라브 내에 C가 0.001 중량 ¾>이상 첨가 되어야만 효과를 볼 수 있으며, 그보다 적은 함량에서는 불균일한 열연조직으로 인하여 2차재결정이 불안정하게 형성된다. 그러나, 슬라브에 C를 0.4 중량 % 초과하여 첨가하게 되면 열간압연시 오스테나이트 상변태로 인한 미세한 열연조직 형성으로 1차재결정립이 미세해지게 되며, 열간압연 종료후 권취과정이나 열연판 소둔후에 넁각과정에서 조대한 카바이드를 형성할 수 있으며 상온에서 Fe3C (세멘타이트)를 형성하여 조직에 불균일을 초래하기 쉽다. 아울러, 탈탄 공정 및 최종 소둔공정에서 0.003 중량 %이하로 탈탄하는데 소둔 시간이 증가하는 문제가 있다. 그러므로, 슬라브 내의 C의 함량은 0.001 내지 0.4중량 %로 한정할 수 있다ᅳ
망간 (Mn)은 Si과 동일하게 비저항을 증가시켜 철손을 감소시키는 효과도 있으며, C와 마찬가지로 오스테나이트 상변태를 촉진하여 열간압연 및 소둔공정에서 결정립의 입경을 미세화하는데 중요한 원소이다. 이러한
Mn을 0.001 중량 % 미만으로 첨가하면 C의 효과와 동일하게 상변태가 층분하게 이루어지지 않아 슬라브 및 열연조직이 조대화하여 최종 제품의 결정립 입경이 미세해지지 않으며 비저항 증가에 의한 철손 개선 효과도 미미하게 된다. 아울러, 2.0 증량 % 초과하여 첨가하게 되면 강판 표면에
Fe2Si04이외에 망간 산화물 (Mn Oxi de)이 형성되면서 최종 소둔공정에서 ᅳ 탈탄이 원활하게 이루어지지 않게 된다. 그러므로 바람직한 Mn 첨가량은
0.001 내지 2.0 중량 ¾>가 될 수 있다. 더욱 구체적으로 Mn의 첨가량은 0.01 내지 1.0중량%가 될 수 있다.
본 발명의 일 실시예에서 알루미늄 (A1 )은 불가피한 불순물로서 취급된다. 즉, A1은 슬라브 및 강판 내에서 그 함량을 최소화 시킬 수 있다. 구체적으로 A1을 더 포함하는 경우, 그 범위를 0.01 중량 % 이하로 제한할 수 있다. -
^ 전술한 성분들은 본 발명의 기본 구성으로, 이외에도 불가피하게 포함되거나, 자기특성을 향상 시킬 수 있는 다른 합금원소들이 첨가되어도 본 발명의 특징인 Goss 방위 결정립의 미세화에 의한 철손 개선의 효과를 약화시킬 수 없다.
전술한 조성의 용강으로부터 슬라브를 제조하는 방법으로는 분괴법, 연속주조 방법, 박슬라브 주조 또는 스트립 캐스팅이 가능하다. ,
다음으로, 슬라브를 재가열할 수 있다. 슬라브 재가열 온도는 1050°C 내지 1350°C가 될 수 있다ᅳ 슬라브 재가열시 온도가 낮으면 압연 부하가 증가하게 되고, 온도가 높을 경우에는 저융점의 고온산화물 형성으로 슬라브 워싱 (washing) 현상이 일어나 실수율이 떨어지고 또한 열연 조직이 조대화되어 자성에 악영향을 미치게 되는 문제점이 발생할 수 있다. 따라서 전술한 범위로 슬라브 재가열 온도를 조절할 수 있다.
다음으로, 재가열이 완료된 슬라브를 열간 압연하여 열연 강판을 제조한다. 열간 압연 시, 오스테나이트 상이 존재하는 온도 범위내에서 열간 압연하여 열연강판을 제조할 수 있다. 오스테나이트 상이 존재하지 않는 낮은 온도에서는 압연부하가 증가할 뿐 아니라, 상변태에 의한 결정립 미세화 효과를 얻을 수 없다.
다음으로, 열연 강판을 열연판 소둔한다. 열연판은 재결정 및 상변태가 가능한 온도이상에서 열연판 소둔할 수 있다. 구체적으로 고온가열에 따른 저융점 산화층 생성을 방지하기 위하여 850 내지 1150°C'의 온도로 열연판 소둔할 수 있다. 열연판 소둔시 분위기는 열연판의 탈탄반웅이 일어날수 있는 0°C 이상의 이슬점 온도 및 수소가스를 함유하는 분위기일 수 있다.
다음으로, 열연판 소둔된 열연 강판을 1차 넁간 압연한다. 열연판 소둔을 실시한 후 강판을 산세하고 냉간 압연할 수도 있다. 냉간 압연 시, 압하율은 50% 내지 70%가 될 수 있다.
다음으로, 냉간 압연된 강판을 탈탄 소둔한다. 냉연강판은 재결정을 위한 소둔을 실시하며, 이때 탈탄반웅이 일어날 수 있도록 800 °C 내지 1150 °C의 온도에서, 0 °C 이상의 이슬점 온도 및 수소가스를 함유하는 분위기에서 소둔을 실시한다. 온도가 너무 낮으면, 탈탄이 어렵고, 온도가 너무 높으면, 두꺼운 산화층이 형성되어, 오히려 탈탄반웅이 저해될 수 있다. 이슬점 온도가 너무 낮으면, 탈탄반웅이 저해될 수 있다. 더욱 구체적으로 이슬점 온도는 10 내지 70°C가 될 수 있다. 다음으로, 탈탄 소둔이 완료된 강판을 2차 냉간 압연한다. 냉간 압연 시, 압하율은 50% 내지 70% 가 될 수 있다. 냉간 압연된 강판을 탈탄 소둔하는 단계 및 상기 탈탄 소둔이 완료된 강판을 2차 넁간 압연하는 단계는 2회 이상 반복될 수 있다. 일 예로 2회 반복되는 경우, 1차 넁간 압연하는 단계, 탈탄 소둔하는 단계, 2차 냉간 압연하는 단계, 탈탄 소둔하는 단계, 3차 냉간 압연하는 단계, 최종 소둔하는 단계 순서로 진행될 수 있다. 이 때 가장 마지막의 넁간 압연하는 단계에서 최종 제품 두께까지 냉간 압연을 실시하게 되며, 각각의 탈탄 공정은 탈탄반웅이 일어날 수 있도록 800 °C 내지 1150 °C의 온도에서, 0 °C 이상의 이슬점 온도 및 수소가스를 함유하는 분위기에서 소둔을 실시한다.
다음으로, 냉간 압연이 완료된 강판을 최종 소둔한다ᅳ
본 발명의 일 실시예에 의한 방향성 전기강판의 제조방법에서는 기존의 배치 (batch)방식과 달리 2차 넁간 압연에 이어 연속으로 최종 소둔을 실시할 수 있다.
최종 소둔 단계는 850°C 내지 1150°C의 온도에서 이슬점 은도 10°C 내지 70°C의 분위기에서 실시하는 제 1 단계 및 900 °C 내지 1200°C의 온도에서 및 이슬점 온도 10°C 이하의 수소 및 질소를 포함하는 흔합가스 분위기에서 실시하는 제 2 단계를 포함할 수 있다. 제 1 단계는 300초 이하로 실시되며, 제 2 단계는 60초 내지 300초 동안 실시할 수 있다.
최종 소둔 전 냉연판은 탈탄 소둔이 진행되어 소강 탄소량이 최소 슬라브의 탄소량 대비 40 중량 % 내지 60 중량 % 남아있는 상태이다. 따라서 최종 소둔 시 제 1 단계에서는 탄소가 빠져나가면서 표층부에 형성된 결정립이 내부로 확산된다. 제 1 단계에서는 강판 중의 탄소량을 0.01 중량 % 이하가 되도록 탈탄을 실시할 수 있다. - 이 후, 제 2 단계에서는 1 단계에서 확산된 고스 방위를 가진 집합조직이 성장하게 된다. 본 발명의 일 실시예에 의한 방향성 전기강판의 제조방법에서는 고스 집합조직은 종래의 비정상 입자성장에 의하여 결정립이 성장된 경우와 달리. 결정립의 입경은 1 隱 이내 일 수 있다. 따라서, 종래의 방향성 전기강판에 비하여 결정립의 입경이 매우 작은 g0SS 방위 결정립들로 이루어진 미세조직을 가질 수 있다.
최종 소둔이 완료된 전기강판 내의 탄소량은 0.003 중량 % 이하일 수 있다.
최종 소둔이 완료된 방향성 전기강판은 필요에 따라 절연 코팅액을 도포한 후 건조할 수 있다.
한편, 종래 배치 (Batch) 형태로 최종 소둔시 MgO를 주성분으로 하는 소둔 분리제를 도포하기 때문에 MgO 코팅층이 존재하게 되지만, 본 발명의 일 실시예에 의한 방향성 전기강판은 배치 형태가 아닌 연속식으로 최종소둔을 실시할 수 있으므로 MgO 코팅층이 존재하지 않을 수 있다.
본 발명의 일 실시예를 통해 생성된 Goss 방위 ({110}<001> 방위로부터 15도 이내의 방위)의 결정립들은 냉간압연 및 탈탄소둔을 반복할수록 더욱 증가하는 경향을 보이게 되며, 적어도 2회의 냉간 압연 및 탈탄 소둔을 실시하였을 때, 강판 내의 Goss 방위를 갖는 결정립의 부피분율은 최소 50% 이상으로 증가한다.
본 발명의 일 실시예를 통해 생성된 결정립들은 입경이 5隱미만이며, 내지 1000 인 결정립의 부피분율이 50% 이상이 된다. 결국, 결정립내에 존재하는 자구의 크기는 매우 작게 된다. 종래의 방향성 전기강판에서 볼 수 있는 자구의 크기는 통상 강판 두께보다 크나, 본 발명의 일 실시예를 통해 제조되는 강판은 결정립 내에 존재하는 자구크기 (2L)가 강판의 두께 (D)보다 작게 형성된다. 본 발명의 일 실시예에 의한 방향성 전기강판은 중량 %로, Si : ' 4.0% 이하 (0%를 제외함), C : 0.003% 이하 (0%를 제외함) 및 ^: 0.0이내지 2. (»를 함유하고, 잔부는 Fe 및 기타 불가피하게 흔입되는 불순물을 포함하고, 결정립 내에 존재하는 자구크기 (2L)는 강판의 두께 (D)보다 작다.
방향성 전기강판의 조성에 대해서는 전술한 슬라브의 조성과 동일하며, 방향성 전기강판의 제조과정에서 조성 범위가 실질적으로 변동되지 아니하므로, 중복되는 설명은 생략한다. 단 전술하였듯이, 탈탄 소둔 및 최종 소둔 과정에서 탈탄되므로, 탄소의 함량은 0.003 중량 % 이하가 된다.
본 발명의 일 실시예에 의한 방향성 전기강판은 강판 내의 Goss 방위를 갖는 결정립의 부피분율은 최소 50% 이상으로 증가하여 철손 및 자속밀도가 우수하다 또한 방향성 전기강판 내의 결정립의 입경은 20 내지 lOOOum이 50% 이상이 되며 최대 5隱을 넘지 않는 크기로서, 이때 결정립 내에 존재하는 자구의 크기는 강판의 두께보다 작은 크기가 된다. 이러한 미세한 자구구조로 인하여 본 발명으로 제조된 강판의 이상 와전류손실은 종래의 방법으로 제조된 방향성 전기강판의 이상 와전류 손실보다 획기적으로 감소되어 전체 철손을 크게 개선시키게 된다.
더욱 구체적으로 결정립 내에 존재하는 자구크기 (2L)는 10 내지
500; 가 될 수 있다. 이하에서는 실시예를 통하여 본 발명을 좀더 상세하게 설명한다. 그러나 이러한 실시예는 단지 본 발명을 예시하기 위한 것이며, 본 발명이 여기에 한정되는 것은 아니다.
실시예 1
중량 %로 Si : 2.0%, C O . 15% , Mn : 0.05%를 함유하고 잔부 Fe 및 불가피한 블순물로 이루어진 슬라브를 110CTC 의 온도에서 가열한 다음 3mm 두께로 열간압연하고, 이어 소둔온도 1000 °C에서 열연판 소둔을 실시하고 냉각한 후 산세를 실시하고, 최종 두께 0.27誦까지 냉간압연을 실시하였다. 최종 두께까지 넁간압연을 실시함에 있어서, 냉간압연과 냉간압연 중간에 탈탄소둔을 포함하지 않고 직접 최종 두께까지 냉간압연 하는 방법과 넁간압연과 냉간압연 중간에 탈탄소둔을 1회 이상 포함하여 여러 단계에 걸쳐 넁간압연하는 방법을 실시하였다. 탈탄 소둔은 looor의 은도에서 수소 및 질소의 습윤 흔합가스 분위기 (이슬점 온도 60°C )에서 실시하였다. 이후 최종 소둔시에는 1000 °c의 온도에서 수소 및 질소의 습윤 흔합가스 분위기 (이슬점 온도 60 °C )에서 2분 간 소^을 실시한 후, nocrc의 건조 (이슬점 은도 o°c ) 수소 및 질소 흔합 가스 분위기에서 3분 동안소둔을 실시하였다.
최종 소둔처리가 끝난 강판에서 Goss 방위 결정립의 분율과 자기특성의 관계를 비교하여 하기 표 1에 나타내었다.
여기세 Goss 방위 결정립 분율 평가는 통상의 결정방위측정 방법을 이용하여 이상적인 {110}<001> 방위로부터 15도 이내의 오차를 보이는 방위의 결정립들 부피 분율을 측정하였다.
아울러, Kerr mi croscopy를 이용하여 전기강판을 탈자한 상태에서 자구관찰을 통한 자구평균 크기를 측정하였다.
【표 1】
Figure imgf000014_0001
표 1에서 나타난 바와 같이 열연판 소둔을 실시하고 난 후에 최종두께까지 넁간압연 과정에서 적어도 1회 이상의 탈탄이 일어나는 중간소둔을 포함하는 경우에 최종 제품에 Goss 방위 결정립들의 분율은 최소 50% 이상 확보할 수 있었으며, 미세한 자구 크기를 얻을 수 있었다. 이러한 높은 Goss 방위 분율 및 미세한 자구 크기에 의하여 최종제품에서 우수한 자속밀도 및 저철손의 특성을 얻을 수 있었다.
.
실시예 2
증량 %로 C: 0. , Mn : 0.05%를 함유하고 잔부 Fe 및 불가피한 불순물로 이루어진 슬라브를 Si 함량을 하기 표 2에 나타난 것과 같이 변화시키면서 제조하였다. 슬라브를 1150°C 의 온도에서 가열한 다음 3誦 두께로 열간압연하고, 이어 소둔온도 950°C에서 열연판 소둔을 실시하고 냉각한 후 산세를 실시하고, 60%의 압하율로 냉간압연하였다. 넁간 압연된 판은 다시 900°C의 온도에서 이슬점 온도 60°C인 수소와 질소의 흔합가스 분위기에서 재결정 및 탈탄 소둔을 실시하였다. 이후 동일한 넁간 압연과 탈탄소둔을 2회 더 반복하였다. 최종적으로 강판두께를 0.23mm까지 냉연한 후 950°C의 온도에서 이슬점 온도 60°C인 수소와 질소의 흔합가스 분위기에서 180초간 탈탄 소둔 ( 1단계)을 실시한 후, 1000°C의 건조 (이슬점 0°C )한 수소 분위기에서 100초 동안 열처리 (2단계)를 실시하였다. Si함량 변화에 따른 최종 소둔 강판의 자기특성을 표 2에 나타내었다. 【표 2】
Figure imgf000015_0001
표 2에서 나타난 바와 같이, Si함량이 4 중량 % 이하는 복수의 넁간압연 및 탈탄소둔을 통하여 최종 결정립 입경 1000 이하의 미세조직을 확보하였으며, 이때 자구의 크기는 강판의 두께보다 작은 자구의 크기를 확보한 결과 우수한 철손을 확보 할수 있었다. Si함량이 4 중량 %를 초과한 경우에는 취성이 증가하여 냉간압연시 판파단으로 최종두께까지 냉간압연이 어려웠으며, 탈탄소둔시간동안 탈탄이 이루어지지 못하여 매우 작은 결정립 입경과 열위한 자기특성을 보였다. 실시예 3
중량 %로 Si : 3.0%, C: 0.25 , Mn: 0.5%를 함유하고 잔부 Fe 및 불가피한 불순물로 이루어진 슬라브를 1200°C 의 온도에서 가열한 다음 2.5隱 두께로 열간압연하고, 이어 소둔온도 1100 °C , 이슬점 은도 40°C의 수소 및 질소 흔합 가스 분위기에서 열연판 소둔을 실시하고 냉각한 후 산세를 실시한 다음,. 65%의 압하율로 1차 냉간압연하였다. 이어서, 냉간 압연된 판은 다시 1050 °C의 온도에서 이슬점 온도 60°C의 수소 및 질소의 습윤 흔합가스 분위기에서 탈탄 소둔을 하였다. 이후 1차 탈탄소둔판을 최종 0.30隱 두께까지 2차 넁간압연을 실시한 다음, 최종 소둔을 하였다. 최종 소둔은 탄소함량이 0.003 증량 % 이하가 될 수 있도록 이슬점 온도 65°C의 수소, 질소의 습윤 흔합가스 분위기에서 하기 표 3과 같이 소둔온도를 변경하여 탈탄소둔 ( 1단계)을 실시하였다. 최종적으로 탈탄소둔에 이어서 추가 승온하여 1150 °C의 이슬점 0°C의 건조한 수소 분위기에서 마무리 열처리 (2단계)를 실시하였다. 최종 소둔이 끝난 강판의 결정립 입경 및 Kerr mi croscopy를 이용한 자구 크기를 측정하였고, 자기특성과 비교하여 하기 표 3에 나타내었다.
【표 3]
Figure imgf000016_0001
표 3 에서 나타난 바와 같이, ,최종 소둔온도 ( 1단계)가 850 내지 11501 인 경우에는 최종 제품에서 결정립 입경이 20 내지 1000 인 비율 50%이상으로 나타났으며 이에 따라 자구의 크기도 강판의 두께보다 작은 크기를 보여 우수한 철손 특성을 보였다. 탈탄소둔온도가 850 °C 보다 낮은 경우, 자구의 크기가 매우 작게 나타났으나 전체적인 자기특성이 열위한 이유는 결정립들중에 Goss 방위 분율이 50%이하인 것으로 판단된다. 반대로 115CTC 보다 높은 경우에는 결정립 입경이 조대해짐에 따라서 자구의 크기가 강판 두께보다큰 관계로 철손이 개선되지 않았다. 본 발명은 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다ᅳ

Claims

【청구범위】
【청구항 1】
증량 %로, Si : 4.0% 이하 (0%를 제외함) , C: 0.001% 내지 0.4% 및 Mn: 0.001내지 2.0%를 함유하고, 잔부는 Fe 및 기타 불가피하게 흔입되는 불순물을 포함하는 슬라브를 제공하는 단계 ; '
상기 슬라브를 재가열하는 단계;
상기 슬라브를 열간 압연하여 열연 강판을 제조하는 단계;
상기 열연 강판을 열연판 소둔하는 단계;
상기 열연판 소둔된 열연 강판을 1차 냉간 압연하는 단계;
상기 냉간 압연된 강판을 탈탄 소둔하는 단계;
상기 탈탄 소둔이 완료된 강판을 2차 넁간 압연하는 단계 ; 및 상기 넁간 압연이 완료된 강판을 최종 소둔하는 단계 ; 를 포함하고, 상기 최종 소둔이 끝난 강판은 결정립 내에 존재하는 자구크기 (2L)가 강판의 두께 (D)보다 작은 방향성 전기강판의 제조 방법 .
【청구항 2】
게 1항에 있어서,
상기 슬라브는 Si를 1 중량 % 이하 (0중량 %를 제외함) 포함하는 방향성 전기강판의 제조 방법 .
【청구항 3]
제 1항에 있어서,
상기 슬라브는 A1를 0.01 중량 % 이하 (0중량 %를 제외함) 더 포함하는 방향성 전기강판의 제조 방법 .
【청구항 4】
제 1항에 있어서,
상기 슬라브의 재가열 온도는 1050°C 내지 1350 °C인 방향성 전기강판의 제조방법 .
[청구항 5】
제 1항에 있어서,
상기 1차 냉간 압연하는 단계 및 상기 2차 냉간 압연하는 단계에서의 압하율은 각각 50% 내지 70%인 방향성 전기강판의 제조방법 방향성 전기강판의 제조방법 .
【청구항 6】
제 1항에 있어서,
상기 넁간 압연된 강판을 탈탄 소둔하는 단계 및 상기 탈탄 소둔이 완료된 강판을 2차 냉간 압연하는 단계는 2회 이상 반복되는 방향성 전기강판의 제조방법 .
【청구항 71
제 1항에 있어서,
상기 탈탄 소둔하는 단계는 800 °C 내지 1150 °C의 온도에서 이슬점 온도 0°C 이상의 수소를 포함하는 분위기에서 실시하는 방향성 전기강판의 제조방법.
【청구항 8】
제 1항에 있어서,
상기 최종 소둔하는 단계는 850°C 내지 1150 °C의 온도에서 이슬점 온도 10°C 내지 70°C의 분위기에서 실시하는 제 1 단계 및 900 °C 내지 1200 °C의 온도에서 및 이슬점 온도 10 °C 이하의 수소 및 질소를 포함하는 혼합가스 분위기에서 실시하는 제 2 단계를 포함하는 방향성 전기강판의 제조방법.
【청구항 9】
제 8항에 있어서,
상기 제 1 단계는 300초 이하로 실시되며, 상기 제 2 단계는 60초 내지 300초 동안실시하는 방향성 전기강판의 제조방법 .
[청구항 10】
제 1항에 있어서,
상기 냉간 압연하는 단계 이후 최종 소둔하는 단계는 연속하여 이루어지는 방향성 전기강판의 제조방법. ·
【청구항 11】
제 1항에 있어서,
상기 최종 소둔 단계 이후 전기강판 내의 탄소량은 0.003 증량 % 이하 (0중량 ¾>를 제외함)인 방향성 전기강판의 제조방법 .
【청구항 12]
제 1항에 있어서,
최종 소둔이 끝난 강판은 {110}<001> 방위로부터 15도 이내의 방위를 갖는 결정립의 부피분율이 50% 이상인 방향성 전기강판의 제조방법.
【청구항 13】
제 1항에 있어서,
최종 소둔이 끝난 강판은 입경이 20 내지 1000 인 결정립의 부피분율이 50¾> 이상인 방향성 전기강판의 제조방법.
【청구항 14】
중량 %로, Si : 4.0% 이하 ( 를 제외함) , C: 0.003% 이하 (0%를 제외함) 및 Μη : 0.0()1내지 2.0%를 함유하고, 잔부는 Fe 및 기타 불가피하게 혼입되는 불순물을 포함하고,
결정립 내에 존재하는 자구크기 (2L)는 강판의 두께 (D)보다 작은 방향성 전기강판.
【청구항 15】
제 14항에 있어서,
Si를 1.0 중량 % 이하 (0중량 %를 제외함) 포함하는 방향성 전기강판.
【청구항 16】
제 14항에 있어서,
A1를 0.01 중량 % 이하 (0중량 %를 제외함) 더 포함하는 방향성 전기강판.
【청구항 17】
제 14항에 있어서,
결정립 내에 존재하는 자구크기 (2L)는 10 내지 500 인 방향성 전기강판.
【청구항 18】
제 14항에 있어서,
{110}<001> 방위로부터 15도 이내의 방위를 갖는 결정립의 부피분율이 50% 이상인 방향성 전기강판.
【청구항 19】 제 14항에 있어서,
입경이 20 zm 내지 1000/mi인 결정립의 부피분율이 50% 이상인 방향성 전기강판.
PCT/KR2016/014945 2015-12-21 2016-12-20 방향성 전기강판 및 이의 제조방법 WO2017111432A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/065,072 US20180371571A1 (en) 2015-12-21 2016-12-20 Oriented electrical steel sheet and manufacturing method thereof
CN201680075431.1A CN108431244B (zh) 2015-12-21 2016-12-20 取向电工钢板及其制造方法
JP2018532632A JP6622919B2 (ja) 2015-12-21 2016-12-20 方向性電磁鋼板及びその製造方法
EP16879299.2A EP3395959B1 (en) 2015-12-21 2016-12-20 Oriented electrical steel sheet and manufacturing method therefor
PL16879299T PL3395959T3 (pl) 2015-12-21 2016-12-20 Blacha cienka ze zorientowanej stali elektrotechnicznej i sposób jej wytwarzania
US17/554,245 US20220106657A1 (en) 2015-12-21 2021-12-17 Oriented electrical steel sheet and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150182839A KR101675318B1 (ko) 2015-12-21 2015-12-21 방향성 전기강판 및 이의 제조방법
KR10-2015-0182839 2015-12-21

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/065,072 A-371-Of-International US20180371571A1 (en) 2015-12-21 2016-12-20 Oriented electrical steel sheet and manufacturing method thereof
US17/554,245 Division US20220106657A1 (en) 2015-12-21 2021-12-17 Oriented electrical steel sheet and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2017111432A1 true WO2017111432A1 (ko) 2017-06-29

Family

ID=57527701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/014945 WO2017111432A1 (ko) 2015-12-21 2016-12-20 방향성 전기강판 및 이의 제조방법

Country Status (7)

Country Link
US (2) US20180371571A1 (ko)
EP (1) EP3395959B1 (ko)
JP (1) JP6622919B2 (ko)
KR (1) KR101675318B1 (ko)
CN (1) CN108431244B (ko)
PL (1) PL3395959T3 (ko)
WO (1) WO2017111432A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101642281B1 (ko) * 2014-11-27 2016-07-25 주식회사 포스코 방향성 전기강판 및 이의 제조방법
EP3715479A1 (en) * 2019-03-26 2020-09-30 Thyssenkrupp Electrical Steel Gmbh Lean method for secondary recrystallization of grain oriented electrical steel in a continuous processing line

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07188758A (ja) * 1993-12-28 1995-07-25 Kawasaki Steel Corp 磁束密度の高い方向性けい素鋼板の製造方法
KR19980033020U (ko) * 1996-12-02 1998-09-05 조윤희 투라인 쎈스
KR100237158B1 (ko) * 1995-12-14 2000-01-15 이구택 자기특성이 우수한 저온 슬라브 가열방식의 방향성 전기강판 제조방법
KR20040058682A (ko) * 2002-12-27 2004-07-05 주식회사 포스코 자기특성이 우수한 방향성 전기강판의 제조방법
KR20060074648A (ko) * 2004-12-28 2006-07-03 주식회사 포스코 자기특성이 우수한 방향성 전기강판 및 그 제조방법

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4000015A (en) * 1975-05-15 1976-12-28 Allegheny Ludlum Industries, Inc. Processing for cube-on-edge oriented silicon steel using hydrogen of controlled dew point
JPS535800A (en) * 1976-07-05 1978-01-19 Kawasaki Steel Co Highhmagneticcflux density oneeway siliconnsteellfolstellite insulator film and method of formation thereof
JPS5518511A (en) * 1978-07-21 1980-02-08 Nippon Steel Corp Manufacture of unidirectional electrical steel sheet
US4202711A (en) * 1978-10-18 1980-05-13 Armco, Incl. Process for producing oriented silicon iron from strand cast slabs
JPS5920745B2 (ja) * 1980-08-27 1984-05-15 川崎製鉄株式会社 鉄損の極めて低い一方向性珪素鋼板とその製造方法
JPS61117215A (ja) * 1984-10-31 1986-06-04 Nippon Steel Corp 鉄損の少ない一方向性電磁鋼板の製造方法
JPH06306473A (ja) * 1993-04-26 1994-11-01 Nippon Steel Corp 磁気特性の優れた一方向性電磁鋼板の製造方法
US5885371A (en) * 1996-10-11 1999-03-23 Kawasaki Steel Corporation Method of producing grain-oriented magnetic steel sheet
US6039818A (en) * 1996-10-21 2000-03-21 Kawasaki Steel Corporation Grain-oriented electromagnetic steel sheet and process for producing the same
KR100541695B1 (ko) * 1998-08-14 2006-04-28 주식회사 하이닉스반도체 반도체 장치의 내부 전원전압 공급회로
KR100359622B1 (ko) * 1999-05-31 2002-11-07 신닛뽄세이테쯔 카부시키카이샤 고자장 철손 특성이 우수한 고자속밀도 일방향성 전자 강판 및 그의 제조방법
JP2000345306A (ja) * 1999-05-31 2000-12-12 Nippon Steel Corp 高磁場鉄損の優れた高磁束密度一方向性電磁鋼板
EP1179603B1 (en) * 2000-08-08 2011-03-23 Nippon Steel Corporation Method to produce grain-oriented electrical steel sheet having high magnetic flux density
EP1279747B1 (en) * 2001-07-24 2013-11-27 JFE Steel Corporation A method of manufacturing grain-oriented electrical steel sheets
JP4103393B2 (ja) * 2002-01-09 2008-06-18 Jfeスチール株式会社 方向性電磁鋼板の製造方法
US6676771B2 (en) * 2001-08-02 2004-01-13 Jfe Steel Corporation Method of manufacturing grain-oriented electrical steel sheet
JP4288054B2 (ja) * 2002-01-08 2009-07-01 新日本製鐵株式会社 方向性珪素鋼板の製造方法
US7736444B1 (en) * 2006-04-19 2010-06-15 Silicon Steel Technology, Inc. Method and system for manufacturing electrical silicon steel
JP2009155731A (ja) * 2009-03-30 2009-07-16 Nippon Steel Corp 高磁場鉄損の優れた高磁束密度一方向性電磁鋼板
JP5871137B2 (ja) * 2012-12-12 2016-03-01 Jfeスチール株式会社 方向性電磁鋼板
EP2775007B1 (en) * 2013-03-08 2018-12-05 Voestalpine Stahl GmbH A process for the production of a grain-oriented electrical steel
US10704113B2 (en) * 2014-01-23 2020-07-07 Jfe Steel Corporation Grain oriented electrical steel sheet and production method therefor
KR101642281B1 (ko) * 2014-11-27 2016-07-25 주식회사 포스코 방향성 전기강판 및 이의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07188758A (ja) * 1993-12-28 1995-07-25 Kawasaki Steel Corp 磁束密度の高い方向性けい素鋼板の製造方法
KR100237158B1 (ko) * 1995-12-14 2000-01-15 이구택 자기특성이 우수한 저온 슬라브 가열방식의 방향성 전기강판 제조방법
KR19980033020U (ko) * 1996-12-02 1998-09-05 조윤희 투라인 쎈스
KR20040058682A (ko) * 2002-12-27 2004-07-05 주식회사 포스코 자기특성이 우수한 방향성 전기강판의 제조방법
KR20060074648A (ko) * 2004-12-28 2006-07-03 주식회사 포스코 자기특성이 우수한 방향성 전기강판 및 그 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3395959A4 *

