JP3985159B2 - 利得クランプ型半導体光増幅器 - Google Patents

利得クランプ型半導体光増幅器 Download PDF

Info

Publication number
JP3985159B2
JP3985159B2 JP2003070075A JP2003070075A JP3985159B2 JP 3985159 B2 JP3985159 B2 JP 3985159B2 JP 2003070075 A JP2003070075 A JP 2003070075A JP 2003070075 A JP2003070075 A JP 2003070075A JP 3985159 B2 JP3985159 B2 JP 3985159B2
Authority
JP
Japan
Prior art keywords
gain
waveguide
light
soa
clamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003070075A
Other languages
English (en)
Other versions
JP2004281656A (ja
Inventor
大 畠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2003070075A priority Critical patent/JP3985159B2/ja
Priority to US10/548,880 priority patent/US8503072B2/en
Publication of JP2004281656A publication Critical patent/JP2004281656A/ja
Application granted granted Critical
Publication of JP3985159B2 publication Critical patent/JP3985159B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30
    • H01S5/5063Amplifier structures not provided for in groups H01S5/02 - H01S5/30 operating above threshold
    • H01S5/5072Gain clamping, i.e. stabilisation by saturation using a further mode or frequency
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/065Mode locking; Mode suppression; Mode selection ; Self pulsating
    • H01S5/0651Mode control
    • H01S5/0653Mode suppression, e.g. specific multimode
    • H01S5/0655Single transverse or lateral mode emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1078Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region with means to control the spontaneous emission, e.g. reducing or reinjection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4068Edge-emitting structures with lateral coupling by axially offset or by merging waveguides, e.g. Y-couplers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar

Description

【0001】
【発明の属する技術分野】
本発明は、半導体光増幅器に関し、特に利得クランプ型半導体光増幅器に関する。
【0002】
【従来の技術】
半導体光増幅器(Semiconductor optical amplifier : SOA)は、従来の光通信システムにおいて標準的に使用されているエルビウム添加光増幅器(Erbium-Doped Fiber Amplifier : EDFA)に変わる小型で低コストな光増幅器として期待されている。
【0003】
SOAの性能面における課題の一つに飽和出力の向上があげられる。一般にSOAによる増幅光の最大光出力はEDFAのそれと比較して低く、このため現状ではSOAは小型、低コスト化の観点で有利とされながらも、EDFAの代替となるに至っていない。大容量波長多重光通信システムにおいて、SOAによってEDFAの代替を図るためには少なくとも20dBm(100mW)以上の飽和出力が要求される。なお、飽和出力を向上する上で注意すべき点として、偏光依存性や駆動電流、素子サイズ等の、光アンプに要求される一般的な性能やSOAの長所となる性能が著しく犠牲になってはいけない。
【0004】
SOAの飽和出力を改善する一般的な手法は、光通信用デバイスに必須である単一横モードの伝搬特性を維持しつつ、活性層の構造を最適化することである。この手法による例として、K. Morito等によるSOAを従来例1として示す(非特許文献1参照)。
【0005】
本従来例では活性層として、半導体レーザで良く使用される多重量子井戸(MQW)と比較して偏光無依存化の容易な引っ張り歪みバルク活性層を使用し、且つ、活性層の厚さを50nm程度と薄くすることによって活性層への光閉じこめ係数を0.1程度と小さくすることで活性層の内部損失の減少と導波路モード断面積(単位活性層面積あたりの光閉じこめ係数、これが小さいほど利得飽和しにくい)の低減を図ることで、ファイバ間利得が19dB、ファイバ飽和出力(ファイバ間利得が非飽和時G0よりも3dB減少する場合のファイバ光出力強度で定義される)17.4dBmの高い特性を実現している。尚、このときの駆動条件は、注入電流500mA、注入電流密度が約30kA/cm2である。
【0006】
しかし、活性層の最適化を主とする手段によって20dBm以上の飽和出力を実現する事は、以下の理由により現状では極めて困難である。
【0007】
1)偏光無依存化との両立の困難。
【0008】
2)駆動電流密度が高くなる。
【0009】
3)信号光に対する利得飽和特性の劣化。
【0010】
上記3要因について以下に説明する。まず1)については、飽和出力の改善を図るためには、導波路モード断面積をさらに小さくする必要がある。しかし、従来例1よりもさらに導波路モード断面積を小さくして、20dBmの飽和出力を得ようとすると、活性層厚を20nm程度以下まで薄くする必要がある。活性層厚を薄くすると、偏光無依存化のために要求される結晶歪み量が増加し、結晶成長技術上の困難が発生する。また、薄い活性層に量子効果が現れ、偏光依存性の大きな多重量子としての特性が現れてしまうため偏光無依存な利得特性を得ることが困難になる。また、薄い活性層に量子効果が現れ、偏光無依存な利得特性を得ることが困難になる。
【0011】
2)の要因に関しては、20dBm以上の飽和出力を得るためには従来例1で報告されている30kA/cm2を超える注入電流密度が必要とされるが、このような高い電流密度を駆動条件とすることは発熱による利得特性の劣化やデバイスの信頼性の観点から現実的であるとはいえない。
【0012】
3)の要因に関しては、変調信号を増幅する場合の動特性上の飽和出力性能はまだ十分とはいえない。
【0013】
これはSOAの最大光出力を見積もる指標である飽和出力の定義に起因する問題である。既に述べたように、従来、光アンプの飽和出力は「非飽和時利得からの利得減少量が3dBとなるときの光出力」と一般的に定義されP3dBと表される。従来の光通信システムにおいて標準的に使用されているEDFAでは、利得飽和領域での増幅時に信号波形劣化を生じず、利得の減少が生ずるだけであるが、SOAでは利得減少が3dBとなる光出力強度域で駆動すると、信号波形の劣化が発生する。この信号波形の劣化は、活性層内のキャリア緩和時間と信号光のビットレートが同程度の時間オーダであるために、利得飽和の緩和過程の影響を受け易い、というSOAの本質的な性質によるものである。この波形劣化は従来例1として引用した非特許文献1でも報告されている。
【0014】
非特許文献1によると、変調信号入射時の信号透過波形の実験結果として、光出力が12dBm及び14dBmの場合における、ビットレートが10Gb/sの信号に対する増幅信号波形がそれぞれ示されている。光出力が+14dBmとなる駆動時においては、信号波形の劣化が確認されており、また、光出力が+12dBmとなる駆動時においても、わずかながら信号波形の劣化が見られることが報告されている。以上述べたSOAに特有の波形劣化を考慮し、ここでは信号劣化を生じない飽和出力として、「非飽和時利得からの利得減少量が1dBとなるときの光出力」を新たに定義し、P1dBとする。従来例1におけるP1dBは、たかだか10dBm程度にすぎず、より一層の飽和出力改善が必要なことがわかる。
【0015】
以上述べたように、単一横モードを維持しながら活性層を最適化する手法では活性層20dBmを越える最大光出力を実現することは極めて困難であることがわかる。
【0016】
上記3つの制約のうち、1)と2)を解決可能な手法として、テーパ導波路や干渉導波路などを用いて単一横モードの光出力を維持しつつ実効的な活性層幅を広くすることで、単位活性層面積あたりの入力光強度を低くする手法が提案されている。以下に、この手法による従来例を紹介する。
【0017】
最初に、B. Dagens等によって開示された「multi waveguide (MWG)-SOA」(非特許文献2参照)を従来例2として示す。本従来例によるMWG−SOAの構成および動作原理を図12及び図13を用いて説明する。図12に模式的に示されるように、MWG−SOAはN本のアレイ状の活性層200とその両端に配置された受動導波路201からなり、この受動導波路201はそれぞれ1xN分岐の光合・分波器202を含む。入力光(強度をPinとする)は活性層200の前段の光合・分波器202でN本に分岐され、それぞれ活性層200に入射される。このとき活性層200への入力光強度はPin/Nとなる。各アレイの活性層200にて増幅を受けた光は、活性層200の後段に配された光合・分波器202によって再び合波され、出力光として出射される。ここで、N本に分岐された光の光路長がすべて等しくなるように設計されており、N本の伝搬光は後段の合・分波器202において同位相にて合波されるため分岐損失は発生しない。
【0018】
図13はこのデバイスの利得飽和特性を説明する図である。グラフの横軸はSOAからの出力光強度、縦軸は素子利得を示しており、アレイ本数Nが1、2、4の場合の利得飽和特性がプロットされている。ここでN=1の場合は、従来の単一横モードのSOAの特性に相当する。前述のように、SOAの利得特性は、入力光強度が小さい場合は非飽和利得G0で一定であるが、入力光強度が強くなると利得が低下し、光出力強度は飽和する。なお、この報告における飽和出力としては、前段にて新たに定義したP1dBではなく、従来と同様のP3dBを用いている。N=1の場合の飽和出力は図13においてaで示されている。ここでN=2の場合、活性層一本あたりの入力光強度が半分となるため、デバイス全体での飽和出力は図13中ぼbとなりN=1のときよりも2倍(=3dB)改善される。同様にN=4の場合、活性層一本あたりの入力光強度が1/4となるため、デバイス全体での飽和出力は図13中のcとなり、N=1のときよりも4倍(=6dB)改善される。なお、非特許文献2によれば、単一モードのSOAにおいて5dBの飽和出力改善を得られたことが報告されている。また、Nアレイの場合の駆動電流はN=1のときのN倍となるが、注入電流密度はN=1のときと変わらない。従って、前述の飽和出力改善のための課題1)の注入電流密度の増加は起きないことが分かる。また、この手法によれば、活性層のモード断面積を小さくする必要がなくなるため活性層の厚さは従来例1と同程度の50nm程度にすることができる。従って、前述の課題2)も解決されていることが分かる。
【0019】
導波路幅を拡大し、飽和出力の向上を図った他の報告例として、K.Hamamoto 等によって開示される「active-MMI (Multimode-interference)-SOA」(非特許文献3参照)を従来例3として示す。この素子の平面構造の模式図を図14に示す。
【0020】
図14を参照すると、MMI−SOAは、入力光が入射する素子端面103側に設けられた単一モード導波路101と、出力光が出射する素子端面104側に設けられた単一モード導波路102と、これら導波路101、102間に配置された多モード干渉(MMI)導波路100とを有する。単一モード導波路101、102の導波路幅はいずれもW1で、MMI導波路100の導波路幅はW2(>W1)である。ここで、MMI導波路100の幅や長さなどはMMI導波路の伝搬原理に基づき1x1の合・分波器として機能するように設計されている。このとき、入力側の単一モード導波路から入射され、MMI導波路100を伝搬した光は分岐損なしに横単一モード光として再び取り出すことが可能である。
【0021】
MMI導波路100では、従来例2のMWG―SOAと同様、活性層が広いため入力光密度を低減することでき、飽和出力の高いSOAを実現することができる。非特許文献3によれば、単一横モード出力が可能なSOAにおいて5dBの飽和出力改善が得られたことが報告されている。
【0022】
前述の飽和出力改善上の課題3)を解決可能な手法として有望なのが利得クランプ型SOAである。利得クランプ型SOAは、SOA内にレーザ共振器構造を具備し、レーザ発振させた状態の活性層に信号光を入射して増幅を行うタイプのSOAであって、SOA利得飽和に起因する信号波形劣化や、波長多重信号の増幅時におけるチャネル間クロストークを改善し、入力光強度に依存しない線形な利得特性を実現できる技術として開発されている。利得クランプ型SOAの動作について以下に説明する。
【0023】
図15は従来のSOAと利得クランプ型SOAの利得飽和特性を説明するための図である。ここで両者の活性層品質と駆動電流は同一であるとする。従来例1および従来例2の項ですでに述べたように、SOAの駆動条件が一定の下では、出力光強度が高くなるとSOAの利得は飽和し、非飽和時の利得G0よりも低下する。
【0024】
従来のSOAの利得飽和曲線は、図中の破線で示される。ここでSOAの飽和出力P1dBは図15中のaとなる。一方、利得クランプSOAの利得飽和曲線は、図中の実線で示される。利得クランプ型SOAは、前述のように内部にレーザ共振器構造を具備し、レーザ発振状態にて駆動される。レーザ発振状態では、SOAの活性層のキャリア密度はレーザの発振閾キャリア密度にクランプされる。このとき利得クランプ型SOAの利得は出力光強度に依存せずGGCで一定となる。なお、GGCは利得クランプ型SOA内に具備されたレーザ共振器の反射率を変えることで任意に設定可能である。利得クランプ型SOAにおいても出力光強度が高くなると利得飽和が発生する。利得飽和領域では、入力光の増幅に消費されるキャリアが増大するため、もはや、レーザは発振状態を維持できず利得クランプ動作が停止する。このときの光出力強度(図中b)が利得クランプ型SOAにおける飽和出力値Gsatである。な、利得クランプ型SOAの利得GGCは同一品質、同一駆動条件での従来SOAにおける非飽和利得G0と比較して低くなるが、あらかじめこの利得低下を見込んだ活性層の設計を行うことで所望の利得を得ることが可能である。
【0025】
以上述べたように、同一品質の活性層における飽和出力は利得クランプ型SOAの方が従来SOAと比較しb-a(dBm)だけ高く、従来例1で述べた飽和出力向上における課題3)の制限要因が改善されることが分かる。
【0026】
利得クランプ型SOAの報告例として、M. Bachmann等によって開示された「gain-clamped(GC)-SOA」(非特許文献4参照)がある(従来例4)。図16に、そのGC−SOAの素子構造を模式的に示す。本従来例は単一ストライプの活性層の同一光路内にクランプ光を発振するための共振器が配置された導波路構造を有する。
【0027】
図16を参照すると、GC−SOAは、SOAの活性層110の両端に分布型ブラッグ反射器(Distributed Bragg Reflector : DBR)111、112を備える導波路構造を有する。活性層110への電流注入によってSOA駆動がなされると、DBR111、112の間において、その反射ピークに応じた特定の波長(例えば1.5μm)でレーザ発振が起き、そのレーザ発振光(以下、クランプ光と呼ぶ。)が導波路構造の入・出射端から出力される。このとき、活性層110はクランプ光の発振閾利得にクランプされるため、入力光に対しては、その入力強度によらず常に一定の利得を与えることができる。なお、この構造では信号光とクランプ光の光路が同一であるため出射側にクランプ光を除去するためのフィルタが必要となる。
【0028】
利得クランプ型SOAの他の報告例として、特許文献1に記載されたようなSOAがある(従来例5)。図17に本従来例の素子構造を模式的に示す。本従来例ではマッハツェンダ干渉型の導波路構造を利用して、信号光とクランプ光が同一の活性層を通過する構造でありながら、入・出射端で空間的に分離可能なように配置されている。なお、本従来例の活性層は従来例2で示したアレイ活性層型のSOAにおける、アレイ数Nが2の場合の構造に相当する。
【0029】
図17を参照すると、SOAは、一方の端部に2つのポートA、Bを備え、他方の端部に2つのポートC、Dを備える。ポートAは、入力ポートであって、集束光ファイバ121によって導かれた入力光が入射するようになっている。ポートDは出力ポートであって、そこから出射される出力光が光集束光ファイバ122によって外部に導かれるようになっている。ポートBには反射器123が設けられており、ポートCには反射器124および可変光減衰器125が設けられている。ポートA、Bはそれぞれ光パワー等分配器である光合・分波器126の2つの入力導波路に繋がっている。光合・分波器126の2つの出力導波路は、それぞれ光合・分波器127の2つの入力導波路に繋がっており、これら両導波路がマッハツェンダ型干渉器の干渉アーム部分を構成している。光合・分波器127の2つの出力導波路は、それぞれポートC、Dに繋がっている。マッハツェンダ型干渉器の両干渉アームには、それぞれSOA部120a、120bが形成されている。
【0030】
上記のSOAでは、ポートAから入射した入力光は、光合・分波器126にて等分配される。そして、この光合・分波器126で等分配された光がそれぞれ干渉アームのSOA部120a、120bにて増幅を受けた後、光合・分波器127にて干渉−合波されることで、ポートDより増幅光が出力される。また、SOA駆動時には、ポートB、Cを繋ぐ経路において反射器123、124の間でレーザ発振が起き、クランプ光がそれぞれの反射器123、124から出力される。この場合も、利得のクランプは図13に示したものと同じようにして行われるが、信号光の経路(ポートA、Dを繋ぐ経路)とクランプ光の経路(ポートB、Cを繋ぐ経路)は空間的に分離されているため、クランプ光を除去するためのフィルタは不要である。よって、モジュールコストの低減が期待できる。
【0031】
また、図17に示した構造によれば、クランプ光の経路内の一部に設けられた可変光減衰器125(もしくは可変光増幅器)によって、反射器124の実効的な反射率を調節することもできる。さらに、クランプ光と信号光が同一の波長であってもよいというメリットもある。
【0032】
利得クランプ型SOAのさらに別の報告例として、D. A. Francis等によって開示された「linier optical amplifier (LOA) 」(非特許文献5参照)がある。図18に、そのLOAの素子構造を模式的に示す。信号光が伝搬する導波路を上下方向に挟むように共振器を配置する方法である。
【0033】
図18を参照すると、InP基板130の基板面内に導波構造の活性層131が形成されており、その活性層131を覆うようにInPクラッド132が設けられている。さらに、活性層131およびInPクラッド132が形成されたInP基板130を上下方向から挟むように、一対のDBR133、134が設けられており、基板面に垂直な方向にレーザ発振する垂直共振器面発光レーザ(Vertical Cavity Surface Emitting Laser :VCSEL)構造になっている。
【0034】
上記のLOAでは、信号光はInP基板130の基板面内に形成された導波構造の活性層131を導波する。また、活性層131の上下に配置されたDBR133、134によってInP基板130の基板面に垂直な方向においてレーザ発振が生じ、クランプ光がInP基板130の上下方向に出力される。この構造の場合は、単一ストライプ構造でありながら、信号光とクランプ光の光路が分離されているという特徴を有する。このため、図18に示したSOAと同様、クランプ光を除去するためのフィルタは不要となる。
【0035】
【特許文献1】
特開平2000−77771号公報
【非特許文献1】
European conference of optical communications '2000 (ECOC'2000) 国際会議、paper 1.3.2
【非特許文献2】
IEEE Electronics Letters誌、vol. 35, No. 6, pp. 485-487,1999
【非特許文献3】
IEEE Electronics Letters誌、vol. 36, No. 14, pp. 1218-1220,2000
【非特許文献4】
Electronics letters, Vol. 32, No. 22, pp. 2076-2077, 1996
【非特許文献5】
Technical digest of Optical Fiber communications 2001(OFC2001), post deadline paper PD13
【0036】
【発明が解決しようとする課題】
以上述べたように、活性層の最適化を主とする手段によって20dBm以上の飽和出力をSOAで実現する事は、1)偏光無依存化との両立の困難、2)駆動電流密度の増加、3)信号光に対する利得飽和特性の劣化、の観点から困難である。
【0037】
また、上記の課題を改善できる手法として、a)干渉導波路を利用して実効的な導波路幅を拡大することにより上記1)、2)の課題を改善する方法、及びb)利得クランプ型SOAにより上記3)の課題を改善する手法、を従来技術として示したが、要求される駆動電流を考慮した上で20dBmを越える飽和出力の達成を図るとき、上記改善手法のa)及びb)の改善策は尚課題を有している。この理由を以下に説明する。
【0038】
まず、a)単一横モード出力を維持しつつ実効的な導波路幅を拡大することにより1)、2)の課題を改善する方法の課題について説明する。従来例の項にて述べたように、本手法を用いて、従来の単一横モード伝搬の活性層の活性層幅Wに対して実効的な導波路幅をN倍にすることができれば、飽和出力はN倍に改善される。また、このとき注入電流密度は1倍のままである。しかし、この特性を実現するためには従来SOAと比較してN倍の駆動電流が必要とされる。導波路幅がN×WのSOAにおいて、飽和出力P1dBが20dBmとなるときの駆動電流を簡単に見積もると、2A程度になることが分かった。この駆動電流はEDFAの励起用のLDの駆動電流と比較しても高く、従って本改善手法では駆動電流上の問題のため、EDFAの代替を図ることが可能なSOAの実現手段としては不十分であることが分かる。
【0039】
次に、b)利得クランプ型SOAにより上記3)の課題を改善する手法の課題を説明する。従来技術の項にて述べたように、同一品質の活性層であっても利得クランプ型SOAでは従来のSOAよりも高い飽和出力が得られる。従って、目標とする飽和出力値が同一であれば、利得クランプSOAでは、従来SOAよりも駆動電流を低減することができる。しかし、利得クランプ型とすることによって、利得飽和曲線自体が改善されるわけではないため、飽和出力の改善幅はあくまで利得クランプを導入しない活性層における利得飽和曲線の範囲内に留まる。
【0040】
本発明の目的は、従来のSOAでは達成困難であった20dBmを超える高い飽和出力を有し、EDFAの代替が可能な実用的な性能を有するSOAを提供することにある。
【0041】
【課題を解決するための手段】
上記目的を達成するため、本発明の利得クランプ型半導体光増幅器は、導波光を増幅する利得領域を挟むように一対の反射器が設けられ、前記利得領域の導波路の一部が多モード干渉型光導波路よりなることを特徴とする。この構成によれば、一対の反射器にてレーザ発振が生じることで、利得領域における利得はその発振閾利得にクランプされる。これにより、利得飽和に起因する信号波形の劣化や、波長多重信号光を増幅する際のチャネル間クロストークが抑制される。また、利得領域の一部を多モード干渉型光導波路より構成したことで、利得領域(活性層)の面積を広くすることができ、その分だけ利得領域(活性層)への入力光密度を低減することができる。これにより、飽和出力を高めることができる。
【0043】
上記の利得クランプ型半導体光増幅器において、外部から信号光が入射する第1のポートと前記利得領域で増幅された光を出射する第2のポートと、前記一対の反射器にて生成されたクランプ光を出射する第3および第4のポートとをさらに設け、前記多モード干渉型光導波路は、一方の導波路端面が第1の単一モード導波路を介して前記第1のポートに接続されるとともに第2の単一モード導波路を介して前記第3のポートに接続され、他方の導波路端面が第3の単一モード導波路を介して前記第2のポートに接続されるとともに第4の単一モード導波路を介して前記第4のポートに接続されており、前記一対の反射器の一方が前記第2の単一モード導波路中に設けられ、他方が前記第4の単一モード導波路中に設けられていてもよい。この構成によれば、クランプ光の伝搬経路と信号光の伝搬経路は空間的に分離されているので、信号光からクランプ光を分離するためのフィルタを別途設ける必要がなく、また、信号光とクランプ光に同一波長のものを用いることが可能である。
【0044】
また、前記第2または第4の単一モード導波路の一部に前記クランプ光の発振閾利得を調整するための利得調整領域を備え、該利得調整領域に属する単一モード導波路への電流注入もしくは電圧印加によって、該利得調整領域に属する単一モード導波路を通過する前記クランプ光に対して利得または減衰を生じさせて前記クランプ光の発振閾利得を調整するように構成されてもよい。この構成によれば、発振閾利得を調整することで、信号光の利得調整が可能となる。
【0045】
また、前記第3または第4のポートから出射されるクランプ光を検出する受光器を有していてもよい。この構成によれば、中継増幅器に適用した場合に、上述したような利得クランプ型半導体光増幅器の作用に加えて、受光器の出力が一定となるように利得調整導波路への電流注入または電圧印加の量を制御することにより定出力動作が可能となる。また、光通信システムの受信装置に適用した場合に、増幅されたクランプ光を信号光の代わりに検出することになるので、信号変換の誤り率の低減が可能となる。
【0047】
【発明の実施の形態】
はじめに、光アンプに要求される一般的な性能やSOAの長所となる性能(偏光依存性や駆動電流、素子サイズ等)を著しく悪化することなく、EDFAの代替を図る目安である20dBmを超える高い飽和出力を有するSOAが本発明によって実現できる理由について述べる。
【0048】
従来例の項にて述べたように、従来の単一横モード伝搬の導波路構造をもとにし、活性層のモード断面積などを最適化しただけのSOAでは、20dBmを超える高い飽和出力の実現が困難である。また、発明が解決すべき課題の項で述べたように、飽和出力の向上に有効であると思われる従来の手法である、a)単一横モード出力を維持しつつ実効的な導波路幅を拡大したSOA、及びb)利得クランプ型SOAによっても上記目標を達成することは困難である。そこで本発明では利得飽和曲線を改善可能な上記a)と所望の飽和光出力を得るための駆動電流の効率化を図るb)の手法を組み合せることを提案する。ただし、a)およびb)の双方について、従来例をはじめいくつかの手法が提案されているため、本発明に到る過程として、最適な構造について以下のような検討を行った。
【0049】
まずa)単一横モード出力を維持しつつ実効的な導波路幅を拡大したSOAにおける最適な手法について検討した。その検討結果を表1に示す。
【0050】
【表1】
Figure 0003985159
表1は、本発明に適用可能な素子構造としてAからFの6タイプについて提案し、それぞれのタイプについて素子サイズと生産性(歩留まりや工程数)の観点から本発明への適応性を評価したものである。なお、各タイプの差異に関する主な観点は、1)導波路幅を広げるための手段、及び、2)光合波器部分の機能(利得導波路か受動導波路か)である。以下に、各タイプについての特徴を述べる。
【0051】
Aタイプは、導波路を広げる手段としてアレイ導波路からなる活性層を用い、1xN合・分波器は受動導波路により構成される「アレイ導波路活性層+受動光合分波器」構造を有するタイプである。これは従来例1で示した構造を有するタイプである。本タイプでは、飽和出力向上のために実効的な導波路幅の拡大を図る際にアレイ導波路数Nを増やす必要がある。しかし、Nが増加した場合、アレイ活性層の両端の光合・分波器のサイズも大きくなるため、本タイプは素子サイズの低減の観点から問題があることが分かる。また、別々の工程で形成した受動導波路と活性層を集積する必要があるため、工程数も多くなる。また、Nが大きい場合に、各アレイの信号光位相を揃えることが困難になり、素子利得の劣化が懸念され、素子歩留まりの低下が懸念される。
【0052】
Bタイプは、導波路を広げる手段としてアレイ導波路からなる活性層を用い、1xN合・分波器も活性層として機能する「全活性層アレイ導波路」構造を有するタイプである。本タイプでは、タイプAと同様、飽和出力向上のために実効的な導波路幅の拡大を図る際にアレイ導波路数Nを増加する必要があるが、Aタイプと異なり、光合・分波器が活性層の役割を兼ねているため、素子サイズはタイプAよりも格段に小さくなる。しかし、Nが大きい場合に、各アレイ間の信号光位相を揃えることが困難になり、素子利得の劣化が懸念される点ではタイプAと同様であり、素子歩留まりの低下が懸念される。
【0053】
Cタイプは、導波路を広げる手段としてMMIからなる活性層を用い、1xN合・分波器が受動導波路により構成される「MMI活性層+受動光合分波器」構造を有するタイプである。このタイプの素子の従来例として「WO96/13084」(以降、特許文献2と記す。)が報告されている。この特許文献2によると、利得クランプ型SOAの活性層にMMIを使用し、2x2分岐のMMIの一方の光路を利得クランプ光の伝搬経路とし、他方を信号伝搬経路としている。MMI活性層の両端には利得クランプ光と信号光を合波する受動導波路よりなる合・分波器が具備されている。本構造では、信号光とクランプ光が同一の伝搬経路を有する領域にのみ活性層を使用し、信号光とクランプ光の伝搬経路が空間的に完全には一致しない光合波器部分は受動光導波路とすることで、信号光とクランプ光の相互利得変調を促進している。なお、本特許文献2では利得クランプ光と信号光との相互利得変調の促進のための他の方策としてMMI活性層の幅を狭くすることが提案されているが、この構造は飽和出力向上の観点では不利である。飽和出力向上のためには導波路幅を広くし、活性層の光子密度を低下させる必要があるが、活性層にMMIを用いる本タイプでは、同一の活性層幅を得るための素子長をA,Bタイプよりも小さくすることができる。また、単一横モード導波路のアレイからなるA,Bタイプと比較して活性層形成時におけるリソグラフィの誤差に対する許容度が高く、歩留まり上も優れている。一方、本タイプでは合・分波器が受動導波路であるため、通常のSOAと比較した場合の素子サイズは大きい。また、別々の工程で形成した受動導波路と活性層を集積する必要があるため、工程数も多くなる。
【0054】
Dタイプは、導波路を広げる手段としてMMIからなる活性層を用い、1xN合・分波器も活性層として機能する「全活性層MMI」構造を有するタイプである。本タイプは、Cタイプと同様、導波路幅を広くする際に素子長をA,Bタイプよりも小さくすることができる。また、MMIの活性層は単一横モード導波路のアレイからなるA,Bタイプと比較して活性層形成時におけるリソグラフィの誤差に対する許容度が高く、歩留まり上も優れている点もCタイプと同様である。さらに、本タイプでは、合・分波器活性層の役割をも兼ねているため、Cタイプよりも素子サイズを小さくすることができる。なお、Cタイプと比較して、信号光とクランプ光との相互利得変調の促進が不十分であることが懸念されるが、実際に使用される10μm以下の導波路幅の活性層では、キャリア拡散を通じて信号光とクランプ光の相互作用が行われるため、信号光の劣化は少ないと考えられる。
【0055】
Eタイプは、導波路を広げる手段として方向性結合器を用い、結合導波路のすべてが活性層により構成される「全活性層方向結合器」構造を有するタイプである。本タイプは、方向性結合器からなる活性層の長さが完全結合長となるように設計されている。なお、完全結合長とは、結合導波路における導波路の一方に入射された信号光のフィールドが、他方の導波路に完全に移行するのに要する伝搬距離である。本構造では、結合導波路により実効的な導波路幅を広くすることが可能であるが、一般に方向性結合器は2本の結合導波路からなり、従って実効的な導波路幅は2倍までに制限されるため、飽和出力改善の余地は制限される。また、タイプA、Bと同様に単一横モード導波路を基本とした構造であるため、活性層のリソグラフィの誤差に対する影響を受けやすく、歩留まり低下が懸念される。
【0056】
Fタイプは、導波路を広げる手段としてテーパ導波路を用い、導波路のすべてが活性層により構成される「全活性層テーパ導波路」構造を有するタイプである。本タイプは、信号光の横高次モードが励起されないように、信号伝搬方向に十分に緩やかな角度を有するテーパ導波路をつなぎ合わせた活性層形状を有する。このようにテーパ導波路を用いて活性層幅を拡大する構造は従来、主として高出力LD用途として開発されてきた。本タイプの活性層はC、DタイプのMMI活性層と同様、活性層が一本の幅広導波路により形成されているため、活性層形成時におけるリソグラフィの誤差に対する許容度が高く、歩留まり上も優れている。一方で、導波損失を増加させることなく導波路幅を拡大するためには導波路幅のテーパ角度を大きくすることは困難であり、所望の導波路幅を得るための活性層長さが長くなり、素子サイズが大きくなることが問題である。
【0057】
以上の考察に基づき、AからFの6タイプの活性層について表1のような評価結果が得られた。この表では、「5」を最高評価としている。この結果より、導波路幅を拡大し、飽和出力の向上を図ることが可能な活性層としてDタイプの「全活性層MMI」が最も適していることが分かる。
【0058】
次に、利得クランプ構造に関して検討を行った。利得クランプ構造の構造として考え得るのは、信号光とクランプ光が同一基板平面上を伝搬する構造(従来例4、5))と信号光とクランプ光が互いに直交した伝搬経路を持つ構造(従来例6)である。ここでは、これら3つの利得クランプ構造において、高飽和出力、低消費電力、小型化、そして、既に検討した導波路幅を広げる活性層構造との整合性の観点から優れた構造を検討した。
【0059】
第1の方法による利得クランプ型SOA(図13参照)には、1A)信号光とクランプ光の伝搬経路が同一基板平面上にあり、且つ、基板平面内においても完全に同一である構造と、1B)信号光とクランプ光の伝搬経路が、同一基板平面上にあるが、基板平面内において異なる構造が考えられる。
【0060】
1Aの構造は、SOAの素子構造がシンプルであり、活性層をMMIとしても素子特性上問題がないため、本発明への適用に適しているといえる。尚、本構造ではDBR111、112の反射率が固定であるため素子利得が固定される。また、信号光とクランプ光の伝搬経路が完全に同一なため、出力側にクランプ光の除去のための光フィルタが必要である。
