JP4374862B2 - 半導体レーザ、半導体レーザの駆動方法および波長変換素子 - Google Patents
半導体レーザ、半導体レーザの駆動方法および波長変換素子 Download PDFInfo
- Publication number
- JP4374862B2 JP4374862B2 JP2003029607A JP2003029607A JP4374862B2 JP 4374862 B2 JP4374862 B2 JP 4374862B2 JP 2003029607 A JP2003029607 A JP 2003029607A JP 2003029607 A JP2003029607 A JP 2003029607A JP 4374862 B2 JP4374862 B2 JP 4374862B2
- Authority
- JP
- Japan
- Prior art keywords
- optical waveguide
- region
- dfb
- semiconductor laser
- optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Semiconductor Lasers (AREA)
Description
【発明の属する技術分野】
本発明は光ファイバ通信、特に全光信号処理技術の分野で用いられる超高速光パルスを発生させる半導体レーザ、その半導体レーザの駆動方法およびそれを信号光源として用いた波長変換素子に関する。
【0002】
【従来の技術】
光ファイバ通信技術は、現代の情報化社会を支える重要なインフラストラクチャーである。従来、海底光ケーブルや都市間を結ぶ陸上幹線通信ネットワークを始めとして整備が進められ、急速な発展を遂げてきた。現在では、幹線系の1チャネル当たりの通信速度は10〜40Gbpsに及び、将来的には80〜160Gbps以上の超高速・大容量通信の実現も期待されている。
【0003】
現状のシステム構成では、ネットワークのノード部分において光信号を一旦電気信号に変換(E−O変換)して、リタイミング、波形整形を行った後に、再度光信号に変換(O−E変換)して送出している。しかしながら、数10Gbpsを超えるような超高速光通信システムでは、このような電気信号を介した制御で光信号を処理するのはもはや困難であった。すなわち、ノードにおける信号処理速度が次第にネットワーク全体の信号処理速度を制限するボトルネックになりつつあった。かかる問題点を解決し、超高速・大容量通信を実現するためのキー技術が全光信号処理である。
【0004】
全光信号処理では、技術的および経済的観点からネットワークノードに送られてきた光信号を電気信号に変換することなく光信号のままで波形整形や増幅を行った後に送り出す処理が求められている。光―光制御方式を用いた場合の利点として、電気回路のCR時定数により動作速度が制限されないこと、超短パルスの発生が可能な光パルスを直接利用できる点等が挙げられる。
【0005】
かかる全光信号処理の実現には各種光素子が必要となるが、特に短い光パルスを一定の周波数で持続させた光クロックパルスは必須であり、安定でジッタ、つまり時間軸での信号の揺らぎの少ない光クロックパルス発生素子の実現が求められている。半導体素子による光クロックパルスの発生は、ネットワークシステムの小型化や振動に対する堅牢さの観点からも重要である。
【0006】
高速動作可能な光クロックパルスを発生させる従来の半導体素子として、特許文献1あるいは特許文献2に開示されたセルフパルセーティングDFBレーザ(self-pulsating distributed feedback laser)があった。特許文献1の図1に示すように、従来のセルフパルセーティングDFBレーザはリッジ導波路型構造で、少なくとも2つの電気的に分離された電極を有している。3電極構成の場合は、回折格子を設けた前方DFB領域および後方DFB領域の2つの活性領域が両者の間に設けられた位相制御領域を挟んで集積されている。各領域はエッチング溝で電気的に分離されており、独立に電流注入可能である。また、両端面には反射防止(AR)コーティングが施されている。
【0007】
セルフパルセーティングDFBレーザの繰り返し周波数は、前方DFB領域、後方DFB領域への直流的な注入電流によって調整可能である。位相制御領域は前方DFB領域と後方DFB領域で構成された共振器中の光波の位相を調整してセルフパルセーションのオン・オフを制御し、セルフパルセーション動作を安定させるために設けられている。
【0008】
次に、上述の特許文献1に開示された従来のセルフパルセーティングDFBレーザの駆動方法について説明する。素子の動作原理は未だ完全には解明されていないが、以下に説明する分散性自己Qスイッチング(dispersive self Q-switching)が提案されている。一般に、Qスイッチレーザでは、活性層内で強い励起による高い反転分布が生成されているが、初期状態では高い共振器損失が存在するため、レーザ動作が妨げられている。一旦共振器損失が打ち消されると、高いインパルス強度の短パルスが放出される。上記Qスイッチング動作を達成するには、外部に設けた共振器反射鏡の損失を高い状態から低い状態へ急激に変化させる方法、あるいは初期的に共振器中に内部損失を形成した後、その内部損失を取り除くようにする方法があった。