Also Published As

Publication number Publication date
US20180371571A1 (en) 2018-12-27
EP3395959A1 (en) 2018-10-31
US20220106657A1 (en) 2022-04-07
PL3395959T3 (pl) 2020-09-21
KR101675318B1 (ko) 2016-11-11
JP2019505671A (ja) 2019-02-28
JP6622919B2 (ja) 2019-12-18
CN108431244A (zh) 2018-08-21
CN108431244B (zh) 2022-09-27
EP3395959A4 (en) 2019-01-02
EP3395959B1 (en) 2020-04-22

Similar Documents

Publication Publication Date Title
JP5842400B2 (ja) 方向性電磁鋼板の製造方法
KR20190058542A (ko) 방향성 전자 강판 및 그의 제조 방법
JP6683724B2 (ja) 方向性電磁鋼板およびその製造方法
WO2019132363A1 (ko) 이방향성 전기장판 및 그의 제조방법
JP2013087305A (ja) 方向性電磁鋼板とその製造方法および変圧器
WO2015152344A1 (ja) 方向性電磁鋼板用の一次再結晶焼鈍板および方向性電磁鋼板の製造方法
JP6868030B2 (ja) 方向性電磁鋼板およびその製造方法
JP2016505706A (ja) 方向性ケイ素鋼及びその製造方法
US20220106657A1 (en) Oriented electrical steel sheet and manufacturing method thereof
JP7398444B2 (ja) 方向性電磁鋼板およびその製造方法
JP2024041844A (ja) 無方向性電磁鋼板の製造方法
JP2023508029A (ja) 方向性電磁鋼板およびその製造方法
JP6842550B2 (ja) 方向性電磁鋼板およびその製造方法
WO2019132356A1 (ko) 방향성 전기 강판 및 이의 제조방법
KR101051744B1 (ko) 자기특성이 우수한 방향성 전기강판 및 그 제조방법
KR101051743B1 (ko) 자기특성이 우수한 방향성 전기강판 및 그 제조방법
JP2014156633A (ja) 方向性電磁鋼板の製造方法および方向性電磁鋼板並びに方向性電磁鋼板用表面ガラスコーティング
JP7312255B2 (ja) 方向性電磁鋼板およびその製造方法
JP2001049351A (ja) 磁束密度の高い一方向性電磁鋼板の製造方法
JP2020509209A (ja) 方向性電磁鋼板およびその製造方法
KR102483634B1 (ko) 무방향성 전기강판 및 그 제조 방법
JP2002363646A (ja) 脱炭焼鈍を必要としない鏡面を有する一方向性電磁鋼板の製造方法
KR100890812B1 (ko) 철손이 낮고 자속밀도가 높은 무방향성 전기강판의제조방법
JPH11269543A (ja) 方向性電磁鋼板の製造方法
KR20060074649A (ko) 자기적 성질이 균일한 방향성 전기강판의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16879299

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018532632

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016879299

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016879299

Country of ref document: EP

Effective date: 20180723