【0061】
1Bの構造は、従来例4に示されるように、マッハツェンダ干渉計などを用いることにより信号光とクランプ光の伝搬経路を空間的に分離した構造である。この構造を実現するには2入力2出力の干渉型導波路構造が必要である。すでに述べたA〜Fタイプの導波路幅を拡大可能な構造のうち、A〜Eタイプで2入力2出力の活性層構造が実現可能であり、特にDタイプの全活性層のMMIを用いた場合、小型でシンプルな2入力2出力構造を実現できる。なお、本構造ではクランプ光の伝搬経路中に導波路利得や損失を制御可能な活性層や光吸収層を設けることによって信号光の利得を可変とすることが可能である。これは、クランプ光の伝搬経路の両端に具備された反射器の反射率を、活性層や光吸収層によって実効的に可変にできるために、クランプ光の発振時における活性層のキャリア密度を可変とすることが可能であるためである。また、信号光とクランプ光の伝搬経路が異なるために、出力側にクランプ光の除去のための光フィルタが不要となる利点もある。本利得クランプ構造も本発明への適用に適しているといえる。
【0062】
以上述べたように、第1の方法による利得クランプSOAは本発明の目的に適した構造である。
【0063】
第2の方法による利得クランプ構造は、従来例4に示される、信号光とクランプ光とが互いに直交した伝搬経路を持つ構造である。本手法では、導波路の上下にクランプ光の発振のための反射器が具備されるため、導波路の平面形状によらずA〜Eタイプの活性層構造のいずれにも適用可能である。しかし、本手法においては基板垂直方向へのレーザ発振の必要から基板垂直方向に対しての高い利得が要求される。これを実現するには、活性層を厚くしたり、多重量子井戸(MQW)の活性層を導入したりする必要がある。しかし、基板垂直方向への利得を大きくすることは、基板面内を伝搬する信号光に対する導波路モード利得を大きくすることでもあり、これは信号光に対する飽和出力向上を図る目的とは全く逆の設計指針となる。従って、本利得クランプ構造は飽和出力の向上には適さないことがわかる。また、活性層の上下に反射器を具備することも信号光の偏光無依存化などの利得設計上の制約となる。さらに、本構造では発振閾利得のチューニングが困難であるため、利得が固定であるというデメリットがある。以上のデメリットにより本手法による利得クランプ構造の本発明への適用は困難である。
【0064】
以上の検討結果により、本発明の目的とする、高い飽和出力を有し小型、低消費電力化が可能なSOAとして、「全活性層MMI」からなる導波路構造を有し、「信号光とクランプ光が同一基板平面上を伝搬する構造」の利得クランプ構造を有するSOAが最も優れることが明らかになった。
【0065】
次に、本発明の実施形態について図面を参照して説明する。
【0066】
(第1の実施形態)
図1は、本発明の第1の実施形態である利得クランプ型SOAの構造を説明するための図で、(a)は平面図、(b)は(a)に示す構造のC−C’における断面図、(c)は(a)に示す構造のA−A’における断面図、(d)は(a)に示す構造のB−B’における断面図である。
【0067】
まず、図1(a)を用いて、本実施形態の利得クランプ型SOAの導波路部の構造を説明する。本実施形態の利得クランプ型SOAは、図1(a)に示すように、入力光が入射する素子端面8から、出力光が出射する素子端面9まで繋がった導波路を有する。この導波路は、素子端面8側から順に窓領域6、SSC(スポットサイズコンバータ)領域4、DBR領域2、利得領域1、DBR領域3、SSC領域5、窓領域7を配した構造になっており、利得領域1を中心に素子端面8側と素子端面9側が対称な構造になっている。DBR領域2、3およびSSC領域4、5の部分はいずれも単一横モード導波路である。
【0068】
利得領域1は、MMI導波路11と、その両端に設けられた単一モード導波路12、13からなる。MMI導波路11は、単一モード導波路12から入射した光が多モード領域を伝搬した後に干渉効果によって単一モード導波路13に極めて低損失で光学的に結合するように構成されている。すなわち、MMI導波路11は、1入力1出力(1×1)のMMIカップラの構造を有している。
【0069】
利得領域1の長さ(導波路長)は、MMI導波路11と単一モード導波路12、13を併せて約600μmである。各DBR領域2、3の長さは同じで約10μmである。各SSC領域4、5の長さも同じで約150μmである。各窓領域6、7の長さも同じで約150μmである。
【0070】
DBR領域2、3の単一モード導波路、および利得領域1の単一モード導波路11、12の各幅W1は、いずれも同じで1.0μmである。利得領域1のMMI導波路11の幅(W2)は6μmである。SSC領域4の導波路は、導波路幅が素子端面8に向かって徐々に細くなるようなテーパ形状になっており、DBR領域2との境界部における導波路幅が1.0μm、窓領域6との境界部における導波路幅が0.5μmになっている。これと同様に、SSC領域5の導波路は、導波路幅が素子端面9に向かって徐々に細くなるようなテーパ形状になっており、DBR領域3との境界部における導波路幅が1.0μm、窓領域7との境界部における導波路幅が0.5μmになっている。
【0071】
ここで、活性層におけるMMI理論について簡単に説明しておく。MMI理論は、多モード導波路に入射した光の伝搬特性に関するもので、一般には、1×NもしくはN×N等の分岐・合波導波路(受動光導波路)を設計する理論として知られている(例えば、Lucas B.Soldano、「ジャーナル・オブ・ライトウエイブ・テクノロジー(Journal of Lightwave Technology)」、Vol.13、No.4、第615〜627頁、1995を参照)。この理論によれば、多モード導波路において、入射光が導波路形状、屈折率および入射波長により決定される所定の距離(MMI領域長L)を伝搬した後に、入射光の自己投影像を得ることができる。このとき、わずかなモード変換損失が生ずるものの、分岐、合波における損失は発生しない。以降の説明において、このような分岐、合波における損失なしに、入射光の自己投影像が得られるよう設計されたMMIを(1入力1出力)1×1MMIと呼ぶことにする。
【0072】
MMI領域長Lは、一般的な入射条件の場合、
L=(3・Lπ)×m(mは整数)
で与えられ、MMI導波路の中央に左右対称な光を入射した場合は、
L=(3・Lπ/4)×m(mは整数)
で与えられ、MMI実効導波路幅Weを3等分する座標に入射した場合は、
L=(Lπ)×m(mは整数)
で与えられる。ここで、
Lπ=(4・nr・We2)/(3・λ0
We=WM+(λ0/π)・(nc/nr)2・(nr2−nc2-(1/2)
である。また、WMはMMI領域の物理的な幅、nrは導波路の屈折率、ncはクラッドの屈折率、λ0は入射光波長である。σはTEモードのときσ=0、TMモードのときo=1である。
【0073】
さらに、MMI理論によると、
LN=L×m/N(mは整数)
を満たす伝搬距離LNという条件においては、光出力を等分配可能な1×N光カップラとして動作する。この場合のNは正の整数であり、1であっても勿論問題はない。
【0074】
以上の原理を利用すれば、幅の広い多モード光導波路でありながら、両端面においては単一横モード光のみが伝搬する構造を有する1×1MMI光導波路の設計が可能である。利得領域1のMMI導波路11は、そのような1×1MMI光導波路の構造になっている。なお、ここでは、MMI理論の概略を示したが、詳細な原理及び定義については上述の文献に従うものとする。
【0075】
次に、本実施形態の利得クランプ型SOAの断面構造について、図1の(b)〜(d)を参照して説明する。
【0076】
InP基板20の基板面上の利得領域1に対応する領域には活性層25が形成されており、この活性層25によりMMI導波路11および単一モード導波路12、13が構成されている。InP基板20の基板面上のDBR領域2およびSSC領域4に対応する領域には、導波路部となるコア層24が形成されており、DBR領域3およびSSC領域5に対応する領域にも同様なコア層24が形成されている。素子端面8から素子端面9まで繋がる一連の導波路は、これらコア層と活性層25が同一基板面内で突き合わせ結合された、いわゆるバットジョイント構造になっている。
【0077】
活性層25は、例えばn−InPバッファ層と、波長組成1.2μmのInGaAsよりなる下部SCH(Separate Confinement Hetero-structure)層と、−0.2〜−0.3%程度の引っ張り歪を有するInGaAsよりなる活性層と、波長組成1.2μmのInGaAsよりなる上部SCH層と、n−InP層とからなる積層構造になっている。コア層24は、n−InPバッファ層、波長組成1.3μmのInGaAsPバルク層、p−InP層からなるが、DBR領域2、3においては、InGaAsPバルク層と同一の組成で、光導波方向に対して、周期的、かつ、断続的に形成された回折格子23が設けられている。
【0078】
以上のコア層24および活性層25からなる導波路は、全体がp−InPクラッド層27及びp−InGaAsコンタクト層26からなる半導体層で覆われている。p−InGaAsコンタクト層26は、利得領域1に対応する領域に形成されており、その上面には利得領域1に電流注入を行うためのp電極21bが形成されている。p−InGaAsコンタクト層26以外の電流注入が不要な領域には、絶縁膜および保護膜としてのSiO2膜30が形成されている。InP基板20の裏面(導波路が形成された面とは反対の面)には、n電極21aが形成されている。
【0079】
上述したコア層24および活性層25からなる導波路は、図1の(c)および(d)に示した、光導波方向に垂直な方向の断面構造から分かるように、導波路の両脇がエッチングによってInP基板20に到達するまで除去されている。エッチングされた部分(凹部)は、P−InP電流ブロック層29及びn−INP電流ブロック層28からなる電流狭窄構造になっている。この電流狭窄構造の部分も、全体がp−InPクラッド層17及びp−InGaAsコンタクト層26からなる半導体層で覆われている。これに似た導波路構造として、DC−PBH( Double Channel Planar Buried Hetero-structure)構造のレーザ構造が知られている。
【0080】
本実施形態の利得クランプ型SOAでは、p電極21bから活性層25に所定の大きさの電流を注入しながら、活性層25を挟むように配置されたDBR領域2、3の間において所定の波長でレーザ発振させた状態で、以下のような入力光(信号光)の増幅動作(SOA動作)が行われる。
【0081】
入力光(信号光)は、素子端面8から入射し、窓領域6、SSC領域4、DBR領域2を順次経て利得領域1に到達し、この利得領域1において活性層25を伝搬することで増幅される。増幅された信号光は、DBR領域3、SSC領域5、窓領域7を順次経て素子端面9から出射する。
【0082】
利得領域1においては、信号光は単一モード導波路12からMMI導波路11に入射する。MMI導波路11は1×1MMI構造であるので、単一モード導波路13側の端面において、単一モード導波路12から入射した光の自己投影像が得られる。よって、このMMI導波路11では、単一モード導波路12から入射した光は干渉効果によって単一モード導波路13に光学的に結合される。このとき、分岐、合波の損失はほとんどない。
【0083】
以上のように、本実施形態によれば、活性層25の一部をMMI導波路11で構成したことで、活性層25の面積を広くすることができ、その分だけ活性層25への入力光密度を低減することができ、これにより飽和出力を高めることができる。
【0084】
また、活性層25における信号光の増幅は、レーザ発振状態において行われるので、活性層25は、その発振閾利得にクランプされることになり、信号光に対して常に一定の利得を与えることができる。これにより、利得飽和に起因する信号波形の劣化や波長多重信号光を増幅する際のチャネル間クロストークを抑制することができる。
【0085】
なお、本実施形態の場合は、クランプ光は素子端面8、9のそれぞれから出射することになるので、素子端面9側に、クランプ光を除去するためのフィルタが必要である。
【0086】
次に、本実施形態の利得クランプ型SOAの製造方法について説明する。図2の(a)〜(e)および図3の(f)〜(h)は、図1に示した利得クランプ型SOAの一連の製造手順を示す工程図である。図2、3の(a)〜(h)に示すいずれの工程にも、図1の(b)〜(d)に示した3つの断面構造に対応する部分が示されている。
【0087】
まず、図2(a)に示すように、InP基板20上に活性層25をMOVPE法によって形成する。この活性層25の形成では、例えばn−InPバッファ層(厚さ100nm)、InGaAsPよりなる下部SCH層(波長組成1.2μm、厚さ100nm)、−0.2〜ー0.3%程度の引っ張り歪みを有するInGaAsPよりなる活性層(厚さ50nm)、InGaAsPよりなる上部SCH層(波長組成1.2μm、厚さ100nm)、p−InP層(厚さ100nm)がInP基板20上に順次積層される。
【0088】
次いで、図2(b)に示すように、周知のフォトリソグラフィと反応性イオンエッチング(RIE)法を利用して、利得領域1を保護するような形状のSiO2層31を形成し、さらにそのSiO2層31をマスクとして用いて、DBR領域2、3、SSC領域4、5および窓領域6、7に積層された活性層の部分をRIE法もしくはウエットエッチングにより除去する。
【0089】
次いで、図2(c)に示すように、SiO2層31をそのまま選択成長用マスクとして用い、DBR領域2、3、SSC領域4、5および窓領域6、7にコア層24をMOVPE法により成長する。このコア層24の形成では、例えば、n−InPバッファ層(厚さ100nm)、InGaAsPバルク層(波長組成1.3μm、厚さ250nm)、p−InP層(厚さ120nm)、グレーティング層(波長組成1.3μm、厚さ30nm)、及びp−InPカバー層(厚さ100nm)がInP基板20上に順次積層される。このようにして形成されたコア層24は、同一平面(InP基板20の基板面)上で活性層25と結合されており、これによりバットジョイント構造の導波層を形成している。
【0090】
次いで、図2(d)に示すように、電子ビーム(EB)露光法を用いて作製したレジストマスクを用い、臭素系エッチャントによってDBR領域2、3のグレーティング層をエッチングすることにより回折格子23を形成する。同時に、DBR領域2、3の位相領域のグレーティング層も除去する。
【0091】
次いで、図2(e)に示すように、フォトリソグラフィおよびRIE法により新たにパターニングしたSiO2層32をマスクとして用いて、コア層24および活性層25からなる導波路部分の平面形状を決定する半導体エッチングをRIE法により施す。これにより、活性層25およびコア層24からなる導波路部分に、導波方向に沿って、InP基板20に到達する深さ2μm、幅5μmの2本の溝33a、33bが形成される。これらの溝33a、33bは、導波路の両脇に位置する。
【0092】
次いで、図3(f)に示すように、SiO2層32をマスクとして用いて、溝33a、33bにp−InP電流ブロック層29及びn−InP電流ブロック層28からなる電流狭窄構造をMOVPE法によって形成する。ここで、p−InP電流ブロック層29及びn−InP電流ブロック層28の厚さはいずれも、1μmである。
【0093】
次いで、図3(g)に示すように、導波路および電流狭窄構造が形成された基板表面全体を覆うように、p−InPクラッド層27(厚さ5μm)及びp−InGaAsコンタクト層26(厚さ300nm)からなる半導体層をMOVPE法に形成する。そして、DBR領域2、3の回折格子23および位相領域、利得領域1をそれぞれ電気的に分離するために、エッチングによって、p−InGaAsコンタクト層26をそれぞれの領域ごとに分離する。
【0094】
次いで、図3(h)に示すように、導波路を中心に15μm程度の幅のメサが形成されるように、導波路の両脇に幅5μm程度の素子分離溝33をRIE法により形成する。この素子分離溝33は、InP基板20にまで到達する深さ(約6μm程度)とする。素子分離溝33を形成後、フォトリソグラフィにてSiO2よりなる電極窓を形成する。続いて、通常のスパッタリング法とリソグラフィにより基板表面にp電極21bを形成した後、InP基板20の裏面に研磨を施し、そこにスパッタリング法によりn電極21aを形成する。
【0095】
以上の工程によりウエハとしてのプロセスを完了する。この後、ウエハを劈開することで得られる各素子について、必要に応じて、劈開端面に高反射もしくは無反射コーティングを施す。こうして、本実施形態の利得クランプ型SOAを得る。
【0096】
(実験例)
図1に示した利得クランプ型SOAの利得飽和性能を実験により確認した。はじめに、本利得クランプ型SOAの素子端面8、9にファイバ光結合し、ビットレートが10Gb/sのNRZ変調信号を重畳した波長1.55μmの光を入射した。注入電流を700mAで一定として、入力信号光の光強度を変化させたところ、入力光強度が2dBm以下では、20dBの一定したファイバ間利得が得られた。同時に波長1.51μmでクランプ光が発振していることが確認された。また出力信号波形の信号誤り率を測定したところ、SOAを通過しない場合と比較して顕著な符号謝り率の増加は観測されなかった。尚、入力光強度が2dBm以上では、クランプ光の発振が停止し、ファイバ間利得の減少が確認された。以上の結果から、本発明によるSOAでは、ファイバ間利得20dB以上、飽和出力20dBm以上という、従来実現不可能な極めて高い利得特性を得られることが明らかになった。なお、入力光の偏波を回転しながら測定した変光依存性利得(PDG)は、0.5dB以下であった。
【0097】
次に、波長1.54μmおよび1.55μmの2波長のレーザ光のそれぞれにビットレートが10Gb/sのNRZ変調信号を重畳した上で合波した波長多重信号光を素子端面8から入射して、本利得クランプ型SOAの出力飽和点近傍の信号透過特性を測定した。ここで、2波長のWDM信号光を用いた理由は、多重化された相手波長のオンオフの影響が最も大きくなる条件であるからである。増幅後の信号光を分波して、波長が1.54μmおよび1.55μmの透過信号波形の信号誤り率を測定したところ、両波長において顕著なパワーペナルティーの劣化は観測できなかった。このことから、本利得クランプ型SOAでは良好な波長クロストーク性能を有することが明らかになった。
【0098】
(第2の実施形態)
図4は、本発明の第2の実施形態である利得クランプ型SOAの構造を説明するための図で、(a)は平面図、(b)は(a)に示す構造のC−C’面における断面図である。
【0099】
まず、図4(a)を用いて、本実施形態の利得クランプ型SOAの導波路部の構造を説明する。本実施形態の利得クランプ型SOAは、入力光が伝搬する第1の経路(素子端面8側のポートP2と素子端面9側のポート3と結ぶ経路)と、クランプ光が伝搬する第2の経路(素子端面8側のポートP1と素子端面9側のポート4とを結ぶ経路)とが空間的に分離された構造になっている以外は、基本的には図1と同様な構造である。図4中、同じ構造部分には同じ符号を付している。
【0100】
第1の経路の導波路部は、利得領域1を中心に素子端面8側と素子端面9側が対称な構造になっている。一方、第2の経路の導波路部は、利得領域1を中心とすると、素子端面9側の導波路部分は、利得調整領域10を有する点で素子端面8側の導波路部と異なる。
【0101】
利得領域1の導波路部分は、1×1MMI構造を有するMMI導波路11’と、その両端に設けられた単一モード導波路12a、12b、13a、13bからなる。単一モード導波路12aは単一モード導波路40aを介してポートP1に繋がっており、単一モード導波路12bは単一モード導波路40bを介してポートP2に繋がっている。単一モード導波路13aは単一モード導波路41aを介してポートP3に繋がっており、単一モード導波路13bは単一モード導波路10a、41bを介してポートP4に繋がっている。MMI導波路11’は、単一モード導波路12bから入射した光が多モード領域を伝搬した後に干渉効果によって単一モード導波路13aに極めて低損失で光学的に結合するように構成されている。
【0102】
単一モード導波路40a、40bは、DBR領域2およびSSC領域4の複数の領域にわたって形成されており、いずれも、SSC領域4における導波路部分が、素子端面8に向かって導波路幅が細くなるテーパ形状になっている。単一モード導波路40aのテーパ形状部分の長さは、単一モード導波路40bのそれより短い。単一モード導波路41aは、利得調整領域10、DBR領域3およびSSC領域5の複数の領域にわたって形成されており、単一モード導波路41bは、DBR領域3およびSSC領域5の複数の領域にわたって形成されている。単一モード導波路41a、41bのSSC領域4における導波路部分は、いずれも素子端面9に向かって導波路幅が細くなるテーパ形状になっている。単一モード導波路41bのテーパ形状部分の長さは、単一モード導波路41aのそれより短い。単一モード導波路10aは、利得調整領域10に対応する部分である。
【0103】
次に、本実施形態の利得クランプ型SOAの断面構造について、図4(b)を参照して説明する。
【0104】
InP基板20の基板面上には活性層25a、利得調整活性層25bが隣接して設けられており、さらにその両側にコア層24’が設けられている。第1および第2の経路を構成する導波路部分は、これらコア層24’、活性層25aおよび利得調整活性層25bが同一基板面内で突き合わせ結合されたバットジョイント構造になっている。
【0105】
MMI導波路11’および単一モード導波路12a、12b、13a、13bは活性層25aにより構成され、単一モード導波路10bは利得調整活性層25bにより構成され、単一モード導波路40a、40b、41a、41bはコア層24’により構成されている。単一モード導波路40aのDBR領域2の部分および単一モード導波路41bのDBR領域3の部分には、それぞれ回折格子23’が形成されており、これにより第2の経路(ポートP1−P4間の経路)において所定の波長でのレーザ発振が可能になっている。
【0106】
活性層25a、コア層24’および回折格子23’は、図1に示した構造における活性層25、コア層24および回折格子23と同様な構造である。利得調整活性層25bは、活性層25aと同一構造であり、活性層25aの一部でこの利得調整活性層25bを構成してもよい。
【0107】
以上のコア層24’、活性層25aおよび利得調整活性層25bからなる導波路は、全体がp−InPクラッド層27及びp−InGaAsコンタクト層26’からなる半導体層で覆われている。p−InGaAsコンタクト層26’は、活性層25aおよび利得調整活性層25bに対応する領域に形成されており、その上面にはp電極21b、21b’が形成されている。p電極21bは利得領域1の活性層25aに電流を注入するためのもので、p電極21b’は利得調整領域10の利得調整活性層25bに電流を注入するためのものである。
【0108】
以上説明した構成以外の部分(電流狭窄構造など)は、基本的には、図1に示したものと同様であるので、ここでは、その部分についての詳細な説明は省略する。
【0109】
本実施形態の利得クランプ型SOAでは、p電極21bから活性層25aに所定の大きさの電流を注入しながら、第2の経路(ポートP1−P4間の経路)においてDBR領域2、3間で所定の波長でレーザ発振させた状態で、以下のような入力光(信号光)の増幅動作(SOA動作)が行われる。
【0110】
入力光(信号光)は、第2の経路(ポートP1−P4間の経路)とは空間的に分離された第1の経路(ポートP2−P3間の経路)を伝搬する。ポートP2から入射した入力光(信号光)は、単一モード導波路40bを伝搬して利得領域1に到達し、この利得領域1において活性層25aを伝搬することで増幅される。増幅された信号光は、単一モード導波路41aを伝搬してポートP3から出射される。
【0111】
利得領域1では、信号光は単一モード導波路12bからMMI導波路11’に入射する。MMI導波路11’は1×1MMI構造であるので、単一モード導波路13a側の端面において、単一モード導波路12bから入射した光の自己投影像が得られる。よって、このMMI導波路11’では、単一モード導波路12bから入射した光は干渉効果によって単一モード導波路13aに光学的に結合される。このとき、分岐、合波の損失はほとんどない。
【0112】
一方、クランプ光は、第2の経路(ポートP1−P4間の経路)を伝搬してポートP1、P4のそれぞれから出射される。
【0113】
以上のように、本実施形態の利得クランプ型SOAによれば、活性層25aの一部をMMI導波路11’で構成したことで、活性層25aの面積を広くすることができ、その分だけ活性層25aへの入力光密度を低減することができる。これにより、飽和出力を高めることができる。
【0114】
また、活性層25aにおける信号光の増幅は、レーザ発振状態において行われているので、活性層25aは、その発振閾利得にクランプされることになり、信号光に対して常に一定の利得を与えることができる。
【0115】
さらに、利得調整活性層25bへの注入電流または印加電圧の量を制御することで、第2の経路(ポートP1−P4間の経路)におけるクランプ光のレーザ発振閾利得をチューニングできる。このチューニングは、利得領域1における活性層25aの利得係数を変化させることでもある。したがって、利得調整活性層25bへの注入電流の制御により信号光の利得を調整することができる。
【0116】
また、本実施形態では、クランプ光は、信号光が伝搬する第1の経路(ポートP2−P3間の経路)とは空間的に分離された第2の経路(ポートP1−P4間の経路)を伝搬するようになっているので、第1の実施形態で必要とされた、クランプ光を除去するためのフィルタが不要となる他、クランプ光と信号光が同一の波長であってもよいというメリットもある。
【0117】
本実施形態の利得クランプ型SOAの製造方法は、第1の実施形態で説明した製造方法とほぼ同じであるため、ここではごく簡単に述べるにとどめる。本実施形態の利得クランプ型SOAは、第1の実施形態のものと同様、DC―PBH構造である。その製造方法を大まかに述べると、利得領域1、利得調整領域10の活性層成長工程と、DBR領域2、3、SSC領域4、5および窓領域6、7における活性層の除去工程と、同領域へのコア層24’の再成長によるバットジョイント構造形成工程と、回折格子23’の形成工程と、導波路パターン形成工程と、電流狭窄構造成長工程と、埋め込み成長工程と、素子分離工程と、電極形成工程と、劈開および端面コーティング工程とを含む。
【0118】
(第3の実施形態)
図5は、本発明の第3の実施形態である利得クランプ型SOAの構造を説明するための平面図である。本実施形態の利得クランプ型SOAは、空間的に分離された第1および第2の経路の導波路が全て活性層により構成され、出力光が出射される側のDBR領域が利得調整領域を兼ねるように構成された以外は、上述した第2の実施形態のものと同じ構造のものである。図5中、同じ構造部分には同じ符号を付している。
【0119】
入力光(信号光)が伝搬する第1の経路(ポートP2−P3間の経路)の導波路部分は、利得領域1を中心とすると、素子端面8側と素子端面9側が対称な構造になっている。一方、クランプ光が伝搬する第2の経路(ポートP1−P4間の経路)の導波路部分は、利得領域1を中心とすると、素子端面8側と素子端面9側がほぼ対称な構造になっているが、素子端面9側のDBR領域3が利得調整領域を兼ねる点で素子端面8側の導波路部分と異なる。すなわち、この第2の経路におけるDBR領域3の単一モード導波路41b’は、DBR構造でありながら、活性層への電流注入制御を個別に行えるように構成されている。利得領域1の単一モード導波路13bは、この単一モード導波路41b’を介してポートP4に繋がっている。
【0120】
本実施形態の利得クランプ型SOAでは、ポートP2から入射した入力光(信号光)は、上述した第2の実施形態の場合と同様に、利得領域1の活性層を伝搬することで増幅される。増幅された信号光は、ポートP3から出射される。一方、クランプ光は、第2の経路(ポートP1−P4間の経路)を伝搬してポートP1、P4のそれぞれから出射されるが、そのレーザ発振閾利得は、DBR領域3において活性層への電流注入または印加電圧の量を個別に制御することで調整されるようになっており、この点が第2の実施形態のものと異なる。
【0121】
以上のように構成された本実施形態の利得クランプ型SOAによれば、導波路をすべて活性層としているので、第1および第2の実施形態のものと比べて、バットジョイント構造の形成が不要となる分、製造工程を短縮することができる。この他の特徴は、第2の実施形態で述べたものと同じである。
【0122】
本実施形態の利得クランプ型SOAの製造方法は、バットジョイント構造形成工程がない以外は、第1の実施形態で説明した製造方法とほぼ同じであるため、ここではごく簡単に述べるにとどめる。本実施形態の利得クランプ型SOAも、第1の実施形態のものと同様、DC―PBH構造である。その製造方法を大まかに述べると、利得領域1をはじめとする全導波路の活性層成長工程と、DBR領域2、3への回折格子形成工程と、導波路パターン形成工程と、電流狭窄構造成長工程と、埋め込み成長工程と、素子分離工程と、電極形成工程と、劈開および端面コーティング工程とからなる。
【0123】
(第4の実施形態)
図6は、本発明の第4の実施形態である利得クランプ型SOAの構造を説明するための図で、(a)は平面図、(b)は(a)に示す構造のC−C’における断面図である。本実施形態の利得クランプ型SOAは、空間的に分離された第1および第2の経路の導波路が全て活性層により構成され、DBR領域が全反射ミラーで置き換えられた以外は、上述した第2の実施形態のものと同じ構造のものである。図6中、同じ構造部分には同じ符号を付している。
【0124】
入力光(信号光)が伝搬する第1の経路(ポートP2−P3間の経路)の導波路部分は、単一モード導波路40b、12b、MMI導波路11’、単一モード導波路13a、41aからなり、利得領域1のMMI導波路11’を中心とすると、素子端面8側と素子端面9側が対称な構造になっている。
【0125】
一方、クランプ光が伝搬する第2の経路(ポートP1−P4間の経路)の導波路部分は、単一モード導波路40a’、12a、MMI導波路11’、単一モード導波路13b、10aからなり、利得領域1のMMI導波路11’を中心とすると、素子端面8側と素子端面9側が対称な構造になっているが、素子端面9側の導波路部分の一部、すなわち単一モード導波路10aにおいて利得調整領域10が構成されている。単一モード導波路40a’の一端がポートP1であり、この部分に全反射ミラー50aが設けられている。単一モード導波路40a’の他端は単一モード導波路12aと繋がっている。単一モード導波路10aの一端がポートP4であり、この部分に全反射ミラー50nが設けられている。
【0126】
本実施形態の利得クランプ型SOAでは、ポートP2から入射した入力光(信号光)は、上述した第2の実施形態の場合と同様に、利得領域1の活性層25aを伝搬することで増幅される。増幅された信号光は、ポートP3から出射される。一方、クランプ光は、第2の経路(ポートP1−P4間の経路)を伝搬してポートP1、P4のそれぞれから出射されるが、そのレーザ発振動作は全反射ミラー50a、50b間で行われるようになっており、この点が第2の実施形態のものと異なる。信号光の増幅動作および発振閾利得でのクランプ動作については、第2および第3の実施形態のものと同じであるので、ここでは、その詳細な説明は省略する。
【0127】
以上のように構成された本実施形態の利得クランプ型SOAによれば、導波路をすべて活性層としているので、第3の実施形態のものと同様、バットジョイント構造の形成が不要である。よって、第1および第2の実施形態のものと比較して、製造工程を短縮することができる。加えて、反射器を全反射ミラーで構成しているので、グレーティング形成が不要となる。よって、第3の実施形態のものと比べて、さらに製造工程を短縮することができる。この他の特徴は、第2の実施形態で述べたことと同じである。
【0128】
なお、図6に示した構成では、DBR反射器に代わる反射体として全反射ミラーを用いているが、この他、誘電体多層膜よりなる反射膜やファイバブラッググレーティングなどを反射体として用いることも可能である。
【0129】
本実施形態の利得クランプ型SOAの製造方法は、グレーティング形成工程が無いことと、素子分離工程においてポートP1、P4にドライエッチング端面を持つ全反射ミラー50a、50bを形成すること以外は、第3の実施形態で説明した製造方法とほぼ同じであるため、ここではごく簡単に述べるにとどめる。本実施形態の利得クランプ型SOAも、第1の実施形態のものと同様、DC―PBH構造である。その製造方法を大まかに述べると、利得領域1をはじめとする全導波路の活性層成長工程、導波路パターン形成工程、電流狭窄構造成長工程、埋め込み成長工程、素子分離工程、電極形成工程、劈開および端面コーティング工程からなる。
【0130】
(第5の実施形態)
図7は、本発明の第5の実施形態である光モニタ付き利得クランプ型SOAの構成を説明するための平面図である。本実施形態の光モニタ付き利得クランプ型SOA60は、上述した第2〜第4の実施形態のいずれかの構造を有する利得クランプ型SOA50と、利得クランプ型SOA50のポートP4から出射されるクランプ光を受光するモニタ用のフォトダイオード(PD)51とからなる。
【0131】
PD51は、利得クランプ型SOA50のポートP4から出射されるクランプ光の光強度に応じた電気信号を出力するもので、その出力は、利得領域1における電流注入制御および利得調整のための電流注入制御を行う駆動回路(不図示)やSOA外部に設けられた可変減衰器(または可変増幅器)に供給される。このPD51の実装の仕方については、設計に応じて種々、変更可能である。例えば、PD51は、利得クランプ型SOA50の基板上にモノリシックに集積されていてもよいし、また、利得クランプ型SOA50を含むモジュール内の、利得クランプ型SOA50のポートP4の端面近傍に配置されてもよい。
【0132】
本実施形態では、クランプ光の出射光強度が、信号光の入力光強度に対して相関(負の相関)を有することに注目し、クランプ光の光強度をモニタすることで、利得クランプ型SOAの定光出力動作(Automatic power control:APC)を実現する。以下、光モニタ付き利得クランプ型SOA60のAPC動作について具体的に説明する。
【0133】
光モニタ付き利得クランプ型SOA60は、光ファイバ伝送路52、53の間に挿入され、光ファイバ伝送路52から光ファイバ伝送路53へ伝搬する信号光を増幅する。信号光としては、一般に、波長多重または時間多重された信号が用いられるが、ここでは、波長多重信号が用いられる場合を例に挙げて動作を説明する。
【0134】
図8に示すように、波長多重された信号光(波長λ1〜λN)が利得クランプ型SOA50のポートP1から入力された場合、その入力光のトータル光強度は、各波長λ1〜λNの光強度の和となる。この入力光は、利得クランプ型SOA50で各波長λ1〜λNの光が増幅され、該増幅された光が出力光としてポートP3から光ファイバ伝送路53に送られる。
【0135】
上記の光増幅過程において、利得クランプ型SOA50のポートP4から出射されるクランプ光は、入力光との相互利得変調(クロスゲインモジュレーション:XGM)によって入力光強度を反転した光強度変化を示すため、この変化をPD51で検出することで、利得クランプ型SOA50へのトータルの入力光強度を間接的に知ることができる。このようにして得られた入力光強度に関する情報を利得クランプ型SOA50の利得調整、または、外部の可変減衰器や可変増幅器の駆動にフィードバックすることで、APC動作を行うことができる。
【0136】
図9(a)は、利得調整の駆動にフィードバック制御をかけることでAPC動作が行われる中継増幅器の一例を示すブロック図である。この中継増幅器は、上述したPD51を備える利得クランプ型SOA50より構成された光モニタ付き利得クランプ型SOA60と、利得クランプ型SOA50の利得調整のための電流注入制御を行う駆動回路61とからなる。駆動回路61による電流注入制御は、例えば、第2、第4の実施形態であれば、利得調整領域10における電流注入制御であり、第3の実施形態であれば、DBR領域3における電流注入制御である。PD51の出力は駆動回路61に入力されている。駆動回路61が、PD51の出力が一定になるように電流注入制御を行うことで、利得クランプ型SOA50の出力光強度は一定となる。このようにして、APC動作を行う。
【0137】
図9(b)は、可変減衰器(または可変増幅器)の駆動にフィードバック制御をかけることでAPC動作が行われる中継増幅器の一例を示すブロック図である。この中継増幅器は、上述したPD51を備える利得クランプ型SOA50より構成された光モニタ付き利得クランプ型SOA60と、利得クランプ型SOA50の出力光が入力される光ファイバ伝送路53中に挿入された可変光減衰/増幅器63と、可変光減衰/増幅器63の利得を調整する信号処理回路62とからなる。PD51の出力は信号処理回路62に入力されている。信号処理回路62が、PD51の出力の変化に応じて可変光減衰/増幅器63における利得を調整することで、可変光減衰/増幅器63の出力光強度は一定となる。このようにして、APC動作を行う。
【0138】
上述した各中継増幅器において、PD51の出力、すなわちトータルの入力光強度に関する情報は本中継増幅器を含む伝送システム全体の動作を監視・制御するための情報としても有効である。このため、上述した駆動回路61および信号処理回路62は、トータルン入力光強度に関する情報が伝送線路監視信号として出力するように構成されている。
【0139】
また、図9(b)に示した中継増幅器は、可変光減衰/増幅器63を構成する可変光減衰器と可変光増幅器の間に、光フィルタや光カップラなどの光部品を挿入することが可能であることから、中継器としての機能をより柔軟に構成可能である。
【0140】
なお、伝送路を伝搬する光の強度をモニタする手法として、光カップラで伝送信号光の一部を分離する方法が一般に知られているが、この方法を上記のモニタに利用する場合は、分離した分だけ信号光が減衰してしまう、という不都合が生じる。本実施形態においては、そのような信号光の減衰を伴うことなく、光強度をモニタすることが可能であることから、この点においても大きな効果を奏する。
【0141】
(第6の実施形態)
光通信システムの受信器(フォトダイオード)では、伝搬損失を受けて大きく減衰された微弱な信号光を誤りなく電気信号に変換する必要がある。この信号変換の誤りを少なくするためには、強度の減衰した伝搬光を受光部であるPDの直前で光増幅することによって信号光のS/N比(信号/雑音比)の改善を図る、いわゆる光プリアンプを設けることが有効である。ここでは、そのような光プリアンプとして、上述した第2〜4のいずれかの利得クランプ型SOAを利用した受信器について説明する。
【0142】
図10は、本発明の第6の実施形態であるSOA光アンプ付きフォトダイオード(PD)の構成を説明するための平面図である。このSOA光アンプ付きPDは、上述した第2〜第4の実施形態のいずれかの構造を有する利得クランプ型SOA70と、利得クランプ型SOA70のポートP3から出射されるクランプ光を受光するPD71とからなる。PD71の実装の仕方については、設計に応じて種々、変更可能である。例えば、PD71は、利得クランプ型SOA70の基板上にモノリシックに集積されていてもよいし、また、利得クランプ型SOA70を含むモジュール内の、利得クランプ型SOA50のポートP3の端面近傍に配置されてもよい。
【0143】
本実施形態のSOA光アンプ付きPDでは、伝搬損失を受けて大きく減衰された微弱な信号光は利得クランプ型SOA70のポートP2から入力され、利得クランプ型SOA70にて増幅される。増幅された信号光は利得クランプ型SOA70のポートP3から出力され、PD71に入射する。この構成によれば、微弱な信号光をPD71の直前で利得クランプ型SOA70により光増幅することによって、信号光のS/N比の改善を図ることができる。また、光プリアンプとして上述した第2〜第4の実施形態の構造を適用した利得クランプ型SOA70を用いたことで、利得飽和に起因する信号波形の劣化などを抑制することができるので、より安定した状態での信号光の受信が可能となる。
【0144】
なお、光アンプの用途では、利得クランプ型SOAに入射する信号光は、波長分波された単一波長であるのが一般的である。
【0145】
(第7の実施形態)
図11(a)は、本発明の第7の実施形態であるSOA光アンプ付きPDの構成を説明するための平面図である。このSOA光アンプ付きPDは、図10に示した構成において、ポートP3から出射される出力光を受光するPD71に代えて、ポート4から出射されるクランプ光を受光するPD71’を設けた以外は、上述した第6の実施形態のSOA光アンプ付きPDと同じものである。図11(a)中、同じ部分には同じ符号を付している。
【0146】
本実施形態のSOA光アンプ付きPDは、素子構成上は上述した第5の実施形態の光モニタ付きSOAと全く同じである。本実施形態においも、利得クランプ型SOA70のポートP4から出射されるクランプ光が、ポートP2から入射する入力光との相互利得変調(XGM)によって入力光強度を反転した光強度変化を示すことを利用する。すなわち、ポートP3から出射される出力光(増幅された信号光)の代わりに、ポートP4から出射されるクランプ光をPD71’で検出することで、受信器として動作する。以下に、その動作原理を説明する。
【0147】
図11(b)は、信号光(ポートP2に入射する入力光)の入力光強度とクランプ光の出力光強度との関係を示すグラフである。横軸は信号光の入力光強度Pin(dBm)、縦軸は信号光との相互利得変調(XGM)により変化するクランプ光の出力光強度Pclamp(dBm)である。このグラフから分かるように、入力光強度Pinが小さい場合には、入力光強度Pinのわずかな変動(ΔPin)に対して、出力光強度Pclampは大きく変動(ΔPclamp)することが分かる。これは、信号光とクランプ光のXGMを通じて、(ΔPclamp/Pin)の利得で信号増幅が行われることを意味する。本実施形態では、このような信号増幅がなされたクランプ光をPD71’で受光することで、信号光の電気信号への変換がなされる。
【0148】
本実施形態のSOA光アンプ付きPDによれば、SOAの駆動により発生する自然放出光(これは、PD71に入射すると雑音となる。)を低減することができるので、より低雑音の光アンプを実現することができ、信号変換の誤り率を低減することができる。
【0149】
上述した第6および第7の実施形態の構造を組み合せた構成、すなわち、利得クランプ型SOA70のポートP3、P4にそれぞれPD71、71’が設けられた構成とすることもできる。この場合は、PD71、71’の両検出信号を比較することで、より信号検出精度を高くすることができ、信号変換の誤り率をさらに低減することが可能となる。
【0150】
以上説明した本発明の素子構造は利得可変、光モニタリングなどの付加的な機能を集積可能であるため、モジュール或いはシステムコストの低減の上で有利である。
【0151】
なお、以上の説明では、光通信用途向けの1.55μm帯SOAを例に挙げたが、本発明の用途や波長帯などはこれに限るものではない。また、可視光や、他の赤外光などでSOAの用途がある場合にも、本発明は適用可能である。また、半導体材料系もInAlAsやGaInNAs、量子ドット活性層など様々な材料系で作製することが可能である。
【0152】
本発明は、上述した各実施形態の構成に限定されるものではなく、その構成は発明の要旨を逸脱しない範囲で、適宜変更可能である。例えば、第1の実施形態のもの出力ポートにフォトダイオードを設けて、これを光通信システムの受信器として用いてもよい。また、DBRに代えて全反射ミラーを設けたり、反対に全反射ミラーに代えてDBRを設けたりしてもよい。さらにクランプ光を検出するフォトダイオードをポート4側ではなく、ポート2側に設けてもよい。
【0153】
【発明の効果】
以上説明したように、本発明によれば、EDFAの代替が可能な極めて高い飽和利得特性を有するとともに、小型で低コスト化が可能な半導体光増幅器を実現できる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態である利得クランプ型半導体光増幅器の構造を説明するための図で、(a)は平面図、(b)は(a)に示す構造のC−C’における断面図、(c)は(a)に示す構造のA−A’における断面図、(d)は(a)に示す構造のB−B’における断面図である。
【図2】(a)〜(e)は、図1に示す利得クランプ型半導体光増幅器の一連の製造手順を示す工程図である。
【図3】(f)〜(h)は、図1に示す利得クランプ型半導体光増幅器の一連の製造手順を示す工程図である。
【図4】本発明の第2の実施形態である利得クランプ型半導体光増幅器の構造を説明するための図で、(a)は平面図、(b)は(a)に示す構造のC−C’面における断面図である。
【図5】本発明の第3の実施形態である利得クランプ型半導体光増幅器の構造を説明するための平面図である。
【図6】本発明の第4の実施形態である利得クランプ型半導体光増幅器の構造を説明するための図で、(a)は平面図、(b)は(a)に示す構造のC−C’における断面図である。
【図7】本発明の第5の実施形態である光モニタ付き利得クランプ型半導体光増幅器の構成を説明するための平面図である。
【図8】図7に示す光モニタ付き利得クランプ型半導体光増幅器の動作を説明するための模式図である。
【図9】(a)は、利得調整の駆動にフィードバック制御をかけることでAPC動作が行われる中継増幅器の一例を示すブロック図、(b)は可変減衰器(または可変増幅器)の駆動にフィードバック制御をかけることでAPC動作が行われる中継増幅器の一例を示すブロック図である。
【図10】本発明の第6の実施形態であるSOA光アンプ付きフォトダイオード(PD)の構成を説明するための平面図である。
【図11】(a)は、本発明の第7の実施形態であるSOA光アンプ付きPDの構成を説明するための平面図、(b)は、信号光の入力光強度とクランプ光の出力光強度との関係を示すグラフである。
【図12】従来の半導体光増幅器の素子構造を模式的に示す平面図である。
【図13】従来の半導体光増幅器の動作原理図である。
【図14】従来の半導体光増幅器の素子構造を模式的に示す平面図である。
【図15】利得クランプ型半導体光増幅器の動作原理図である。
【図16】従来の利得クランプ型半導体光増幅器の素子構造を模式的に示す平面図である。
【図17】従来の利得クランプ型半導体光増幅器の素子構造を模式的に示す平面図である。
【図18】従来の利得クランプ型半導体光増幅器の素子構造を模式的に示す断面図である。
【符号の説明】
1 利得領域
1、3 DBR領域
4、5 SSC領域
6、7 窓領域
8、9、103、104 素子端面
10 利得調整領域
11、11’、100 MMI導波路
12、13、12a、12b、13a、13b、40a、40a’、40b、41a、41b、101、102 単一モード導波路
20、130 InP基板
21a n電極
21b、21b’ p電極
23、23’ 回折格子
24、24’ コア層
25、25a、110、131、200 活性層
25b 利得調整活性層
26、26’ p−InGaAsコンタクト層
27、132 p−InPクラッド層
28 n−InP電流ブロック層
29 p−InP電流ブロック層
30、31、32 SiO2
33 素子分離溝
33a、33b 溝
50、70 利得クランプ型SOA
50a、50b 全反射ミラー
51、71、72 PD
52、53 光ファイバ伝送路
60 光モニタ付き利得クランプ型SOA
61 駆動回路
62 信号処理回路
63 可変光減衰/増幅器
111、112、133、134 DBR
120a、120b SOA部
121、122 集束光ファイバ
123、124 反射器
125 可変光減衰器
126、127、202 光合・分波器
201 受動光導波路

Claims (10)

  1. 導波光を増幅する利得領域を挟むように、一対の反射器が設けられた利得クランプ型半導体光増幅器であって、
    前記利得領域の導波路の一部が多モード干渉型光導波路よりなり、
    外部から信号光が入射する第1のポートと
    前記利得領域で増幅された光を出射する第2のポートと、
    前記一対の反射器にて生成されたクランプ光を出射する第3および第4のポートとを有し、
    前記多モード干渉型光導波路は、一方の導波路端面が第1の単一モード導波路を介して前記第1のポートに接続されるとともに第2の単一モード導波路を介して前記第3のポートに接続され、他方の導波路端面が第3の単一モード導波路を介して前記第2のポートに接続されるとともに第4の単一モード導波路を介して前記第4のポートに接続されており、
    前記一対の反射器の一方が前記第2の単一モード導波路中に設けられ、他方が前記第4の単一モード導波路中に設けられている利得クランプ型半導体光増幅器。
  2. 前記第2または第4の単一モード導波路の一部に前記クランプ光の発振閾利得を調整するための利得調整領域を備え、該利得調整領域に属する単一モード導波路への電流注入もしくは電圧印加によって、該利得調整領域に属する単一モード導波路を通過する前記クランプ光に対して利得または減衰を生じさせて前記クランプ光の発振閾利得を調整するように構成されていることを特徴とする請求項に記載の利得クランプ型半導体光増幅器。
  3. 前記利得領域の導波路および前記利得調整領域に属する単一モード導波路を除く導波路が、受動導波路よりなることを特徴とする請求項に記載の利得クランプ型半導体光増幅器。
  4. 前記第1から第4の単一モード導波路、前記多モード干渉型光導波路および前記利得調整領域に属する単一モード導波路のすべてが、電流注入もしくは電圧印加によって前記信号光および前記クランプ光に対して利得または減衰を生じさせる活性層導波路よりなることを特徴とする請求項に記載の利得クランプ型半導体光増幅器。
  5. 前記一対の反射器の少なくとも一方は波長選択性を有することを特徴とする請求項1からのいずれか1項に記載の利得クランプ型半導体光増幅器。
  6. 前記波長選択性を有する反射器が分布ブラッグ反射器であることを特徴とする請求項に記載の利得クランプ型半導体光増幅器。
  7. 前記一対の反射器は全反射ミラーよりなることを特徴とする請求項1からのいずれか1項に記載の利得クランプ型半導体光増幅器。
  8. 前記第3または第4のポートから出射されるクランプ光を検出する受光器を有することを特徴とする請求項1から7のいずれか1項に記載の利得クランプ型半導体光増幅器。
  9. 請求項8に記載の利得クランプ型半導体光増幅器と、該利得クランプ型半導体光増幅器を駆動する駆動回路とを有し、前記クランプ光を検出する前記受光器で検出された信号強度の変化をもとに、前記利得クランプ型半導体光増幅器における前記第2または第4の単一モード導波路の一部に設けられた前記クランプ光の発振閾利得を調整するための利得調整領域に属する導波路への駆動条件を変化させることで、前記信号光の利得を制御することを特徴とする光増幅器システム。
  10. 請求項8に記載の利得クランプ型半導体光増幅器と、該利得クランプ型半導体光増幅器を駆動する駆動回路と、該利得クランプ型半導体光増幅器における信号光が出射される前記第2のポートの後段に光学的に接続された光可変増幅器もしくは光可変減衰器とを有し、前記クランプ光を検出する前記受光器で検出された信号強度の変化をもとに、該光可変増幅器もしくは光可変減衰器の駆動条件を変化させることで、該光可変増幅器もしくは光可変減衰器を通過した前記信号光の強度を制御することを特徴とする光増幅器システム。
JP2003070075A 2003-03-14 2003-03-14 利得クランプ型半導体光増幅器 Expired - Fee Related JP3985159B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003070075A JP3985159B2 (ja) 2003-03-14 2003-03-14 利得クランプ型半導体光増幅器
US10/548,880 US8503072B2 (en) 2003-03-14 2003-12-26 Gain-clamped semiconductor optical amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003070075A JP3985159B2 (ja) 2003-03-14 2003-03-14 利得クランプ型半導体光増幅器

Publications (2)

Publication Number Publication Date
JP2004281656A JP2004281656A (ja) 2004-10-07
JP3985159B2 true JP3985159B2 (ja) 2007-10-03

Family

ID=33286921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003070075A Expired - Fee Related JP3985159B2 (ja) 2003-03-14 2003-03-14 利得クランプ型半導体光増幅器

Country Status (2)

Country Link
US (1) US8503072B2 (ja)
JP (1) JP3985159B2 (ja)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005021829B3 (de) * 2005-05-06 2006-05-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Reinoptischer Wellenlängenkonverter unter Nutzung eines integrierten verstärkungsstabilisierenden Lasers und Verfahren zur Herstellung
JP2007011106A (ja) * 2005-07-01 2007-01-18 Yokogawa Electric Corp 光波形整形素子
JP4620562B2 (ja) * 2005-09-30 2011-01-26 日本電信電話株式会社 光増幅素子
JP4833631B2 (ja) * 2005-10-03 2011-12-07 日本電信電話株式会社 光増幅素子
JP4833630B2 (ja) * 2005-10-03 2011-12-07 日本電信電話株式会社 光増幅素子
WO2007094063A1 (ja) * 2006-02-16 2007-08-23 Fujitsu Limited 半導体光増幅装置
JP4825150B2 (ja) * 2007-02-19 2011-11-30 富士通株式会社 光半導体集積素子及びその製造方法
JP5163355B2 (ja) * 2008-08-08 2013-03-13 富士通株式会社 半導体レーザ装置
KR101062395B1 (ko) 2008-12-22 2011-09-06 한국전자통신연구원 광증폭기
JP5268733B2 (ja) * 2009-03-25 2013-08-21 富士通株式会社 光導波素子とその製造方法、半導体素子、レーザモジュール及び光伝送システム
JP5987251B2 (ja) * 2011-03-14 2016-09-07 国立大学法人九州大学 半導体レーザー
US8467122B2 (en) * 2011-07-13 2013-06-18 Oracle America, Inc. Hybrid laser source with ring-resonator reflector
JP2013157572A (ja) * 2012-01-31 2013-08-15 Fujitsu Optical Components Ltd 光増幅器および光増幅器の製造方法
FR2986916A1 (fr) * 2012-02-09 2013-08-16 Eolite Systems Systeme amplificateur optique et laser a impulsion limites en energie par impulsion.
US9128347B2 (en) * 2013-08-16 2015-09-08 Infinera Corporation Optical hybrid mixer without waveguide crossings
GB2522252B (en) 2014-01-20 2016-04-20 Rockley Photonics Ltd Tunable SOI laser
EP3088855B1 (en) * 2015-04-28 2020-10-21 IMEC vzw A compact interferometer
GB2547467A (en) 2016-02-19 2017-08-23 Rockley Photonics Ltd Tunable laser
US11699892B2 (en) 2016-02-19 2023-07-11 Rockley Photonics Limited Discrete wavelength tunable laser
JP6820671B2 (ja) * 2016-06-02 2021-01-27 富士通株式会社 光回路デバイスとこれを用いた光トランシーバ
US10811848B2 (en) 2017-06-14 2020-10-20 Rockley Photonics Limited Broadband arbitrary wavelength multichannel laser source
FR3088777B1 (fr) * 2018-11-15 2020-11-20 Commissariat Energie Atomique Source laser a semi-conducteur et procede d'emission avec cette source laser
US20220231476A1 (en) * 2019-06-03 2022-07-21 Nippon Telegraph And Telephone Corporation Optical Integrated Circuit
US10805008B1 (en) * 2019-10-04 2020-10-13 Neptune Subsea Ip Limited Optical amplifiers that support gain clamping and optionally power loading
WO2023165693A1 (en) * 2022-03-03 2023-09-07 Huawei Technologies Co., Ltd. Optical amplification device and apparatus comprising the same

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5029297A (en) 1989-10-13 1991-07-02 At&T Bell Laboratories Optical amplifier-photodetector device
GB9009726D0 (en) 1990-05-01 1990-06-20 British Telecomm Optoelectronic device
JP2785452B2 (ja) 1990-06-11 1998-08-13 住友電気工業株式会社 光受信装置
US5048909A (en) * 1990-07-27 1991-09-17 At&T Bell Laboratories Adiabatic reflection apparatus
WO1996013084A1 (de) * 1994-10-21 1996-05-02 Besse Pierre Andre Verfahren zur bekämpfung der sättigung und der nichtlinearen effekte in optischen halbleiterverstärkern
FR2737582B1 (fr) 1995-08-04 1997-08-29 Alcatel Nv Composant opto-electronique integre
JP3244114B2 (ja) 1997-08-18 2002-01-07 日本電気株式会社 半導体光アンプ
JP4022792B2 (ja) 1998-06-16 2007-12-19 富士通株式会社 半導体光増幅装置
JP2000012978A (ja) 1998-06-24 2000-01-14 Nippon Telegr & Teleph Corp <Ntt> 光増幅装置
JP2000174383A (ja) 1998-12-04 2000-06-23 Nippon Telegr & Teleph Corp <Ntt> 半導体光増幅器
GB2344692A (en) * 1998-12-11 2000-06-14 Bookham Technology Ltd Optical amplifier
US6347104B1 (en) * 1999-02-04 2002-02-12 Genoa Corporation Optical signal power monitor and regulator
JP3329765B2 (ja) 1999-05-13 2002-09-30 日本電気株式会社 半導体レーザー及び半導体光増幅器
JP3329764B2 (ja) 1999-05-13 2002-09-30 日本電気株式会社 半導体レーザー及び半導体光増幅器
JP2001209018A (ja) * 2000-01-26 2001-08-03 Nec Corp モニタ付き光変調器
US6462865B1 (en) * 2001-06-29 2002-10-08 Super Light Wave Corp. All-optical logic with wired-OR multi-mode-interference combiners and semiconductor-optical-amplifier inverters
JP3950028B2 (ja) * 2001-10-05 2007-07-25 日本電信電話株式会社 光増幅器
JP2003186067A (ja) * 2001-12-17 2003-07-03 Fujitsu Ltd モード同期レーザ発振を生じる光干渉計、全光スイッチ、全光反多重化器、全光パルス整形器
KR100403055B1 (ko) * 2002-01-16 2003-10-23 한국전자통신연구원 신호 분리형 광 파장 변환기
US6687267B2 (en) * 2002-02-06 2004-02-03 Jds Uniphase Corporation Widely tunable laser
US6973232B2 (en) * 2002-02-12 2005-12-06 Bookham Technology, Plc Waveguide mode stripper for integrated optical components

Also Published As

Publication number Publication date
US20110149381A1 (en) 2011-06-23
JP2004281656A (ja) 2004-10-07
US8503072B2 (en) 2013-08-06

Similar Documents

Publication Publication Date Title
JP3985159B2 (ja) 利得クランプ型半導体光増幅器
JP4652995B2 (ja) 集積型半導体レーザ素子および半導体レーザモジュール
JP4794505B2 (ja) 半導体光増幅装置、半導体光増幅システム及び半導体光集積素子
US7158547B2 (en) Wavelength tunable laser of small size
JP2017098362A (ja) 光集積素子及び光通信装置
JP5100881B1 (ja) 集積型半導体レーザ素子
JP4906185B2 (ja) 光半導体素子及び光半導体素子の変調方法
US9088132B2 (en) Semiconductor optical element, integrated semiconductor optical element, and semiconductor optical element module
JP2004273993A (ja) 波長可変分布反射型半導体レーザ装置
JP2007158057A (ja) 集積レーザ装置
JP3950028B2 (ja) 光増幅器
JP2011233829A (ja) 集積型半導体光素子および集積型半導体光素子モジュール
JP2016072608A (ja) 半導体レーザおよびこれを備える光集積光源
WO2019235235A1 (ja) 光送信機および多波長光送信機
JP4620562B2 (ja) 光増幅素子
JP4321970B2 (ja) 半導体光増幅器およびase放射用光源装置および光ゲートアレイおよび波長可変レーザ装置および多波長レーザ装置および光伝送システム
JP4022792B2 (ja) 半導体光増幅装置
US8189631B2 (en) External resonator-type wavelength tunable laser device
US7110169B1 (en) Integrated optical device including a vertical lasing semiconductor optical amplifier
US20050226283A1 (en) Single-mode semiconductor laser with integrated optical waveguide filter
JP2019004093A (ja) 半導体光集積装置
JP2014236161A (ja) 半導体光素子およびその製造方法ならびに集積型半導体光素子
WO2004008595A1 (ja) 分布ブラッグ反射型半導体レーザ、集積型半導体レーザ、半導体レーザモジュール、光ネットワークシステム
WO2005060058A1 (ja) 半導体レーザーおよびその製造方法
JP3529275B2 (ja) 波長多重光源

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20041224

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20041224

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060130

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070626

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees