KR100946070B1 - 고규소 전기강판 제조방법 - Google Patents

고규소 전기강판 제조방법 Download PDF

Info

Publication number
KR100946070B1
KR100946070B1 KR1020020074329A KR20020074329A KR100946070B1 KR 100946070 B1 KR100946070 B1 KR 100946070B1 KR 1020020074329 A KR1020020074329 A KR 1020020074329A KR 20020074329 A KR20020074329 A KR 20020074329A KR 100946070 B1 KR100946070 B1 KR 100946070B1
Authority
KR
South Korea
Prior art keywords
steel sheet
amount
coating
electrical steel
powder
Prior art date
Application number
KR1020020074329A
Other languages
English (en)
Other versions
KR20040046402A (ko
Inventor
최규승
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020020074329A priority Critical patent/KR100946070B1/ko
Priority to EP03811151A priority patent/EP1560938B1/en
Priority to JP2004551259A priority patent/JP4484710B2/ja
Priority to PCT/KR2003/002412 priority patent/WO2004044251A1/en
Priority to US10/519,227 priority patent/US7435304B2/en
Publication of KR20040046402A publication Critical patent/KR20040046402A/ko
Application granted granted Critical
Publication of KR100946070B1 publication Critical patent/KR100946070B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon

Abstract

고규소 전기강판 제조방법이 제공된다.
본 발명은,
Si를 2.0∼3중량% 범위로 함유하는 강판의 표면에,
입도가 -325mesh이고 Si를 20~70중량% 함유하는 Fe-Si계 소성분말 100중량부와, 상기 Fe-Si계 소성분말기준으로 실리카가 고형분 기준으로 15~30중량부가 되도록 조성된 콜로이달 실리카용액을 포함하여 조성되는 피복제 조성물을 도포한후 건조시키는 단계; 그리고 상기 건조된 강판을 20%이상의 수소함유 질소가스 분위기하에서 1050~1200℃온도범위로 확산소둔하는 단계;를 포함하고,
상기 피복제 조성물을 강판에 도포시, 하기 관계식을 만족하도록 도포됨을 특징으로 하는 고규소 전기강판 제조방법에 관한 것이다.
(관계식 1)
Y - 5 ≤ 도포량 ≤ Y + 5
(관계식 2)
Y(g/m2) = 7650t (x1 - x2)/(A - 14.4)
여기서, t는 소재두께(mm), A는 Fe-Si계 분말중 Si량(%), x1은 소재의 목표 Si량(%), 그리고 x2는 소재의 초기 Si량(%)이다.
고규소 전기강판, Fe-Si계 분말, 도포량

Description

고규소 전기강판 제조방법{Method for manufacturing high silicon electrical steel sheet}
본 발명은 고규소 전기강판 제조방법에 관한 것으로, 보다 상세하게는, 소정의 입도와 조성을 갖는 Fe-Si계 소성분말을 포함하는 침규 확산용 피복제 조성물을 전기강판에 도포한후 고온소둔하여 고규소화하는 공정에 있어서, 이러한 피복제 조성물의 도포량을 소재두께, 분말의 Si함량, 소재의 목표 Si량, 소재의 초기 Si량과의 관계를 고려하여 적절히 제어관리함으로서 고온확산소둔후의 목표 Si량 관리의 정확을 도모함과 아울러, 소둔처리후 판간 미반응 조성물의 상호 분리력을 약화시켜 풀림작업(uncoiling)을 용이하게 하여 작업성을 향상시킬 수 있는 고규소 전기강판제조방법에 관한 것이다.
전기강판은 방향성 전기강판과 무방향성 전기강판으로 대별되는데, 통상 방향성전기강판이란 3% Si성분을 함유한 것을 특징으로 하여 결정립의 방위가 (110)[001]방향으로 정열된 집합조직을 가지고 있으며 이 제품은 압연방향으로 극히 우수한 자기적특성을 가지고 있으므로 이 특성을 이용하여 변압기, 전동기, 발전기 및 기 타 전자기기등의 철심 재료로 사용된다. 그리고 무방향성전기강판이란 결정립의 방위가 불규칙적으로 배열되어 있어 자화방향별 자성편차가 적은 전기강판으로서 이러한 특성을 이용하여 발전기, 모타등 자속의 방향이 변화하는 회전기기용 철심에 주로 사용된다
최근에 들어 전기기기의 다양화에 따라 고주파영역에서 작동되는 기기에 대한 수요가 늘면서 고주파에서 자기적 특성이 우수한 철심소재에 대한 욕구가 증대되기 시작하였다.
한편, Fe-Si합금에서 규소함량이 증가할수록 철손중에서 이력손, 자왜, 보자력, 자기이방성이 감소하고 최대투자율이 증가하므로 고규소강제품은 우수한 연자성재료라 말할 수 있다. 이때 자왜의 감소 및 최대투자율의 증대는 규소함량의 증가에 따라 무한정 증가하는 것이 아니고 6.5%Si강에서 최고치를 보이며 또한 6.5%Si강은 상용주파수 뿐 만 아니라 고주파영역에서도 자기적 특성이 최고상태에 도달한다는 것은 전부터 잘 알려진 사실이다. 이러한 고규소강의 우수한 고주파수대의 자기적특성을 이용하여 가스터빈용 발전기, 전차전원, 유도가열장치, 무정전 전원장치등의 고주파 리액터와 도금전원, 용접기, X-선 전원등의 고주파변압기에 주로 적용 할 수 있으며 주로 방향성규소강판의 대체재로 사용되고 있고, 그 외에도 모터의 소모전력을 줄이고 효율을 높이는 용도로 적용이 가능하다.
그런데 Fe-Si강에서 규소함량이 증가할수록 규소강판의 연신율은 급격히 작아지므로, 3.5%이상의 규소를 함유하는 규소강판을 냉간압연법으로 제조하는 것은 거의 불가능한 것으로 알려져 있다. 따라서 규소함량이 높을수록 우수한 자기적특성을 얻을 수 있다는 사실을 알고 있음에도 불구하고 현존 기술로는 냉간압연법의 한계점으로 인식되어 냉간압연법의 한계를 극복 할 수 있는 새로운 대체기술의 연구가 오래 전부터 시도되고 있다.
지금까지 고규소강판을 제조 할 수 있는 방법으로 알려진 기술들은 일특개소 56-3625호등의 단롤 또는 쌍롤을 이용한 고규소강의 직접주조법이 있고, 일 특개소 62-103321호등의 적정온도의 가열상태에서 압연하는 온간압연법, 일특개평 5-171281호등의 내부에 고규소강을 넣고 외부에 저규소강을 넣은 상태에서 압연하는 크래드압연법이 알려져 있으나 이러한 기술들은 아직까지 상용화되지는 못하고 있는 실정이다.
현재 고규소화 제품으로서 양산중인 기술은 3%급 무방향성제품을 SiCl4가스를 이용한 화학증착법(CVD법)으로 규소성분을 소재표면에 부화시킨 후 확산소둔시켜 고규소강을 제조하는 기술로서, 이 기술은 일특개소 62-227078 및 미국 USP 3423253등에 잘 알려져 있다. 그러나 화학증착후 확산소둔처리법은 화학증착기술 자체의 어려움으로 인해 기존 3%Si강 제품에 비해 약5배 이상의 고가격 판매가 불가피하여 우수한 자기적특성을 갖고 있는 제품임에도 불구하고 대중화 및 실용화에 어려움을 겪고 있다.
현재 시중에 유통되고 있는 전기강판제품 중 고규소강 제품은 6.5% 규소함량의 무방향성전기강판이 생산 판매되고 있을 뿐으로 이것은 결정립의 방위가 불규칙적으로 배열되어 있어 자화방향별 자성편차가 적은 회전기용으로 이용되지만, 압연방향에서의 자성만을 주로 이용하는 변압기용등에 우수한 특성을 보이는 방향성전기강판재의 고규소화제품은 아직까지 실용화되지 못하고 있는 실정이다. 따라서 고규소화에 의한 우수한 자기특성을 방향성전기강판을 생산하고자 하는 여러 시도가 진행되고 있는 것으로 알려지고 있으나 생산에 성공하였다는 정보는 아직까지 없다.
따라서 본 발명은 상술한 종래기술을 해결하기 위하여 마련된 것으로서, 전기강판의 표면에 소정의 입도와 조성을 갖는 침규제 피복조성물을 도포함과 아울러, 그 도포시 도포량을 최적으로 제어함으로써 작업성등이 우수한 고규소 전기강판 제조방법을 제공함을 그 목적으로 한다
상기 목적을 달성하기 위한 본 발명은,
Si를 2.0~3.3중량% 범위로 함유하는 강판의 표면에,
입도가 -325mesh이고 Si를 20~70중량% 함유하는 Fe-Si계 소성분말 100중량부와, 상기 Fe-Si계 소성분말기준으로 실리카가 고형분 기준으로 15~30중량부가 되도록 조성된 콜로이달 실리카용액을 포함하여 조성되는 피복제 조성물을 도포한후 건조시키는 단계; 그리고 상기 건조된 강판을 20%이상의 수소함유 질소가스 분위기하에서 1050~1200℃온도범위로 확산소둔하는 단계;를 포함하고,
상기 피복제 조성물을 강판에 도포시, 하기 관계식을 만족하도록 도포됨을 특 징으로 하는 고규소 전기강판 제조방법에 관한 것이다.
(관계식 1)
Y - 5 ≤ 도포량 ≤ Y + 5
(관계식 2)
Y(g/m2) = 7650t (x1 - x2)/(A - 14.4)
여기서, t는 소재두께(mm), A는 Fe-Si계 분말중 Si량(%), x1은 소재의 목표 Si량(%), 그리고 x2는 소재의 초기 Si량(%)이다.
이하, 본 발명을 설명한다.
본 발명자는 전기강판 표면에 소정의 입도와 조성을 가진 Fe-Si계 소성분말을 포함하는 슬러리용액을 도포한후 고온소둔함으로써 고규소 전기강판을 제조할 수 있음을 대한민국 특허출원 2002-69646, 2002-69647호등으로 제시한 바 있다.
이러한 특허출원에서는 Fe-Si계 소성분말을 강판표면에 도포,소둔하여 고규소 전기강판을 제조할 때 Fe보다 빠른 Si 확산속도에 따라 야기되는 표면결함 발생문제를 해결하기 위해, Fe-Si계 소성분말의 조성 및 입도를 최적화해야하고, 이러한 소성분말 대비 바인더로써 콜로이달 실리카의 첨가량, 그리고 소둔분위조건등도 소정으로 제어되어야 함을 제시하고 있다.
그런데 본 발명의 추가적인 연구결과에 의하면, Fe-Si계 소성분말의 입도와 조성뿐만 아니라 이를 포함하는 피복제 조성물의 도포량에 따라 최종 제품의 Si함량의 차이 및 편차가 유발될 수 있으며, 아울러, 도포량등의 피복제 관리상태에 따라 이후 확산소둔후 절연코팅을 위한 풀림작업(uncoiling)시 미반응 피복제 상호간의 부착력 편차로 연속 작업성의 어려움이 있음을 발견하고 본 발명을 안출하게 되었다.
즉, 본 발명은 소정의 입도와 조성을 갖는 Fe-Si계 피복제 조성물을 강판에 도포한후 고온소둔하여 고규소 전기강판을 제조함에 있어서, 피복제 조성물의 도포량을 최적으로 제어함을 특징으로 한다.
먼저, 본 발명의 침규확산용 피복제 조성물을 구체적으로 설명한다.
본 발명의 침규를 위한 피복제 조성물의 주성분인 Fe-Si계 분말은 Fe분말과 Si분말을 상호 혼합하여 질소나 수소 또는 수소와 질소의 혼합가스하에서 1000~1200℃의 온도에서 3~5시간 소성하여 제조 할 수 있으나, 이에 특별히 제한되는 것은 아니며 다양한 방법으로 그 제조가 가능한 것이다. 이때 Fe 분말과 Si분말의 배합량에 따라 소성분말의 화합물성분이 변화되며, 이론적으로는 50%Si+50%Fe시의 경우 FeSi2의 화합물이 생성되며, 34%Si+66%Fe시에는 FeSi의 화합물이, 25%Si+75%Fe시에는 Fe5Si3의 화합물로, 14%Si+86%Fe시에는 Fe3Si의 화합물로 존재하게 된다. 그러나 실제 소성시에는 초기 혼합상태에 따라 여러 화합물이 조금씩 혼재되어 있을 수 있다.
본 발명에서는 이렇게 얻어진 Fe-Si계 소성분말에서 Si성분 함량을 20~70중량%로 제한한다. 만일 Si함량이 20%미만이면, Si자체 함량이 너무 적어 확산속도가 너무 느릴 수 있으며, 또한 자체 밀도가 커서 현장에서 소재표면에 코팅작업시 분산성이 저조할 수 있다. 그리고 Si함량이 70%를 초과하면 주성분이 FeSi2 및 과잉의 금속Si상의 혼합물로 존재하므로 금속Si성분이 소재표면에 접촉되어 확산소둔시 표면에 결함부 생성가능성이 크며, 아울러 침규량의 제어가 어려워질 수 있다.
따라서 본 발명에서는 Si성분의 확산속도를 보다 늦추기 위해, Si금속 단독분말을 침규학산용 도포제로 사용하지 않고 Si금속이 Fe금속과 결합된 화합물형태인 FeSi2, FeSi, Fe5Si3 또는 Fe3Si 상태의 Fe-Si계 소성분말을 만들어 이를 침규제의 기본성분으로 이용함이 바람직함을 알 수 있다.
한편, 상기와 같이 제조된 Fe-Si계 소성분말을 전기강판의 도포제로 사용하는 경우, 이러한 소성분말을 슬러리상태로 만들어 이를 롤코타를 이용하여 강판표면에 코팅함이 생산현장에서 가장 경제적이다. 그런데 확산제인 Fe-Si계 소성분말 입도가 가능한한 미세하여야 현장에서의 코팅작업시 도포작업성이 우수해지고 확산반응시의 소재의 표면형상 관리측면에서도 유리하다. 그러나 상기 소성반응이 끝난 Fe-Si계 소성분물은 고온장시간 반응에서 다소 상호 융착된 반덩어리 상태로 있으므로 그 분말의 입도를 미세하게 관리해야 할 필요가 있다.
따라서 본 발명에서는 이를 고려하여 상기와 같이 마련된 Fe-Si계 소성분말의 입경을 미세화함이 바람직하며, 이러한 분말의 입도크기가 미세화 될수록 현장 도포작업성 측면등에서 유리하다. 다만 미립 분말화 작업 생산성을 고려하여 입도를 -325mesh로 한정하는 보다 바람직하다..
또한, 본 발명에서는 상기와 같이 마련된 Fe-Si계 분말의 현장 도포작업성 및 도포시의 Si 확산량제어를 고려하여, 그 분말을 용매에 녹여 슬러리용액을 제조하여, 이를 도포제로 사용한다.
본 발명에서는 이러한 용매로써 콜로이달 상태의 실리카용액을 사용한다. 이때, 실리카 성분은 콜로이달 상태의 크기를 가진 극미세 SiO2입자로서, 이러한 미세입자가 물에 분산되어 있으므로 타 고형입자와 혼합사용시 슬러리액의 점성을 증가시킬 수 있어서 도포작업성이 확보할 수 있다.
본 발명에서는 상기 조성의 Fe-Si계 분말 100중량부에, 실리카가 고형분 기준으로 15~30중량부가 되도록 조성된 실리카용액을 첨가함이 바람직하다. 만일 실리카의 고형분 기준 첨가량이 15중량부미만이면, 소재 표면과의 장력차이에 의해 피복조성물의 표면 갈라짐이 심하여 소재표면의 부착성이 불량해 질 수 있으며, 30중량부를 초과하면 이상 첨가시 도포특성이 불량하고 또 이후 확산소둔시 침규소 확산속도가 너무 늦어서 장시간의 소둔이 필요하므로 바람직하지 않다.
또한 용액 도포성 및 소재 표면형상 개선을 위하여 상기 피복제 조성물에 초미립 SiO2분말등을 소량 첨가하여도 특성에 문제가 없다.
다음으로, 상술한 피복제 조성물을 이용한 고규소 전기강판 제조방법을 설명한 다.
본 발명에서는 상술한 조성의 침규제를 Si을 2.0~3.3% 함유한 전기강판 표면에 도포한후 고온소둔함으로써 고규소 전기강판을 제조할 수 있다. 본 발명의 상술한 침규제는 방향성 전기강판 뿐만 아니라 무방향성 전기강판에서도 적용가능하다.
일반적으로 방향성전기강판의 제조공정은 제조사 마다 다소의 공정차이는 있지만 제강에서의 성분조정, 강슬라브 제조, 재가열한후 열간압연, 열연판소둔 및 냉간압연으로 두께조정, 탈탄소둔, 2차재결정을 위한 고온소둔 및 최종 절연코팅공정으로 이루어져 있는데, 본 발명은 이에 제한되는 것은 아니다. 예컨데, 본 발명은 상기 열연판소둔공정이 생략되는 공정에도 적용될 수 있으며, 상기 탈탄소둔공정과 함께 질화처리하는 공정을 포함하는 방향성 전기강판 제조공정에서도 적용할 수 있다. 이러한 공정으로 제조되는 제품의 표면에는 고온소둔시 형성되는 Glass피막(학명은 포스테라이트, 2MgO.SiO2) 및 절연코팅층의 2중피막이 형성되어 있다.
무방향성 전기강판의 제조공정은 제조사, 기본 제조공정, 또는 사용 용도에 따라 다소의 차이는 있지만 통상적으로 제강에서의 성분조정, 강슬라브 제조, 재가열 및 열간압연, 열연판소둔 및 냉간압연으로 두께조정, 재결정소둔 및 최종 절연코팅공정등의 순서로 제조되는 것이 기본이며, 이러한 제조공정, Si 함량 또는 자성수준에 따라 다양한 종류의 제품이 생산 판매되고 있다.
본 발명에서 상기 조성의 피복조성물이 도포될 강판으로 방향성 전기강판은 상기 2차재결정이 완성되어 기본적인 자성이 완성된 일반적인 방향성 전기강판 소재를 이용할 수 있으며, 무방향성 전기강판은 상술한 통상적인 제조공정에서 얻어지는 냉간압연판을 이용할 수 있으마, 이때 그 구체적인 제조공정에 제한되는 것은 아니다.
또한 상기 조성의 피복조성물이 도포될 출발소재인 방향성 전기강판과 무방향성 전기강판 소재는 Si성분을 함유하고 있으며, 제조법에 따라 Mn, Al, S, N등의 필요 금속 또는 비금속원소들을 보조제로 첨가할 수 있다. 본 발명은 이러한 전기강판의 구체적인 강조성성분에 제한되는 것은 아니나, 방향성 전기강판 제조에 이용되는 초기 강슬라브재는 그 자체중량%로 Si을 2.9~3.3%, 무방향성 전기강판의 경우는 Si을 2.0~3.3%함유하고 있는 것이 보다 바람직하다.
본 발명에서는 이러한 전기강판 표면에 상술한 조성의 피복제 조성물을 롤코타를 이용하여 강판의 표면에 도포하는데, 상술한 바와 같이, 최종 제품에서의 목표 Si량 적중을 위해서는 피복제용액의 도포량 관리가 생산현장에서 중요하며, 이는 또한 제품의 품질관리, 작업성 및 경제성측면에서도 매우 중요하다.
상술한 피복제 조성물중 Fe-Si계 소성분말 조성성분, 즉 Si함량 관리가 최종제품의 목표 Si량 제어에 중요하다. 또한 최종제품에서의 총Si함량은 그 피복제 조성물의 도포량에 따라서도 달라질 수 있는데, 본 발명자는 소재의 두께, Fe-Si분말중 의 Si함량, 피복제용액중의 Fe-Si비율, 목표 Si량 및 초기 소재 Si량등이 최적의 도포량을 결정하는 인자들임을 발견하고, 이들 관련 인자들의 관계를 파악함으로서 본 발명의 도포량 관련 제어식을 도출하게 된 것이다.
상세하게 설명하면, 본 발명에서 도포량 관계식을 도출함에 있어서 고려의 핵심은 상술한 피복제 조성물을 강판에 도포, 고온소둔할때, 잔존하는 미반응물의 Si함량, 다시 말하면, 잔존하는 Fe-Si계 분말의 형태이다.
Fe-Si계 소성분말 화합물중에서의 Si확산속도를 크기 순서로 나열하면, Si >FeSi2>FeSi>Fe3Si5>Fe3Si>a-Fe와 같다. 따라서 본 발명자는 상기 분말화합물중 규소 확산속도가 급격히 저하되는 화합물인 Fe3Si 화합물이 최종 잔류화합물이 되고, 이때의 Si함량은 14.36%수준임을 확인하였다. 또 하나의 고려 요소는 현장 풀림작업(uncoiling)시의 작업성 관리이며, 이때의 현장관리 가능 화합물형태는 Fe3Si상태로, 그 이상의 a-Fe상태로 변화시는 상호 부착성이 급격히 증가하여 현장 풀림작업시 관리의 문제가 대두되어 적절하지 않았다.
따라서 그 최적 도포량을 결정함에 있어서, 피복제 조성물중 미반응 화합물인 Si함량 14.36%의 Fe3Si 화합물분말의 확인이 본 발명의 피복제 도포량을 결정하는 관계식을 마련함에 있어서 핵심 요소가 되었다.
즉, 본 발명에서는 상기 Fe-Si계 분말중 확산소둔처리후 최종 잔류물에서의 Si량을 14.4%로 설정하고 제반 관련 인자들인 소재두께, 목표 및 소재의 기본 Si함량, 피복제중의 Fe-Si계 분말의 Si함량과의 관계를 고려하여 다음과 같은 최적 도포량에 대한 관계식을 선정하게 된 것이다.
(관계식 1)
Y - 5 ≤ 도포량 ≤ Y + 5
(관계식 2)
Y(g/m2) = 7650t (x1 - x2)/(A - 14.4)
여기서, t는 소재두께(mm), A는 Fe-Si계 분말중 Si량(%), x1은 소재의 목표 Si량(%), 그리고 x2는 소재의 초기 Si량(%)이다
상기와 같이 최적의 두께로 피복제 조성물을 강판에 도포한후 이를 건조시키는데, 이때 그 건조온도를 200~700℃로 제한함이 바람직하다. 만일 건조온도 200℃미만에서는 건조시간이 너무 길어져 생산성이 좋지 않으며, 700℃를 초과하면 소재 표면에 산화물 생성이 우려가 있기 때문이다.
이어, 상기 권취된 강판을 소둔로에 장입하여 확산소둔시키는데, 이때 그 소둔온도를 1050~1200℃로 제한한다. 만일 그 소둔온도가 1050℃미만이면 침규속도가 너무 느려 확산에 장시간 소요될 뿐만 이니라 침규반응 경계면의 표면형상이 조악하게 될 수 있어 자성이 열화 될 가능성이 있다. 그리고 1200℃를 초과하면 반응속도가 너무 빠름과 아울러, 권취코일의 표면끼리 판붙음현상이 나타나서 이후 분리 작업시 작업성이 나빠질 수 있다.
또한 본 발명에서는 이러한 확산소둔시 그 분위기가스를 20%이상의 수소함유 질소가스 분위기로 제어할 것이 필요하다. 왜냐하면 그 수소함량이 20%미만시에는 소재표면에 얇고 치밀한 SiO2계 산화막층이 형성되어 소재내부로의 침규확산반응이 방해될 수 있으며, 또한 소재 성분중의 일부라도 Al성분이 존재시 소둔후 냉각시 AlN 석출물을 형성하여 철손이 급격히 열화 될 수 있기 때문이다.
한편 이때의 확산소둔시간은 1~10시간으로 제한함이 바람직한데, 이는 그 소둔시간이 1시간미만에서는 침규량이 적고, 10시간을 초과하면 침규량이 너무 과다하여 적정관리가 어렵고 과잉의 장시간 반응으로 소재표면의 형상을 악화시킬 수 있기 때문이다.
한편, 본 발명에서는 상기와 같이 침규확산소둔처리된 강판의 표면에 다시 절연코팅층을 형성할 수도 있다.
이러한 절연코팅층은 마그네슘, 알미늄 및 칼슘의 혼합인산염과 콜로이달실리카성분에 미량의 무수크롬산으로 구성된 절연코팅제를 도포하는 통상적인 방법으로 형성되거나 , 타발성 향상을 위해 크롬산염과 아크릴계수지중심의 유무기 복합코팅제를 도포 하여 형성될 수도 있으나, 본 발명은 이러한 절연코팅제의 구체적인 조성등에 제한되는 것은 아니다.
이하, 실시예를 통하여 본 발명을 상세히 설명한다.
(실시예 )
중량%로, C: 0.0014%, Si: 2.90%, Mn: 0.022%, P: 0.012%, Ni: 0.010%, 잔여 철 및 불가피한 불순물을 포함하여 조성되는 강슬라브를 1250℃에서 재가열한후 압연하여 열간압연판을 제조하였다. 이어, 1020℃에서 4분간 열연판소둔하고 산세처리한후 최종두께인 0.20mm로 냉간압연한 후 표면에 부착된 압연유를 제거한 다음, 무방향성 전기강판 기준시편으로 하였다.
한편, 방향성 전기강판 시편은, 중량%로, C:0.0023%, Si: 3.10%, Mn: 0.016%, P: 0.021%, N: 0.0002%, S: 0.0004%,잔여 철 및 불가피한 불순물을 포함하는 강슬라브를 통상의 방향성전기강판 제조공정을 이용하여 AlN성분을 주억제제로 하여 0.23mm두께로 제조하여 마련되었으며, 이후 그 표면을 산용액으로 처리하여 절연피막층을 완전히 제거하였다.
이러한 기본 강판 시편표면에 롤코타를 이용하여 하기 표 1과 같이 입도가 -325mesh이고 Si를 45% 및 55% 함유하는 Fe-Si계 소성분말 100중량부에, 실리카가 고형분 기준으로 20중량부가 되도록 조성된 콜로이달 실리카용액을 혼합하여 이루어진 피복제용액을 그 도포량을 달리하여 도포하였다.
이렇게 도포된 강판을 350℃에서 건조시킨후, 권취하여 대형코일로 만들었다. 이 어, 50% 수소함유 질소가스 분위기의 1125℃온도에서 5시간 확산소둔한후, 절연코팅을 위한 풀림작업(uncoiling)시 피복제의 상호 접촉성을 확인하였다. 그리고 침규확산반응이 끝난 강판 표면의 미반응물을 제거한후 크롬산염 및 아크릴계수지를 주성분으로 하는 유무기복합 절연코팅층이 형성된 고규소 방향성 전기강판과 무방향성 전기강판을 각각 제조하였다.
이때, 각 공정에서의 목표 Si량, Fe-Si계 분말중 Si성분량, 확산소둔후의 소재 Si량 등을 고려하여 본 발명의 도포량 관계식에 따라 도포량을 계산하여 표 1에 나타내었다. 한편, 표 1에서 확산소둔후의 소재 Si량 변화는 습식분석을 통하여 측정한 결과치이며, 판간풀림성은 풀림작업(uncoiling)시의 미반응 피복제의 상호 접촉성을 관찰한 후 이들의 결과를 평가하여 나타낸 것이다.
구분 목표 Si량(%) Fe-Si 분말중 Si(%) Fe-Si 도포량 (g/m2) 발명식에 의한 Fe-Si 도포량 (g/m2) 소재 Si량(%) 판간 풀림성 소재
비교예1 4.5 55 34 60 3.92 판붙음 무 방향성강판
발명예1 60 4.48 양호
비교예2 82 4.88 양호
비교예3 6.5 55 101 136 5.72 부분 판붙음
발명예2 136 6.51 양호
비교예4 157 6.89 양호
비교예5 4.5 45 53 81 4.11 부분 판붙음 방향성강판
발명예3 81 4.51 양호
비교예6 104 4.81 양호
*표 1에서 도포량을 계산하는 발명식은 상술한 관계식 2임
상기 표 1에 나타난 바와 같이, 무방향성 전기강판의 경우, 침규제 도포량이 본 발명범위에 속하는 본 발명예(1~2)의 경우, 모두 소재내 Si량이 목표수준에 도달하였으며, 소재 판간에 붙음현상이 발생하지 않았다.
그러나 상대적으로 피복제 도포량이 본 발명대비 적은 비교예(1, 3)은 부분 판붙음 현상이 발생하였으며, 도포량이 과도한 비교예(2,4)는 판붙음 형상은 발생하지 않았으나, 소재 Si량이 목표대비 높게 나타나서 제품의 품질관리가 불가능하게 나타났다.
한편, 방향성 전기강판의 경우에도, 그 도포량이 본 발명범위보다 적은 비교예(5)에서는 부분 판붙음 현상이 발생하였으며, 도포량이 과도한 비교예(6)은 판간 붙음현상은 발생하지 않았으나, 소재 Si량이 목표대비 높게 나타나서 제품의 품질관리가 불가능함을 알 수 있다.
이와 같이, 본 발명의 관계식에 따라 피복제용액의 도포량을 적절히 제어하면, 목표 Si량 관리의 정확을 도모할 수 있음과 아울러, 이후, 판간 미반응 피복제조성물의 상호 분리력을 약화시켜 풀림작업(uncoiling)을 용이하게 할 수 있는 것이다.
상술한 바와 같이, 본 발명은 소정의 입도 및 조성을 갖는 Fe-Si계 분말을 포함하는 침규제를 강판표면에 도포, 소둔하여 고규소 전기강판을 제조함에 있어서, 그 침규제의 도포량을 최적으로 제어함으로써 소재의 목표 Si량의 관리정확을 도모할 수 있을 뿐만 아니라, 소둔처리이후 판간 미반응 피복제조성물의 상호 분리력을 약화시켜 풀림작업(uncoiling)을 용이하게 하여 작업성을 개선함에 유용한 효과가 있다.

Claims (1)

  1. Si를 2.0~3.3중량% 범위로 함유하는 강판의 표면에,
    입도가 -325mesh이고 Si를 20~70중량% 함유하는 Fe-Si계 소성분말 100중량부와, 상기 Fe-Si계 소성분말기준으로 실리카가 고형분 기준으로 15~30중량부가 되도록 조성된 콜로이달 실리카용액을 포함하여 조성되는 피복제 조성물을 도포한후 건조시키는 단계; 그리고
    상기 건조된 강판을 20%이상의 수소함유 질소가스 분위기하에서 1050~1200℃온도범위로 확산소둔하는 단계;를 포함하고,
    상기 피복제 조성물을 강판에 도포시, 하기 관계식을 만족하도록 도포됨을 특징으로 하는 고규소 전기강판 제조방법
    (관계식 1)
    Y - 5 ≤ 도포량 ≤ Y + 5
    (관계식 2)
    Y(g/m2) = 7650t (x1 - x2)/(A - 14.4)
    여기서, t는 소재두께(mm), A는 Fe-Si계 분말중 Si량(%), x1은 소재의 목표 Si량(%), 그리고 x2는 소재의 초기 Si량(%)이다.
KR1020020074329A 2002-11-11 2002-11-27 고규소 전기강판 제조방법 KR100946070B1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020020074329A KR100946070B1 (ko) 2002-11-27 2002-11-27 고규소 전기강판 제조방법
EP03811151A EP1560938B1 (en) 2002-11-11 2003-11-11 Coating composition, and method of manufacturing high silicon electrical steel sheet using said composition
JP2004551259A JP4484710B2 (ja) 2002-11-11 2003-11-11 浸珪拡散被覆組成物及びこれを利用した高珪素電磁鋼板の製造方法
PCT/KR2003/002412 WO2004044251A1 (en) 2002-11-11 2003-11-11 Coating composition, and method for manufacturing high silicon electrical steel sheet using thereof
US10/519,227 US7435304B2 (en) 2002-11-11 2003-11-11 Coating composition, and method for manufacturing high silicon electrical steel sheet using thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020074329A KR100946070B1 (ko) 2002-11-27 2002-11-27 고규소 전기강판 제조방법

Publications (2)

Publication Number Publication Date
KR20040046402A KR20040046402A (ko) 2004-06-05
KR100946070B1 true KR100946070B1 (ko) 2010-03-10

Family

ID=37341958

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020074329A KR100946070B1 (ko) 2002-11-11 2002-11-27 고규소 전기강판 제조방법

Country Status (1)

Country Link
KR (1) KR100946070B1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017064A (ja) * 1983-07-08 1985-01-28 Shogo Izumi 鉄鋼表面にけい素拡散被覆又は窒化けい素被覆を形成する方法
JPH05195062A (ja) * 1992-01-13 1993-08-03 Nippon Steel Corp 超低鉄損一方向性珪素鋼板の製造方法
JPH09249916A (ja) * 1996-03-15 1997-09-22 Kawasaki Steel Corp 方向性けい素鋼板の製造方法及び焼鈍分離剤
EP1052043A2 (en) * 1999-05-10 2000-11-15 Daido Tokushuko Kabushiki Kaisha Silicon steel plate and method for producing the same
KR20040041774A (ko) * 2002-11-11 2004-05-20 주식회사 포스코 침규확산용 분말도포제 및 이를 이용한 고규소 방향성전기강판 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017064A (ja) * 1983-07-08 1985-01-28 Shogo Izumi 鉄鋼表面にけい素拡散被覆又は窒化けい素被覆を形成する方法
JPH05195062A (ja) * 1992-01-13 1993-08-03 Nippon Steel Corp 超低鉄損一方向性珪素鋼板の製造方法
JPH09249916A (ja) * 1996-03-15 1997-09-22 Kawasaki Steel Corp 方向性けい素鋼板の製造方法及び焼鈍分離剤
EP1052043A2 (en) * 1999-05-10 2000-11-15 Daido Tokushuko Kabushiki Kaisha Silicon steel plate and method for producing the same
KR20040041774A (ko) * 2002-11-11 2004-05-20 주식회사 포스코 침규확산용 분말도포제 및 이를 이용한 고규소 방향성전기강판 제조방법

Also Published As

Publication number Publication date
KR20040046402A (ko) 2004-06-05

Similar Documents

Publication Publication Date Title
KR100900662B1 (ko) 침규확산용 분말도포제 및 이를 이용한 고규소 방향성전기강판 제조방법
JP6463458B2 (ja) 方向性電磁鋼板用予備コーティング剤組成物、これを含む方向性電磁鋼板およびその製造方法
KR100967049B1 (ko) 고규소 강판 제조방법
JP4484711B2 (ja) 高珪素方向性電磁鋼板の製造方法
KR940008932B1 (ko) 자기특성과 피막특성이 개선된 일방향성 전자강판의 제조방법
JP4484710B2 (ja) 浸珪拡散被覆組成物及びこれを利用した高珪素電磁鋼板の製造方法
JP2006503189A5 (ja) 浸珪拡散被覆組成物及びこれを利用した高珪素電磁鋼板の製造方法
JP2006501371A5 (ja) 高珪素方向性電磁鋼板の製造方法
KR100957930B1 (ko) 자기특성이 우수한 고규소 무방향성 전기강판 제조방법
KR100946070B1 (ko) 고규소 전기강판 제조방법
KR100900661B1 (ko) 침규확산 피복조성물 및 이를 이용한 고규소 전기강판제조방법
KR100900660B1 (ko) 분말도포성 및 표면특성이 우수한 침규확산용 피복제조성물
KR100711470B1 (ko) 고주파 철손 특성이 우수한 고규소 방향성 전기강판제조방법
KR100480001B1 (ko) 타발성이 우수한 방향성전기강판의 제조방법
KR100946069B1 (ko) 자성이 우수한 고규소 방향성 전기강판 제조방법
KR20020074312A (ko) 그라스피막이 없는 저온가열 방향성전기강판의 제조방법
KR100430601B1 (ko) 고자속 밀도 박판형 일방향성 전기 강판의 제조 방법
KR100905652B1 (ko) 침규확산 피복조성물 및 이를 이용한 고규소 전기강판제조방법
KR100479994B1 (ko) 타발특성이 우수한 저온재가열 방향성전기강판의 제조방법
KR101060913B1 (ko) 철손특성이 우수한 고규소 방향성 전기강판의 제조방법
KR100544615B1 (ko) 글래스피막이 없는 저온가열 방향성 전기강판의 제조방법
KR19980052510A (ko) 슬라브 저온가열에 의한 고자속밀도 방향성 전기강판의 제조방법
JP2762105B2 (ja) 鉄損特性の良い高磁束密度一方向性電磁鋼板の製造方法
KR970007031B1 (ko) 안정화된 자기적 특성을 갖는 방향성 전기강판의 제조방법
JPH08199239A (ja) 高磁束密度方向性電磁鋼板の製造法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130221

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140227

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150225

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160222

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170224

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180226

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190226

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20200225

Year of fee payment: 11