【0009】
前方DFB領域はレーザ閾値電流を十分に上回るように強く励起し、後方DFB領域はレーザ閾値電流付近でほぼ透明の状態になる程度に弱く励起する。このとき、前方DFB領域はレーザとして機能し、後方DFB領域は分散性の強い、すなわち反射率の波長依存性が大きい、いわゆる反射ミラーとして機能する。前方DFB領域と後方DFB領域それぞれのブラッグ(Bragg)波長は、当該領域内に注入されたキャリア密度に依存して変化する。前方DFB領域と後方DFB領域間で強く非対称励起すると、2つの領域のブラッグ波長がわずかにずれるデチューニング(離調)状態が発生する。ストップバンドの長波長側では、後方DFB領域からの光反射、つまりフィードバックによって光密度が増大するのでレーザ発振が生じやすい。
【0010】
後方DFB領域の反射率が高いとレーザの閾値電流は低減し、逆に後方DFB領域の反射率が低いとレーザの閾値電流は上昇する。ストップバンドの長波長側では、分散性反射ミラーの急峻な反射ピークの裾付近のわずかな波長の変化により、レーザ閾値電流は非常に効率的に変調される。
【0011】
例えば、後方DFB領域の反射率が低くて結果的にレーザ閾値電流が上昇すると、共振器内部のキャリア密度も増加して屈折率が低下するため、レーザ発振波長は短波長側にシフトする。そのとき、後方DFB領域の反射率は高くなり、レーザ閾値電流が急減する結果、Qスイッチレーザと同様に短パルスが出力される。レーザ発振によって消費された活性領域中のキャリアが再び電流注入で補充されるまでには時間遅れがあり、この間レーザ発振は停止する。このように後方DFB領域からのフィードバックの最小点付近では、キャリア密度の揺らぎによって後方DFB領域からのフィードバック、すなわち共振器のQ値が大きく変化する。以上の過程を繰り返すことにより、直流の励起電流を用いているにもかかわらずセルフパルセーション動作を持続させることができる。
【0012】
従来のセルフパルセーティングDFBレーザでは、光クロックパルスを発生すると共に、発振周波数に近い入力信号に対して同期動作させて、光クロックパルスを再生した。しかしながら、入力信号が活性領域で吸収される際に、レーザ領域におけるキャリア密度変動が発生してセルフパルセーション動作が影響を受けるため、周波数の引き込みが生じた。この場合、活性領域を偏波依存性のない引張り歪みバルク結晶で構成しておけば、偏波無依存かつ入力波長とずれていても光クロック再生を行わせることが可能であった。
【0013】
【特許文献1】
米国特許第6215805号明細書
【特許文献2】
米国特許第6122306号明細書
【0014】
【発明が解決しようとする課題】
従来のセルフパルセーティングDFBレーザでギガヘルツ(GHz)オーダーの高い周波数の光パルスを安定に発生させるには、例えば、300cm−1以上の極めて高い回折格子結合係数(κ)が必要であった。分散性Qスイッチングの場合は、ミラー部分から強いフィードバックを受けた方がセルフパルセーションが起こりやすく、また、ビート型振動の場合は、回折格子結合係数κが高いと2つの領域のレーザがほぼ独立と見なせる状態になるからである。さらに、通常の回折格子結合係数κでは、高いセルフパルセーション周波数の光パルスを発生させることができないからである。しかしながら、高い結合係数を安定に実現するには回折格子を光導波層に極めて近接して作製する必要があり、これを実現するには超微細加工技術が必須となり、製造上多大な困難を伴った。よって、従来のセルフパルセーティングDFBレーザでは、安定なセルフパルセーション動作が実現できる条件の範囲が極めて狭く、100GHzを超えるセルフパルセーション動作も実験的には未だ報告されていなかった。
【0015】
この発明は、上記のような問題点を解決するためになされたものであり、通常の製造方法下で安定でかつ高い発振周波数のセルフパルセーション動作を実現できる半導体レーザとその駆動方法を提供することを目的とし、さらに、安定なセルフパルセーション動作を行う半導体レーザを信号光源に適用してジッタの少ない波長変換素子を提供することを目的とする。
【0016】
【課題を解決するための手段】
本発明に係る半導体レーザは、第1導電型の半導体基板と、上記半導体基板上に形成された第1導電型クラッド層と、上記第1導電型クラッド層上に形成された光導波層と、上記光導波層を一部に含みレーザ光出射方向に対して前方に位置し上記光導波層面に近接して回折格子を具備する前方DFB領域と、上記光導波層を一部に含み上記レーザ光出射方向に対して後方に位置し上記光導波層面に近接して回折格子を具備し、上記前方DFB領域とは電気的に分離された後方DFBあるいはDBR領域と、上記回折格子を埋め込むように形成された第2導電型クラッド層と上記光導波層の一部で上記前方DFB領域と上記後方DFBあるいはDBR領域との間に上記各領域から電気的に分離された位相制御領域とを備え、上記前方DFB領域の回折格子および上記後方DFBあるいはDBR領域のそれぞれの回折格子が一部に前記光導波層中のキャリア密度を安定化する位相シフト部分を有することとした。
【0017】
【発明の実施の形態】
実施の形態1.
本発明の実施の形態1の半導体レーザの概観図を図1に示す。図1中、1はn型インジウム燐(InP)基板(第1導電型の半導体基板)、2はn型InP基板1上に形成されたn型InPクラッド層(第1導電型InPクラッド層)、3はn型InPクラッド層に形成されたインジウムガリウム砒素燐(InGaAsP)光導波層、4はp型InPクラッド層(第2導電型InPクラッド層)、5はp型InPクラッド層4に埋め込まれるように設けられた回折格子、6aは回折格子5の一部に形成された位相シフト部分、7はp型InPクラッド層4上に形成されたp型InGaAsPコンタクト層、8は光導波層3に電流を狭窄するための高抵抗InP電流閉じ込め層、9a、9bはエッチングによって形成された各領域を電気的に分離する分離溝、20はn型InP基板1の裏面側に設けられたn型電極、21a,21b,21cはそれぞれp型InGaAsPコンタクト層7上に設けられ、分離溝9a、9bによって隔てられかつ電気的に分離されたp型電極、をそれぞれ示す。
【0018】
本実施の形態の半導体レーザでは、光導波層3として0.2%程度の引張歪みバルク結晶層を用いており、外部入力信号光に対して偏波無依存かつ広い波長範囲にわたって同期動作させることができるようにしている。
【0019】
図2(a),(b)は図1の半導体レーザの共振器方向の断面図(図1中のIで表された面)であり、(a)と(b)とでは位相シフト部分6a、6bが異なる点以外は同一構成である。図2中、30は半導体レーザの両端面に形成された低反射率(AR)膜、101は前方DFB領域、102は位相制御領域、103は後方DFB領域、をそれぞれ示す。
【0020】
前方DFB領域101および後方DFB領域103では、光導波層3に隣接してp型InPクラッド層4に埋め込まれた回折格子5が設けられている。各領域の回折格子5の一部には、それぞれ位相シフト部分6a、6bが設けられている。図2(a)の素子構造では、前方DFB領域101の回折格子5に2箇所のλ/8シフト部分6a、後方DFB領域103の回折格子5に2箇所のλ/8シフト部分6bがそれぞれ形成され、一方、図2(b)の素子構造では前方DFB領域101の回折格子5に2箇所のλ/8シフト部分6a、後方DFB領域103の回折格子5に1箇所のλ/4シフト部分6bがそれぞれ形成されている。
【0021】
前方DFB領域101と後方DFB領域103の間には、従来例と同様にセルフパルセーション動作のオン・オフを制御するための位相制御領域102が設られている。ただし、前方DFB領域101と後方DFB領域103の間の位相シフト量を素子作製の段階で正確にλ/4に合わせることができるならば、位相制御領域102を省略して前方DFB領域101と後方DFB領域103のみの2電極構成にすることも可能である。
【0022】
以下に、本実施の形態の半導体レーザの動作を説明する。本実施の形態の半導体レーザでは、上述したようにp型電極21a,21b,21cは分離溝9a、9bによって電気的に分離された3つの領域に分割され、前方DFB領域101、位相制御領域102および後方DFB領域103のそれぞれの光導波層3に独立に電流を注入できる構成となっている。すなわち、p型電極21aから前方DFB領域101へ、p型電極21bから位相制御領域102へ、p型電極21cから後方DFB領域103へそれぞれ独立に電流が注入される。
【0023】
p型電極21aを介して前方DFB領域101へ電流を注入することにより前方DFB領域101の光導波層3で強い励起状態が生じる結果、高い反転分布が形成され、いわゆる活性領域として機能する。但し、他の位相制御領域102および後方DFB領域103に電流が注入されない状態では、これらの領域の光導波層3の内部損失が大きいため、前方DFB領域101の光導波層3で発生した光を再吸収する結果、レーザ発振には至らない。
【0024】
p型電極21cを介して後方DFB領域103にも電流を注入すると、後方DFB領域103における光導波層3内の内部損失が電流密度に応じて、導波光に対して内部損失となる状態から透明となる状態へと変化し、さらに電流を注入するとレーザ発振に至る。つまり、レーザ光は前方DFB領域101側からARコーティング30を通して外部へ出射される。要するに、後方DFB領域103への電流は、レーザ動作のための動作電流というよりはむしろ後方DFB領域103の屈折率制御用電流として利用される。
【0025】
前方DFB領域101と後方DFB領域103の各領域のブラッグ波長は、当該領域内に注入されたキャリア密度に依存して変化する。前方DFB領域101と後方DFB領域103にそれぞれレーザ閾値電流より高い電流Ilas1,Ilas2を注入して、レーザ発振を生ぜしめる。電流注入に際して、動作電流Ilas1を高励起状態にする一方、屈折率制御用電流Ilas2を低励起状態にするような強い非対称励起を行うと、2つの領域のブラッグ波長がわずかにずれてデチューニング(離調)状態が生じる。ストップバンドの長波長側では、後方DFB領域103からのフィードバックによって光導波路3内の光密度が高くなるのでレーザ発振が生じやすくなる。
【0026】
後方DFB領域103の反射率が高いとレーザの閾値電流は低減し、逆に後方DFB領域103の反射率が低いとレーザの閾値電流は上昇する。ストップバンドの長波長側では、後方DFB領域103における分散性ミラーの急峻な反射ピークの裾付近のわずかな波長の変化により、レーザ閾値電流は非常に効率的に変調される。
【0027】
例えば、後方DFB領域103の反射率が低くて結果的にレーザ閾値電流が上昇すると、共振器内部、つまり光導波層3のキャリア密度も増加して屈折率が低下するため、レーザ発振波長は短波長側にシフトする。短波長側にシフトしたレーザ発振波長に対して後方DFB領域103の反射率は、その波長依存性から実効的に高くなってレーザ閾値電流が急減する結果、Qスイッチレーザと同様なモードで短パルスが光出力される。かかるレーザ発振によって消費された光導波層3中のキャリアが再び電流注入で補充されるまでには一定の時間を要する時間遅れの状態が発生し、この間レーザ発振は停止する。このように後方DFB領域103からの光のフィードバックの最小点付近では、キャリア密度の変動によって後方DFB領域103からのフィードバック、すなわち共振器のQ値が大きく変化する。以上のレーザ発振およびその停止の過程を繰り返すことにより、直流の励起電流を用いているにもかかわらずセルフパルセーション動作を安定に持続させることができる。なお、上述したようにセルフパルセーション動作のオン・オフは位相制御領域102への電流注入によって行う。
【0028】
本実施の形態の半導体レーザの特徴的な点を以下に説明する。本実施の形態の半導体レーザでは、前方DFB領域101と後方DFB領域103の回折格子5に設けられた位相シフト部分6a,6bによってセルフパルセーション動作の安定化が図られる。つまり、回折格子5に位相シフト部分6a,6bを設けることにより、共振器方向のキャリア密度分布を位相シフト部分6a,6bの近傍で増減させて、キャリア密度分布自体を安定化できる。また、屈折率はキャリア密度の関数であり、位相シフト部分6a,6bの存在によって同様に共振器方向で屈折率分布が安定化される。セルフパルセーション発振周波数はキャリア密度及び屈折率で決まるため、これらのキャリア密度及び屈折率の安定な分布によって、セルフパルセーション発振周波数も安定化される。この結果、後述のシミュレーション結果に示すように、100GHz以上の安定なセルフパルセーション発振周波数を達成することが可能となる。さらに、回折格子5における位相シフト部分6a,6bを設ける位置を調整して、セルフパルセーション発振周波数を広範囲に変えることができる効果も生じる。
【0029】
本実施の形態の半導体レーザでは、光導波層3の共振器方向のストライプ形状をエッチングで形成した後に、光導波層3の両側面部分を電流閉じ込め層8で埋め込み成長して、電流狭窄を行う構成にしている。このため、光導波層3に効率良く電流を注入可能となることに加えて、共振器方向にわたって光導波層3内でレーザ発振に寄与する活性な領域と反射ミラーや位相調整等の非活性な領域との結合損失を顕著に低減する結果、低損失な光導波路を形成でき、高効率でセルフパルセーション動作を行うことが可能となる。
【0030】
以下、本実施の形態の半導体レーザの素子構造について、シミュレーション解析した結果を説明する。回折格子5の結合係数を200cm−1、前方DFB領域101と後方DFB領域103の長さが共に300μmで、位相制御領域102での位相シフト量を四分の一波長(λ/4)に設定した半導体レーザにおいて、前方DFB領域101と後方DFB領域103の共振器方向の長さをそれぞれL1、L2として、各領域の中心位置から位相シフト部分6a,6bまでの長さをそれぞれ△L1、△L2とした場合の△L/Lをパラメータとして、タイムドメイン解析による特性シミュレーションを実施した。
【0031】
回折格子5を含み、利得を有する単一モード光導波路の中での前進波の複素電場F(t,z)と後退波の複素電場R(t,z)の関係は、一般に下記のような時間に依存する2つの結合波方程式で記述することができる。
【0032】
【数1】
【数2】
ここで、vgは導波路中の光の群速度、κは回折格子の結合係数、gは電場利得、δは回折格子のブラッグ波長からのずれを表す量、ispは自然放出光からの寄与を表している。解析対象の素子を多数のセクションに分割し、各セクション内部でのキャリア密度と電場密度を一様と近似すると共に、時間の刻み幅に応じた空間的な刻み幅を適切に選択して、前進波と後退波の複素電場の時間発展を数値計算し、最終的に出力光強度の時間変化を求めた。また、出力光強度のフーリエ変換を行い、発振スペクトルを求めた。
【0033】
一例として2つのλ/8位相シフト部分6a,6bを前方DFB領域101と後方DFB領域103における中央部に対してそれぞれΔL/L=±0.43の位置に設け、透明電流に対して前方DFB領域:後方DFB領域=12:2に非対称励起した場合のシミュレーション結果を図3に示す。図3において(a)は、電流を流し始めた時点を時間の原点としたレーザ出力の時間依存性であり、(b)は時間依存性における900psから1000psの領域を拡大して図示したものである。図から分かるように、周期13psの安定したレーザ出力の断続波形、すなわちセルフパルセーション波形が得られている。
【0034】
他のシミュレーション解析の一例として、前方DFB領域101と後方DFB領域103における中央部からそれぞれΔL/L=±0.17の2箇所に各々λ/8位相シフトを設け、同様に透明電流に対して前方DFB領域:後方DFB領域=12:2に非対称励起した場合のシミュレーション結果を図4に示す。図4において(a)は電流を流し始めた時点を時間の原点としたレーザ出力の時間依存性であり、(b)はそのレーザ出力の時間依存性中の900psから1000psの領域を拡大したものである。図から分かるように、周期1.6psの超高周波のセルフパルセーション波形が得られている。このように、回折格子の結合係数や位相シフト位置は素子の設計パラメータであり、かかるパラメータの設計値を変えることにより様々なセルフパルセーション波形が選択可能となる。
【0035】
なお、本実施の形態の半導体レーザでは、活性領域の両側面部分を電流閉じ込め層で埋め込み成長して電流狭窄を行う構成にしているが、従来の半導体レーザと同様にリッジ導波路の構成にしてもほぼ同様の効果が得られる。
【0036】
また、本実施の形態の半導体レーザでは光導波層3として0.2%程度の引張歪みバルクを用いているが、外部入力信号光に対して応答可能な波長範囲が狭くなり、偏波依存性が生じることを許容すれば、光導波層3を多重量子井戸(MQW, multiple quantum well)で構成してもよい。
【0037】
以上、実施の形態1の半導体レーザとその駆動方法によれば、前方DFB領域と後方DFB領域の各領域の回折格子にそれぞれ位相シフト部分を設けたので、通常の製造方法によって作製可能で、かつ安定なセルフパルセーション動作を実現できる半導体レーザが得られる。
【0038】
実施の形態2.
本発明の実施の形態2の半導体レーザの共振器方向の断面を図5に示す。図5中、103aは後方DBR領域、3aは光導波層3中のDBR部分、をそれぞれ示す。実施の形態1の半導体レーザでは後方DFB領域103の光導波層は前方DFB領域101と同一の光導波層で構成されており、発生したレーザ光の後方DFB領域103での光吸収は完全には無視できないレベルである。そこで、本実施の形態の半導体レーザでは、実施の形態1の半導体レーザにおける後方DFB領域103の光導波層3を、前方DFB領域101の光導波層3を構成する結晶よりバンドギャップエネルギーが大きい結晶で構成された光導波層3aを設けることにより、光吸収が無視できる受動DBR(Distributed Bragg Reflector)ミラーで置き換える構成とした。
【0039】
実施の形態2の半導体レーザの動作を以下に説明する。なお、半導体レーザの基本的な動作は実施の形態1の半導体レーザとほぼ同一なので、本実施の形態における特徴的な動作を説明する。前方DFB領域101に対してレーザ発振閾値以上の動作電流Ilas1を流し、後方DBR領域103aにおいて導波光に対して透明になるような屈折率制御用電流Ilas2を流す。この場合、前方DFB領域101はレーザとして機能する一方、後方DBR領域103aは分散性の強い、すなわち反射率の波長依存性の大きい受動DBRミラーとして動作する。
【0040】
また本実施の形態の半導体レーザでは、実施の形態1の半導体レーザにおける単一の結晶層で構成された光導波層3に対して、前方DFB領域101と位相制御領域102、後方DBR領域103aがバットジョイント成長によって結晶成長され、位相制御領域102および後方DBR領域103aにおける光導波層3aのバンドギャップエネルギーが前方DFB領域101のバンドギャップエネルギーより大きくなるような結晶で形成される、いわゆるバットジョイント構造を適用しても良い。バットジョイント構造の適用により、共振器方向にわたって活性領域と光導波領域の結合損失をほぼ無くし、低損失な光導波層3、3aを形成できる。さらに、各領域界面での屈折率差による反射が低減されるので、高効率で半導体レーザを駆動できる。
【0041】
実施の形態2の半導体レーザでは、実施の形態1の半導体レーザの後方DFB領域を受動DBRミラーで置き換えたので、後方DBR領域における光吸収が防止され、光損失がより少なくなり、光出力が向上する効果がある。また、受動DBRミラーの適用により、後方をDFB領域とした場合に生じる予期しない光吸収によるキャリア密度の変動が抑えられ、より安定したセルフパルセーション動作の持続が可能となる。さらに、受動DBRミラーの適用により、より容易にセルフパルセーション周波数の調整ができる。後方DBR領域は利得と屈折率が同時に変わることがないため位相調整が容易であり、また、後方DBR領域は利得を持たないので、前方DFB領域のレーザ発振波長や受動DBRミラーのブラッグ波長以外での寄生レーザ発振が起こりにくいからである。
【0042】
実施の形態3.
本発明の実施の形態3の半導体レーザは、実施の形態1または2の半導体レーザの前方DFB領域101の回折格子に対して後方DFBあるいはDBR領域103、103aの回折格子5を互いに異なる周期となるようにしたものである。両者の回折格子の周期は、図6の本実施の形態の半導体レーザにおける前方DFB領域101と後方DBR領域103aの回折格子のブラッグ波長の様相からわかるように、ブラッグ波長の差がストップバンド幅程度となるように予め設定する。かかる異なる回折格子の周期の作製は、公知の電子ビーム(EB)露光技術を用いて実現可能である。
【0043】
互いに異なった回折格子の周期を有する前方DFB領域101と後方DFBあるいはDBR領域103、103aを具備することにより、実施の形態1の半導体レーザのように大きく非対称励起しなくてもセルフパルセーション動作を安定に発生させることが可能となる。余りに大きい非対称励起は半導体レーザへの注入電流の増大を招き、消費電力も増加する結果となるからである。さらに、回折格子の周期条件によっては後方DFBあるいはDBR領域103、103aに電流を注入しなくてもよいので、消費電力低減の効果も生じる。
【0044】
実施の形態4.
実施の形態4の波長変換素子の構成図を図7に示す。本実施の形態の波長変換素子はいわゆるMZ−TOAD(Mach-Zehnder Terahertz Optical Asymmetric Demultiplexer)構造を有する。実施の形態4の波長変換素子は2つの3dB多モード干渉カプラ(MMI, Multimode interference)と光導波路、および光導波路の中にオフセット集積された2つの半導体光増幅器(SOA、Semiconductor optical amplifier)および本実施の形態1ないし3のいずれかに記載のセルフパルセーションDFBレーザで構成される。
【0045】
図7中、201は入力信号光、202は入射側光導波路、202aは出射側光導波路、203は入射側カプラ、204aは第1光導波路、204bは第2光導波路、205aは第1半導体光増幅器、205bは第2半導体光増幅器、206は出射側カプラ、207は信号入力、208はセルフパルセーションDFBレーザに光学的に結合された信号光入出力導波路、209は波長変換光、211は本実施の形態1ないし3のいずれかに記載の信号光源用のセルフパルセーションDFBレーザ、212は信号出力、214は基板、215は出射側カプラと第1半導体光増幅器間の第1光導波路の距離と出射側カプラと第2半導体光増幅器間の第2光導波路の距離との差(ΔX)、をそれぞれ示す。
【0046】
入力信号光201は入射側光導波路202の一端から入射されて、入射側光導波路202を導波しながら、入射側光導波路202の他端に光学的に結合された入射側カプラ203に入射する。入射側カプラ203において、入力信号光201は第1光導波路204aと第2光導波路204bに各々分岐される。第1光導波路204aと第2光導波路204bは1つの出射側カプラ206に光学的に結合され、かつ第1光導波路204aと第2光導波路204bの光路長(光導波路の屈折率と距離の積)は互いに等しくなるよう予め設定されている。第1光導波路204aと第2光導波路204bには、それぞれ第1半導体光増幅器205aと第2半導体光増幅器205bが設けられている。また、出射側カプラ206に光学的に結合された信号光入出力導波路208へ信号入力207が導波される一方、信号光源用のセルフパルセーションDFBレーザ211から発せられ波長変換された信号出力212が信号光入出力導波路208に入射する。信号出力212は波長変換光209として出射側光導波路202aから波長変換素子外部へ出射される。以上の各構成要素はすべて基板214上に設けられている。
【0047】
出射側カプラ206から第1半導体光増幅器205a間の第1光導波路204aの距離と、出射側カプラ206から第2半導体光増幅器205b間の第2光導波路204bの距離との差215は、所定の値(ΔX)になるよう予め設計されている。
【0048】
次に、実施の形態4による波長変換素子の基本動作について説明する。入射側光導波路202に入射した入力信号光201は、入射側カプラ203で2方向に分岐する。入射側カプラ203で2方向に分岐された入力信号光201は、それぞれ第1光導波路204aと第2光導波路204bを進行する。途中、それぞれ設けられた第1および第2半導体光増幅器205a、205bで注入電流量に依存した屈折率変化を受ける。
【0049】
第1光導波路204aと第2光導波路204bをそれぞれ導波した入力信号光201は出射側カプラ206内で相互に干渉し、合波される。出射側カプラ206内で干渉・合波された入力信号光201の強度は、第1光導波路204aと第2光導波路204bをそれぞれ導波した光の出射側カプラ206の干渉部に於ける相対位相により決定される。
【0050】
入力信号光201が第1および第2光導波路204a、204bを導波して第1および第2半導体光増幅器205a、205bへと導入されると、入力信号光201に起因する各半導体光増幅器205a、205bの活性層内で生じる誘導放出光の増大に伴い伝導帯および価電子帯内のキャリア密度が欠乏することによって、各半導体光増幅器205a、205bの活性層の利得が飽和する。なお、入力信号光201は第1および第2半導体光増幅器205a、205bに所望の位相変化を与えるのに十分な強度で入射されるものとする。
【0051】
第1および第2半導体光増幅器205a、205bは、上述したように光出射側カプラ206からの距離の差215がΔXとなるように予め配置されているため、入力信号光201に起因する第1および第2半導体光増幅器205a、205bにおける屈折率変化と位相シフトがΔt=ΔX×neff/cだけ異なる時間に生じる。ここで、neffは半導体光増幅器205a、205bの活性層の実効屈折率、cは光の速度をそれぞれ表す。従って、Dt間に干渉系はバランスしない状態であり、第1および第2光導波路204a、204bを進行してきた入力信号光201は互いに打ち消しあうことなく、信号入力207として信号光入出力導波路208に導波され、セルフパルセーティングDFBレーザ211の光導波路3に入射される。入射された信号入力207のレーザ発振波長を回折格子5のブラッグ波長で決まる波長に変換し、位相調整を行った後、信号出力212が信号光入出力導波路208に出力され、入出力側カプラ203,206および第1、第2半導体光増幅器205a、205bによる光ゲート動作によって変調を受けながら、最終的に波長変換光209として光導波路202aから出射される。
【0052】
本実施の形態の波長変換素子では、セルフパルセーション動作1回毎のスイッチングにおいてはキャリアの緩和時間で制約を受けることがないため、ピコ秒オーダーの超高速動作が可能となる。つまり、実施の形態1ないし3のいずれかに記載のセルフパルセーティングDFBレーザ211を信号光源用とし、MZ−TOADと組み合わせて用いて光クロックの再生を行うことで、波長変換と同時に光3Rを実現することができる。すなわち、信号入力207をセルフパルセーティングDFBレーザ211の光導波層3に入射してレーザ発振波長を回折格子5のブラッグ波長で決まる波長に変換し、位相調整を行うことにより、ジッタの少ない光クロックパルスを再生して、信号光入出力導波路208に信号出力212として再出力することができる。なお、ここで、光クロック再生とは、信号光から電気的あるいは光学的な手段により変調速度に同期したタイミング抽出を行い、同じ変調速度かつ波形の揃った繰り返しパルスを発生させることを指し、また、光3Rとは上記光クロック再生に加えて信号光の光波形整形や増幅を行うことを指す。
【0053】
信号光源用のセルフパルセーティングDFBレーザ211のレーザ発振波長は、入力信号光201のレーザ発振波長よりも長波長側に予め設定して波長変換を行う。かかる設定では波長変換光209はMZ−TOADに対して影響を与えず、MZ−TOADの窓、つまり光ゲートが開いている時間だけ出力側導波路202aから出射されるので、結果的に入力信号光201自体で変調された波長変換光209が得られる。このように再生された光クロックパルスは入力信号光201にジッタがある場合でも、ジッタを低減することができる。また、MZ−TOADと組み合わせているので、入力信号光201と波長変換光209を分離するためのアイソレータが不要であり、入力信号光201で変調された波長変換光209が波長変換素子の外部に送出される。
【0054】
なお、本発明の主旨を逸脱しない範囲で、半導体レーザと半導体光増幅器と光ファイバや光学ミラーなどの受動光学部品を組み合わせてハイブリッド方式で波長変換素子を構成することも可能である。また、波長変換素子は上記の構造に限定される訳ではなく、一般的なマッハツェンダー干渉型全光スイッチであっても、同様の効果を奏する。
【0055】
以上、本実施の形態では、波長変換素子の信号光源として上述のセルフパルセーションDFBレーザを適用したので、入力信号光自体で変調された波長変換光が得られ、また、再生された光クロックパルスは入力パルスにジッタがある場合でも時間的にジッタが低減されて、波長変換と同時に光3Rも同時に行わせることが可能となる。
【0056】
【発明の効果】
本発明に係る半導体レーザでは、第1導電型の半導体基板と、上記半導体基板上に形成された第1導電型クラッド層と、上記第1導電型クラッド層上に形成された光導波層と、上記光導波層を一部に含みレーザ光出射方向に対して前方に位置し上記光導波層面に近接して回折格子を具備する前方DFB領域と、上記光導波層を一部に含み上記レーザ光出射方向に対して後方に位置し上記光導波層面に近接して回折格子を具備し、上記前方DFB領域とは電気的に分離された後方DFBあるいはDBR領域と、上記回折格子を埋め込むように形成された第2導電型クラッド層と上記光導波層の一部で上記前方DFB領域と上記後方DFBあるいはDBR領域との間に上記各領域から電気的に分離された位相制御領域とを備え、上記前方DFB領域の回折格子および上記後方DFBあるいはDBR領域のそれぞれの回折格子が一部に前記光導波層中のキャリア密度を安定化する位相シフト部分を有することとしたので、安定でかつ高い発振周波数のセルフパルセーション動作を実現できる半導体レーザが得られる。
【図面の簡単な説明】
【図1】 実施の形態1の半導体レーザの概観図である。
【図2】 実施の形態1の半導体レーザの共振器方向における断面図である。
【図3】 実施の形態1の半導体レーザにおけるλ/8位相シフトを設けた回折格子を有するセルフパルセーティングDFBレーザのシミュレーション結果である。
【図4】 実施の形態1の半導体レーザにおけるλ/8位相シフトを設けた回折格子を有するセルフパルセーティングDFBレーザのシミュレーション結果である。
【図5】 実施の形態2の半導体レーザの共振器方向における断面図である。
【図6】 実施の形態3の半導体レーザにおける前方DFB領域と後方DBR領域の回折格子のブラッグ波長を示す図である。
【図7】 実施の形態4の波長変換素子の構成を示す概観図である。
【符号の説明】
1 n型InP基板、 2 n型InPクラッド層、 3 InGaAsP光導波層、 4 p型InPクラッド層、 5 回折格子、 6 位相シフト部分、 7 p型InGaAsPコンタクト層、 8 高抵抗InP電流閉じ込め層、 9a、9b 分離溝、 20 n型電極、 21 p型電極、 30 低反射率(AR)膜、 201 入力信号光、 202 入射側光導波路、 202a 出射側光導波路、 203 入射側カプラ、 204a 第1光導波路、 204b 第2光導波路、 205a 第1半導体光増幅器、 205b 第2半導体光増幅器、 206 出射側カプラ、 207 信号入力、 208 信号光入出力導波路、 209 波長変換光、 211 セルフパルセーションDFBレーザ、 212 信号出力、 214 基板、 215 出射側カプラと第1半導体光増幅器間の第1光導波路の距離と出射側カプラと第2半導体光増幅器間の第2光導波路の距離との差(ΔX)。
Claims (9)
- 第1導電型の半導体基板と、
前記半導体基板上に形成された第1導電型クラッド層と、
前記第1導電型クラッド層上に形成された光導波層と、
前記光導波層を一部に含みレーザ光出射方向に対して前方に位置し前記光導波層面に近接して回折格子を具備する前方DFB領域と、
前記光導波層を一部に含み前記レーザ光出射方向に対して後方に位置し前記光導波層面に近接して回折格子を具備し、前記前方DFB領域とは電気的に分離された後方DFBあるいはDBR領域と、
前記回折格子を埋め込むように形成された第2導電型クラッド層と、
前記光導波層の一部で前記前方DFB領域と前記後方DFBあるいはDBR領域との間に前記各領域から電気的に分離された位相制御領域と、を備え、
前記前方DFB領域の回折格子および前記後方DFBあるいはDBR領域のそれぞれの回折格子が一部に前記光導波層中のキャリア密度を安定化する位相シフト部分を有することを特徴とする半導体レーザ。 - 後方がDBR領域で構成され、前記位相制御領域および前記後方DBR領域における光導波層を構成する結晶のバンドギャップエネルギーが、前記前方DFB領域における光導波層を構成する結晶のバンドギャップエネルギーより大きいことを特徴とする請求項1記載の半導体レーザ。
- 前記前方DFB領域の回折格子の周期と前記後方DFBあるいはDBR領域の回折格子の周期が異なることを特徴とする請求項1または2記載の半導体レーザ。
- 前記各領域間の回折格子の周期のずれがストップバンド幅に相当することを特徴とする請求項3記載の半導体レーザ。
- 前記光導波層の両側面に電流閉じ込め層が形成されていることを特徴とする請求項1ないし4のいずれか1項記載の半導体レーザ。
- 前記電流閉じ込め層が埋め込み結晶成長によって形成されたものであることを特徴とする請求項5記載の半導体レーザ。
- 請求項1ないし6のいずれか1項記載の半導体レーザの駆動方法であって、前記前方DFB領域に所定の動作電流を注入し、前記後方DFBあるいはDBR領域に所定の屈折率制御用電流を注入することによりセルフパルセーション動作を生ぜしめることを特徴とする半導体レーザの駆動方法。
- 請求項1ないし6のいずれか1項記載の半導体レーザを信号光源とすることを特徴とする波長変換素子。
- 一端から信号光が入射される入射側光導波路と、
前記入射側光導波路の他端に光学的に結合された入射側カプラと、
前記入射側カプラから分岐し第1半導体光増幅器を経て出射側カプラに至る第1光導波路と、
前記入射側カプラから分岐し第2半導体光増幅器を経て前記出射側カプラに至り前記第1光導波路と光路長が等しい第2光導波路と、
前記出射側カプラと光学的に結合され信号入出力光が導波される信号光入出力導波路と、
前記信号光入出力導波路に光学的に結合された前記信号光源用の半導体レーザと、
一端から波長変換光が出力され他端が前記入射側カプラに光学的に結合された出力側光導波路と、を基板上に備え、
前記出射側カプラと前記第1半導体光増幅器間の第1光導波路の距離と前記出射側カプラと前記第2半導体光増幅器間の第2光導波路の距離との差が所定の値に予め設定されていることを特徴とする請求項8記載の波長変換素子。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003029607A JP4374862B2 (ja) | 2003-02-06 | 2003-02-06 | 半導体レーザ、半導体レーザの駆動方法および波長変換素子 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003029607A JP4374862B2 (ja) | 2003-02-06 | 2003-02-06 | 半導体レーザ、半導体レーザの駆動方法および波長変換素子 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004241627A JP2004241627A (ja) | 2004-08-26 |
JP4374862B2 true JP4374862B2 (ja) | 2009-12-02 |
Family
ID=32956741
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003029607A Expired - Fee Related JP4374862B2 (ja) | 2003-02-06 | 2003-02-06 | 半導体レーザ、半導体レーザの駆動方法および波長変換素子 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4374862B2 (ja) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4606248B2 (ja) * | 2005-05-17 | 2011-01-05 | 三菱電機株式会社 | 半導体レーザ |
JP4606271B2 (ja) * | 2005-08-01 | 2011-01-05 | 三菱電機株式会社 | 半導体レーザ |
JP4629022B2 (ja) * | 2005-12-27 | 2011-02-09 | 住友電工デバイス・イノベーション株式会社 | レーザ装置、レーザモジュール、および、半導体レーザ |
JP5407526B2 (ja) * | 2009-04-27 | 2014-02-05 | 住友電気工業株式会社 | 波長可変レーザ、波長可変レーザ装置、及び波長可変レーザ制御方法 |
WO2015039273A1 (zh) * | 2013-09-17 | 2015-03-26 | 华为技术有限公司 | 一种激光器、光信号调制方法和光网络系统 |
JP5692330B2 (ja) * | 2013-10-18 | 2015-04-01 | 住友電気工業株式会社 | 波長可変レーザ、波長可変レーザ装置、及び波長可変レーザ制御方法 |
JP2017187690A (ja) | 2016-04-07 | 2017-10-12 | 富士通株式会社 | 光素子、光モジュール及び光伝送システム |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04783A (ja) * | 1989-06-14 | 1992-01-06 | Hitachi Ltd | 半導体光素子 |
JP2770900B2 (ja) * | 1992-08-17 | 1998-07-02 | 日本電信電話株式会社 | 分布反射器及びそれを用いた波長可変半導体レーザ |
JP3255325B2 (ja) * | 1994-02-23 | 2002-02-12 | キヤノン株式会社 | 偏波変調可能な分布帰還型半導体レ−ザ |
DE19513198A1 (de) * | 1995-03-31 | 1996-10-02 | Hertz Inst Heinrich | Selbstpulsierender Mehrsektionslaser |
JPH09191157A (ja) * | 1996-01-11 | 1997-07-22 | Canon Inc | 偏波変調半導体レーザとその作製方法 |
CA2250509A1 (en) * | 1996-03-29 | 1997-10-09 | Heinrich-Hertz-Institut Fur Nachrichtentechnik Berlin Gmbh | Q-switched semiconductor laser |
JPH11312846A (ja) * | 1998-04-27 | 1999-11-09 | Canon Inc | 偏波依存性を持つ位相シフト領域を有する分布帰還型半導体レーザ、それを用いた光送信機及び光通信システム |
JPH11340566A (ja) * | 1998-05-25 | 1999-12-10 | Canon Inc | 分布反射型偏波変調半導体レーザ |
JP2002303900A (ja) * | 2001-04-03 | 2002-10-18 | Nippon Telegr & Teleph Corp <Ntt> | ハイブリッド波長変換器 |
-
2003
- 2003-02-06 JP JP2003029607A patent/JP4374862B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004241627A (ja) | 2004-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4618118B2 (ja) | 受動モード同期半導体レーザ及び光クロック信号抽出装置 | |
JP3985159B2 (ja) | 利得クランプ型半導体光増幅器 | |
JP6425631B2 (ja) | 半導体レーザおよびこれを備える光集積光源 | |
EP1713150B1 (en) | Optical semiconductor device and driving method thereof | |
JP4288953B2 (ja) | 波長可変半導体レーザ | |
KR100519922B1 (ko) | 다영역 자기모드 잠김 반도체 레이저 다이오드 | |
CN104993375A (zh) | 一种短腔长的分布反馈激光器 | |
JP2003017803A (ja) | 波長可変半導体レーザおよび光モジュール | |
Matsuda et al. | 1.3-μm-wavelength AlGaInAs multiple-quantum-well semi-insulating buried-heterostructure distributed-reflector laser arrays on semi-insulating InP substrate | |
JP4301925B2 (ja) | 半導体レーザ、半導体レーザの駆動方法および波長変換素子 | |
JP2003522404A (ja) | 強い複合結合型dfbレーザを使用する短い光パルスの発生 | |
JP4374862B2 (ja) | 半導体レーザ、半導体レーザの駆動方法および波長変換素子 | |
EP1087478A1 (en) | Generation of short optical pulses using strongly complex coupled DFB lasers. | |
JP4321970B2 (ja) | 半導体光増幅器およびase放射用光源装置および光ゲートアレイおよび波長可変レーザ装置および多波長レーザ装置および光伝送システム | |
RU2540233C1 (ru) | Инжекционный лазер с многоволновым модулированным излучением | |
CN207082720U (zh) | 一种低成本、高成品率的短腔分布反馈激光器 | |
US11557876B2 (en) | Semiconductor laser | |
JPH11145554A (ja) | 半導体パルスレーザ装置 | |
JP4606271B2 (ja) | 半導体レーザ | |
JP2018067604A (ja) | 光変調器付き半導体レーザ装置 | |
JP4606248B2 (ja) | 半導体レーザ | |
CN110376766B (zh) | 一种反射装置及可调谐激光器 | |
JP4074534B2 (ja) | 半導体レーザ | |
Zhu et al. | Multiwavelength picosecond optical pulse generation using an actively mode-locked multichannel grating cavity laser | |
JPH11317564A (ja) | 分布帰還型半導体レーザ及び単一モード光源 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20040712 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051013 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081212 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081216 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090204 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090421 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090615 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20090721 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090818 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090831 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120918 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130918 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |