WO2005091452A1 - Dbr型波長可変光源 - Google Patents

Dbr型波長可変光源 Download PDF

Info

Publication number
WO2005091452A1
WO2005091452A1 PCT/JP2005/005246 JP2005005246W WO2005091452A1 WO 2005091452 A1 WO2005091452 A1 WO 2005091452A1 JP 2005005246 W JP2005005246 W JP 2005005246W WO 2005091452 A1 WO2005091452 A1 WO 2005091452A1
Authority
WO
WIPO (PCT)
Prior art keywords
dbr
optical waveguide
region
wavelength
active region
Prior art date
Application number
PCT/JP2005/005246
Other languages
English (en)
French (fr)
Inventor
Naoki Fujiwara
Nobuhiro Nunoya
Nobuhiro Kikuchi
Yasuo Shibata
Hiroshi Yasaka
Original Assignee
Nippon Telegraph And Telephone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph And Telephone Corporation filed Critical Nippon Telegraph And Telephone Corporation
Priority to JP2006516885A priority Critical patent/JP4033887B2/ja
Priority to CN2005800003189A priority patent/CN1774845B/zh
Priority to US10/555,156 priority patent/US20070041415A1/en
Priority to EP05727098A priority patent/EP1729381A4/en
Publication of WO2005091452A1 publication Critical patent/WO2005091452A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • H01S5/06255Controlling the frequency of the radiation
    • H01S5/06256Controlling the frequency of the radiation with DBR-structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/125Distributed Bragg reflector [DBR] lasers

Definitions

  • the present invention relates to a DBR type tunable light source, and more particularly, to a DBR type tunable light source capable of continuously tunable over a wide band with one wavelength control current.
  • DBR type lasers are used as tunable light sources for optical communication, and their oscillation mechanism and tunable wavelength mechanism have already been reported! 1 and Non-Patent Document 2).
  • FIG. 12 is a diagram for explaining a basic structure of a DBR type variable wavelength light source according to the related art.
  • FIG. 12A is a cross-sectional view of a plane including the optical waveguide and perpendicular to the substrate 11.
  • FIG. 12B shows a cross-sectional view (top view) of a plane parallel to the substrate 11 including the cross-sectional display of FIG. 12A.
  • non-active area optical waveguides 13a and 13b are arranged on both sides of an active area optical waveguide 12 provided on a substrate 11.
  • DBR regions (distributed reflectors) 14a and 14b composed of diffraction grating forces are formed in the non-active region optical waveguides 13a and 13b, respectively, in contact with the insulating regions 15a and 15b.
  • An upper cladding layer 9 is formed on the upper and side surfaces of each optical waveguide described above.
  • the oscillation wavelength of this DBR type variable wavelength light source is determined by selecting only the longitudinal mode wavelengths existing in the black reflection band of the DBR regions 14a and 14b from the longitudinal mode wavelengths determined by the cavity length.
  • the insulating regions 15a and 15b are regions having high resistance. In order to make ohmic contact with the electrodes 18a, 18b, 18c, the insulating regions 15a, 15b are removed by removing a part of the InGaAsP layer (not shown in FIG. 12A) formed on the upper cladding layer 9. Is formed. That is, the insulating regions 15a and 15b have a function of insulating and separating the DBR control current 17 and the active region current 16.
  • DBR distributed reflector
  • the insulating regions 15a and 15b are represented as regions where the above-described diffraction grating does not exist. This is because, as described above, the insulating regions 15a and 15b do not contribute to the change in the refractive index even if the diffraction grating is provided, since no current flows due to high resistance. Therefore, a diffraction grating may be formed in the insulating regions 15a and 15b.
  • active region current 16 is injected into active region optical waveguide 12 via electrode 18c, and DBR control current 17 is applied to DBR regions 14a and 14b via electrodes 18a and 18b. Is injected.
  • DBR control current 17 By injecting the DBR control current 17 into the DBR regions 14a and 14b, a change in the refractive index of the DBR regions 14a and 14b occurs. With the change in the refractive index, both the above-mentioned longitudinal mode wavelength and the Bragg wavelength can be shifted to the shorter wavelength side.
  • the sensitivity of the wavelength shift accompanying the change in the refractive index caused by the injection of the DBR control current 17 into the DBR regions 14a and 14b is more sensitive to the Bragg wavelength than to the longitudinal mode wavelength. That is, the Bragg wavelength shifts to the shorter wavelength side faster.
  • the reason is that, when the DBR control current 17 is injected into the laser resonator composed of the active region optical waveguide 12 and the non-active region optical waveguides 13a and 13b, the non-active region optical waveguides 13a and 13b or the DBR region 14a, Only at 14b is the force causing a change in the refractive index.
  • the Bragg wavelength shift reflects only the change in the refractive index of the DBR regions 14a and 14b, whereas the longitudinal mode wavelength shift reflects the change in the refractive index of the entire laser resonator.
  • the longitudinal mode wavelength shift can be calculated according to the following equation (1).
  • ⁇ ⁇ is the longitudinal mode wavelength shift amount
  • is the longitudinal mode wavelength
  • ⁇ ⁇ is the longitudinal mode wavelength
  • Lag wavelength shift, ⁇ is Bragg wavelength, L and L are front and rear (
  • a, 14b is the effective length. This length is called an effective length or an effective length, and conforms to the definition of Non-Patent Document 2.
  • the DBR distributed reflector
  • irregularities having a constant pitch are formed in the DBR region, and light having a wavelength corresponding to this pitch, that is, light having a Bragg wavelength is selectively strongly reflected.
  • a high reflection band having a width of several nm is formed around the Bragg wavelength, and the DBR acts as a diffraction grating in the high reflection band.
  • FIG. 13 is a diagram illustrating a state of reflection in the DBR regions 14a and 14b.
  • Light having a wavelength within the high reflection band where Bragg reflection occurs is reflected in a distributed manner as shown in FIG. Therefore, the propagation length felt by the light is shorter than the actual length of the DBR regions 14a and 14b. This length is called the effective length.
  • FIG. 14 is a diagram showing the relationship between the length of the DBR region and the effective length, with the diffraction grating coupling constant ⁇ as a parameter.
  • FIG. 15 is a table showing the effective length saturation value at each coupling constant value ⁇ .
  • the reflectivity of the DBR region also increases as the length of the DBR region increases.
  • the oscillating light receives the strongest reflection in the DBR region near the active region. Therefore, the reflectivity converges to a constant value when the DBR region becomes longer to some extent.
  • the effective length of the DBR is the optical path length that the propagating light feels when considering the distributed reflection state of the diffraction grating.
  • the reflectivity and effective length show very similar increases and decreases with respect to the length of the diffraction grating or DBR region.
  • the reflectance also depends on the coupling loss at the junction between the active region and the DBR region. For this reason, the reflectivity is not appropriate as a design parameter. Therefore, the effective length, which reflects the reflectivity and is not affected by the coupling loss at the junction between the active region and the DBR region, is adopted as a device design parameter.
  • the effective length of the DBR region is a parameter related to the laser cavity length, longitudinal mode interval, Bragg reflectivity, etc. By considering the value of this effective length, an efficient DBR laser can be designed. .
  • the numerator (L + L) of the two items on the right side of the above equation (1) is the variable refractive index region (that is, DB eff-f eff-r
  • the denominator (L + L + L) indicates the total of the effective lengths of the R region, and the total resonator length. Strict a eff-r eff ⁇ r
  • the length of the insulating regions 15a and 15b should be added to the total cavity length.
  • the insulating regions 15a and 15b are configured as extremely short as 5 to 10 m, the influence of the error on the entire resonator length is small. Therefore, the lengths of the insulating regions 15a and 15b are omitted in the equation (1).
  • the longitudinal mode wavelength shift amount ⁇ is increased by the amount of the coefficient of the second term on the right side.
  • FIG. 4 is a diagram illustrating a relationship between a DBR control current of a wavelength tunable light source and an oscillation wavelength. Continuous wavelength shifts and discrete mode jumps are frequently repeated. The whole variable control characteristic of the oscillation wavelength is discrete, which is not preferable. According to Non-Patent Document 3, the continuous wavelength variable width (continuous wavelength shift bandwidth) ⁇ is given by the following equation.
  • Equation 2 (2) In the above equation (2), ⁇ represents a continuous wavelength variable width, and ⁇ represents an effective refractive index.
  • the long tunable laser one having a wide continuous wavelength tunable width ⁇ is preferable!
  • FIG. 17 is a spectrum diagram for explaining a wavelength shift in a DBR-type wavelength tunable light source that uses the prior art.
  • the reason that the wavelength tunable control characteristic becomes discrete due to the discrete mode jump described above is that the wavelength change between the longitudinal mode wavelength and the Bragg wavelength with respect to the injection amount of the DBR control current described above. This is because there is a difference in sensitivity.
  • FIGS. 17A to 17C by increasing the DBR control current, the stop band changes in response to the change in the Bragg wavelength, and the stop band changes in response to the change in the longitudinal mode wavelength.
  • the sensitivity of the change is higher than the change of the oscillation wavelength.
  • the stopband shifts to shorter wavelengths faster. Therefore, the oscillation wavelength moves to the longer wavelength side relative to the stop band (Bragg reflection band) due to the increase in the DBR control current. If the DBR control current is further increased beyond the state shown in FIG. 17C, a mode jump occurs.
  • Non-Patent Document 1 As a method of avoiding this mode jump, there is a method of performing wavelength control with a multi-electrode configuration by adding a phase adjustment region (see Non-Patent Document 1).
  • control is not easy because the number of control items increases. Further, it becomes a practical problem that it is difficult to predict the fluctuation of each control current at the time of deterioration of the element over time.
  • the active region length L is required as shown in the above equation (2).
  • Figure 18 shows the tunable characteristics of the DBR tunable light source with a reduced active region length L.
  • FIG. 1 By shortening the active region length L, the wavelength range that can be continuously varied is broadband.
  • the band was manufactured, and a broadband mirror as the theoretical value was obtained.
  • the carrier density of the active region optical waveguide 12 sharply increases as the active region current 16 increases. Once laser oscillation occurs, the carrier density of the active region optical waveguide 12 is clamped (stabilized to a substantially constant value). Further active area current Increasing 16 causes the carrier density to increase very slowly. There is a relationship that the refractive index of the active region optical waveguide 12 that determines the initial phase of the oscillation mode decreases as the carrier density in this region increases.
  • the initial phase is determined by the value of the oscillation threshold current, and if the oscillation threshold current is large, the oscillation mode is shifted to the shorter wavelength side by that much. After that, even if the active region current 16 is increased, the initial phase hardly changes because the carrier density is clamped.
  • the oscillation threshold current of the active region current 16 increases due to the decrease in the reflectance accompanying the injection of the DBR control current 17.
  • the gain of the active region optical waveguide 12 becomes insufficient.
  • the length of the DBR regions 14a and 14b before and after the active region optical waveguide 12 is made sufficiently long to reach the effective length saturation value, and high reflectivity is achieved. was prevented from stopping. Therefore, even though the oscillation threshold current may increase during the wavelength tunable control, it was impossible to control the rate of change of the oscillation threshold current.
  • Non-Patent Document 1 Semiconductor Photo-Tasu Engineering P.306—311 Supervision: Tetsuhiko Ikegami Corona Publishing January 10, 1995
  • Non-patent document 2 Semiconductor laser P.283-288 Japan Society of Applied Physics, edited by Kenichi Iga, published by Ohmsha October 25, 1994
  • Non-Patent Document 3 Study on High Performance of Tunable Semiconductor Laser (Doctoral Dissertation) P.39-43, P.54-59, P.65-68 Hiroyuki Ishii March 1999
  • Shift is the limit. In order to achieve a continuous wavelength shift width of 6 nm or more, it is necessary to reduce the active region length L of the active region optical waveguide 12 to about 30 m. Active area length L aa In order to compensate for the lack of gain of the active region optical waveguide 12 caused by shortening the length, the DBR region 14 must be lengthened so as to obtain a high reflectance. As a result, there is a problem that such a conventional DBR laser becomes a low-output light source. In addition, the active region length L and the gain of the active region optical waveguide 12 and the phase condition of the oscillation mode are set as follows.
  • Figure 19 shows the initial phase conditions for a DBR tunable light source with a reduced active region length L.
  • FIG. 9 is a characteristic diagram showing a wavelength tunable characteristic when is not appropriate. As shown in FIG. 19, unless the above conditions are properly designed, mode jumps occur immediately after the start of the wavelength shift, which is a practical problem.
  • the present invention has a tunable oscillation wavelength that can be continuously controlled over a wider bandwidth, that is, has a wavelength tunable characteristic capable of continuous wavelength shift, and has a 6 nm It is an object of the present invention to provide a DBR-type variable wavelength light source capable of performing the above continuous wavelength shift and having a higher output than the conventional technology.
  • the configuration of the present invention provides a DBR type wavelength tunable light source including an optical waveguide surrounded by a cladding layer on a substrate, wherein the oscillation wavelength is variably controlled by a DBR control current.
  • a first inactive region optical waveguide that is possible and includes a first DBR region having a diffraction grating in a section corresponding to an effective length of 95% or more of the effective length saturation value;
  • a second non-active region optical waveguide including a second DBR region having a diffraction grating in a section shorter in length than the first DBR region; and
  • the first non-active region optical waveguide and the second non-active region optical waveguide are optically connected to both ends, and the light emitting state is controlled by the active region current independently of the DBR control current.
  • the effective length of the diffraction grating in the front (second) DBR region is formed so as to be 75% or less of the effective length saturated value, and the both DBR regions are formed. It is preferable that the end face is provided with an antireflection film.
  • the ratio between the oscillation wavelength shift amount and the Bragg wavelength shift amount should be 0.9 or more and 1.1 or less. Is preferred. If this ratio falls within this range, no mode jump will occur in most cases even if the perfect mode hop-free condition (the ratio of the oscillation wavelength shift to the Bragg wavelength shift is 1) is not satisfied. It is.
  • the oscillation wavelength in a DBR type wavelength tunable light source including an optical waveguide surrounded by a cladding layer on a substrate, the oscillation wavelength can be variably controlled by a DBR control current.
  • a second inactive region optical waveguide that can control the oscillation wavelength and includes a second DBR region having a diffraction grating in a section corresponding to an effective length of 75% or less of the effective length saturation value;
  • the first non-active region optical waveguide and the second non-active region optical waveguide are optically connected to both ends, and the light emitting state is controlled by the active region current independently of the DBR control current.
  • An area optical waveguide, and the active area optical waveguide of the first non-active area optical waveguide. Comprises a highly reflective film disposed on an end face on the opposite side, and an antireflection film disposed on an end face of the second inactive area optical waveguide opposite to the active area optical waveguide.
  • the oscillation wavelength can be variably controlled by a DBR control current
  • An inactive region optical waveguide including a DBR region having a diffraction grating in a section corresponding to an effective length of 75% or less of the effective length saturation value, and an optically connected to the inactive region optical waveguide;
  • An active region optical waveguide whose light emitting state is controlled by an active region current independently of the DBR control current; and an antireflection film disposed on an end face of the non-active region optical waveguide opposite to the active region optical waveguide.
  • a high-reflection film disposed on an end face of the active region optical waveguide opposite to the non-active region optical waveguide. That is, in order to further reduce the size of the light source, it is preferable to replace the long (first) DBR region with a highly reflective film.
  • the rate of increase / decrease of the oscillation threshold can be optimized, and a light source satisfying the relationship of Expression (3) can be realized.
  • the DBR area on the rear side is required.
  • Region 29 is preferably long enough to obtain high reflectivity, and the length of front DBR region 24 is preferably reduced. If the DBR region on the emission side of the oscillating light is short, this is a force that improves the light transmittance.
  • the length of the DBR region 24 on the front side is equal to or less than the critical length contributing to the increase or decrease in the effective length. 61a, 61b), the rate of increase ⁇ ⁇ ⁇ of the oscillation threshold current during oscillation wavelength shift control can be controlled, and the continuous wavelength variable amount (variable width) can be increased.
  • the effective length depends on the length of the DBR area.
  • Figure 15 shows the effective length saturated to a constant value when the DBR region is sufficiently long (length 1000 m) as the effective length saturation value.
  • the coupling coefficient ⁇ of the diffraction grating shown in the table of FIG. 15 is within a range that can be formed relatively easily by a normal DBR laser manufacturing method (wet etching, dry etching). If the effective length of the DBR region is set to 75% or less of the effective length saturation value in this range, a transmittance of about 50% (or more) is obtained, and a higher light output is obtained.
  • the DBR type variable wavelength light source of the present invention it is possible to appropriately control the rate of change of the oscillation threshold current during the oscillation wavelength shift control. Furthermore, the theoretical value of the conventional continuous wavelength variable width ( ⁇ ⁇ in equation (2))
  • FIG. 1A is a sectional view showing a DBR type variable wavelength light source according to Example 1 of the present invention.
  • FIG. 1B is a cross-sectional view taken along line IB-IB of the DBR type variable wavelength light source according to Example 1 of the present invention.
  • FIG. 2A is a diagram showing a DBR type variable wavelength light source according to Example 2 of the present invention.
  • FIG. 2B is a top view showing a cross section of the DBR type variable wavelength light source according to the second embodiment of the present invention.
  • FIG. 3A is a diagram illustrating a spectrum in a wavelength shift of a DBR type variable wavelength light source according to an embodiment of the present invention.
  • FIG. 3B is a diagram for explaining a spectrum in a wavelength shift of the DBR type variable wavelength light source according to the embodiment of the present invention.
  • FIG. 3C is a diagram illustrating a statistic in a wavelength shift of the DBR type variable wavelength light source according to the embodiment of the present invention.
  • FIG. 4 is a characteristic diagram showing a wavelength tunable characteristic of the DBR type wavelength tunable light source according to the embodiment of the present invention.
  • FIG. 5 is a characteristic diagram showing a ratio of an oscillation wavelength shift amount to a Bragg wavelength shift amount.
  • FIG. 6 is a characteristic diagram showing a wavelength tunable characteristic of the DBR type variable wavelength light source according to the first embodiment of the present invention.
  • FIG. 7 is a characteristic diagram showing an oscillation wavelength according to Example 1 of the present invention and a deviation amount of a theoretical force according to Expression (1).
  • ⁇ 8] is a characteristic diagram showing an IL characteristic of the DBR type variable wavelength light source according to the first embodiment of the present invention.
  • FIG. 9 is a characteristic diagram showing a comparison between the wavelength shift caused by threshold current fluctuation and the values shown in FIG. 7, in the DBR type variable wavelength light source according to Example 1 of the present invention.
  • [10A] A sectional view showing a DBR type wavelength tunable light source according to a third embodiment of the present invention.
  • FIG. 10B is a cross-sectional view along XB-XB of the DBR type variable wavelength light source according to Example 3 of the present invention.
  • FIG. 11 is a configuration diagram of an integrated DBR type variable wavelength light source array according to Embodiment 4 of the present invention.
  • FIG. 12A is a cross-sectional view showing a configuration of a DBR type variable wavelength light source according to the related art.
  • FIG. 12B is a sectional view of the DBR type variable wavelength light source according to the related art, taken along the line III-III.
  • FIG. 13 is a diagram showing a state of light reflection.
  • FIG. 15 is a table showing saturation values of the effective length.
  • FIG. 16 is a characteristic diagram showing wavelength tunable control characteristics of a DBR type tunable light source according to the related art.
  • FIG. 17A is a diagram for explaining a spectrum in a wavelength shift of a DBR type variable wavelength light source according to a conventional technique.
  • FIG. 17B is a diagram for explaining a spectrum in a wavelength shift of a DBR type tunable light source according to the related art.
  • FIG. 17C is a diagram for explaining a spectrum in a wavelength shift of a DBR type variable wavelength light source according to the related art.
  • FIG. 18 is a characteristic diagram showing a wavelength tunable characteristic of a DBR type tunable light source having a shortened active region.
  • FIG. 19 is a characteristic diagram showing a wavelength tunable characteristic in a case where an initial phase condition is appropriate in a DBR type wavelength tunable light source having a shortened active region.
  • FIG. 1 is a diagram for explaining a structure of a DBR type variable wavelength light source according to an embodiment of the present invention.
  • an active region optical waveguide 22 having a light emitting function by current injection, optical excitation, etc., and on both sides of the active region optical waveguide 22, are provided by current injection, optical excitation, etc.
  • Inactive region optical waveguides 23a and 23b capable of controlling the oscillation wavelength are provided.
  • the band gap of the non-active region optical waveguides 23a and 23b is larger than the band gap of the active region optical waveguide 22.
  • the active region optical waveguide 22 and the inactive region optical waveguides 23a and 23b constitute an optical waveguide of the DBR type variable wavelength light source of the present invention.
  • the rear inactive region optical waveguide 23b has a sufficiently long DBR region 29 such that the DBR effective length of the DBR region is equal to or greater than 95% of the effective length saturation value, and an insulating region 25b. have. Therefore, this DBR region 29 has a sufficiently high reflectance.
  • the effective DBR length is shorter than the length of the rear DBR region 29, the front DBR region 24 and the insulating region 25a. have.
  • the DBR type wavelength tunable light source is activated when the oscillation threshold current of the active region current 26 increases even when driven by the active region current 26 having a constant value.
  • the carrier density of the region optical waveguide 22 also increases, and the refractive index decreases with the increase of the carrier density.
  • the Bragg wavelength shift determined with the injection of the DBR control current 27 is Is determined by injection of DBR control current 27 and increase of oscillation threshold current.
  • the longitudinal mode wavelength shift amount ⁇ can be matched, the Bragg wavelength
  • this equation (3) is that the refractive indexes of the active region optical waveguide 22 and the front DBR region 24 and the rear DBR region 29 constituting the laser resonator are reduced equally. It is. Therefore, as long as the refractive index of the DBR region 24 continues to decrease with the injection of the DBR control current 17, the oscillation wavelength (longitudinal mode wavelength) shifts to the shorter wavelength side without causing mode jump. Therefore, even if strict design is not performed in consideration of the initial phase, the phenomenon that mode jump occurs immediately after the wavelength shift is started as shown in FIG. 19 does not occur.
  • the rate of increase and decrease of the oscillation threshold current can be optimized, and a light source that satisfies the relationship of Expression (3) is realized. it can.
  • the rear DBR region 29 In order to obtain a high optical output at the same time as widening the continuous wavelength shift width, the rear DBR region 29 should be long enough to obtain high reflectivity, and the length of the front DBR region 24 should be shortened. Is preferred. If the length of the DBR region on the emission side of the oscillating light is short, this is a force that improves the light transmittance.
  • the length of the front DBR region 24 is equal to or less than the critical length contributing to the increase or decrease of the effective length (in FIG. 13, By increasing / decreasing the effective length in the range of 6 la 61b), the rate of increase ⁇ ⁇ ⁇ th of the oscillation threshold current during wavelength tunable control can be changed freely, and the continuous wavelength shift range can be expanded. it can.
  • FIG. 3 is a diagram illustrating a spectrum of the DBR type variable wavelength light source according to the embodiment of the present invention when the wavelength is shifted.
  • the present invention by increasing the DBR control current, the Bragg The length (stop band) and the oscillation wavelength are shifted toward the shorter wavelength side by an equal amount! That is, the oscillation wavelength does not move relative to the stop band.
  • a continuous wavelength shift of ⁇ (mode hop-free) in which no mode jump occurs can be realized.
  • the active region optical waveguide 22 is made longer than the conventional laser having a continuously variable wavelength width (short active region! ⁇ DBR type variable wavelength light source), mode jump does not occur.
  • An equivalent or larger continuous wavelength shift width can be obtained. Further, as the length of the front DBR region 24 is reduced, the transmittance is improved, and high output is obtained.
  • FIG. 5 is a characteristic diagram showing a relationship between a ratio between the oscillation wavelength shift amount and the Bragg wavelength shift amount and the length of the front DBR region.
  • the length of the active region optical waveguide 22 is varied as 30 m, 54.5 / ⁇ , and 100 / zm as parameters.
  • the insulating regions 25a and 25b in contact with both ends of the active region optical waveguide 22 were each 10 m, the length of the rear DBR region 29 was 400 m, and the diffraction lattice coupling constant ⁇ was 100 cm 1 .
  • the length of the front DBR region 24 on the horizontal axis in FIG. 5 is varied from 30, 50, 80, and 100 m to 400 m.
  • the DBR region of the DBR type tunable light source used in this experiment used a waveguide loss represented by the following equation (4).
  • the left side is the waveguide loss with respect to the propagating light in consideration of the optical confinement efficiency of the waveguide
  • the right side ⁇ represents the Bragg wavelength shift amount
  • the oscillation does not stop.
  • the value of the ratio between the oscillation wavelength shift amount and the Bragg wavelength shift amount is in the range of 0.6 to 0.7, and the ideal condition (ratio of 1) cannot be achieved.
  • a mode i shift occurs when the wavelength is shifted by 3 nm.
  • the length of the active region optical waveguide 22 is set to 54.5 m
  • continuous wavelength shift is possible in a wide wavelength band. Therefore, when the length of the active region optical waveguide 22 is set to 54.5 m, an element having a wide continuous wavelength shift band and relatively high output (the length of the front DBR region 24 is 80 / zm ) Will be described in more detail based on the following examples.
  • the ratio between the oscillation wavelength shift amount and the Bragg wavelength shift amount is 0.9.
  • FIG. 1 is a diagram showing a configuration of a DBR type variable wavelength light source according to Embodiment 1 of the present invention.
  • a case will be described in which InP is used as the substrate 21 and a light source having an oscillation wavelength of 1.55 m is manufactured.
  • FIG. 1A is a cross-sectional view in a plane perpendicular to the substrate 21 including the optical waveguide.
  • FIG. 1B is a cross-sectional view (top view) of a plane parallel to the substrate 21 including the cross-sectional display IB-IB of FIG. 1A.
  • the length of the active region optical waveguide 22 is 54.
  • the insulating regions 25a and 25b in contact with both ends are 10 / ⁇ , and the front DBR region 24 and the rear DBR region 29 have lengths of 80 / zm and 400 m, respectively.
  • the diffraction grating coupling constant ⁇ was 100 cm 1 .
  • the effective length saturation value is 49.9 m when the diffraction grating coupling constant ⁇ is 100 cm 1 .
  • the DBR effective length when the length of the front DBR region 24 is 80 ⁇ m is 37 ⁇ m from the relationship shown in FIG. Therefore, at this time, the effective length of the front DBR region 24 is about 75% of the effective length saturated value.
  • the insulating regions 25a and 25bi are shown in FIG. 1! / ⁇ !
  • the front DBR region 24 was made to have a length of 80 ⁇ m so as to induce an appropriate fluctuation in threshold current during oscillation wavelength shift control, and measurement was performed. All waveguide widths were 1.5 m, and a DBR type wavelength tunable light source operating in a single mode was used.
  • the waveguide width of the active region optical waveguide 22 may be wider than the non-active region optical waveguides 23a and 23b, and may be configured by a pseudo single mode waveguide having a self-imaging effect.
  • the active region optical waveguide 22 and the non-active region optical waveguides 23a and 23b were optically joined by a butt joint method, and the device structure was a buried structure as in a normal DBR type variable wavelength light source.
  • the element structure is not limited to the buried structure, and the same effect can be obtained by manufacturing the device with a ridge structure.
  • antireflection films 20a and 20b are provided on the end faces of both DBR regions, respectively.
  • the active region optical waveguide 22 and the non-active region optical waveguides 23a and 23b are made of semiconductor crystals having different band gap wavelengths.
  • the active region optical waveguide 22 has a light emitting function by current injection, optical excitation, or the like.
  • the front DBR region 24 and the rear DBR region 29 have a wavelength tunable function according to a change in the refractive index due to the injection of the DBR control current 27.
  • FIG. 6 is a characteristic diagram showing the tunable characteristics of the DBR type tunable light source according to the first embodiment of the present invention.
  • the experimental value of the shift amount of the oscillation wavelength and the experimental value of the shift amount of the Bragg wavelength are shown.
  • the calculated value of the oscillation wavelength shift obtained by substituting the experimental value of the shift of the Bragg wavelength into the equation (1) is also shown.
  • the ratio between the oscillation wavelength shift amount and the Bragg wavelength shift amount is 0.9, which makes it possible to achieve almost perfect mode jump-free (mode hop-free) continuous wavelength shift.
  • FIG. 7 is a characteristic diagram illustrating the amount of deviation between the experimental value of the oscillation wavelength and the theoretical value according to equation (1) in the DBR type variable wavelength light source according to the first embodiment of the present invention.
  • the vertical axis shows the oscillation wavelength.
  • the difference between the experimental value of the continuous wavelength shift and the theoretically calculated continuous wavelength shift of the oscillation wavelength using Equation (1) is shown.
  • the horizontal axis shows the DBR control current.
  • the DBR control current 27 is increased, and accordingly, the conventional formula (1) also produces a continuous wavelength shift amount of about 2 nm larger than the predicted continuous wavelength shift amount calculated by the formula (1). I can help you.
  • FIG. 8 is a characteristic diagram showing an IL characteristic of the DBR type variable wavelength light source according to the first embodiment of the present invention.
  • the light output dependency (IL characteristic) on the active region current 26 was measured by changing the DBR control current 27 to 60 mA from the ground state.
  • the DBR type variable wavelength light source starts oscillating.
  • FIG. 8 it can be confirmed that by increasing the DBR control current 27, the oscillation threshold current gradually increases from 7 mA to 20 mA, and a fluctuation of the oscillation threshold current of 13 mA is induced.
  • a high optical output of 1 mW or more and a maximum of 4.7 mW is obtained even during oscillation wavelength shift control.
  • FIG. 9 is a characteristic diagram showing a comparison between the oscillation wavelength shift amount caused by the fluctuation of the oscillation threshold current and the oscillation wavelength shift amount shown in FIG. 7 in the DBR type variable wavelength light source according to the first embodiment of the present invention. is there.
  • the plot of the oscillation wavelength shift amount due to the fluctuation of the oscillation threshold current (the threshold current value when the DBR control current 27 is grounded takes into account the leakage current to the DBR region 27) and the plot shown in Fig. 7
  • the plot is drawn on the same graph. Based on this, they were in good agreement.
  • the DBR type wavelength tunable light source of the first embodiment is capable of continuous wavelength shift over a wider band than the conventional DBR type variable wavelength light source. You can see that there is.
  • the theoretical value of the mode-hop-free continuous wavelength shift amount (width) in the conventional technology is calculated by the equation (2), it is 4 nm (the oscillation wavelength variation derived from the refractive index change in the DBR region).
  • the experimental value of the continuous wavelength shift amount in the DBR type wavelength-variable light source of the first embodiment shows a continuous wavelength shift band wider by about 2 nm. Further, at the same time, a sufficiently high light output could be obtained.
  • the DBR type tunable light source having a configuration in which the high reflection film is disposed without the rear inactive region optical waveguide 23b in the DBR type tunable light source of the first embodiment is manufactured. It was.
  • FIG. 2 is a diagram illustrating the structure of the DBR-type variable wavelength light source according to the second embodiment.
  • FIG. 2A is a cross-sectional view taken along a plane including the optical waveguide and perpendicular to the substrate 31.
  • FIG. 2B is a cross-sectional view (top view) of a plane including the cross-sectional view II-IIB of FIG. 2A and parallel to the substrate 31.
  • an active region optical waveguide 32 and a non-active region optical waveguide 33 are provided, and a DBR region 34 is formed in the non-active region optical waveguide 33. It is.
  • the second embodiment is characterized in that a high-reflection film 39 having a reflectivity of 90% is used instead of disposing the rear inactive region waveguide having a long DBR region in the first embodiment.
  • An antireflection film 30 is disposed on an end face of the inactive region optical waveguide 33.
  • An upper cladding layer 9 is formed above and on the side surfaces of the active region optical waveguide 32 and the non-active region optical waveguide 33. Electrodes 38a and 38b are formed on the upper cladding layer 9, and a DBR control current 37 and an active region current 36 are injected from each electrode.
  • the length of the active region optical waveguide 32 was set to 40 m, and the other configuration and device parameters were manufactured in the same manner as in Example 1.
  • FIG. 10 is a diagram illustrating a structure of a DBR type variable wavelength light source according to the third embodiment.
  • FIG. 10A is a cross-sectional view taken along a plane including the optical waveguide and perpendicular to the substrate 41.
  • FIG. 10B is a cross-sectional view (top view) of a plane including the cross-sectional view XB-XB of FIG. 10A and parallel to the substrate 41.
  • the DBR type wavelength tunable light source of the third embodiment has an active region optical waveguide 42 and non-active region optical waveguides 43a and 43b on both sides of the active region optical waveguide 42 on a substrate 41, as in the first embodiment. Is provided. DBR regions 44a and 44b are formed in the non-active region optical waveguides 43a and 43b, respectively.
  • An upper cladding layer 9 is formed above and on the side surfaces of the active region optical waveguide 42 and the non-active optical waveguides 43a and 43b. Further, on the upper cladding layer 9, electrodes 48a and 48b for injecting a DBR control current 47 and an electrode 48c for injecting an active region current 46 are formed.
  • the electrodes 48a, 48b and 48c are insulated It is electrically insulated by the regions 25a and 25b.
  • An antireflection film 40 is disposed on the end face of the non-active area waveguide 43a, while a high reflection film 49 is disposed on the end face of the non-active area optical waveguide 43b.
  • the length of each DBR region is set to a length shorter than the effective length saturation value and corresponding to the effective length!
  • the length of the DBR region is a length corresponding to an effective length of 95% or more of the effective length saturation value, and the other is the length of the DBR region.
  • the inactive region optical waveguide was shorter in length.
  • the length of both DBR regions is set to a length corresponding to an effective length shorter than the effective length saturation value. There is a characteristic in that.
  • a high-reflection film 49 is provided on the end face of one inactive optical waveguide 43b, and an anti-reflection film 40 is provided on the end face of the other inactive region optical waveguide 43a. Oscillation light is output from the end face having the antireflection film 40.
  • the reflectivity is not sufficient because the DBR effective length is shorter than the effective value saturated length.
  • a sufficient reflectance can be obtained.
  • the length of both DBR regions that is, both inactive region optical waveguides 43a, 4 3b has the same length.
  • the present invention is not limited to the case where the lengths of both inactive region optical waveguides are the same. (In the third embodiment, the lengths of the front and rear DBR regions are equal by chance).
  • the other device parameters are the same as those in the first embodiment.
  • the structure of the third embodiment enables the whole device of the DBR type variable wavelength light source to be reduced in size.
  • the continuous wavelength shift width of 6 nm and a high optical output of lmW or more were obtained by the DBR type variable wavelength light source of Example 3 as in Example 1.
  • FIG. 11 is a top view illustrating a configuration of an integrated DBR type variable wavelength light source array according to a fourth embodiment of the present invention.
  • This DBR type wavelength tunable light source array The powerful DBR type wavelength tunable light sources 50a, 50b, 50c, 50d, 50e, 50f are formed on one substrate.
  • a plurality of DBR type variable wavelength light sources constitute a DBR-LD array unit 51.
  • the outputs of the respective DBR-type variable wavelength light sources 50a, 50b, 50c, 50d, 50e, and 50f are combined by a light combiner 55 to form an optical multiplexing unit 52 that is made into one port. Further, the output of the light combining section 52 is connected to an optical amplifier section 53 for adjusting the combined light output level.
  • Electrodes 57a, 57b, 57c, 57d, 57e, 57f for injecting a DBR control current are arranged on the DBR region of each DBR type tunable light source 50a, 50b, 50c, 50d, 50e, 50f, and on the active region.
  • the electrodes 14a, 56b, 56c, 56d, 56e, and 56f are used to inject current into the active region. It should be noted that the present DBR type variable wavelength light source array is not limited to the force having a symmetrical configuration.
  • each diffraction grating of each of the DBR type tunable light sources 50a, 50b, 50c, 50d, 50e, and 50f is different, and the wavelength band of light whose wavelength is tunable is different. That is, by combining the outputs of six light sources with different diffraction grating pitches in the DBR region by the optical combiner 55 and outputting them as one port, a wide-band wavelength tunable DBR capable of tunable over a wider band as a whole. — Created an LD array.
  • the optical multiplexing unit 52 is configured by an S-shaped curved optical waveguide and a multi-mode interference coupler (MMI force bra).
  • the power bra is not limited to the MMI power bra as long as light can be collected into one port.
  • the output terminal 58 is provided with an optical amplifier unit 53 for adjusting the optical output.
  • An antireflection film was applied to the end face of the output end 58 of the optical amplifier and the end face of the DBR-LD array 51.
  • the DBR type tunable light sources 50a, 50b, 50c, 50d, 50e, and 50f in the fourth embodiment are not limited to the DBR type tunable light sources in the first embodiment, and use the forms of the second and third embodiments. It is also possible.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Lasers (AREA)

Abstract

 より広帯域の波長可変特性をもち、6nm以上の連続波長シフトが可能でありながら従来技術に比べて高出力なDBR型波長可変光源を提供する。基板21上に形成した光導波路が、発光機能を有する活性領域光導波路22と、この活性領域22の両端に設けられた非活性領域光導波路23a、23bとを備え、この非活性領域光導波路23a、23bは、絶縁領域25と波長可変機能を有する前側及び後側DBR領域24、29を有するとともに、後側DBR領域29には、実効長の飽和値の95%以上となる長さの回折格子を形成する一方、前側DBR領域24には前記長さよりも短い回折格子を形成し、この前側DBR領域から発振光を取り出す構成とした。

Description

明 細 書
DBR型波長可変光源
技術分野
[0001] 本発明は DBR型波長可変光源に関し、より詳細には、 1つの波長制御電流により 広帯域な連続波長可変が可能な DBR型波長可変光源に関する。
背景技術
[0002] DBR型レーザは光通信用の波長可変光源として用いられており、その発振メカ- ズムゃ波長可変メカニズムにつ ヽては既に報告がなされて!/ヽる(例えば、非特許文 献 1および非特許文献 2)。
[0003] 図 12は、従来技術に係る DBR型波長可変光源の基本構造を説明するための図で ある。図 12Aは、光導波路を含み基板 11に垂直な面における断面図を示している。 図 12Bは、図 12Aの断面表示 ΧΠΒ— ΧΠΒを含み基板 11に平行な面における、断面 図(上面図)を示している。この DBR型波長可変光源においては、基板 11上に設け られた活性領域光導波路 12の両側に、非活性領域光導波路 13a、 13bが配置され ている。活性領域光導波路 12と非活性領域光導波路 13a、 13bの境界部には、それ ぞれ絶縁領域 15a、 15bがある。非活性領域光導波路 13a、 13bには、絶縁領域 15 a、 15bと接して、回折格子力ら構成される DBR領域 (分布反射器) 14a、 14bがそれ ぞれ形成されている。上述した各光導波路の上部と側面には上クラッド層 9が形成さ れている。本 DBR型波長可変光源の発振波長は、共振器長により決まる縦モード波 長のうち、 DBR領域 14a、 14bのブラック反射帯域内に存在する縦モード波長のみ が選択されることにより決定される。
[0004] 絶縁領域 15a、 15bは、高抵抗の領域である。電極 18a、 18b、 18cとォーミック接 触を取るために、上クラッド層 9の上に形成される InGaAsP層(図 12Aに示していな い)の一部を除去することによって、絶縁領域 15a、 15bは形成される。すなわち、絶 縁領域 15a、 15bは、 DBR制御電流 17と活性領域電流 16とを絶縁分離する機能を 持っている。
[0005] DBR (分布反射器)領域 14a、 14b内には、一定ピッチの凸凹が形成されており、こ のピッチに対応する波長の光、すなわちブラッグ波長の光が選択的に強い反射を受 ける。実際にはブラッグ波長を中心として数 nmの高反射帯域が形成され、この高反 射帯域内において回折格子として作用する。
図 12Aにおいては、絶縁領域 15a、 15bは、上述した回折格子が存在しない領域と して表現されている。これは、前述のように、絶縁領域 15a、 15bは、高抵抗のために 電流が流れないので、回折格子を設けたとしても屈折率変化にはなんら寄与しない 領域であるためである。したがって、絶縁領域 15a、 15bに回折格子が形成されてい てもかまわない。
[0006] この DBR型波長可変光源においては、電極 18cを介して活性領域光導波路 12に 活性領域電流 16が注入され、また、電極 18a、 18bを介して DBR領域 14a, 14bに DBR制御電流 17が注入される構成となっている。この DBR制御電流 17が DBR領 域 14a、 14bへ注入されることによって、 DBR領域 14a, 14bの屈折率変化が生じる 。この屈折率変化に伴って、上述した縦モード波長とブラッグ波長の両方を、短波長 側にシフトさせることが可能である。
[0007] ただし、 DBR領域 14a、 14bへの DBR制御電流 17の注入によって生ずる屈折率 変化に伴う波長シフトの感度は、縦モード波長に比べてブラッグ波長の方がより敏感 である。すなわち、ブラッグ波長が、より速く短波長側にシフトする。その理由は、活性 領域光導波路 12と非活性領域光導波路 13a、 13bによって構成されるレーザ共振 器のうち、 DBR制御電流 17を注入すると、非活性領域光導波路 13a、 13bまたは D BR領域 14a、 14bにのみ、屈折率の変化を生じさせる力もである。すなわち、ブラッ グ波長シフトは DBR領域 14a、 14bの屈折率変化のみを反映しているのに対し、縦 モード波長シフトはレーザ共振器全体の屈折率変化を反映して 、るためである。一 般に、縦モード波長シフト量は、次の式(1)にしたがって計算できる。
[0008] [数 1]
= „ LelT-f + LeffΓ
ん c B La +LBtr_r + Lefr_r
[0009] 上式(1)において、 Δ λ は縦モード波長シフト量、 λ は縦モード波長、 Δ λ はブ
C C Β
ラッグ波長シフト量、 λ はブラッグ波長、 L および L は前側 (front)および後側(
B eff-f efFr rear) DBR領域の実効長であり、 Lは活性領域長である。ここで、 L は DBR領域 14 a eff
a、 14bの実効的な長さである。この長さは、実効長もしくは有効長とよばれており、非 特許文献 2の定義に従った。
[0010] ここで、 DBR (分布反射器)とその実効長について、さらに説明をする。先にも述べ たように、 DBR領域内には一定ピッチの凸凹が形成されており、このピッチに対応す る波長の光、すなわちブラッグ波長の光が選択的に強い反射を受ける。このブラッグ 波長を中心として数 nmの幅の高反射帯域が形成され、 DBRはこの高反射帯域内に おいて回折格子として作用する。
[0011] 図 13は、 DBR領域 14a、 14bにおける反射の様子を説明する図である。ブラッグ反 射が発生する高反射帯域内の波長の光は、図 13に示すように分布的に反射を受け る。したがって、光が感じる伝播長は、実際の DBR領域 14a、 14bの長さに比べて短 くなる。この長さは、実効長と呼ばれている。
図 14および図 15は、 DBR領域の長さに対する実効長の計算結果を示す図である( 導波路伝播損失 Γ α = 10cm 1を仮定した)。図 14は、回折格子結合定数 κをパラ メータとして、 DBR領域の長さと実効長の関係を示す図である。図 15は、各結合定 数値 κにおける、実効長飽和値を示す表である。
[0012] 図 14および図 15より、 DBR領域 14a、 14bの長さが短い場合には(図 13において 、 DBR領域の長さ力 実効長の増減に寄与する領域 61a、 61bの範囲の長さである 場合)、実効長は DBR領域の長さに対し直線的に増加する。一方、 DBR領域 14a、 14bの長さがより長くなる場合には(図 13において DBR領域の長さ力 実効長の増 減にほとんど寄与しない領域 62a、 62bの範囲の長さである場合)、実効長の値は飽 和し、一定値の実効長飽和値に安定する。
[0013] 実効長と同様に、 DBR領域の反射率も DBR領域の長さが長くなるにつれて向上 する。発振光は、活性領域の近傍の DBR領域において、最も強い反射を受ける。し たがって、ある程度 DBR領域が長くなると、反射率は一定値に収束する。前述したよ うに、 DBR (回折格子)の実効長は回折格子の分布的な反射状態を考慮した場合に 、伝播光が感ずる光路長である。したがって、回折格子すなわち DBR領域の長さに 対して、反射率と実効長は極めて類似した増減を示す。 [0014] DBR領域と活性領域を集積して DBR型波長可変光源を構成する場合にぉ ヽては 、反射率は、活性領域と DBR領域の接合部の結合損失によっても左右されてしまう。 このため、反射率は、設計上のパラメータとして適切ではない。そこで、反射率を反映 し、かつ活性領域と DBR領域の接合部の結合損失の影響を受けない実効長が、素 子設計パラメータとして採用されている。 DBR領域の実効長は、レーザ共振器長、縦 モード間隔、ブラッグ反射率等に関係するパラメータであり、この実効長の値を考慮 することによって、効率的な DBR型レーザの設計が可能である。
[0015] さて、前式(1)の右辺 2項目の分子 (L +L )は屈折率可変領域 (すなわち DB eff-f eff-r
R領域)の実効長の総和を、分母 (L +L +L )は全共振器長を示している。厳密 a eff-r eff~r
に言えば、全共振器長には絶縁領域 15a、 15bの長さも加えるべきである。しかし、 絶縁領域 15a、 15bは 5— 10 mと極めて短く構成されているため、全共振器長に 対する誤差の影響は少ない。そこで、式(1)中においては、絶縁領域 15a、 15bの長 さは省略した。
[0016] 式(1)によれば、縦モード波長シフト量 Δ λ は、右辺第 2項の係数による分だけブ
C
ラッグ波長シフト量 Δ λ より小さい。したがって、 DBR制御電流 17を増加し続ければ
Β
、 V、ずれは縦モード波長 λ
Cがブラッグ反射帯域から長波長側 (波長の長!、側)に外 れてしまい、レーザ発振は、短波長側にある別の隣の縦モードに遷移する。すなわち
、モード跳びが生ずる。よって、 DBR制御電流 17を増加し続ければ、連続な波長シ フトと離散的なモード跳びとを繰り返しながら、発振波長は短波長側へシフトしてゆく 図 16は、従来技術に力かる DBR型波長可変光源の DBR制御電流と発振波長との 関係を示す図である。連続的な波長シフトと、離散的なモード跳びを頻繁に繰り返し ている。発振波長の可変制御特性の全体は離散的なものとなり好ましくない。連続波 長可変幅 (連続波長シフト帯域幅) Δ λ は、非特許文献 3に従えば、以下の式で
CON
表わされる。
[0017] [数 2]
Figure imgf000006_0001
(2) [0018] 上式(2)において、 Δ λ は連続波長可変幅、 η は実効屈折率を表している。波
CON eff
長可変レーザとしては、この連続波長可変幅 Δ λ の広 、ものが好まし!/、。
CON
[0019] 図 17は、従来技術に力かる DBR型波長可変光源における、波長シフトを説明する スペクトル図である。上で説明した離散的なモード跳びにより、波長可変制御特性が 離散的になってしまうのは、縦モード波長とブラッグ波長との間で、前述した DBR制 御電流の注入量に対する波長変ィ匕に感度差があるからである。図 17Aから図 17Cに 示すように、 DBR制御電流を増カロさせていくことによって、ブラッグ波長の変化に対 応して 、るストップバンドの変化は、縦モード波長の変化に対応して 、る発振波長の 変化に比べて、変化の感度が高い。ストップバンドは、より速く短波長側にシフトして ゆく。したがって、 DBR制御電流増加により、ストップバンド (ブラッグ反射帯域)に対 して、発振波長は相対的に長波長側に移動してゆく。図 17Cの状態を超えて、さらに DBR制御電流を増加させれば、モード跳びが発生する。
[0020] このモード跳びを回避する方法としては、位相調整領域を付加して多電極構成で 波長制御を行う方法がある (非特許文献 1参照)。しかし、制御項目が増えるため、制 御が簡単でなくなる。さらに、素子経時劣化時の各制御電流の変動を予想するのが 難しぐ実用上の問題となってしまう。一つの制御電流によって、簡単で広帯域な波 長可変制御を実現するためには、前記式 (2)からわ力るように活性領域長 L
aを短縮 することが最ち効果的である。
図 18は、活性領域長 Lを短縮した DBR型波長可変光源の波長可変特性を示す特 a
性図である。活性領域長 Lを短縮することで、連続可変できる波長範囲を広帯域ィ匕 a
し、図 18で示すように広いモードホップフリー (連続波長可変)な帯域が得られる。非 特許文献 3に示された実験結果によれば、活性領域長 Lを変化させて DBR型レー a
ザを作製し、理論値通りの広帯域ィ匕が得られている。
[0021] 次に、図 12に示したような一般的な従来技術による DBR型波長可変光源において 、発振モードの初期位相、発振閾値電流およびキャリア密度の関係について補足説 明をする。図 12Aにおいて、活性領域光導波路 12のキャリア密度は、活性領域電流 16の増加に伴って急激に増加する。一旦レーザ発振が起こると、活性領域光導波路 12のキャリア密度はクランプされる(ほぼ一定値に安定となる)。さらに活性領域電流 16を増加させるとキャリア密度は非常にゆるやかに増加してゆく。発振モードの初期 位相を決定する活性領域光導波路 12の屈折率は、この領域のキャリア密度の増加 に伴い減少するという関係がある。すなわち、発振閾値電流の値により初期位相が決 定し、発振閾値電流が大きければ発振モードはその分だけ短波長側にシフトしてい ることになる。その後は活性領域電流 16を増加させてもキャリア密度がクランプされ ているため、初期位相はほとんど変わらない。
[0022] DBR制御電流により波長可変制御を行った場合には、 DBR制御電流 17の注入に 伴う反射率の減少から、活性領域電流 16の発振閾値電流が増加する。連続波長可 変幅の拡大のために活性領域光導波路 12の長さを短縮しただけの DBR型レーザ においては、活性領域光導波路 12の利得が不足してしまう。この利得不足を補うた め、活性領域光導波路 12の前後にある DBR領域 14a、 14bの長さをその実効長飽 和値に達するまで十分長くして、高反射率とすることにより、レーザ発振が停止する のを防止していた。したがって、波長可変制御時において、発振閾値電流が増加す ることはあっても、発振閾値電流の変化率を制御することは出来な力つた。
[0023] なお、上述したような従来技術を開示する公知文献として、次の非特許文献 1から 非特許文献 3を挙げることができる。
[0024] 非特許文献 1 :半導体フォト-タス工学 P.306— 311 監修:池上徹彦 コロナ社 1995 年 1月 10日発行
非特許文献 2 :半導体レーザ P.283— 288 応用物理学会編 Z伊賀健一 編著 ォ ーム社 平成 6年 10月 25日発行
非特許文献 3:波長可変半導体レーザの高性能化に関する研究 (博士論文) P.39— 43、 P.54— 59、 P.65— 68 石井啓之 1999年 3月
発明の開示
発明が解決しょうとする課題
[0025] 上述したような活性領域光導波路 12の活性領域長 Lの短縮による方法では、式(2 a
)の Δ λ を大きく超えて連続波長シフトさせることはできず、 3nm程度の連続波長
CON
シフトが限界である。 6nm以上の連続波長シフト幅を実現しょうとすれば、活性領域 光導波路 12の活性領域長 Lを 30 m程度まで短縮する必要がある。活性領域長 L a a を短縮したことにより生じる活性領域光導波路 12の利得不足を補うため、高反射率 が得られるように DBR領域 14を長くしなければならない。この結果、このような従来 技術による DBR型レーザは、低出力の光源となってしまう問題があった。それに加え て、活性領域光導波路 12の活性領域長 Lと利得、および発振モードの位相条件を
a
予め厳密に決定しておかなければ、波長シフトを開始してすぐにモード跳びが発生 してしまう問題があった。
図 19は、活性領域長 Lを短縮した DBR型波長可変光源において、初期位相条件
a
が適切でない場合の波長可変特性を示す特性図である。図 19に示すように、上述し た各条件を適切に設計しないと、波長シフトを開始した後すぐにモード跳びが生じて しまい、実用上の問題となっていた。
[0026] 本発明は、上に述べたような従来技術の問題点に鑑み、より広帯域幅で連続的に 発振波長の可変制御、すなわち、連続波長シフトが可能な波長可変特性をもち、 6n m以上の連続波長シフトが可能でありながら、従来技術に比べて高出力な DBR型波 長可変光源を提供することを目的とする。
課題を解決するための手段
[0027] 上記目的を達成するために、本発明の構成は、基板上に、クラッド層で囲まれた光 導波路を備える DBR型波長可変光源において、 DBR制御電流により発振波長を可 変制御が可能であって、実効長飽和値の 95%以上の実効長に相当する長さの区間 に回折格子を有する第 1の DBR領域を含む第 1の非活性領域光導波路と、前記 DB R制御電流により発振波長を可変制御が可能であって、前記第 1の DBR領域より短 い長さの区間に回折格子を有する第 2の DBR領域を含む第 2の非活性領域光導波 路と、前記第 1の非活性領域光導波路および前記第 2の非活性領域光導波路が両 端に光学的に接続され、前記 DBR制御電流とは独立に活性領域電流により発光状 態を制御される活性領域光導波路とを備えることを特徴とする。
[0028] また、高出力を得るためには、前側の(第 2の) DBR領域の回折格子の実効長はそ の実効長飽和値の 75%以下となるように形成し、両 DBR領域の端面には反射防止 膜を施したものが好ましい。
さらに、発振波長シフト量とブラッグ波長シフト量の比が 0. 9以上 1. 1以下であること が好ましい。この比がこの範囲に入っていれば、完全モードホップフリー条件 (発振 波長シフト量とブラッグ波長シフト量の比が 1)を満たさなくても、ほとんどの場合にモ ード跳びが生じな 、からである。
[0029] また、本発明の他の実施態様においては、基板上に、クラッド層で囲まれた光導波 路を備える DBR型波長可変光源において、 DBR制御電流により発振波長を可変制 御が可能であって、実効長飽和値の 75%以下の実効長に相当する長さの区間に回 折格子を有する第 1の DBR領域を含む第 1の非活性領域光導波路と、前記 DBR制 御電流により発振波長を制御が可能であって、実効長飽和値の 75%以下の実効長 に相当する長さの区間に回折格子を有する第 2の DBR領域を含む第 2の非活性領 域光導波路と、前記第 1の非活性領域光導波路および前記第 2の非活性領域光導 波路が両端に光学的に接続され、前記 DBR制御電流とは独立に活性領域電流によ り発光状態を制御される活性領域光導波路と、前記第 1の非活性領域光導波路の前 記活性領域光導波路とは反対側の端面に配置された高反射膜と、前記第 2の非活 性領域光導波路の前記活性領域光導波路とは反対側の端面に配置された反射防 止膜とを備えことを特徴とする。
さらに、本発明の別の実施態様においては、基板上に、クラッド層で囲まれた光導波 路を備える DBR型波長可変光源において、 DBR制御電流により発振波長を可変制 御が可能であって、実効長飽和値の 75%以下の実効長に相当する長さの区間に回 折格子を有する DBR領域を含む非活性領域光導波路と、前記非活性領域光導波 路に光学的に接続され、前記 DBR制御電流とは独立に活性領域電流により発光状 態を制御される活性領域光導波路と、前記非活性領域光導波路の前記活性領域光 導波路とは反対側の端面に配置された反射防止膜と、前記活性領域光導波路の前 記非活性領域光導波路とは反対側の端面に配置された高反射膜とを備えることを特 徴とする。すなわち、光源サイズをさらに小型化するには長い側の(第 1の) DBR領 域を高反射膜で置き換えたものが好まし 、。
[0030] DBR領域の反射率を適切に決定すれば、発振閾値の増減率を最適化することが でき、式 (3)の関係を満足する光源が実現できる。
[0031] 連続波長シフトの広帯域化と同時に光源出力も高くするためには、後側の DBR領 域 29は高反射率が得られるように十分に長くし、前側の DBR領域 24の長さを短縮 するのが好ましい。発振光の出射側の DBR領域が短ければ、光の透過率が向上す る力らである。前述のように反射率と実効長とは相関があるため、前側の DBR領域 2 4の長さを実効長の増減に寄与する臨界長さ以下(図 13において、実効長の増減に 寄与する領域 61a, 61b)の範囲で増減させれば、発振波長シフト制御時の発振閾 値電流の増加率 Δ Ιを制御でき、連続波長可変量 (可変幅)を拡大することができる th
[0032] 背景技術にお!、て述べたように、実効長は DBR領域の長さに依存する。 DBR領 域を十分に長くした場合 (長さ 1000 m)に一定値に飽和した実効長を、実効長飽 和値として図 15に示した。図 15の表の中で示した回折格子結合定数 κは、通常の DBR型レーザの作成方法 (ウエットエッチング、ドライエッチング)で比較的容易に形 成できる範囲である。この範囲において、 DBR領域の実効長を実効長飽和値の 75 %以下となるようにすると、約 50% (もしくはそれ以上)の透過率が得られ、より高い光 出力が得られる。
[0033] 本発明の DBR型波長可変光源によれば、発振波長シフト制御時の発振閾値電流 の変化率を適切に制御することができる。さらに、従来の連続波長可変幅の理論値( 式 (2)の Δ λ )
CONを超えてさらに広帯域な連続波長シフトが可能となり、加えて、より 高いレーザ発振光の出力を得ることができる。 図面の簡単な説明
[0034] [図 1A]本発明の実施例 1に係る DBR型波長可変光源を示す断面図である。
[図 1B]本発明の実施例 1に係る DBR型波長可変光源の IB— IBの断面図である。
[図 2A]本発明の実施例 2に係る DBR型波長可変光源を示す図である。
[図 2B]本発明の実施例 2に係る DBR型波長可変光源の ΠΒ— ΠΒの断面図である上 面図である。
[図 3A]本発明の実施の形態に係る DBR型波長可変光源の波長シフトにおけるスぺ タトルを説明する図である。
[図 3B]本発明の実施の形態に係る DBR型波長可変光源の波長シフトにおけるスぺ タトルを説明する図である。 [図 3C]本発明の実施の形態に係る DBR型波長可変光源の波長シフトにおけるスぺ タトルを説明する図である。
圆 4]本発明の実施の形態に係る DBR型波長可変光源の波長可変特性を示す特性 図である。
圆 5]発振波長シフト量のブラッグ波長シフト量に対する比を示す特性図である。 圆 6]本発明の実施例 1に係る DBR型波長可変光源の波長可変特性を示す特性図 である。
圆 7]本発明の実施例 1に係る発振波長と式(1)による理論値力ものずれ量を示す特 '性図である。
圆 8]本発明の実施例 1に係る DBR型波長可変光源の I L特性を示す特性図である
[図 9]本発明の実施例 1に係る DBR型波長可変光源において、閾値電流変動により もたらされる波長シフトと図 7で示す値との比較を示す特性図である。
圆 10A]本発明の実施例 3に係る DBR型波長可変光源を示す断面図である。
[図 10B]本発明の実施例 3に係る DBR型波長可変光源の XB— XBの断面図である。 圆 11]本発明の実施例 4に係る集積ィ匕した DBR型波長可変光源アレイの構成図で ある。
[図 12A]従来技術に係る DBR型波長可変光源の構成を示す断面図である。
[図 12B]従来技術に係る DBR型波長可変光源の ΧΠΒ— ΧΠΒの断面図である。
[図 13]光の反射の様子を示す図である。
圆 14]実効長の DBR領域の長さに対する依存性を示す特性図である。
[図 15]実効長の飽和値を示す表である。
[図 16]従来技術に係る DBR型波長可変光源の波長可変制御特性を示す特性図で ある。
[図 17A]従来技術に係る DBR型波長可変光源の波長シフトにおけるスペクトルを説 明する図である。
[図 17B]従来技術に係る DBR型波長可変光源の波長シフトにおけるスペクトルを説 明する図である。 [図 17C]従来技術に係る DBR型波長可変光源の波長シフトにおけるスペクトルを説 明する図である。
[図 18]活性領域を短縮した DBR型波長可変光源の波長可変特性を示す特性図で ある。
[図 19]活性領域を短縮した DBR型波長可変光源において、初期位相条件が適切で な 、場合の波長可変特性を示す特性図である。
発明を実施するための最良の形態
[0035] 以下に図面を参照しながら、本発明の実施の形態について説明する。
[0036] 図 1は、本発明の実施の形態に係る DBR型波長可変光源の構造を説明するため の図である。図 1に示すように、基板 21上には、電流注入や光励起等による発光機 能を持っている活性領域光導波路 22と、この活性領域光導波路 22の両側にあり、 電流注入や光励起などにより発振波長を制御できる非活性領域光導波路 23a、 23b が設けられている。非活性領域光導波路 23a、 23bのバンドギャップは、活性領域光 導波路 22のバンドギャップよりも大き 、。これらの活性領域光導波路 22および非活 性領域光導波路 23a、 23bは、本発明の DBR型波長可変光源の光導波路を構成し ている。
[0037] また、後側の非活性領域光導波路 23bは、 DBR領域の DBR実効長が実効長飽和 値の 95%以上の長さに相当するような十分に長い DBR領域 29と、絶縁領域 25bを 有している。したがって、この DBR領域 29は、十分に高反射率である。一方、活性領 域光導波路 22を介して反対側にある前側の非活性領域光導波路 23aは、 DBR実 効長が後側 DBR領域 29の長さよりも短 、前側 DBR領域 24と、絶縁領域 25aを有し ている。
[0038] 前述のように、 DBR型波長可変光源は、一定値の活性領域電流 26で駆動して ヽ る場合であっても、活性領域電流 26の発振閾値電流が増加して ヽれば活性領域光 導波路 22のキャリア密度も増加しており、このキャリア密度の増加に伴い屈折率が減 少している。
[0039] 活性領域光導波路 22の屈折率の減少は、縦モード波長え を短波長側にシフトさ
C
せる効果がある。そこで、 DBR制御電流 27の注入に伴い決定されるブラッグ波長シ フト量 Δ λ と、 DBR制御電流 27の注入および発振閾値電流の増加により決定され
B
る縦モード波長シフト量 Δ λ とを、一致させることができれば、ブラッグ波長え と縦
C Β
モード波長え Cはリンクしながら一体的にシフトする。したがって、モード跳びの問題を 解消することができる。これは、式(1)の右辺第 2項の分子 (L +L )が分母 (L + eff-f eff-r a
L +L )と等しくなることを意味しており、この場合の縦モード波長シフト量 Δ λ eff-f efFr C は以下の式(3)で示される。
[0040] [数 3] ^= ^ (
[0041] この式 (3)の意味するところは、レーザ共振器を構成する活性領域光導波路 22の 屈折率と前側 DBR領域 24および後側 DBR領域 29の屈折率とが、等しく減少するこ とである。そのため、 DBR制御電流 17の注入に伴って DBR領域 24の屈折率が減少 し続ける限り、発振波長 (縦モード波長)はモード跳びを起こさずに短波長側にシフト する。したがって、初期位相を考慮して厳密な設計を行わなくても、図 19に示したよう な波長シフトを開始した後すぐにモード跳びが生ずる現象は起こらない。
[0042] これを実現するために、 DBR領域の反射率を適切に決定することによって、発振閾 値電流の増減率を最適化することができ、式 (3)の関係を満足する光源が実現でき る。連続波長シフト幅の広帯域化と同時に高い光出力を得るためには、後側の DBR 領域 29は高反射率を得るように十分に長くし、前側の DBR領域 24の長さを短縮す るのが好ましい。発振光の出射側の DBR領域の長さが短ければ、光の透過率が向 上する力らである。前述のように、反射率と DBR領域の実効長との間には相関がある ため、前側の DBR領域 24の長さを実効長の増減に寄与する臨界長さ以下(図 13に おいて、実効長の増減に寄与する領域 6 la 61b)の範囲で増減させれば、波長可 変制御時の発振閾値電流の増加率 Δ Ι thを自在に変更でき、連続波長シフト範囲を 拡大することができる。
[0043] 図 3は、本発明の実施の形態に係る DBR型波長可変光源の波長シフト時における スペクトルを説明する図である。本発明を用いた場合には、図 3Aから図 3Cに示すよ うに DBR制御電流を増加させていくことによって、波長シフトを行っても、ブラッグ波 長 (ストップバンド)と発振波長が等 、量だけ短波長側へシフトして!/、る。すなわち、 ストップバンドに対して発振波長が相対的に移動することがない。この場合、図 4で示 すように完全にモード跳びが発生しな ヽ(モードホップフリー)の連続波長シフトが実 現できる。
[0044] したがって、従来の連続波長可変幅を拡大したレーザ (活性領域の短!ヽ DBR型波 長可変光源)と比べて活性領域光導波路 22をより長くしても、モード跳びが起こらず 、同等、もしくはそれ以上の連続波長シフト幅が得られる。また、前側の DBR領域 24 の長さの短縮に伴って透過率が向上し、高出力化が得られる。
図 5は、発振波長シフト量とブラッグ波長シフト量の比と、前側の DBR領域の長さとの 関係を示す特性図である。活性領域光導波路 22の長さをパラメータとして、 30 m 、 54. 5 /ζ πι、 100 /z mと変化させている。活性領域光導波路 22の両端に接する絶 縁領域 25a、 25bをそれぞれ 10 m、後側の DBR領域 29の長さを 400 mとし、回 折格子結合定数 κを 100cm 1とした。図 5横軸の前側 DBR領域 24の長さについて は、 30、 50、 80、 100 m力ら 400 mまで変ィ匕させている。また、この実験に用い た DBR型波長可変光源の DBR領域は、導波路損失が下記の式 (4)で表されるもの を用いた。
[0045] [数 4]
ΓΔα = 5.27 ΔλΒΕ5, +5.54 (cm"1 ) (4)
[0046] この式 (4)において、左辺は導波路の光閉じ込め効率を考慮した伝播光に対する 導波路損失で、右辺 Δ λ はブラッグ波長シフト量を示す。
Bragg
図 5より、前側 DBR領域 24の長さを短縮するにつれて、式(3)で示した条件に近づ き、下記に説明するように連続波長シフト幅を広帯域ィ匕することがわかる。すなわち、 活性領域光導波路 22の長さを 30 mとしたときは、前側 DBR領域 24の長さが 200 m以上の範囲において、式 (3)の条件が成立する理想的な波長可変特性を示し た。しかし、活性領域光導波路 22の長さを短縮し過ぎたため発振利得が不足し、発 振波長を 4nmシフトさせると発振が停止してしまう。
また、活性領域光導波路 22の長さを 100 mとしたときは、発振の停止は起こらない ものの、発振波長シフト量とブラッグ波長シフト量の比の値が 0. 6-0. 7の範囲となり 、理想的な条件 (比が 1)にすることができない。さらに、 3nmの波長シフトを行ったと ころで、モード i»びが生じてしまう。
一方、活性領域光導波路 22の長さを 54. 5 mとしたときは、広い波長帯域で連続 波長シフトが可能である。そこで、活性領域光導波路 22の長さを 54. 5 mとした場 合において、連続波長シフト帯域が広くかつ比較的高出力が得られた素子 (前側 D BR領域 24の長さが 80 /z mの場合)の特性について、以下の実施例に基づいて、更 に詳細に説明する。このとき、発振波長シフト量とブラッグ波長シフト量の比は、 0. 9 である。
実施例 1
[0047] 図 1は、本発明の実施例 1に係る DBR型波長可変光源の構成を示す図である。本 実施例 1においては、基板 21として InPを用い、発振波長 1. 55 mの光源を作製し た場合について説明する。図 1Aは、光導波路を含む基板 21に垂直な面における断 面図である。また、図 1Bは、図 1Aの断面表示 IB— IBを含む基板 21に平行な面にお ける断面図(上面図)である。
[0048] バンドギャップ波長 1. の InGaAsPの活性領域光導波路 22の両端 (前後) に、バンドギャップ波長 1. 3 1!1の11^&八3?の非活性領域光導波路23&、 23bを形 成した。活性領域光導波路 22の長さは 54. とし、その両端に接する絶縁領域 25a, 25bは 10 /ζ πι、前側 DBR領域 24および後側 DBR領域 29は、それぞれ長さを 80 /z mと 400 mとし、回折格子結合定数 κは 100cm 1とした。図 15より、回折格子 結合定数 κは 100cm 1のときの、実効長飽和値は、 49. 9 mである。一方、前側 D BR領域 24の長さ 80 μ m時の DBR実効長は、図 14に示した関係から 37 μ mとなる 。したがって、このとき、前側 DBR領域 24の実効長は、実効長飽和値の約 75%の長 さとなつている。
尚、絶縁領域 25a、 25biま、図 1に ίま示されて!/ヽな!ヽカ 電極 28a、 28b、 28cに才ー ミック接触を取るための上クラッド層の上に形成した InGaAsP層の一部を除去して形 成される領域である。電極 28a、 28b、 28cを形成しない部分の InGaAsP層を除去 することで、 DBR制御電流 27と活性領域電流 26を分離する絶縁領域が 25a、 25b 形成される。
[0049] 前側 DBR領域 24は、長さを 80 μ mとして発振波長シフト制御時に適切な閾値電 流の変動を誘発させるように作製し、測定を行った。導波路幅は全て 1. 5 mとして 、単一モード動作の DBR型波長可変光源とした。活性領域光導波路 22の導波路幅 は、非活性領域光導波路 23a、 23bよりも広くし、セルフイメージング効果を持たせた 擬似シングルモード導波路等によって構成しても良い。
[0050] 活性領域光導波路 22と非活性領域光導波路 23a、 23bはバットジョイント法により 光学的に接合し、素子構造は、通常の DBR型波長可変光源と同様に埋め込み構造 とした。素子構造については、埋め込み構造に限らず、リッジ構造で作製しても同様 の効果が得られる。また、両 DBR領域の端面には、それぞれ反射防止膜 20a、 20b を施してある。
[0051] 活性領域光導波路 22と非活性領域光導波路 23a、 23bとはバンドギャップ波長の 異なる半導体結晶で構成されて ヽる。活性領域光導波路 22は電流注入や光励起等 による発光機能を有する。前側 DBR領域 24および後側 DBR領域 29は、 DBR制御 電流 27の注入による屈折率変化に伴う波長可変機能を有している。
[0052] 図 6は、本発明の実施例 1に係る DBR型波長可変光源の波長可変特性を示す特 性図である。発振波長のシフト量の実験値およびブラッグ波長のシフト量の実験値を 示す。同時に、上記のブラッグ波長のシフト量の実験値を式(1)に代入して得られる 、発振波長シフト量の計算値も示している。発振波長シフト量とブラッグ波長シフト量 の比は 0. 9で、ほぼ完全なモード跳びのない(モードホップフリーな)連続波長シフト が可能となっている。 DBR制御電流 27を 60mAまで注入することにより、 6nmの連 続波長シフト幅を実現している。図 6において、横軸の DBR制御電流 27がー 9mAか ら始まっているのは、活性領域光導波路 22からのリーク電流のためである。 DBR制 御電流 27がー 9mAの状態は、 DBR領域のゼロバイアス(アース状態)に対応してい る。図 6より、式(1)より予想される連続波長シフト (計算値)と比べて、実験値のほうが より大きい連続波長シフトを生じていることが分力る。
図 7は、本発明の実施例 1に係る DBR型波長可変光源において、発振波長の実験 値と式(1)による理論値とのずれ量を説明する特性図である。縦軸には、発振波長の 連続波長シフト量の実験値と式(1)を用いた発振波長の連続波長シフト量の理論計 算値との差分を示す。横軸には、 DBR制御電流を示している。図 7より、 DBR制御電 流 27を増加させて 、くにしたがって、従来技術の式(1)力も予測される連続波長シフ ト量計算値と比較して、約 2nm大き 、連続波長シフト量を生じて 、ることがわ力る。
[0053] 図 8は、本発明の実施例 1に係る DBR型波長可変光源の I L特性を示す特性図で ある。本実施例 1の効果を詳しく実証するため、活性領域電流 26に対する光出力依 存性 (I L特性)を、 DBR制御電流 27をアース状態カゝら 60mAまで変化させて測定 を行った。活性領域電流 26が、発振閾値電流に達するときに、本 DBR型波長可変 光源は発振を開始する。図 8に示すように、 DBR制御電流 27を増加させることによつ て、発振閾値電流は 7mAから 20mAまで徐々に増加し、 13mAの発振閾値電流の 変動が誘発されていることを確認できる。また、発振波長シフト制御時においても、 1 mW以上、最大 4. 7mWの高い光出力が得られている。
図 9は、本発明の実施例 1に係る DBR型波長可変光源において、発振閾値電流の 変動によりもたらされる発振波長シフト量と、図 7で示した発振波長シフト量との比較 を示す特性図である。上述の、発振閾値電流の変動による発振波長シフト量 (DBR 制御電流 27をアースした時の閾値電流値は、 DBR領域 27へのリーク電流を考慮し てある)のプロットと、図 7に示したプロットを同一グラフ上に描いている。これより、両 者は良好な一致を示した。
[0054] 以上詳細に説明してきたように、本実施例 1の DBR型波長可変光源は、従来技術 の DBR型波長可変光源と比較して、より広い帯域に渡って、連続波長シフトが可能 であることがわかる。従来技術における、モードホップフリーな連続波長シフト量 (幅) の理論値を式 (2)によって計算すると、 4nm (DBR領域の屈折率変化に由来する発 振波長変幅)となる。この理論値と比べた場合においても、実施例 1の DBR型波長可 変光源における連続波長シフト量の実験値は約 2nm大きぐより広い連続波長シフト 帯域を得ている。さらに、同時に、十分に高い光出力を得ることができた。
実施例 2
[0055] 実施例 2においては、実施例 1の DBR型波長可変光源における後側非活性領域 光導波路 23bをなくして、高反射膜を配置した形態の DBR型波長可変光源を作製し た。
[0056] 図 2は、実施例 2にかかる DBR型波長可変光源の構造を示す図である。図 2Aは、 光導波路を含み基板 31に垂直な面における断面図を示している。図 2Bは、図 2Aの 断面表示 ΠΒ— IIBを含み基板 31に平行な面における断面図(上面図)を示している 。図 2Aに示すように、活性領域光導波路 32と非活性領域光導波路 33を有しており 、非活性領域光導波路 33内に DBR領域 34が形成されている点は、実施例 1と同じ 構成である。本実施例 2においては、実施例 1における長い DBR領域を持つ後側非 活性領域導波路を配置せずに、反射率 90%の高反射膜 39に置き換えている点に 特徴がある。非活性領域光導波路 33の端面には、反射防止膜 30が配置されている 。活性領域光導波路 32および非活性領域光導波路 33の上方および側面には、上 クラッド層 9が形成されている。上クラッド層 9の上には、電極 38a、 38bが形成され、 それぞれの電極から、 DBR制御電流 37および活性領域電流 36が注入される。 活性領域光導波路 32の長さは 40 mとし、その他の構成および素子パラメータは実 施例 1と同じにして作製した。
[0057] 実施例 2の DBR型波長可変光源により、実施例 1と同様に、 6nmの連続波長シフト 幅と、 lmW以上の高い出力を得た。
実施例 3
[0058] 図 10は、実施例 3にかかる DBR型波長可変光源の構造を示す図である。図 10A は、光導波路を含み基板 41に垂直な面における断面図を示している。図 10Bは、図 10Aの断面表示 XB— XBを含み基板 41に平行な面における断面図(上面図)を示し ている。
本実施例 3の DBR型波長可変光源は、実施例 1と同様に、基板 41上に、活性領域 光導波路 42と、この活性領域光導波路 42の両側にある非活性領域光導波路 43a、 43bが設けられている。非活性領域光導波路 43a、 43bには、それぞれ、 DBR領域 4 4a、 44bが形成されている。活性領域光導波路 42および非活性光導波路 43a、 43b の上方および側面には、上クラッド層 9が形成されている。さら〖こ、上クラッド層 9の上 には、 DBR制御電流 47を注入する電極 48a、 48bと、活性領域電流 46を注入する 電極 48cが形成されている。電極 48a、 48bと電極 48cは、高抵抗の領域である絶縁 領域 25a、 25bによって、電気的に絶縁されている。非活性領域導波路 43aの端面 には、反射防止膜 40が配置され、一方、非活性領域光導波路 43bの端面には高反 射膜 49が配置されている。
実施例 3においては、両方の非活性領域光導波路 43a、 43bにおいて、それぞれの DBR領域の長さを、実効長飽和値よりも短 、実効長に相当するような長さにして!/ヽる 点に特徴がある。すなわち、実施例 1においては、一方の非活性領域光導波路にお いて、 DBR領域の長さは、実効長飽和値の 95%以上の長さの実効長に相当する長 さであり、他方の非活性領域光導波路は、これより短い長さであった。これに対して本 実施例 3においては、両方の非活性領域光導波路 43a、 43bにおいて、両方の DBR 領域の長さを、実効長飽和値よりも短い実効長に相当する長さとなるようにしている 点に特徴がある。そして、一方の非活性光導波路 43bの端面には、高反射膜 49を配 置し、他方の非活性領域光導波路 43aの端面には、反射防止膜 40を配置する構成 となっている。この反射防止膜 40のある端面から、発振光を出力する。高反射膜 49 のある側の非活性領域光導波路 43bにお 、ては、 DBR実効長が実効値飽和長より 短いため、反射率は十分ではない。しかし、高反射膜 49を配置することにより、十分 な反射率を得ることができる。
本実施例 3の DBR型波長可変光源にぉ 、ては、高反射側の DBR領域の長さを 80 /z m、として、両方の DBR領域の長さ、すなわち両方の非活性領域光導波路 43a、 4 3bの長さが等しい構成となっている。しかし、両方の非活性領域光導波路の長さが 同一である場合に限定されないのは言うまでもない。(本実施例 3は、偶然に、前後の DBR領域の長さが等しい)。その他の素子パラメータは、実施例 1の場合と同じである この実施例 3の構造により、 DBR型波長可変光源の素子全体の小型化が可能であ る。この実施例 3の DBR型波長可変光源により、実施例 1と同様に 6nmの連続波長 シフト幅と、 lmW以上の高い光出力を得た。
実施例 4
図 11は、本発明の実施例 4にかかる集積ィ匕した DBR型波長可変光源アレイの構成 を示す上面図である。本 DBR型波長可変光源アレイは、複数の上述した本発明に 力力る DBR型波長可変光源 50a、 50b、 50c、 50d、 50e、 50fを一つの基板上に構 成している。複数の DBR型波長可変光源は DBR-LDアレイ部 51を構成する。それ ぞれの DBR型波長可変光源 50a、 50b、 50c、 50d、 50e、 50fの出力は、光合成器 55によって合成されて、 1ポート化する光合波部 52を構成する。さらに、光合成部 52 の出力は、合成光出力レベルの調整を行う光増幅器部 53に接続される。各 DBR型 波長可変光源 50a、 50b、 50c、 50d、 50e、 50fの DBR領域上には、 DBR制御電流 を注入する電極 57a、 57b、 57c、 57d、 57e、 57fが配置され、活性領域上には、活 '14領域電流を注人する電極 56a、 56b, 56c, 56d、 56e、 56f力 ^酉己置されて!ヽる。尚 、本 DBR型波長可変光源アレイは、左右対称の構成となっている力 これに限定さ れるものではない。
各 DBR型波長可変光源 50a、 50b、 50c、 50d、 50e、 50fの各回折格子のピッチは それぞれ異なっており、波長可変が可能な光の波長帯域は異なっている。すなわち 、DBR領域の回折格子ピッチが異なる 6個の光源力ゝらの出力を光合成器 55によって 合成し、 1ポート出力化することで、全体でより広い帯域で波長可変が可能な広帯域 波長可変 DBR— LDアレイを作成した。本実施例 4においては、光合波部 52は、 S字 状にカーブした光導波路と多モード干渉型カプラ (Multi-mode interference coupler: MMI力ブラ)により構成した。力ブラ部分は光が 1ポートに集約できるものであれば、 MMI力ブラに限らない。出力端 58には光出力の調整用に光増幅器部 53を備えてい る。光増幅器の出力端 58の端面と DBR—LDアレイ 51の端面には反射防止膜を施し た。
集積された各々のレーザは 6nmの連続波長可変が可能で、全体で計 36nm(6個 X 6nm= 36nm: 1530-1566nm)の連続波長可変幅が実現できた、また、同時に 10m W以上の光出力が実現できた。本実施例 4における、各 DBR型波長可変光源 50a、 50b、 50c、 50d、 50e、 50fは、実施例 1の DBR型波長可変光源に限られず、実施 例 2、実施例 3の形態を使用することも可能である。

Claims

請求の範囲
[1] 基板上に、クラッド層で囲まれた光導波路を備える DBR型波長可変光源において
DBR制御電流により発振波長を可変制御が可能であって、実効長飽和値の 95% 以上の実効長に相当する長さの区間に回折格子を有する第 1の DBR領域を含む第 1の非活性領域光導波路と、
前記 DBR制御電流により発振波長を可変制御が可能であって、前記第 1の DBR 領域より短い長さの区間に回折格子を有する第 2の DBR領域を含む第 2の非活性領 域光導波路と、
前記第 1の非活性領域光導波路および前記第 2の非活性領域光導波路が両端に 光学的に接続され、前記 DBR制御電流とは独立に活性領域電流により発光状態を 制御される活性領域光導波路と、
を備えることを特徴とする DBR型波長可変光源。
[2] 前記第 1の非活性領域光導波路は、前記第 1の DBR領域と前記活性領域光導波 路との間に、第 1の絶縁領域を含み、前記第 2の非活性領域光導波路は、前記第 2 の DBR領域と前記活性領域光導波路との間に、第 2の絶縁領域を含むことを特徴と する請求項 1に記載の DBR型波長可変光源。
[3] 前記第 2の DBR領域の実効長は、実効長飽和値の 75%以下となるようにしたこと を特徴とする請求項 1および請求項 2に記載の DBR型波長可変光源。
[4] 前記第 1の非活性領域光導波路の前記活性領域光導波路と反対側の端面、およ び前記第 2の非活性領域光導波路の前記活性領域光導波路と反対側の端面に、そ れぞれ反射防止膜を設けたことを特徴とする請求項 1乃至請求項 3のいずれかに記 載の DBR型波長可変光源。
[5] 基板上に、クラッド層で囲まれた光導波路を備える DBR型波長可変光源において、
DBR制御電流により発振波長を可変制御が可能であって、実効長飽和値の 75% 以下の実効長に相当する長さの区間に回折格子を有する第 1の DBR領域を含む第 1の非活性領域光導波路と、
前記 DBR制御電流により発振波長を制御が可能であって、実効長飽和値の 75% 以下の実効長に相当する長さの区間に回折格子を有する第 2の DBR領域を含む第 2の非活性領域光導波路と、
前記第 1の非活性領域光導波路および前記第 2の非活性領域光導波路が両端に 光学的に接続され、前記 DBR制御電流とは独立に活性領域電流により発光状態を 制御される活性領域光導波路と、
前記第 1の非活性領域光導波路の前記活性領域光導波路とは反対側の端面に配 置された高反射膜と、
前記第 2の非活性領域光導波路の前記活性領域光導波路とは反対側の端面に配 置された反射防止膜と、
を備えることを特徴とする DBR型波長可変光源。
[6] 前記第 1の非活性領域光導波路は、前記第 1の DBR領域と前記活性領域光導波 路との間に第 1の絶縁領域を含み、前記第 2の非活性領域光導波路は、前記第 2の DBR領域と前記活性領域光導波路との間に第 2の絶縁領域を含むことを特徴とする 請求項 5に記載の DBR型波長可変光源。
[7] 基板上に、クラッド層で囲まれた光導波路を備える DBR型波長可変光源において、
DBR制御電流により発振波長を可変制御が可能であって、実効長飽和値の 75% 以下の実効長に相当する長さの区間に回折格子を有する DBR領域を含む非活性 領域光導波路と、
前記非活性領域光導波路に光学的に接続され、前記 DBR制御電流とは独立に活 性領域電流により発光状態を制御される活性領域光導波路と、
前記非活性領域光導波路の前記活性領域光導波路とは反対側の端面に配置され た反射防止膜と、
前記活性領域光導波路の前記非活性領域光導波路とは反対側の端面に配置され た高反射膜と、
を備えることを特徴とする DBR型波長可変光源。
[8] 前記非活性領域光導波路は、前記 DBR領域と前記活性領域光導波路との間に絶 縁領域を含むことを特徴とする請求項 7に記載の DBR型波長可変光源。
[9] 前記活性領域光導波路の長さが 30 μ m以上 100 μ m以下であることを特徴とする 請求項 1乃至請求項 8のいずれかに記載の DBR型波長可変光源。
[10] 請求項 1乃至請求項 9のいずれかに記載される複数の DBR型波長可変光源であつ て、前記複数の DBR型波長可変光源の各々の回折格子の周期が異なることと、 前記複数の複数の DBR型波長可変光源からの各々の出力光を 1ポートにまとめて 合成光を出力させるための光結合器と、
前記合成光の出力を調整する光半導体増幅器と、
を備えることを特徴とする集積ィ匕 DBR型波長可変光源。
[11] 発振波長シフト量とブラッグ波長シフト量の比が 0. 9以上 1. 1以下であることを特徴 とする請求項 1乃至請求項 10のいずれかに記載の DBR型波長可変光源。
PCT/JP2005/005246 2004-03-23 2005-03-23 Dbr型波長可変光源 WO2005091452A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006516885A JP4033887B2 (ja) 2004-03-23 2005-03-23 Dbr型波長可変光源
CN2005800003189A CN1774845B (zh) 2004-03-23 2005-03-23 Dbr型波长可变光源
US10/555,156 US20070041415A1 (en) 2004-03-23 2005-03-23 Wavelength tunable distributed bragg reflector (dbr) laser
EP05727098A EP1729381A4 (en) 2004-03-23 2005-03-23 LIGHT SOURCE WITH VARIABLE WAVELENGTH OF DBR TYPE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-083998 2004-03-23
JP2004083998 2004-03-23

Publications (1)

Publication Number Publication Date
WO2005091452A1 true WO2005091452A1 (ja) 2005-09-29

Family

ID=34994021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/005246 WO2005091452A1 (ja) 2004-03-23 2005-03-23 Dbr型波長可変光源

Country Status (5)

Country Link
US (1) US20070041415A1 (ja)
EP (1) EP1729381A4 (ja)
JP (1) JP4033887B2 (ja)
CN (1) CN1774845B (ja)
WO (1) WO2005091452A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009116140A1 (ja) * 2008-03-18 2009-09-24 富士通株式会社 光半導体素子及びその製造方法
JP2014170903A (ja) * 2013-03-05 2014-09-18 Nippon Telegr & Teleph Corp <Ntt> 波長安定化装置を内蔵した波長可変分布ブラッグ反射(dbr)型半導体光デバイス
JP2017028231A (ja) * 2015-07-28 2017-02-02 日本電信電話株式会社 波長可変半導体レーザ
JP2018011023A (ja) * 2016-07-15 2018-01-18 日本電信電話株式会社 波長可変半導体レーザ
JP2019050234A (ja) * 2017-09-07 2019-03-28 住友電工デバイス・イノベーション株式会社 半導体レーザ素子及び半導体レーザ素子の製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9209601B2 (en) 2011-08-26 2015-12-08 Oclaro Technology Ltd Monolithically integrated tunable semiconductor laser
GB2493988B (en) * 2011-08-26 2016-01-13 Oclaro Technology Ltd Monolithically integrated tunable semiconductor laser
US9048618B2 (en) * 2013-03-12 2015-06-02 Finisar Corporation Short gain cavity distributed bragg reflector laser
CN106981819B (zh) * 2016-01-15 2019-05-28 华为技术有限公司 一种可调激光器及其控制方法
CN107623250B (zh) * 2017-09-30 2020-11-24 武汉华工正源光子技术有限公司 一种短腔长面发射激光器及其制造方法
JP7239920B2 (ja) * 2019-03-01 2023-03-15 富士フイルムビジネスイノベーション株式会社 半導体光増幅素子、半導体光増幅器、光出力装置、および距離計測装置
TWI814190B (zh) * 2021-12-24 2023-09-01 國立中央大學 頻率調變連續波光學雷達裝置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0344084A (ja) * 1989-07-12 1991-02-25 Nippon Telegr & Teleph Corp <Ntt> 分布反射型半導体レーザ
US6638773B1 (en) * 2002-05-31 2003-10-28 Applied Optoelectronics, Inc. Method for fabricating single-mode DBR laser with improved yield

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0361399A3 (en) * 1988-09-28 1990-07-18 Canon Kabushiki Kaisha Semmiconductor laser array including lasers with reflecting means having different wavelength selection properties
US4905253A (en) * 1989-01-27 1990-02-27 American Telephone And Telegraph Company Distributed Bragg reflector laser for frequency modulated communication systems
JPH0555689A (ja) * 1991-08-23 1993-03-05 Nippon Telegr & Teleph Corp <Ntt> 波長制御機能付分布反射型半導体レーザ
US6330388B1 (en) * 1999-01-27 2001-12-11 Northstar Photonics, Inc. Method and apparatus for waveguide optics and devices
EP1283573A3 (en) * 2001-07-27 2005-02-09 The Furukawa Electric Co., Ltd. A distributed bragg reflector semiconductor laser
JP4074534B2 (ja) * 2003-03-06 2008-04-09 日本電信電話株式会社 半導体レーザ
CN1272885C (zh) * 2003-05-01 2006-08-30 清华大学 分布反馈半导体激光器与电吸收调制器集成光源及制法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0344084A (ja) * 1989-07-12 1991-02-25 Nippon Telegr & Teleph Corp <Ntt> 分布反射型半導体レーザ
US6638773B1 (en) * 2002-05-31 2003-10-28 Applied Optoelectronics, Inc. Method for fabricating single-mode DBR laser with improved yield

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
ELI KAPON ET AL.: "Semiconductor lasers", 1999, ACADEMIC PRESS, pages: 167,168,
FUJIWARA ET AL.: "Mode-hop-free wavelength-tunable distributed Bragg reflector laser", ELECTRONICS LETTERS, vol. 39, no. 7, 2003, pages 614 - 615, XP006020132, DOI: doi:10.1049/el:20030397
FUJIWARA ET AL.: "Wavelength-Selectable Mode-hop-free DBR Laser Array", THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS, TECHNICAL REPORT OF IEICE, OPE2003-33, IQE2003-27, July 2003 (2003-07-01), pages 47 - 50, XP002997634
FUJIWARA N. ET AL: "Mode-hop-free wavelength-tunable distributed Bragg reflector laser", ELECTRONICS LETTERS, vol. 39, no. 7, 2003, pages 614 - 615, XP006020132 *
FUJIWARA N. ET AL: "Wavelength-Selectable Mode-hop-free DBR Laser Array", THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS, 2003, pages 47 - 50, XP002997634 *
NAOKI FUJIWARA ET AL.: "Inherently Mode-Hop-Free Distributed Bragg Reflector (DBR) Laser Array", IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, vol. 9, no. 5, 2003, pages 1132 - 1137, XP011106600, DOI: doi:10.1109/JSTQE.2003.819518
See also references of EP1729381A4 *
TAKAHASHI ET AL.: "Narrow spectral linewidth 1.5 um GaInAsP/InP Distributed Bragg Reflector (DBR) Lasers", IEEE JOURNAL OF QUANTUM ELECTRONICS, vol. 25, no. 6, 1989, pages 1280 - 1287, XP000054755, DOI: doi:10.1109/3.29258

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009116140A1 (ja) * 2008-03-18 2009-09-24 富士通株式会社 光半導体素子及びその製造方法
JPWO2009116140A1 (ja) * 2008-03-18 2011-07-21 富士通株式会社 光半導体素子及びその製造方法
US8319229B2 (en) 2008-03-18 2012-11-27 Fujitsu Limited Optical semiconductor device and method for manufacturing the same
JP2014170903A (ja) * 2013-03-05 2014-09-18 Nippon Telegr & Teleph Corp <Ntt> 波長安定化装置を内蔵した波長可変分布ブラッグ反射(dbr)型半導体光デバイス
JP2017028231A (ja) * 2015-07-28 2017-02-02 日本電信電話株式会社 波長可変半導体レーザ
JP2018011023A (ja) * 2016-07-15 2018-01-18 日本電信電話株式会社 波長可変半導体レーザ
JP2019050234A (ja) * 2017-09-07 2019-03-28 住友電工デバイス・イノベーション株式会社 半導体レーザ素子及び半導体レーザ素子の製造方法

Also Published As

Publication number Publication date
US20070041415A1 (en) 2007-02-22
JP4033887B2 (ja) 2008-01-16
EP1729381A1 (en) 2006-12-06
EP1729381A4 (en) 2009-08-05
JPWO2005091452A1 (ja) 2007-08-09
CN1774845A (zh) 2006-05-17
CN1774845B (zh) 2010-10-06

Similar Documents

Publication Publication Date Title
JP4033887B2 (ja) Dbr型波長可変光源
US7366220B2 (en) Tunable laser
JP4954992B2 (ja) 半導体光反射素子及び該半導体光反射素子を用いる半導体レーザ及び該半導体レーザを用いる光トランスポンダ
US20090092159A1 (en) Semiconductor light-emitting device with tunable emission wavelength
US8179931B2 (en) Wavelength tunable filter and wavelength tunable laser module
JPH11251691A (ja) 直列結合dfbレーザ
US20020105990A1 (en) Mirror and cavity designs for sampled grating distributed bragg reflector lasers
JP2009059729A (ja) 半導体発光素子
US9172212B2 (en) Tunable semiconductor laser diode
JP3682367B2 (ja) 分布帰還型半導体レーザ
JP4469759B2 (ja) 波長可変レーザ
JP2009289993A (ja) 半導体レーザ素子及び半導体光集積素子
EP1094574A1 (en) Widely wavelength tunable integrated semiconductor device and method for widely wavelenght tuning semiconductor devices
US20020064203A1 (en) Strip-loaded tunable distributed feedback laser
JP2947142B2 (ja) 波長可変半導体レーザ
JP2011086714A (ja) 波長可変レーザ
JPH0936495A (ja) 光通信等に用いる波長可変半導体レーザ
JPWO2008152893A1 (ja) 外部共振器型波長可変レーザ装置
JP4594816B2 (ja) 波長可変レーザ
JP4033822B2 (ja) Dbr型波長可変光源
WO2021148120A1 (en) Single-mode dfb laser
JP4074534B2 (ja) 半導体レーザ
JP2009188262A (ja) 半導体レーザ素子及び半導体光集積素子
JP5058087B2 (ja) 波長可変半導体レーザ
WO2021148121A1 (en) Dfb laser with angled central waveguide section

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006516885

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2007041415

Country of ref document: US

Ref document number: 10555156

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005727098

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20058003189

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005727098

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10555156

Country of ref document: US