JP4074534B2 - 半導体レーザ - Google Patents

半導体レーザ Download PDF

Info

Publication number
JP4074534B2
JP4074534B2 JP2003060489A JP2003060489A JP4074534B2 JP 4074534 B2 JP4074534 B2 JP 4074534B2 JP 2003060489 A JP2003060489 A JP 2003060489A JP 2003060489 A JP2003060489 A JP 2003060489A JP 4074534 B2 JP4074534 B2 JP 4074534B2
Authority
JP
Japan
Prior art keywords
gain
region
waveguide
wavelength
dbr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003060489A
Other languages
English (en)
Other versions
JP2004273644A (ja
Inventor
泰夫 柴田
伸浩 布谷
直樹 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2003060489A priority Critical patent/JP4074534B2/ja
Publication of JP2004273644A publication Critical patent/JP2004273644A/ja
Application granted granted Critical
Publication of JP4074534B2 publication Critical patent/JP4074534B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、半導体レーザに関し、より詳細には、波長多重光ネットワークにおいて波長可変幅の大きい波長可変レーザに関するものである。
【0002】
【従来の技術】
従来、通信用の光源としては、主にDFB(distributed Feedback;分布帰還型)レーザが用いられてきたが、近年、波長多重通信(WDM;Wavelength Division multiplexing)システムの発展にともない、発振波長を可変できる波長可変光源が求められるようになった。通信用の波長可変レーザとしては、以下の図1に示すようなDBR型レーザが知られている(例えば、非特許文献1参照)。
【0003】
図1は、従来のDBRレーザを示す断面図で、図中符号101は半導体基板、102は利得を有する活性層、103は導波路コア、104は分布ブラッグ反射器(DBR;Distributed Bragg Reflector)、105は活性層電極、106はDBR制御用電極、107は裏面電極、108は反射防止膜、109は導波路端面を示している。
【0004】
活性層102に連続して形成された導波路コア103には、周期的な摂動が形成され、分布ブラッグ反射器(DBR)104を構成している。この分布ブラッグ反射器104の端面には、反射防止膜108が形成されている。DBRレーザでは端面10と活性層102とDBR104により構成されるキャビティで発振し、その発振波長は、活性層102とDBR104と導波路端面109により構成されるキャビティの共振器長による縦モード波長のうちの一つがDBR104のブラッグ波長により選択されて決定される。
【0005】
DBRレーザにおける発振波長の可変機構は、以下のように説明される。つまり、DBR制御用電極106からDBR104へ制御電流IDBRを注入すると、導波路コア103の屈折率が変化する。このとき、DBR104の等価屈折率が変化するため、DBRのブラッグ波長が変化する。また、屈折率変化に伴い実効的に共振器長が変化するため、縦モード波長も変化する。縦モード波長とブラッグ波長は、電流注入に伴って共に短波にシフトするため、電流注入に伴って発振波長は短波長側にシフトする。ただし、DBR104への制御電流IDBRに対する感度は、ブラッグ波長の方が敏感で、より短波にシフトするため、注入電流の増加にともないブラッグ波長と選択されている縦モードとのずれが大きくなる。
【0006】
したがって、DBR104への制御電流IDBRが増加するにつれ、最初は連続的に発振波長が短波へシフトするが、縦モード波長の変化がブラッグ波長の変化に追従できなくなると、隣の縦モードに発振が跳ぶ(モードホップ)。このDBRレーザのモードホップ現象を図2に示す。DBRレーザには、原理的に発振不可能な波長帯が存在する。また、連続的に波長変化が可能な波長帯は連続波長可変幅と呼ばれ、連続波長可変幅の広いものが要求される。
【0007】
DBRレーザ連続波長可変幅の拡大には、2つの方法がある。この2つの方法については、以下に説明する。
上述したように、DBRレーザの発振波長は、ブラッグ波長と共振器の縦モードとの関係で決定される。連続波長可変幅の拡大のための第1の方法は、共振器の縦モード間隔を拡げることである。隣の縦モードまでの周波数(または波長)間隔が広くなれば、隣の縦モードまでモードホップするために必要なブラッグ波長と縦モードのずれが大きくなるため、連続的に波長変化できる領域が拡大される。縦モード間隔を広げる最も一般的な方法は、活性領域長を短縮することである。したがって、連続波長可変幅の拡大のための第1の方法としては、活性領域長を短縮することがあげられる。
【0008】
図3は、従来の他のDBRレーザを示す断面図で、連続波長可変幅を拡大するための第2の方法を説明するための図である。図中符号401は半導体基板、402は利得を有する活性層、403は導波路コア、404は分布ブラッグ反射器(DBR)、405は活性層電極、406はDBR制御用電極、407は裏面電極、408は反射防止膜、409は導波路端面、410は利得を有しない導波路コア(位相制御領域)、411は位相制御用電極を示している。
【0009】
活性層402とDBR404の間に導波路コア410を設け、DBR制御電流IDBRに加えて、さらに位相制御電流IPCにより伝播光の位相を調整してモードホップを回避する方法である。活性層402に連続して形成された導波路コア403には周期的な摂動が形成され、DBR404を構成している。DBR404の端面には、反射防止膜408が形成されている。導波路端面409は、反射ミラーとして作用する。導波路コア410で位相制御領域を形成している。伝播光の位相調整を行うため、厳密には連続波長可変幅の拡大ではないが、擬似的に広帯域の連続波長シフトが可能である。
【0010】
しかし、その場合には、波長の制御項目は、DBR制御電流IDBRと位相制御電流IPCの2つとなり、それらを同時にかつ複雑に制御しなくてはならない。実際の使用時には、DBR注入電流IDBRと位相制御電流IPCに対する波長マップをもとに波長制御を行わなくてはならず、そのため制御が難しいという問題があった。また、信頼性の観点からは、素子の劣化により、DBR制御電流IDBRおよび位相制御電流IPCの電流注入条件の変化を予想することは難しく実用化における問題となっている。
【0011】
図1に示すような位相制御領域を持たない構造の波長可変DBRレーザは、その制御の簡便で、素子が時間的に劣化しても波長のオンライン観察による電流値へのフィードバックが可能であり、劣化への対応が容易であるため、理想的なDBRレーザであるが、以下に挙げるような問題がある。
【0012】
【非特許文献1】
池上徹彦監修、土屋治彦、三上修編著、「半導体フォトニクス工学」(コロナ社)ISBN4−339−00623−8、1995年、306ページ
【0013】
【発明が解決しようとする課題】
連続波長可変幅の広く、かつ位相調整を行わないDBRレーザにおいて、活性領域を短縮化するため、その分、単位長さあたりに要求される利得は倍増する。また、波長シフト時、すなわち、DBR電流注入時は、DBR領域の導波路増大に伴い実効的な反射率が低下し、閾値利得は1〜2桁上昇し、さらに光出力の低下も問題となる。すなわち、波長シフト時に利得不足によって途中で発振が停止し、発振しても利得飽和により低出力となるため、実用化そのものが困難となっている。
【0014】
本発明は、このような問題に鑑みてなされたもので、その目的とするところは、モードホップが無く、制御が容易で波長可変域が大きく、素子劣化へ対応が容易である半導体レーザを提供することにある。
【0015】
【課題を解決するための手段】
本発明は、このような目的を達成するために、請求項1に記載の発明は、波長選択性を有する利得領域(502)と、利得および波長選択性を有しない導波路領域(503)と、利得を有しない反射領域(509)とが、光の進行方向に対して直列に接続された共振器と、前記導波路領域の光学的実効長を変化させるための手段(506)とを備え、前記共振器の縦モード波長のうち前記利得領域により選択された波長で発振し、前記縦モード波長のモード間隔が前記利得領域のストップバンド幅よりも広いことを特徴とする。(図4に示す実施例1に相当)
【0016】
また、請求項2に記載の発明は、請求項1に記載の発明において、前記利得領域(502)が、利得を有する利得媒質を導波路のコアに含み、前記導波路のコアもしくはクラッドを構成する媒質の少なくとも厚さ、または幅の一方が周期的に変化する第1の利得を有する回折格子(510)を備えていることを特徴とする。
【0017】
また、請求項3に記載の発明は、請求項1又は2に記載の発明において、前記反射領域(509)が、ミラーにより形成されていることを特徴とする。
【0018】
また、請求項4に記載の発明は、波長選択性を有する利得領域(602)と、利得および波長選択性を有しない第1の導波路領域(603)と、利得を有しない第2の導波路領域(609)とが、光の進行方向に対して直列に接続された共振器と、前記導波路領域の光学的実効長を変化させるための手段(606)とを備え、前記共振器の縦モード波長のうち少なくとも前記利得領域により選択された波長で発振し、前記縦モード波長のモード間隔が少なくとも前記利得領域のストップバンド幅よりも広いことを特徴とする。(図6に示す実施例2に相当)
【0019】
また、請求項5に記載の発明は、請求項4に記載の発明において、前記利得領域(602)が、利得を有する利得媒質を導波路のコアに含み、前記導波路のコアもしくはクラッドを構成する媒質の少なくとも厚さ、または幅の一方が周期的に変化する第1の利得を有する回折格子(613)を備えていることを特徴とする。
【0020】
また、請求項6に記載の発明は、請求項4又は5に記載の発明において、前記第2の導波路領域(609)が、周期構造を有する回折格子(614)により形成されており、前記共振器の縦モード波長のうち前記利得領域および前記第2の導波路領域により選択された波長で発振し、前記利得領域および前記第2の導波路領域のストップバンドが重なりを有し、前記縦モード波長のモード間隔が前記ストップバンドの重なりの幅よりも広いことを特徴とする。
【0021】
また、請求項7に記載の発明は、波長選択性を有する第1の利得領域(702)と、利得および波長選択性を有しない導波路領域(703)と、波長選択性を有する第2の利得領域(709)とが、光の進行方向に対して直列に接続された共振器と、前記導波路領域の光学的実効長を変化させるための手段(706)とを備え、前記共振器の縦モード波長のうち前記第1の利得領域および前記第2の利得領域により選択された波長で発振し、前記第1の利得領域および前記第2の利得領域のストップバンドが重なりを有し、前記縦モード波長のモード間隔が前記ストップバンドの重なりの幅よりも広いことを特徴とする。(図7に示す実施例3に相当)
【0022】
また、請求項8に記載の発明は、請求項7に記載の発明において、前記第1の利得領域(702)が、利得を有する利得媒質を導波路のコアに含み、前記導波路のコアもしくはクラッドを構成する媒質の少なくとも厚さ、または幅の一方が周期的に変化する第1の利得を有する回折格子(713)を備え、前記第2の利得領域(709)が、利得を有する利得媒質を導波路のコアに含み、前記導波路のコアもしくはクラッドを構成する媒質の少なくとも厚さ、または幅の一方が周期的に変化する第2の利得を有する回折格子(714)を備えていることを特徴とする。
【0023】
また、請求項9に記載の発明は、請求項2,5又は8に記載の発明において、前記第1の利得を有する回折格子(510,613,713)又は前記第2の利得を有する回折格子(714)の結合係数が300cm−1よりも大きいことを特徴とする。
【0024】
また、請求項10に記載の発明は、請求項1乃至9いずれかに記載の発明において、前記導波路領域の光学的実効長を変化させるための手段として、導波路の少なくともコアまたはクラッドの一部に電流を注入もしくは電圧を印加するための電極(506,606,706)が設けられていることを特徴とする。
【0025】
また、請求項11に記載の発明は、請求項1乃至10いずれかに記載の発明において、前記導波路領域の長さが10μmよりも短いことを特徴とする。
【0026】
本発明は、このような構成により、モードホップが無く、広い連続波長可変域が得られる波長可変レーザを得ることができる。
【0027】
【発明の実施の形態】
以下、図面を参照して本発明の実施例について説明する。
[実施例1]
図4は、本発明に係る半導体レーザの実施例1を示す断面図で、図中符号501は半導体基板、502は利得を有する活性層、503は利得を有しない導波路コア、504は分布ブラッグ反射器(DBR)、505は活性層電極、506は位相制御用電極(光学的実効長を変化させるための手段)、507は裏面電極、508は反射防止膜、509は導波路端面、510は回折格子を示している。
【0028】
この実施例1による半導体レーザは、波長選択性を有する活性層(利得領域)502と、利得および波長選択性を有しない有しない導波路コア(導波路領域)503と、利得を有しない反射領域(導波路端面)509とが、光の進行方向に対して直列に接続されているとともに、導波路コア503の光学的実効長を変化させるための位相制御用電極506を備えている。
【0029】
また、活性層502が、利得を有する利得媒質を導波路のコアに含み、導波路のコアもしくはクラッドを構成する媒質の少なくとも厚さ、または幅の一方が周期的に変化する第1の利得を有する回折格子510を備えている。この第1の利得を有する回折格子510の結合係数は、300cm−1よりも大きいように構成されている。
【0030】
また、導波路端面509が、波長選択性を有しない反射ミラーを構成していて、位相制御用電極506は、導波路の少なくともコアまたはクラッドの一部に電流を注入もしくは電圧を印加するための電極であり、導波路コア503の長さは、10μmよりも短いように構成されている。
【0031】
また、活性層502には周期的な摂動が形成され、DBR504を構成している。DBR504の端面には、反射防止膜508が形成されている。導波路端面509は、反射ミラーとして作用する。導波路端面509と利得を有しない導波路コア503と活性層502を含むDBR504により構成されるキャビティで発振する。一般的に利得を有するDBR構造を含む素子としては、いわゆる、DFBレーザが挙げられるが、DFBレーザでは利得を有するDBR構造のみでキャビティを構成するのに対し、本発明の半導体レーザは、DBRのみでは発振せず、利得を有しない導波路コア503を経て導波路端面509で反射された光が、再びDBR504に入射するフィードバックがあることにより初めて発振することができる点で根本的に発振原理がDFBレーザとは異なっている。
【0032】
本発明の半導体レーザにおいて、利得を有するDBR504の結合係数、長さ、および利得を有しない導波路コア503の長さの関係は、次のように設定する。すなわち、DBR504の長さは、DBRのみでは発振しない長さとし、導波路コア503の長さは、DBR504の実効長と利得を有しない導波路コア503の長さの和により決定される共振器長で、決定される縦モード間隔がDBR504のストップバンド幅よりも広くなるような長さとする。
【0033】
以下に、その発振原理および発振波長について詳細に説明する。
活性層502を含むDBR504は、波長選択性と光学利得をあわせもつ。従って、利得を有するDBR(反射領域)504では、ある特定の波長の光のみが増幅される。増幅される波長は、DBR504のBragg波長を中心とし、波長帯域は、DBR504のストップバンド幅で決定される。本実施例では、DBR504の結合係数kを300cm−1、長さを70μmに設定したため、ストップバンド幅は約10nm、DBR504の実効長は約30μmであった。発振波長は、活性層502を含むDBR504と利得を有しない導波路コア503と導波路端面509とにより構成されるキャビティの共振器長による縦モード波長のうちの一つがDBR504のブラッグ波長により選択され決定される。縦モード間隔は
【0034】
【数1】
Figure 0004074534
【0035】
で与えられる。ここで、λ0は発振波長、neffは波長分散を考慮した実効屈折率、LeffはDBRの実効長、Lは利得を有しない導波路コア503の長さである。本実施例1では利得を有しない導波路コア503の長さLを10μmとした。その結果縦モード間隔は、発振波長が約1.55μm、実効屈折率が約3.5であることを考慮すると(1)式より約11.5nmとなり、縦モード間隔がストップバンド幅よりも広くなっていることがわかる。発振波長は前述のとおり、幅広いストップバンドの中に含まれる、キャビティの共振器長による縦モード波長で生じる。縦モード間隔がストップバンド幅よりも広いため、ストップバンド内には縦モードは一本しか存在しない。この様子を図5に示す。図5において、実線は利得を有するDBRの反射率、細い破線はキャビティの縦モードの透過スペクトルを示している。発振波長は、図中の一点鎖線で示される、ストップバンドと縦モードが一致した点λで行われる。
【0036】
波長チューニングは次のように行われる。利得を有しない導波路コア503に制御電流を注入すると、導波路コアの屈折率が変化する。そのため、導波路コア503の実効的光学長が変化し、縦モードの波長および間隔が変化する。この様子を図5の太い破線で示す。その結果、発振波長は、図5の実線と太い破線のピークが一致した点、すなわちλにシフトする。共振器長により決定される縦モード間隔がストップバンド幅よりも広いために、ストップバンドと縦モード波長が一致する点は一点しかなく、これが電流注入により連続的に変化するので、発振は必ずこのストップバンドと縦モード波長が一致する点で生じ、モードホップすることはない。したがって、この半導体レーザの連続波長可変幅は、ストップバンド幅により決定される。すなわち、本実施例1の場合、ストップバンド幅は約10nmであり、連続可変幅は約10nmが得られる。
【0037】
本実施例1で用いる活性層502の構造に関しては、特に制約を設けるものではなく、通常用いられるすべての構造の活性層について本実施例1の構成をとることにより、上述した説明のような効果が期待できる。すなわち、活性層に関しては、InGaAsP、GaAs、AlGaAs、InGaAs、GaInNAs等任意の材質について適用が可能であり、活性層の構造に関してもバルク、MQW、量子細線、量子ドットを問わず、また、活性層領域の導波路構造に関してもpn埋め込み、リッジ構造、半絶縁埋め込み構造、ハイメサ構造等を用いた場合でも同様な効果が期待できる。基板に関してもn型基板に限定されるものではなく、p型、半絶縁型などでも同様な効果が得られることは言うまでもない。
【0038】
また、周期的摂動は、活性層502上の直に形成しなくとも、活性層を導波する光の電界が零でない有限な値を有する領域に形成されていれば同様な効果が期待できる。例えば、通常の半導体レーザで用いられている分離閉じ込め構造(SCH構造)のSCH層上に形成されていても良く、また、活性層と接していない領域にクラッド層よりも屈折率が高い層を積層し、そこに周期的摂動を形成しても全く同様な効果が期待できる。
【0039】
[実施例2]
図6は、本発明に係る半導体レーザの実施例2を示す断面図で、図中符号601は半導体基板、602は利得を有する活性層、603は利得を有しない導波路コア、604は分布ブラッグ反射器(DBR)、605は活性層電極、606は位相制御用電極(光学的実効長を変化させるための手段)、607は裏面電極、608は反射防止膜、609は利得を有しない導波路コア、610は分布ブラッグ反射器(DBR)、611はブラッグ波長制御用電極、612は反射防止膜、613,614は回折格子を示している。
【0040】
この実施例2による半導体レーザは、波長選択性を有する活性層(利得領域)602と、利得および波長選択性を有しない第1の導波路コア(導波路領域)603と、利得を有しない導波路コア(導波路領域)609とが、光の進行方向に対して直列に接続されているとともに、導波路コアの光学的実効長を変化させるための位相制御用電極606を備えている。
【0041】
また、活性層602が、利得を有する利得媒質を導波路のコアに含み、導波路のコアもしくはクラッドを構成する媒質の少なくとも厚さ、または幅の一方が周期的に変化する第1の利得を有する回折格子613を備えている。さらに、第2の導波路コア609は、周期構造を有する回折格子614により形成されていて、反射領域となっている。
【0042】
また、活性層602には周期的な摂動が形成され、DBR604を構成している。DBR604の端面には、反射防止膜608が形成されている。利得を有しない導波路コア609は、周期的な摂動が形成されてDBR610を形成している。ブラッグ波長制御用電極611は、必要に応じてDBR604と610の反射波長を一致させるために、あるいは言い方を変えれば反射スペクトルにおけるストップバンドに重なりを持たせるために用いる。ただし、DBR604と610のブラッグ波長をほぼ一致させ、DBR604と610のストップバンドに重なりがあるように作製すれば、または、より具体的には、DBR604と610がお互いの反射スペクトルのストップバンドの少なくとも一部が重なり合う様に、そのBragg波長および結合係数が設定されていればブラッグ波長制御用電極611は必ずしも必要ではない。
【0043】
動作原理ならびに波長チューニング原理は、レーザのキャビティが利得を有しないDBR610と利得を有しない導波路コア603と活性層602を含むDBR604とにより構成されることを除けば、図4に示した実施例1と同様である。ただし、縦モード間隔はDBR610,604の実効長をそれぞれLeff 1,Leff 2として
【0044】
【数2】
Figure 0004074534
【0045】
で与えられ、波長可変帯域は両側に存在するDBR604と610のストップバンドの重なりの幅で決定されることになる。
【0046】
本実施例2の場合も、活性層602の構造に関しては、特に制約を設けるものではなく、通常用いられるすべての構造の活性層について本実施例2の構成をとることにより、上述した説明のような効果が期待できる。すなわち、活性層に関しては、InGaAsP、GaAs、AlGaAs、InGaAs、GaInNAs等任意の材質について適用が可能であり、活性層の構造に関してもバルク、MQW、量子細線、量子ドットを問わず、また、活性層領域の導波路構造に関してもpn埋め込み、リッジ構造、半絶縁埋め込み構造、ハイメサ構造等を用いた場合でも同様な効果が期待できる。基板に関してもn型基板に限定されるものではなく、p型、半絶縁型などでも同様な効果が得られることは言うまでもない。
【0047】
また、周期的摂動は活性層602上の直に形成しなくとも、活性層を導波する光の電界が零でない有限な値を有する領域に形成されていれば同様な効果が期待できる。例えば、通常の半導体レーザで用いられている分離閉じ込め構造(SCH構造)のSCH層上に形成されていても良く、また、活性層と接していない領域にクラッド層よりも屈折率が高い層を積層し、そこに周期的摂動を形成しても全く同様な効果が期待できる。
【0048】
[実施例3]
図7は、本発明に係る半導体レーザの実施例3を示す断面図で、図中符号701は半導体基板、702は利得を有する第1の活性層、703は利得を有しない導波路コア、704は分布ブラッグ反射器(DBR)、705は活性層電極、706は位相制御用電極(光学的実効長を変化させるための手段)、707は裏面電極、708は反射防止膜、709は利得を有する第2の活性層、710は分布ブラッグ反射器(DBR)、711は活性層電極、712は反射防止膜、713,714は回折格子を示している。
【0049】
この実施例3による半導体レーザは、波長選択性を有する第1の活性層(利得領域)702と、利得および波長選択性を有しない導波路コア(導波路領域)703と、波長選択性を有する第2の活性層(利得領域)709とが、光の進行方向に対して直列に接続されているとともに、導波路コアの光学的実効長を変化させるための位相制御用電極706を備えている。
【0050】
また、第1の活性層702が、利得を有する利得媒質を導波路のコアに含み、導波路のコアもしくはクラッドを構成する媒質の少なくとも厚さ、または幅の一方が周期的に変化する第1の利得を有する回折格子713を備え、第2の活性層709が、利得を有する利得媒質を導波路のコアに含み、導波路のコアもしくはクラッドを構成する媒質の少なくとも厚さ、または幅の一方が周期的に変化する第2の利得を有する回折格子714を備えている。
【0051】
また、活性層702には周期的な摂動が形成され、DBR704を構成している。DBR704の端面には、反射防止膜708が形成されている。利得を有する活性層709は、周期的な摂動が形成されてDBR710を形成している。利得を有するDBR704および710は、お互いの反射スペクトルのストップバンドの少なくとも一部が重なり合う様に、そのBragg波長および結合係数が設定されている。
【0052】
動作原理ならびに波長チューニング原理は、レーザのキャビティが活性層709を含むDBR710と利得を有しない導波路コア703と活性層702を含むDBR704とにより構成されることを除けば、図4に示した実施例1と同様である。ただし、縦モード間隔はDBR710,704の実効長をそれぞれLeff 1,Leff 2として(2)式で与えられ、波長可変帯域は両側に存在するDBR704と710のストップバンドの重なりの幅で決定されることになる。
【0053】
本実施例3の場合も、活性層702,709の構造に関しては、特に制約を設けるものではなく、通常用いられるすべての構造の活性層について本実施例3の構成をとることにより、上述した説明のような効果が期待できる。すなわち、活性層に関しては、InGaAsP、GaAs、AlGaAs、InGaAs、GaInNAs等任意の材質について適用が可能であり、活性層の構造に関してもバルク、MQW、量子細線、量子ドットを問わず、また、活性層領域の導波路構造に関してもpn埋め込み、リッジ構造、半絶縁埋め込み構造、ハイメサ構造等を用いた場合でも同様な効果が期待できる。基板に関してもn型基板に限定されるものではなく、p型、半絶縁型などでも同様な効果が得られることは言うまでもない。
【0054】
また、周期的摂動は活性層702,709上に直に形成しなくとも、活性層を導波する光の電界が零でない有限な値を有する領域に形成されていれば同様な効果が期待できる。例えば、通常の半導体レーザで用いられている分離閉じ込め構造(SCH構造)のSCH層上に形成されていても良く、また、活性層と接していない領域にクラッド層よりも屈折率が高い層を積層し、そこに周期的摂動を形成しても全く同様な効果が期待できる。
【0055】
【発明の効果】
以上説明したように本発明によれば、波長選択性を有する利得領域と、利得および波長選択性を有しない導波路領域と、利得を有しない反射領域とが、光の進行方向に対して直列に接続されているとともに、導波路領域の光学的実効長を変化させるための手段を備えているので、モードホップなく広い連続波長可変域が得られる波長可変レーザを提供することができる。
【0056】
また、波長選択性を有する利得領域と、利得および波長選択性を有しない第1の導波路領域と、利得および波長選択性を有しない第2の導波路領域とが、光の進行方向に対して直列に接続されているとともに、導波路領域の光学的実効長を変化させるための手段を備えているので、モードホップなく広い連続波長可変域が得られる波長可変レーザを提供することができる。
【0057】
さらに、波長選択性を有する第1の利得領域と、利得および波長選択性を有しない導波路領域と、波長選択性を有する第2の利得領域とが、光の進行方向に対して直列に接続されているとともに、導波路領域の光学的実効長を変化させるための手段を備えているので、モードホップなく広い連続波長可変域が得られる波長可変レーザを提供することができる。
【図面の簡単な説明】
【図1】従来のDBRレーザを示す断面図である。
【図2】DBRレーザのモードホップ現象を示す図である。
【図3】従来の他のDBRレーザを示す断面図である。
【図4】本発明に係る半導体レーザの実施例1を示す断面図である。
【図5】本発明の実施例1の動作原理を説明するための図で、DBRの反射スペクトルと縦モードスペクトルの関係を示した図である。
【図6】本発明に係る半導体レーザの実施例2を示す断面図である。
【図7】図7は、本発明に係る半導体レーザの実施例3を示す断面図である。
【符号の説明】
101 半導体基板
102 利得を有する活性層
103 導波路コア
104 分布ブラッグ反射器(DBR)
105 活性層電極
106 DBR制御用電極
107 裏面電極
108 反射防止膜
109 導波路端面
401 半導体基板
402 利得を有する活性層
403 導波路コア
404 分布ブラッグ反射器(DBR)
405 活性層電極
406 DBR制御用電極
407 裏面電極
408 反射防止膜
409 導波路端面
410 利得を有しない導波路コア(位相制御領域)
411 位相制御用電極
501 半導体基板
502 利得を有する活性層
503 利得を有しない導波路コア
504 分布ブラッグ反射器(DBR)
505 活性層電極
506 位相制御用電極(光学的実効長を変化させるための手段)
507 裏面電極
508 反射防止膜
509 導波路端面
510 回折格子
601 半導体基板
602 利得を有する活性層
603 利得を有しない導波路コア
604 分布ブラッグ反射器(DBR)
605 活性層電極
606 位相制御用電極(光学的実効長を変化させるための手段)
607 裏面電極
608 反射防止膜
609 利得を有しない導波路コア
610 分布ブラッグ反射器(DBR)
611 ブラッグ波長制御用電極
612 反射防止膜
613,614 回折格子
701 半導体基板
702 利得を有する活性層
703 利得を有しない導波路コア
704 分布ブラッグ反射器(DBR)
705 活性層電極
706 位相制御用電極(光学的実効長を変化させるための手段)
707 裏面電極
708 反射防止膜
709 利得を有する活性層
710 分布ブラッグ反射器(DBR)
711 活性層電極
712 反射防止膜
713,714 回折格子

Claims (11)

  1. 波長選択性を有する利得領域と、利得および波長選択性を有しない導波路領域と、利得を有しない反射領域とが、光の進行方向に対して直列に接続された共振器と、
    記導波路領域の光学的実効長を変化させるための手段とを備え、
    前記共振器の縦モード波長のうち前記利得領域により選択された波長で発振し、前記縦モード波長のモード間隔が前記利得領域のストップバンド幅よりも広いことを特徴とする半導体レーザ。
  2. 前記利得領域が、利得を有する利得媒質を導波路のコアに含み、前記導波路のコアもしくはクラッドを構成する媒質の少なくとも厚さ、または幅の一方が周期的に変化する第1の利得を有する回折格子を備えていることを特徴とする請求項1に記載の半導体レーザ。
  3. 前記反射領域が、ミラーにより形成されていることを特徴とする請求項1又は2に記載の半導体レーザ。
  4. 波長選択性を有する利得領域と、利得および波長選択性を有しない第1の導波路領域と、利得を有しない第2の導波路領域とが、光の進行方向に対して直列に接続された共振器と、
    記導波路領域の光学的実効長を変化させるための手段とを備え、
    前記共振器の縦モード波長のうち少なくとも前記利得領域により選択された波長で発振し、前記縦モード波長のモード間隔が少なくとも前記利得領域のストップバンド幅よりも広いことを特徴とする半導体レーザ。
  5. 前記利得領域が、利得を有する利得媒質を導波路のコアに含み、前記導波路のコアもしくはクラッドを構成する媒質の少なくとも厚さ、または幅の一方が周期的に変化する第1の利得を有する回折格子を備えていることを特徴とする請求項4に記載の半導体レーザ。
  6. 前記第2の導波路領域が、周期構造を有する回折格子により形成されており、前記共振器の縦モード波長のうち前記利得領域および前記第2の導波路領域により選択された波長で発振し、前記利得領域および前記第2の導波路領域のストップバンドが重なりを有し、前記縦モード波長のモード間隔が前記ストップバンドの重なりの幅よりも広いことを特徴とする請求項4又は5に記載の半導体レーザ。
  7. 波長選択性を有する第1の利得領域と、利得および波長選択性を有しない導波路領域と、波長選択性を有する第2の利得領域とが、光の進行方向に対して直列に接続された共振器と、
    記導波路領域の光学的実効長を変化させるための手段とを備え、
    前記共振器の縦モード波長のうち前記第1の利得領域および前記第2の利得領域により選択された波長で発振し、前記第1の利得領域および前記第2の利得領域のストップバンドが重なりを有し、前記縦モード波長のモード間隔が前記ストップバンドの重なりの幅よりも広いことを特徴とする半導体レーザ。
  8. 前記第1の利得領域が、利得を有する利得媒質を導波路のコアに含み、前記導波路のコアもしくはクラッドを構成する媒質の少なくとも厚さ、または幅の一方が周期的に変化する第1の利得を有する回折格子を備え、前記第2の利得領域が、利得を有する利得媒質を導波路のコアに含み、前記導波路のコアもしくはクラッドを構成する媒質の少なくとも厚さ、または幅の一方が周期的に変化する第2の利得を有する回折格子を備えていることを特徴とする請求項7に記載の半導体レーザ。
  9. 前記第1の利得を有する回折格子又は前記第2の利得を有する回折格子の結合係数が300cm−1よりも大きいことを特徴とする請求項2,5又は8に記載の半導体レーザ。
  10. 前記導波路領域の光学的実効長を変化させるための手段として、導波路の少なくともコアまたはクラッドの一部に電流を注入もしくは電圧を印加するための電極が設けられていることを特徴とする請求項1乃至9いずれかに記載の半導体レーザ。
  11. 前記導波路領域の長さが10μmよりも短いことを特徴とする請求項1乃至10いずれかに記載の半導体レーザ。
JP2003060489A 2003-03-06 2003-03-06 半導体レーザ Expired - Fee Related JP4074534B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003060489A JP4074534B2 (ja) 2003-03-06 2003-03-06 半導体レーザ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003060489A JP4074534B2 (ja) 2003-03-06 2003-03-06 半導体レーザ

Publications (2)

Publication Number Publication Date
JP2004273644A JP2004273644A (ja) 2004-09-30
JP4074534B2 true JP4074534B2 (ja) 2008-04-09

Family

ID=33123015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003060489A Expired - Fee Related JP4074534B2 (ja) 2003-03-06 2003-03-06 半導体レーザ

Country Status (1)

Country Link
JP (1) JP4074534B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005091452A1 (ja) * 2004-03-23 2005-09-29 Nippon Telegraph And Telephone Corporation Dbr型波長可変光源
JP2008035265A (ja) * 2006-07-28 2008-02-14 Oki Electric Ind Co Ltd 多波長キャリア抑圧光パルス信号生成装置
JP2010239151A (ja) * 2010-06-23 2010-10-21 Opnext Japan Inc 集積型光導波路素子
EP2908392B8 (en) * 2014-02-13 2018-05-16 Alcatel Lucent Tunable laser device

Also Published As

Publication number Publication date
JP2004273644A (ja) 2004-09-30

Similar Documents

Publication Publication Date Title
US10193305B2 (en) Wavelength tunable laser device and laser module
JP6589273B2 (ja) 波長可変レーザ及び波長可変レーザモジュール
US9312663B2 (en) Laser device, light modulation device, and optical semiconductor device
JPH07326820A (ja) 波長可変半導体レーザ装置
JP4954992B2 (ja) 半導体光反射素子及び該半導体光反射素子を用いる半導体レーザ及び該半導体レーザを用いる光トランスポンダ
US7873082B2 (en) Semiconductor integrated device
WO2016152274A1 (ja) 波長可変レーザ素子およびレーザモジュール
US7382817B2 (en) V-coupled-cavity semiconductor laser
US7949020B2 (en) Semiconductor laser and optical integrated semiconductor device
JP4630128B2 (ja) 半導体レーザ装置および波長制御方法
WO2019235235A1 (ja) 光送信機および多波長光送信機
JP5001239B2 (ja) 半導体波長可変レーザ
EP4042529B1 (en) Wavelength control of multi-wavelength laser
JP2011086714A (ja) 波長可変レーザ
JP4074534B2 (ja) 半導体レーザ
US7995635B2 (en) Semiconductor laser
JP4594816B2 (ja) 波長可変レーザ
US11557876B2 (en) Semiconductor laser
JP2008288352A (ja) 半導体レーザ及び半導体導波路素子
JP5058087B2 (ja) 波長可変半導体レーザ
JP2018011023A (ja) 波長可変半導体レーザ
JP2011175109A (ja) 波長可変光フィルタおよび波長可変レーザ
JP5834910B2 (ja) 半導体レーザ及びその製造方法
US20240039242A1 (en) Wavelength Tunable Laser
US20240113504A1 (en) Extended-cavity diode laser component and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees