JP4347249B2 - Dc−dcコンバータ、dc−dcコンバータの制御回路、及びdc−dcコンバータの制御方法 - Google Patents

Dc−dcコンバータ、dc−dcコンバータの制御回路、及びdc−dcコンバータの制御方法 Download PDF

Info

Publication number
JP4347249B2
JP4347249B2 JP2005103940A JP2005103940A JP4347249B2 JP 4347249 B2 JP4347249 B2 JP 4347249B2 JP 2005103940 A JP2005103940 A JP 2005103940A JP 2005103940 A JP2005103940 A JP 2005103940A JP 4347249 B2 JP4347249 B2 JP 4347249B2
Authority
JP
Japan
Prior art keywords
voltage
input voltage
power supply
transistor
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005103940A
Other languages
English (en)
Other versions
JP2006288062A (ja
Inventor
秀信 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Semiconductor Ltd
Original Assignee
Fujitsu Semiconductor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Semiconductor Ltd filed Critical Fujitsu Semiconductor Ltd
Priority to JP2005103940A priority Critical patent/JP4347249B2/ja
Priority to TW094129869A priority patent/TWI281306B/zh
Priority to US11/225,186 priority patent/US7336060B2/en
Priority to KR1020050099844A priority patent/KR100718522B1/ko
Publication of JP2006288062A publication Critical patent/JP2006288062A/ja
Application granted granted Critical
Publication of JP4347249B2 publication Critical patent/JP4347249B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/157Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1588Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load comprising at least one synchronous rectifier element
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/22Modifications for ensuring a predetermined initial state when the supply voltage has been applied
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0081Power supply means, e.g. to the switch driver
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Description

本発明は、DC−DCコンバータ、DC−DCコンバータの制御回路、及びDC−DCコンバータの制御方法に関するものである。
ノート型パソコンやゲーム機器などの携帯型電子機器には、複数の半導体集積回路装置が組み込まれており、半導体集積回路装置に供給する動作電源をバッテリから供給している。バッテリの出力電圧は放電に従って低下するため、動作電源電圧を一定に保つために、DC−DCコンバータを用いている。DC−DCコンバータの動作中に該DC−DCコンバータに入力される電源が突然遮断されると、半導体集積回路装置のラッチアップや焼損等の不具合が発生する虞があるため、これらの不具合を防止する必要がある。
図8は、従来のDC−DCコンバータの回路図である。
DC−DCコンバータ1は電圧制御モード型DC−DCコンバータであり、制御回路2、チョークコイルL1、平滑用コンデンサC1、放電用抵抗BRを備える。
制御回路2には、入力電圧Viが電源Vccとして供給される。また、制御回路2には、出力電圧Voが帰還信号FBとして入力される。
制御回路2は電源回路3を備え、該電源回路3は電源Vccに基づいて生成した内部電源を誤差増幅器4,PWM比較器5,三角波発振器6に供給する。
制御回路2の誤差増幅器4は、帰還信号FBを抵抗R1,R2で分割した電圧と、基準電源e1の電圧との差電圧を増幅してPWM比較器5の非反転入力端子に出力する。基準電源e1は、出力電圧Voが規格値に達したとき、抵抗R1,R2による分圧電圧と一致するように設定される。
PWM比較器5の反転入力端子には、三角波発振器6から一定周波数の三角波信号が入力される。PWM比較器5は非反転入力端子の入力電圧が、反転入力端子の電圧より高いとき、Hレベルの出力信号QHとLレベルの出力信号QLを出力し、非反転入力端子の入力電圧が、反転入力端子の電圧より低いとき、Lレベルの出力信号QHとHレベルの出力信号QLを出力する。
駆動回路(DRVH)7は、PWM比較器5の出力信号QHをレベル変換した制御信号DHを出力トランジスタT1のゲートに供給する。駆動回路(DRVL)8は、PWM比較器5の出力信号QLをレベル変換した制御信号DLを出力トランジスタT2のゲートに供給する。出力トランジスタT1はPチャネルMOSトランジスタであり、ソースに第1電源Vccが供給される。出力トランジスタT2はNチャネルMOSトランジスタであり、ソースが低電位電源(グランド)に接続されている。出力トランジスタT1はレベルの制御信号DHに応答してオンし、出力トランジスタT2は、Hレベルの制御信号DLに応答してオンする。
このような電圧制御モード型DC−DCコンバータでは、出力トランジスタT1は三角波発振器6の出力信号に基づく一定周期でオンされ、出力トランジスタT1のオン動作に基づいて、出力電圧Voが上昇する。出力電圧Voは平滑用コンデンサC1により平滑される。出力トランジスタT1がオフされると、チョークコイルL1に蓄えられているエネルギーが放出される。チョークコイルL1に蓄えられたエネルギーが減少して出力電圧Voが低下し、抵抗R1,R2による分割電圧が基準電源e1の電圧より低くなると、出力トランジスタT1がオンされる。
出力電圧Voが高くなると、誤差増幅器4の出力電圧が低下して出力トランジスタT1のオン時間が短くなり、出力電圧Voが低くなると、誤差増幅器4の出力電圧が上昇して出力トランジスタT1のオン時間が長くなる。このような動作により、出力電圧Voが基準電源e1に基づく一定電圧に維持される。
平滑用コンデンサC1には放電用抵抗BRが並列に接続されている。この放電用抵抗BRは、入力電圧Viが遮断されたときに制御回路2を保護するために設けられている。即ち、負荷が極端に軽いとき或いはDC−DCコンバータ1が無負荷であると、平滑用コンデンサC1に蓄えられた電荷によりDC−DCコンバータ1の出力電圧Voは長時間高い電圧に維持される。この時、誤差増幅器4は、入力電圧Viが遮断されているため、電源回路3から動作電源が供給されていない。従って、誤差増幅器4は、入力端子に電源端子の電圧よりも高い電圧が供給されているためラッチアップや焼損等の不具合を生じる。このため、放電用抵抗BRは、平滑用コンデンサC1に蓄積された電荷を放電し、DC−DCコンバータの出力電圧Voは急速に0Vに低下する。
しかしながら、図8に示す回路構成では、放電用抵抗BRに常時電流が流れるため、DC−DCコンバータの効率が悪い。これを回避するため、放電抵抗RBに直列にスイッチ素子を接続し、コンデンサの電荷を放電する時のみイッチ素子をオンする方法がある(例えば、特許文献1参照)。しかし、この方法では、放電用抵抗のみならずスイッチ素子及びそのスイッチ素子を駆動する駆動回路等が必要となる。
図9は、別の従来例を示す回路図である。
DC−DCコンバータ10は、制御回路11、チョークコイルL1、平滑用コンデンサC1、ソフトスタート用コンデンサC2を備えている。ソフトスタート用コンデンサC2は、誤差増幅器4aの反転入力端子に接続されている。ソフトスタート用コンデンサC2は、制御回路11のスイッチSWを介して定電流源12又は抵抗R3と接続される。制御回路11は、スイッチSWを制御して電源投入時にソフトスタート用コンデンサC2を定電流源12に接続する。すると、ソフトスタート用コンデンサC2は、定電流源12から供給される電流に応じた電荷が蓄積され、電荷の蓄積に従ってソフトスタート信号SSの電圧が上昇する。時間経過と共に上昇するソフトスタート信号SSの電圧が基準電源e1の電圧よりも低い間、DC−DCコンバータ10の出力電圧Voはソフトスタート信号SSの電圧上昇と同じ速度で上昇する。ソフトスタート信号SSの電圧が基準電源e1の電圧よりも高くなると、誤差増幅器4aは基準電源e1とDC−DCコンバータ10の出力電圧Voの差を増幅するように動作するので、DC−DCコンバータ10の出力電圧Voは基準電源e1によって制御される。このようにDC−DCコンバータ10は、起動時の出力電圧の傾きが、ソフトスタート信号SSの電圧、即ちコンデンサC2の電圧で制御され、DC−DCコンバータ10の負荷に依存しない。
DC−DCコンバータ10の停止時にコンデンサC2がスイッチSWによって抵抗R3に接続される。従って、コンデンサC2の電荷は抵抗R3を介して放電され、ソフトスタート信号SSの電圧が徐々に低下する。DC−DCコンバータの起動時と同様に、ソフトスタート信号SSの電圧が徐々に低下することによって、DC−DCコンバータ10の出力電圧Voも徐々に低下する。つまり、DC−DCコンバータ10は、停止時の出力電圧の傾きが、ソフトスタート信号SSの電圧、即ちコンデンサC2の電圧で制御され、DC−DCコンバータ10の負荷に依存せずしない。
従って、DC−DCコンバータ10は、負荷に依存せず、放電用抵抗やスイッチ素子を用いずに出力電圧Voを徐々に低下させることができる。尚、上記のようなDC−DCコンバータに類似する構成が特許文献2,特許文献3に開示されている。
特開5−30755号公報 特開9−154275号公報 特開10−323026号公報
しかしながら、図9に示すDC−DCコンバータ10では、入力電圧Viが供給されている時には出力電圧Voを徐々に低下させることができるものの、入力電圧Viが突然遮断された場合には平滑用コンデンサC1に電荷が蓄積されたままとなる。従って、誤差増幅器4aは、入力端子に電源端子の電圧よりも高い電圧が供給されているためラッチアップや焼損等の不具合を生じるという問題があった。
本発明は上記問題点を解決するためになされたものであって、その目的は、突然の電源遮断における不具合を防止しえるDC−DCコンバータ、DC−DCコンバータの制御回路、及びDC−DCコンバータの制御方法を提供することにある。
上記目的を達成するため、請求項1,5,7に記載の発明によれば、入力電圧を電圧変換した出力電圧を生成するために設けられている同期整流用トランジスタを入力電圧低下したことを検出した場合にオンすることで平滑用コンデンサに蓄積された電荷が速やかに放電される。このため、平滑用コンデンサに蓄積された電荷によるラッチアップや焼損などの不具合を防止することができる。また、放電用抵抗を平滑用コンデンサに並列に接続する場合に比べて、オンした同期整流用トランジスタの抵抗値は放電用抵抗の抵抗値により低いため、放電時間が短くなる。
請求項2,6,8,15に記載の発明によれば、電源回路は、入力電圧に基づいて電源用コンデンサを充電し、入力電圧の低下時に電源用コンデンサの蓄積電荷に基づく第2電源を生成する。そして、入力電圧の遮断時に第2電源により動作してメインスイッチング用トランジスタをオフすると共に同期整流用トランジスタをオンする。従って、平滑用コンデンサの電荷を放電するまでの間、同期整流用トランジスタをオン状態に保持し、平滑用コンデンサの電荷を確実に放電することができる。
請求項3,9,16に記載の発明によれば、制御回路の誤差増幅器は、出力電圧の分圧電圧と基準電圧とを比較し、PWM比較器は誤差増幅器の出力信号と三角波発振器の出力信号とを電圧比較し、該比較結果に応じて相補な第1及び第2出力信号を出力する。第1駆動回路は、第1出力信号に基づいて生成した第1制御信号をメインスイッチング用トランジスタに供給する。また、第2駆動回路は、第2出力信号に基づいて生成した第2制御信号を同期整流用トランジスタに供給する。誤差増幅器とPWM比較器と三角波発振器は供給される第1電源(入力電圧)により動作し、第2駆動回路は供給される第2電源により動作する。従って、電源用コンデンサの蓄積電荷により生成する第2電源を供給する回路を限定することで、第2電源の供給継続時間を長くし、平滑用コンデンサの電荷を放電するまでの間、同期整流用トランジスタをオン状態に保持し、平滑用コンデンサの電荷を確実に放電することができる。
請求項4,10,17に記載の発明によれば、電源回路は、入力電圧検出部と電源部とを備える。入力電圧検出部は、入力電圧を検出し検出結果に応じた制御信号を出力する。電源部は、入力電圧を電源用コンデンサに供給する経路に設けられたスイッチ素子を有し、制御信号に基づいて、入力電圧が動作可能電圧よりも高いときにはスイッチ素子をオンし、入力電圧が動作可能電圧より低いときにスイッチ素子をオフする。従って、入力電圧の低下を確実に検出することができる。また、入力電圧が動作可能電圧より高いときに電源用コンデンサを確実に充電することができる。
請求項11に記載の発明によれば、制御回路は、同期整流用トランジスタを駆動する駆動回路を備え、入力電圧が低下した場合に、同期整流用トランジスタをオンさせるための制御信号を駆動回路に供給する。
請求項12に記載の発明によれば、駆動回路は、入力電圧が低下した場合に、入力電圧とは異なる電源により動作する。
請求項13に記載の発明によれば、メインスイッチング用トランジスタは、制御回路が入力電圧が低下したことを検出した場合にオフされる。
請求項14に記載の発明によれば、入力電圧が所定電圧以下の時に、入力電圧とは異なる電源が供給され、同期整流用トランジスタを駆動する駆動回路を備える。
以上記述したように、本発明によれば、突然の電源遮断における不具合を防止しえるDC−DCコンバータ、DC−DCコンバータの制御回路、及びDC−DCコンバータの制御方法を提供することができる。
(第一実施形態)
以下、本発明を具体化した第一実施形態を図1〜図3に従って説明する。
図1は、本実施形態のDC−DCコンバータ20の回路図である。DC−DCコンバータ20は、携帯型電子機器(例えば、ノート型パソコン)に内蔵され、バッテリからの入力電圧Vinを変換し、CPU等の内部回路を動作させるための定電圧の出力電圧Voを出力する。
このDC−DCコンバータ20は電圧制御モード型DC−DCコンバータであり、1チップの集積回路上に形成される制御回路21と、外付け素子としてのチョークコイルL1,平滑用コンデンサC1,ソフトスタート用コンデンサC2,電源用コンデンサC3とから構成される。
制御回路21の出力端子にはチョークコイルL1の第1端子が接続され、該チョークコイルL1の第2端子は負荷としての半導体集積回路装置(図示略)に接続されている。制御回路21は、チョークコイルL1を介して負荷に出力電圧Voを供給する。
チョークコイルL1の第2端子には平滑用コンデンサC1が接続され、該コンデンサC1は出力電圧Voを平滑化する。また、チョークコイルL1の第2端子は制御回路21に接続され、該第2端子における電圧、即ち出力電圧Voを持つ帰還信号FBが制御回路21に入力される。制御回路21にはソフトスタート用コンデンサC2が接続され、該コンデンサC2に蓄積された電荷による電圧を持つソフトスタート信号SSが入力される。
制御回路21には入力電圧Viが第1電源Vccとして供給される。また、制御回路21には電源用コンデンサC3が接続され、該コンデンサC3に蓄積された電荷に応じた電圧が第2電源Vddとして入力される。
制御回路21は、電源回路31、誤差増幅器32、PWM比較器33、三角波発振器34、駆動回路(DRVH)35、駆動回路(DRVL)36、定電流源37、メインスイッチング用トランジスタとしての出力トランジスタT1、同期整流用トランジスタとしての出力トランジスタT2、抵抗R1〜R3、基準電源e1、ダイオードD1を備えている。
電源回路31には、入力電圧Viが第1電源Vccとして入力され、電源用コンデンサC3が接続されている。電源回路31は、第1電源Vccに基づいて誤差増幅器32,PWM比較器33,三角波発振器34の動作電源を生成するように構成されている。また、電源回路31は、第1電源Vccの電圧を監視し、その監視結果に応じた制御信号Rdyを出力するように構成されている。更に、電源回路31は、第1電源Vccの供給時に電源用コンデンサC3を充電するとともに該第1電源Vccを第2電源Vddとして第1駆動回路35及び第2駆動回路36に供給し、第1電源Vccの遮断時に該コンデンサC3に蓄積された電荷に応じた第2電源Vddを第1駆動回路35及び第2駆動回路36に供給するように構成されている。
抵抗R1,R2は分圧回路を構成し、帰還信号FBを分圧した電圧を生成する。誤差増幅器32は、第1及び第2の非反転入力端子を備え、両非反転入力端子の入力電圧のうち、より低レベルの入力電圧と、反転入力端子の入力電圧との電位差に基づく出力電圧を出力する。従って、誤差増幅器32の出力電圧は、第1又は第2の非反転入力端子の電圧が反転入力端子の電圧より高くなれば、その電位差に応じて上昇し、第1又は第2の非反転入力端子の電圧が反転入力端子の電圧より低くなれば、その電位差に応じて低下する。
第1の非反転入力端子は、スイッチSW及びコンデンサC2に接続され、コンデンサC2の蓄積電荷に応じた電圧を持つソフトスタート信号SSが入力される。第2の非反転入力端子には基準電源e1が接続されている。誤差増幅器32の反転入力端子には抵抗R1,R2により帰還信号FBを分圧した電圧、即ち出力電圧Voの分圧電圧が入力される。従って、誤差増幅器32は、基準電源e1の電圧又はソフトスタート信号SSの電圧と、出力電圧Voの分圧電圧との比較結果に応じた出力電圧を出力する。
スイッチSWは、共通端子と第1及び第2端子を持ち、共通端子が誤差増幅器32に接続され、第1端子が定電流源37に接続され、第2端子が抵抗R3を介してグランドに接続されている。従って、共通端子と第1端子とが接続されると、定電流源37に流れる電流によりコンデンサC2に電荷が蓄積され、ソフトスタート信号SSの電圧が上昇する。また、共通端子と第2端子とが接続されると、コンデンサC2に蓄積された電荷が抵抗R3を介して放電され、ソフトスタート信号SSの電圧が下降する。
誤差増幅器32の出力電圧はPWM比較器33に供給される。PWM比較器33は非反転入力端子と反転入力端子とを有し、非反転入力端子には誤差増幅器32の出力電圧が入力され、反転入力端子には三角波発振器34の出力信号が入力される。PWM比較器33は、誤差増幅器32の出力信号と三角波発振器34の出力信号とを比較する。PWM比較器33は誤差増幅器32の出力電圧が、三角波発振器34の出力信号より高いとき、Hレベルの出力信号QHとLレベルの出力信号QLを出力し、誤差増幅器32の出力電圧が、三角波発振器34の出力信号より低いとき、Lレベルの出力信号QHとHレベルの出力信号QLを出力する。
駆動回路(DRVH)35は、供給される第2電源Vddに基づいて動作し、PWM比較器33の出力信号QHをレベル変換した制御信号DHを出力トランジスタT1のゲートに供給する。駆動回路(DRVL)36は、供給される第2電源Vddに基づいて動作し、PWM比較器33の出力信号QLをレベル変換した制御信号DLを出力トランジスタT2のゲートに供給する。出力トランジスタT1はPチャネルMOSトランジスタであり、ソースに入力電圧Viが供給される。出力トランジスタT2はNチャネルMOSトランジスタであり、ソースが低電位電源(グランド)に接続されている。出力トランジスタT1はレベルの制御信号DHに応答してオンし、出力トランジスタT2は、Hレベルの制御信号DLに応答してオンする。
両出力トランジスタT1,T2間のノードにはダイオードD1のカソードが接続され、ダイオードD1のアノードはグランドに接続されている。また、両トランジスタT1,T2間のノードにはチョークコイルL1が接続されている。
図2に示すように、電源回路31は、入力電圧検出部31aと電源部31bとを備えている。
入力電圧検出部31aは、定電流源38a、電圧比較器38b、抵抗R11〜14を備えている。定電流源38aには入力電圧Viが供給され、定電流源38aは定電流を抵抗R11に供給する。抵抗R11及び抵抗R12は直列接続されており、定電流源38aから供給される電流により基準電圧Vrを生成する。抵抗R13の第1端子には入力電圧Viが供給され、抵抗R13の第2端子は抵抗R14の第1端子に接続され、抵抗R14の第2端子はグランドに接続されている。従って、抵抗R13,R14は、入力電圧Viを分圧した分圧電圧V1を生成する。
電圧比較器38bの非反転入力端子には分圧電圧V1が入力され、電圧比較器38bの反転入力端子には基準電圧Vrが入力されている。従って、電圧比較器38bは、分圧電圧と基準電圧とを比較し、分圧電圧が基準電圧より高い時にはHレベルの制御信号Rdyを出力し、分圧電圧が基準電圧より低い時にはLレベルの制御信号Rdyを出力する。
定電流源38aの電流値と抵抗R11〜R14の抵抗値は、入力電圧ViとDC−DCコンバータ20の動作可能電圧とに基づいて設定されている。詳しくは、入力電圧ViがDC−DCコンバータ20の動作可能電圧よりも高いとき、定電流源38aと抵抗R11,R12により作成される基準電圧Vrのほうが、抵抗R13,R14により入力電圧Viを分圧した分圧電圧V1よりも低くなるように設定されている。その結果、電圧比較器38bは、DC−DCコンバータ20の入力電圧ViがDC−DCコンバータの動作可能電圧よりも高いときにHレベルを制御信号Rdyを出力し、DC−DCコンバータ20の入力電圧ViがDC−DCコンバータ20の動作可能電圧よりも低いときにLレベルの制御信号Rdyを出力する。
電源部31bは、スイッチ素子としてのトランジスタT11、増幅器39、基準電源e2、スイッチSW2、抵抗R15を備えている。
トランジスタT11はnpnトランジスタであり、コレクタに入力電圧Viが供給され、ベースが抵抗R15を介してグランドに接続され、エミッタがコンデンサC3に接続されている。また、コンデンサC3は増幅器39の反転入力端子に接続されている。増幅器39の非反転入力端子には基準電源e2が接続され、増幅器39の出力端子は制御信号Rdyによりオンオフ制御されるスイッチSW2を介してトランジスタT11と抵抗R15との間のノードに接続されている。
増幅器39は、トランジスタT11とコンデンサC3との間のノードにおける電圧と基準電源e2の電圧と差を増幅した電圧を持つ信号を出力する。基準電源e2の電圧は入力電圧Viに設定されている。
スイッチSW2は、Hレベルの制御信号Rdyに応答してオンし、Lレベルの制御信号Rdyに応答してオフする。従って、スイッチSW2は、入力電圧Viが動作可能電圧よりも高いときにオンし、入力電圧Viが動作可能電圧より低いときにオフする。そして、スイッチSW2がオンした時、増幅器39の出力電圧がトランジスタT11のベースに印加される。従って、ノードの電圧が基準電源e2の電圧より高いときにはトランジスタT11がオフし、ノードの電圧が基準電源e2の電圧より低いときにはトランジスタT11がオンする。トランジスタT11がオンすると、入力電圧ViがトランジスタT11を介してコンデンサC3に供給され、入力電圧Viが第2電源Vddとして駆動回路35と駆動回路36に供給される。コンデンサC3は、供給される入力電圧Viによる電荷を蓄積する。トランジスタT11がオフすると、コンデンサC3に蓄積された電荷による第2電源Vddが駆動回路35と駆動回路36に供給される。
また、スイッチSW2は、制御信号Rdyによりオンオフされる。従って、入力電圧Viが動作可能電圧より低いときに制御信号RdyによりスイッチSW2がオフされ、トランジスタT11のベースが抵抗R15を介して接地される。このため、トランジスタT11がオフし、コンデンサC3に蓄積された電荷による第2電源Vddが駆動回路35と駆動回路36に供給される。
図3に示すように、駆動回路35は、スイッチSW11と1段のインバータ回路35aにより構成されている。スイッチSW11は共通端子と第1及び第2端子とを有し、第1端子がPWM比較器33に接続され、第2端子がグランドに接続され、共通端子がインバータ回路35aの入力端子に接続されている。インバータ回路35aの出力端子は図1に示す出力トランジスタT1のゲートに接続されている。
スイッチSW11は制御信号Rdyに応答して共通端子を第1端子又は第2端子に接続する。詳しくは、スイッチSW11は、Hレベルの制御信号Rdyに応答して共通端子を第1端子に接続し、Lレベルの制御信号Rdyに応答して共通端子を第2端子に接続する。インバータ回路35aは直列接続されたPチャネルMOSトランジスタとNチャネルMOSトランジスタとから構成され、PチャネルMOSトランジスタのソースには第2電源Vddが供給され、NチャネルMOSトランジスタのソースはグランドに接続されている。
従って、制御信号RdyがHレベルのときにインバータ回路35aの入力端子にはPWM比較器33の出力信号QHが入力され、制御信号RdyがLレベルのときにインバータ回路35aの入力端子はグランドに接続される。この結果、インバータ回路35aは、制御信号RdyがHレベルのときに出力信号QHに基づいて、出力信号QHと逆論理であり、第2電源Vddのレベル又はグランドレベルの制御信号DHを出力する。一方、インバータ回路35aは、制御信号RdyがLレベルのときに第2電源Vddレベルの制御信号DHを出力する。
図3に示すように、駆動回路36は、スイッチSW12と2段のインバータ回路36a,36bにより構成されている。スイッチSW12は共通端子と第1及び第2端子とを有し、第1端子がPWM比較器33に接続され、第2端子に第2電源Vddが供給され、共通端子が第1インバータ回路36aの入力端子に接続されている。第1インバータ回路36aの出力端子は第2インバータ回路36bの入力端子に接続されている。第2インバータ回路36bの出力端子は図1に示す出力トランジスタT2のゲートに接続されている。
スイッチSW12は制御信号Rdyに応答して共通端子を第1端子又は第2端子に接続する。詳しくは、スイッチSW12は、Hレベルの制御信号Rdyに応答して共通端子を第1端子に接続し、Lレベルの制御信号Rdyに応答して共通端子を第2端子に接続する。両インバータ回路36a,36bは直列接続されたPチャネルMOSトランジスタとNチャネルMOSトランジスタとから構成され、PチャネルMOSトランジスタのソースには第2電源Vddが供給され、NチャネルMOSトランジスタのソースはグランドに接続されている。
従って、制御信号RdyがHレベルのときに第1インバータ回路36aの入力端子にはPWM比較器33の出力信号QLが入力され、制御信号RdyがLレベルのときに第1インバータ回路36aの入力端子には第2電源Vddが供給される。この結果、インバータ回路36a,36bは、制御信号RdyがHレベルのときに出力信号QLに基づいて、出力信号QLと同論理であり、第2電源Vddのレベル又はグランドレベルの制御信号DLを出力する。一方、インバータ回路36a,36bは、制御信号RdyがLレベルのときに第2電源Vddレベルの制御信号DLを出力する。
上記のように構成されたDC−DCコンバータ20は、入力電圧ViがDC−DCコンバータ20の動作可能電圧よりも高いときに、入力電圧検出部31aがHレベルの制御信号Rdyを出力する。従って、電源部31bは、入力電圧Viと実質的に同じ電圧を持つ第2電源Vddを第1駆動回路35及び第2駆動回路36に供給する。
制御回路21は、スイッチSWを制御して電源投入時にソフトスタート用コンデンサC2を定電流源37に接続する。すると、ソフトスタート用コンデンサC2は、定電流源37から供給される電流に応じた電荷が蓄積され、電荷の蓄積に従ってソフトスタート信号SSの電圧が上昇する。時間経過と共に上昇するソフトスタート信号SSの電圧が基準電源e1の電圧よりも低い間、DC−DCコンバータ20の出力電圧Voはソフトスタート信号SSの電圧上昇と同じ速度で上昇する。ソフトスタート信号SSの電圧が基準電源e1の電圧よりも高くなると、誤差増幅器32は基準電源e1とDC−DCコンバータ20の出力電圧Voの差を増幅するように動作するので、DC−DCコンバータ20の出力電圧Voは基準電源e1によって制御される。このようにDC−DCコンバータ20は、起動時の出力電圧の傾きが、ソフトスタート信号SSの電圧、即ちコンデンサC2の電圧で制御され、DC−DCコンバータ20の負荷に依存しない。
PWM比較器33は、三角波発振器34の出力信号と誤差増幅器32の出力信号との比較結果に応じたパルス波形を持つ出力信号QHと、その出力信号QHと相補な出力信号QLを出力する。第1駆動回路35は、Hレベルの制御信号Rdyに基づいて、出力信号QHと逆論理の制御信号DHを出力トランジスタT1に出力する。第2駆動回路36は、Hレベルの制御信号Rdyに基づいて、出力信号QLと同論理の制御信号DLを出力トランジスタT2に出力する。出力トランジスタT1はPチャネルMOSトランジスタであり、出力トランジスタT2はNチャネルMOSトランジスタである。従って、出力トランジスタT1,T2は制御信号DH,DLにより相補的にオンオフする。
出力トランジスタT1のオン動作に基づいて、出力電圧Voが上昇する。出力電圧Voは平滑用コンデンサC1により平滑される。出力トランジスタT1がオフされると、チョークコイルL1に蓄えられているエネルギーが放出される。チョークコイルL1に蓄えられたエネルギーが減少して出力電圧Voが低下し、抵抗R1,R2による分割電圧が基準電源e1より低くなると、出力トランジスタT1がオンされる。
出力電圧Voが高くなると、誤差増幅器32の出力電圧が低下して出力トランジスタT1のオン時間が短くなり、出力電圧Voが低くなると、誤差増幅器32の出力電圧が上昇して出力トランジスタT1のオン時間が長くなる。このような動作により、出力電圧Voが基準電源e1に基づく一定電圧に維持される。
DC−DCコンバータ20の停止時にコンデンサC2がスイッチSWによって抵抗R3に接続される。従って、コンデンサC2の電荷は抵抗R3を介して放電され、ソフトスタート信号SSの電圧が徐々に低下する。DC−DCコンバータの起動時と同様に、ソフトスタート信号SSの電圧が徐々に低下することによって、DC−DCコンバータ20の出力電圧Voも徐々に低下する。つまり、DC−DCコンバータ20は、停止時の出力電圧の傾きが、ソフトスタート信号SSの電圧、即ちコンデンサC2の電圧で制御され、DC−DCコンバータ20の負荷に依存しない。
急激な遮断などにより入力電圧ViがDC−DCコンバータ20の動作可能電圧よりも低くなると、入力電圧検出部31aはLレベルの制御信号Rdyを出力する。従って、電源部31bは、トランジスタT11をオフし、コンデンサC3の蓄積電荷により第2電源Vddを第1駆動回路35及び第2駆動回路36に供給する。
第1駆動回路35は、Lレベルの制御信号Rdyに応答して第2電源Vddレベルの制御信号DHを出力トランジスタT1に出力し、第2駆動回路36は、Lレベルの制御信号Rdyに応答して第2電源Vddレベルの制御信号DLを出力トランジスタT2に出力する。従って、制御回路21は、出力トランジスタT2をオンし、コンデンサC1に蓄積された電荷をオンした出力トランジスタT2を介して放電する。これにより、平滑用コンデンサC1の電圧が急速に0V(ゼロボルト)に低下する。
その結果、コンデンサC1に蓄積された電荷により、出力トランジスタT1のドレインの電位が出力トランジスタT1のソースの電位より高くなるのを防止する。一方、出力トランジスタT1のゲートには第2電源Vddレベルの制御信号DHが供給されている。従って、出力トランジスタT1はオフし、コンデンサC3へ入力側から電流が流れるのを防止する。
以上記述したように、本実施形態によれば、以下の効果を奏する。
(1)制御回路21は、入力電圧Viを電圧変換した出力電圧Voを生成するために設けられている同期整流用の出力トランジスタT2を入力電圧Viの低下時にオンすることで平滑用コンデンサC1に蓄積された電荷が速やかに放電される。このため、平滑用コンデンサC1に蓄積された電荷によるラッチアップや焼損などの不具合を防止することができる。また、放電用抵抗を平滑用コンデンサC1に並列に接続する場合に比べて、オンした出力トランジスタT2の抵抗値は放電用抵抗の抵抗値により低いため、放電時間が短くなる。
(2)電源回路31は、入力電圧Viに基づいて電源用コンデンサC3を充電し、入力電圧Viの低下時に電源用コンデンサC3の蓄積電荷に基づく第2電源Vddを生成する。そして、入力電圧Viの遮断時に第2電源Vddにより動作してメインスイッチング用の出力トランジスタT1をオフすると共に同期整流用の出力トランジスタT2をオンする。従って、平滑用コンデンサC1の電荷を放電するまでの間、出力トランジスタT2をオン状態に保持し、平滑用コンデンサC1の電荷を確実に放電することができる。
(3)制御回路21の誤差増幅器32は、出力電圧Voの分圧電圧と基準電源e1の電圧とを比較し、PWM比較器33は誤差増幅器32の出力信号と三角波発振器34の出力信号とを電圧比較し、該比較結果に応じて相補な第1及び第2出力信号QH,QLを出力する。第1駆動回路35は、第1出力信号QHに基づいて生成した第1制御信号DHを出力トランジスタT1に供給する。また、第2駆動回路36は、第2出力信号QLに基づいて生成した第2制御信号DLを出力トランジスタT2に供給する。誤差増幅器32とPWM比較器33と三角波発振器34は供給される第1電源Vcc(入力電圧Vi)により動作し、第1駆動回路35及び第2駆動回路36は供給される第2電源Vddにより動作する。従って、電源用コンデンサC3の蓄積電荷により生成する第2電源Vddを供給する回路を限定することで、第2電源Vddの供給継続時間を長くし、平滑用コンデンサC1の電荷を放電するまでの間、出力トランジスタT2をオン状態に保持し、平滑用コンデンサC1の電荷を確実に放電することができる。
(4)電源回路31は、入力電圧検出部31aと電源部31bとを備える。入力電圧検出部31aは、入力電圧Viを検出し検出結果に応じた制御信号Rdyを出力する。電源部31bは、入力電圧Viを電源用コンデンサC3に供給する経路に設けられたトランジスタT11を有し、制御信号Rdyに基づいて、入力電圧Viが動作可能電圧よりも高いときにはトランジスタT11をオンして電源用コンデンサC3を充電し、入力電圧Viが動作可能電圧より低いときにトランジスタT11をオフする。従って、入力電圧Viの低下を確実に検出することができる。また、入力電圧Viが動作可能電圧より高いときに電源用コンデンサC3を確実に充電することができる。更に、入力電圧Viが動作可能電圧より低いときにトランジスタT11をオフすることで、電源用コンデンサC3の蓄積電荷の放電を少なくし、第2電源Vddの供給継続時間を長くすることができる。
(第二実施形態)
以下、本発明を具体化した第二実施形態を図4に従って説明する。
尚、説明の便宜上、図1と同様の構成については同一の符号を付してその説明を一部省略する。
図4は、本実施形態のDC−DCコンバータ40の回路図である。
DC−DCコンバータ40は、1チップの集積回路上に形成される制御回路41と、外付け素子としての出力トランジスタT1,T2、チョークコイルL1,平滑用コンデンサC1,ソフトスタート用コンデンサC2,電源用コンデンサC3とから構成される。制御回路41は、第一実施形態の制御回路21と比較して、出力トランジスタT1,T2が省略された構成を持つ。
即ち、制御回路41は、第一実施形態と比較して、出力トランジスタT1,T2が外付け素子として接続されるように構成されている。従って、本実施形態は、第一実施形態に於ける効果と同じ効果を奏する。
(第三実施形態)
以下、本発明を具体化した第三実施形態を図5,図6に従って説明する。
尚、説明の便宜上、図1,図4と同様の構成については同一の符号を付してその説明を一部省略する。
図5は、本実施形態のDC−DCコンバータ50の回路図である。
DC−DCコンバータ50は、1チップの集積回路上に形成される制御回路51と、外付け素子として、メインスイッチング用トランジスタとしての出力トランジスタT21、同期整流用トランジスタとしての出力トランジスタT22、チョークコイルL1,平滑用コンデンサC1,ソフトスタート用コンデンサC2,電源用コンデンサC3,C4、ダイオードD1,D2とから構成される。
本実施形態の出力トランジスタT21,T22はNチャネルMOSトランジスタである。これは、出力トランジスタT21におけるオン抵抗を小さくし、電力損失を低減するために有効である。そして、この実施形態のDC−DCコンバータ50は、NチャネルMOSトランジスタよりなる出力トランジスタT21を駆動するために構成されている。
即ち、DC−DCコンバータ50の出力トランジスタT21としてNチャネルMOSトランジスタを用いる場合、該トランジスタT21を駆動するための第1制御信号DHとして入力電圧Viよりも高い電圧が必要になる。そのため、このDC−DCコンバータ50では、出力トランジスタT21がオンオフするときにそのソース電位がグランド電位から入力電圧Viの間でふれるのを利用して、チャージポンプによりトランジスタT21の駆動電圧を生成するようにしている。
具体的には、PWM比較器33の出力信号QHは第1駆動回路52を介して第1制御信号DHとして出力トランジスタT21のゲートに入力され、出力信号QLは第2駆動回路36を介して第2制御信号DLとして出力トランジスタT22のゲートに入力されている。
出力トランジスタT21のソースには、コンデンサC4の第2端子が接続され、コンデンサC4の第1端子はダイオードD2のカソードに接続され、ダイオードD2のアノードがコンデンサC3に接続されている。コンデンサC4の両端子は第1駆動回路52の高電位側電源端子と低電位側電源端子に接続されている。
図6に示すように、第1駆動回路52は、スイッチSW21と2段のインバータ回路52a,52bにより構成されている。第1インバータ回路52aの出力端子は第2インバータ回路52bの入力端子に接続され、第2インバータ回路52bの出力端子は図に示す出力トランジスタT21のゲートに接続されている。
両インバータ回路52a,52bは直列接続されたPチャネルMOSトランジスタとNチャネルMOSトランジスタとから構成され、PチャネルMOSトランジスタのソースとNチャネルMOSトランジスタのソース間にコンデンサC4が接続されている。
このDC−DCコンバータ50において、出力トランジスタT21がオフ、出力トランジスタT22がオンであるとき、出力トランジスタT21のソース電位はグランド電位となる。このとき、ダイオードD2を介してコンデンサC4に電流が流れ、コンデンサC4は、その電圧が第2電源Vddと等しくなるまで充電される。次いで、コンデンサC4の充電電圧を利用して、第1駆動回路52から制御信号DHが出力されることで出力トランジスタT21がオンする。
出力トランジスタT21がオンすると、該トランジスタT21のソース電位が入力電圧Viまで上昇する。このとき、コンデンサC4はトランジスタT21のソースに接続されているので、該コンデンサC4から第1駆動回路52に供給される電圧も上昇して入力電圧Viよりも高くなる。ここで、トランジスタT21のソース電位が上昇したとしても、該ソース電位に対する第1制御信号DHの電圧は変化せず入力電圧Viレベルとなっている。
そして、その第1制御信号DHにより出力トランジスタT21が駆動される。なおこのとき、ダイオードD2は、電圧が第2電源Vddよりも高くなったコンデンサC4の電荷が入力側であるコンデンサC3側に逆流するのを防止する逆流防止回路として機能する。
以上記述したように、本実施形態によれば、第一実施形態の効果に加え、以下の効果を奏する。
(1)電源用コンデンサC3は、NチャネルMOSトランジスタである出力トランジスタT1のオン抵抗を小さくし、電力損失を低減するために接続されるコンデンサと共用されている。従って、外付け部品の点数の増加を抑え、DC−DCコンバータ50の面積の増加を抑えることができる。有効である。
(第四実施形態)
以下、本発明を具体化した第四実施形態を図7に従って説明する。
尚、説明の便宜上、図1,図4,図5と同様の構成については同一の符号を付してその説明を一部省略する。
図7は、本実施形態のDC−DCコンバータ60の回路図である。
DC−DCコンバータ60は電流制御モード方式のDC−DCコンバータであり、1チップの集積回路上に形成される制御回路61と、外付け素子としての出力トランジスタT1,T2、チョークコイルL1,平滑用コンデンサC1,ソフトスタート用コンデンサC2,電源用コンデンサC3、ダイオードD1、電流検出用抵抗Rsとから構成される。出力電圧Voは、電流検出用抵抗Rsを介して出力される。
制御回路61の電圧増幅器62には、電流検出用抵抗Rsの両端子電圧が入力される。そして、電圧増幅器62は電流検出用抵抗Rsに流れる出力電流に基づいて電流検出用抵抗Rsの両端子間に発生する電圧を増幅して比較器63に出力する。制御回路61の誤差増幅器32は、出力電圧Voを抵抗R1,R2で分割した電圧と、基準電源e1の出力電圧との差電圧を増幅して比較器63に出力する。
比較器63は、電圧増幅器62の出力電圧と、誤差増幅器32の出力電圧を比較し、電圧増幅器62の出力電圧が誤差増幅器32の出力電圧より高くなるとHレベルの出力信号をフリップフロップ回路(以下、FF回路)64のリセット端子Rに出力する。また、電圧増幅器62の出力電圧が誤差増幅器32の出力電圧より低いときにはLレベルの出力信号をリセット端子Rに出力する。
FF回路64のセット端子Sには、発振器65から一定周波数のパルス信号が入力される。FF回路64はセット端子SにHレベルの信号が入力されると、出力端子QからHレベルの出力信号QHを出力するとともに反転出力端子QバーからLレベルの出力信号QLを出力し、リセット端子RにHレベルの信号が入力されると、Lレベルの出力信号QHとHレベルの出力信号QLを出力する。
このように構成された制御回路61は、発振器65の出力信号の立ち上がりに基づいて、一定周期で出力トランジスタT1をオンさせる。出力トランジスタT1がオンされると、チョークコイルL1及び電流検出用抵抗Rsに流れる電流ILが増大し電圧増幅器62の出力電圧が上昇する。そして、電圧増幅器62の出力電圧が誤差増幅器32の出力電圧より高くなると、FF回路64のリセット端子RにHレベルの信号が出力されるため、出力トランジスタT1がオフされ、出力トランジスタT2がオンされて、チョークコイルL1に蓄えられたエネルギーが出力される。
上記のような出力トランジスタのオン・オフ動作時に、出力電圧Voが低くなると、誤差増幅器32の出力電圧が高くなり、比較器63の出力信号がHレベルとなるまでの時間が長くなるため、出力トランジスタT1のオン時間が長くなる。また、出力電圧Voが高くなると、誤差増幅器32の出力電圧が低くなり、比較器63の出力信号がHレベルとなるまでの時間が短くなるため、出力トランジスタT1のオン時間が短くなる。このような動作により、出力トランジスタT1は発振器65の出力信号周波数に基づいて一定周期でオンされ、出力トランジスタT1がオフされるタイミングは、出力電流ILの増大に基づいて決定される。そして、出力電圧Voの高低に基づいてそのタイミングが変化して、出力電圧Voが一定に維持される。
以上記述したように、本実施形態によれば、以下の効果を奏する。
(1)DC−DCコンバータ60は電流制御モード方式のDC−DCコンバータであり、電流検出用抵抗Rsに流れる電流を検出して出力電圧Voを一定電圧に維持する。このように電流制御モード方式のDC−DCコンバータにおいても、第一実施形態と同様に、制御回路61は、入力電圧Viを電圧変換した出力電圧Voを生成するために設けられている同期整流用の出力トランジスタT2を入力電圧Viの低下時にオンすることで平滑用コンデンサC1に蓄積された電荷が速やかに放電される。このため、平滑用コンデンサC1に蓄積された電荷によるラッチアップや焼損などの不具合を防止することができる。また、放電用抵抗を平滑用コンデンサC1に並列に接続する場合に比べて、オンした出力トランジスタT2の抵抗値は放電用抵抗の抵抗値により低いため、放電時間が短くなる。
尚、上記各実施形態は、以下の態様で実施してもよい。
・第三実施形態において、第一実施形態の制御回路21と同様に、制御回路51に出力トランジスタT21.T22を一体化した構成としても良い。また、第四実施形態において、第一実施形態の制御回路21と同様に、制御回路61に出力トランジスタT1,T2を一体化した構成としても良い。
・上記各実施形態では、入力電圧Viを降圧した電圧Vo出力する降圧型のDC−DCコンバータ20,40,50,60に具体化したが、電圧Voを適宜変更してもよい。つまり、DC−DCコンバータは、降圧型、昇圧型に限らず、出力電圧Voを供給する半導体回路の構成に応じて負電圧を生成するDC−DCコンバータや異なる複数の電圧を生成するDC−DCコンバータに具体化しても良い。
上記各形態から把握できる技術的思想を以下に記載する。
(付記1)
直列接続されたメインスイッチング用トランジスタ及び同期整流用トランジスタと、両トランジスタ間に接続されたチョークコイルと、前記チョークコイルを介して出力される出力電圧を平滑化する平滑用コンデンサとを備え、前記メインスイッチング用トランジスタと前記同期整流用トランジスタとを相補的にオンオフ制御して前記メインスイッチング用トランジスタに供給される入力電圧を電圧変換した出力電圧を生成するDC−DCコンバータにおいて、
前記入力電圧の低下時に前記メインスイッチング用トランジスタをオフするとともに、前記同期整流用トランジスタをオンする制御回路を備えたことを特徴とするDC−DCコンバータ。
(付記2)
前記制御回路は、
前記入力電圧に基づいて電源用コンデンサを充電し、前記入力電圧の低下時に前記電源用コンデンサの蓄積電荷に基づく第2電源を生成する電源回路を備え、
前記入力電圧の遮断時に前記第2電源により動作して前記メインスイッチング用トランジスタをオフすると共に前記同期整流用トランジスタをオンするようにしたことを特徴とする付記1記載のDC−DCコンバータ。
(付記3)
前記制御回路は、
前記出力電圧の分圧電圧と基準電圧とを比較する誤差増幅器と、
前記誤差増幅器の出力信号と三角波発振器の出力信号とを電圧比較し、該比較結果に応じて相補な第1及び第2出力信号を出力するPWM比較器と、
前記第1出力信号に基づいて生成した第1制御信号を前記メインスイッチング用トランジスタに供給する第1駆動回路と、
前記第2出力信号に基づいて生成した第2制御信号を前記同期整流用トランジスタに供給する第2駆動回路とを備え、
前記誤差増幅器と前記PWM比較器と前記三角波発振器には前記入力電圧が第1電源として供給され、
前記第2駆動回路には第2電源が供給されること
を特徴とする付記1又は付記2記載のDC−DCコンバータ。
(付記4)
前記電源回路は、
前記入力電圧を検出し検出結果に応じた制御信号を出力する入力電圧検出部と、前記入力電圧を前記電源用コンデンサに供給する経路に設けられたスイッチ素子を有し、前記制御信号に基づいて、前記入力電圧が動作可能電圧よりも高いときには前記スイッチ素子をオンし、前記入力電圧が動作可能電圧より低いときに前記スイッチ素子をオフする電源部と、を備えたことを特徴とする付記2記載のDC−DCコンバータ。
(付記5)
直列接続されたメインスイッチング用トランジスタ及び同期整流用トランジスタと、両トランジスタ間に接続されたチョークコイルと、前記チョークコイルを介して出力される出力電圧を平滑化する平滑用コンデンサとを備え、前記メインスイッチング用トランジスタと前記同期整流用トランジスタとを相補的にオンオフ制御して前記メインスイッチング用トランジスタに供給される入力電圧を電圧変換した出力電圧を生成するDC−DCコンバータの制御回路において、
前記入力電圧の低下時に前記メインスイッチング用トランジスタをオフするとともに、前記同期整流用トランジスタをオンすることを特徴とするDC−DCコンバータの制御回路。
(付記6)
前記入力電圧に基づいて電源用コンデンサを充電し、前記入力電圧の低下時に前記電源用コンデンサの蓄積電荷に基づく第2電源を生成する電源回路を備え、
前記入力電圧の遮断時に前記第2電源により動作して前記メインスイッチング用トランジスタをオフすると共に前記同期整流用トランジスタをオンするようにしたことを特徴とする付記5記載のDC−DCコンバータの制御回路。
(付記7)
前記出力電圧の分圧電圧と基準電圧とを比較する誤差増幅器と、
前記誤差増幅器の出力信号と三角波発振器の出力信号とを電圧比較し、該比較結果に応じて相補な第1及び第2出力信号を出力するPWM比較器と、
前記第1出力信号に基づいて生成した第1制御信号を前記メインスイッチング用トランジスタに供給する第1駆動回路と、
前記第2出力信号に基づいて生成した第2制御信号を前記同期整流用トランジスタに供給する第2駆動回路とを備え、
前記誤差増幅器と前記PWM比較器と前記三角波発振器には前記入力電圧が第1電源として供給され、
前記第2駆動回路には第2電源が供給される
ことを特徴とする付記5又は付記6記載のDC−DCコンバータの制御回路。
(付記8)
前記電源回路は、
前記入力電圧を検出し検出結果に応じた制御信号を出力する入力電圧検出部と、前記入力電圧を前記電源用コンデンサに供給する経路に設けられたスイッチ素子を有し、前記制御信号に基づいて、前記入力電圧が動作可能電圧よりも高いときには前記スイッチ素子をオンし、前記入力電圧が動作可能電圧より低いときに前記スイッチ素子をオフする電源部と、を備えたことを特徴とする付記6記載のDC−DCコンバータの制御回路。
(付記9)
直列接続されたメインスイッチング用トランジスタ及び同期整流用トランジスタと、両トランジスタ間に接続されたチョークコイルと、前記チョークコイルを介して出力される出力電圧を平滑化する平滑用コンデンサとを備え、前記メインスイッチング用トランジスタと前記同期整流用トランジスタとを相補的にオンオフ制御して前記メインスイッチング用トランジスタに供給される入力電圧を電圧変換した出力電圧を生成するDC−DCコンバータの制御方法において、
前記入力電圧の低下時に前記メインスイッチング用トランジスタをオフするとともに、前記同期整流用トランジスタをオンすることを特徴とするDC−DCコンバータの制御方法。
(付記10)
前記入力電圧に基づいて電源用コンデンサを充電し、前記入力電圧の低下時に前記電源用コンデンサの蓄積電荷に基づく第2電源を生成する電源回路を備え、
前記入力電圧の遮断時に前記第2電源により動作して前記メインスイッチング用トランジスタをオフすると共に前記同期整流用トランジスタをオンするようにしたことを特徴とする付記9記載のDC−DCコンバータの制御方法。
(付記11)
前記出力電圧の分圧電圧と基準電圧とを比較する誤差増幅器と、
前記誤差増幅器の出力信号と三角波発振器の出力信号とを電圧比較し、該比較結果に応じて相補な第1及び第2出力信号を出力するPWM比較器と、
前記第1出力信号に基づいて生成した第1制御信号を前記メインスイッチング用トランジスタに供給する第1駆動回路と、
前記第2出力信号に基づいて生成した第2制御信号を前記同期整流用トランジスタに供給する第2駆動回路とを備え、
前記誤差増幅器と前記PWM比較器と前記三角波発振器には前記入力電圧が第1電源として供給され、
前記第2駆動回路には第2電源が供給される
ことを特徴とする付記9又は付記10記載のDC−DCコンバータの制御方法。
(付記12)
前記電源回路は、
前記入力電圧を検出し検出結果に応じた制御信号を出力する入力電圧検出部と、前記入力電圧を前記電源用コンデンサに供給する経路に設けられたスイッチ素子を有し、前記制御信号に基づいて、前記入力電圧が動作可能電圧よりも高いときには前記スイッチ素子をオンし、前記入力電圧が動作可能電圧より低いときに前記スイッチ素子をオフする電源部と、を備えたことを特徴とする付記10記載のDC−DCコンバータの制御方法。
(付記13)
前記付記1〜4のうちの何れか1つに記載のDC−DCコンバータを備えた半導体素子。
(付記14)
前記付記1〜4のうちの何れか1つに記載のDC−DCコンバータを備えたモジュール。
(付記15)
前記付記1〜4のうちの何れか1つに記載のDC−DCコンバータを備えた電源装置。
(付記16)
前記付記1〜4のうちの何れか1つに記載のDC−DCコンバータを備えた電子機器装置。
第一実施形態のDC−DCコンバータのブロック回路図である。 電源回路の回路図である。 第一実施形態のドライブ回路の回路図である。 第二実施形態のDC−DCコンバータのブロック回路図である。 第三実施形態のDC−DCコンバータのブロック回路図である。 第三実施形態のドライブ回路の回路図である。 第四実施形態のDC−DCコンバータのブロック回路図である。 従来のDC−DCコンバータのブロック回路図である。 従来のDC−DCコンバータのブロック回路図である。
符号の説明
21,41,51,61 制御回路
32 誤差増幅器
33 PWM比較器
34 三角波発振器
35,52 第1駆動回路
36 第2駆動回路
C1 平滑用コンデンサ
C3 電源用コンデンサ
L1 チョークコイル
T1,T21 メインスイッチング用トランジスタ
T2,T22 同期整流用トランジスタ
QH,QL 出力信号
DH,DL 制御信号
Vcc 第1電源
Vdd 第2電源
Vi 入力電圧
Vo 出力電圧

Claims (17)

  1. 直列接続されたメインスイッチング用トランジスタ及び同期整流用トランジスタを備え、前記メインスイッチング用トランジスタと前記同期整流用トランジスタとをオンオフ制御して前記メインスイッチング用トランジスタに供給される入力電圧を電圧変換した出力電圧を生成するDC−DCコンバータにおいて、
    前記入力電圧低下したことを検出した場合に、前記同期整流用トランジスタをオンする制御回路を備えたことを特徴とするDC−DCコンバータ。
  2. 前記制御回路は、
    前記入力電圧に基づいて電源用コンデンサを充電し、前記入力電圧の低下時に前記電源用コンデンサの蓄積電荷に基づく第2電源を生成する電源回路を備え、
    前記入力電圧の遮断時に前記第2電源により動作して前記メインスイッチング用トランジスタをオフすると共に前記同期整流用トランジスタをオンするようにしたことを特徴とする請求項1記載のDC−DCコンバータ。
  3. 前記制御回路は、
    前記出力電圧の分圧電圧と基準電圧とを比較する誤差増幅器と、
    前記誤差増幅器の出力信号と三角波発振器の出力信号とを電圧比較し、該比較結果に応じて相補な第1及び第2出力信号を出力するPWM比較器と、
    前記第1出力信号に基づいて生成した第1制御信号を前記メインスイッチング用トランジスタに供給する第1駆動回路と、
    前記第2出力信号に基づいて生成した第2制御信号を前記同期整流用トランジスタに供給する第2駆動回路とを備え、
    前記誤差増幅器と前記PWM比較器と前記三角波発振器には前記入力電圧が第1電源として供給され、
    前記第2駆動回路には第2電源が供給される
    ことを特徴とする請求項1又は請求項2記載のDC−DCコンバータ。
  4. 前記電源回路は、
    前記入力電圧を検出し検出結果に応じた制御信号を出力する入力電圧検出部と、前記入力電圧を前記電源用コンデンサに供給する経路に設けられたスイッチ素子を有し、前記制御信号に基づいて、前記入力電圧が動作可能電圧よりも高いときには前記スイッチ素子をオンし、前記入力電圧が動作可能電圧より低いときに前記スイッチ素子をオフする電源部と、を備えたことを特徴とする請求項2記載のDC−DCコンバータ。
  5. 直列接続されたメインスイッチング用トランジスタ及び同期整流用トランジスタを備え、前記メインスイッチング用トランジスタと前記同期整流用トランジスタとをオンオフ制御して前記メインスイッチング用トランジスタに供給される入力電圧を電圧変換した出力電圧を生成するDC−DCコンバータの制御回路において、
    前記入力電圧低下したことを検出した場合に、前記同期整流用トランジスタをオンすることを特徴とするDC−DCコンバータの制御回路。
  6. 前記入力電圧に基づいて電源用コンデンサを充電し、前記入力電圧の低下時に前記電源用コンデンサの蓄積電荷に基づく第2電源を生成する電源回路を備え、
    前記入力電圧の遮断時に前記第2電源により動作して前記メインスイッチング用トランジスタをオフすると共に前記同期整流用トランジスタをオンするようにしたことを特徴とする請求項5記載のDC−DCコンバータの制御回路。
  7. 直列接続されたメインスイッチング用トランジスタ及び同期整流用トランジスタを備え、前記メインスイッチング用トランジスタと前記同期整流用トランジスタとをオンオフ制御して前記メインスイッチング用トランジスタに供給される入力電圧を電圧変換した出力電圧を生成するDC−DCコンバータの制御方法において、
    前記入力電圧低下したことを検出した場合に、前記同期整流用トランジスタをオンすることを特徴とするDC−DCコンバータの制御方法。
  8. 前記入力電圧に基づいて電源用コンデンサを充電し、前記入力電圧の低下時に前記電源用コンデンサの蓄積電荷に基づく第2電源を生成する電源回路を備え、
    前記入力電圧の遮断時に前記第2電源により動作して前記メインスイッチング用トランジスタをオフすると共に前記同期整流用トランジスタをオンするようにしたことを特徴とする請求項7記載のDC−DCコンバータの制御方法。
  9. 前記出力電圧の分圧電圧と基準電圧とを比較する誤差増幅器と、
    前記誤差増幅器の出力信号と三角波発振器の出力信号とを電圧比較し、該比較結果に応じて相補な第1及び第2出力信号を出力するPWM比較器と、
    前記第1出力信号に基づいて生成した第1制御信号を前記メインスイッチング用トランジスタに供給する第1駆動回路と、
    前記第2出力信号に基づいて生成した第2制御信号を前記同期整流用トランジスタに供給する第2駆動回路とを備え、
    前記誤差増幅器と前記PWM比較器と前記三角波発振器には前記入力電圧が第1電源として供給され、
    前記第2駆動回路には第2電源が供給される
    ことを特徴とする請求項7又は請求項8記載のDC−DCコンバータの制御方法。
  10. 前記電源回路は、
    前記入力電圧を検出し検出結果に応じた制御信号を出力する入力電圧検出部と、前記入力電圧を前記電源用コンデンサに供給する経路に設けられたスイッチ素子を有し、前記制御信号に基づいて、前記入力電圧が動作可能電圧よりも高いときには前記スイッチ素子をオンし、前記入力電圧が動作可能電圧より低いときに前記スイッチ素子をオフする電源部と、を備えたことを特徴とする請求項8記載のDC−DCコンバータの制御方法。
  11. 前記制御回路は、前記同期整流用トランジスタを駆動する駆動回路を備え、前記入力電圧が低下した場合に、前記同期整流用トランジスタをオンさせるための制御信号を前記駆動回路に供給することを特徴とする請求項1〜4の何れか1項に記載のDC−DCコンバータ。
  12. 前記駆動回路は、前記入力電圧が低下した場合に、前記入力電圧とは異なる電源により動作することを特徴とする請求項11に記載のDC−DCコンバータ。
  13. 前記メインスイッチング用トランジスタは、前記制御回路が前記入力電圧が低下したことを検出した場合にオフされること特徴とする請求項1〜4,11又は12の何れか1項に記載のDC−DCコンバータ。
  14. 直列接続されたメインスイッチング用トランジスタ及び同期整流用トランジスタを備え、前記メインスイッチング用トランジスタと前記同期整流用トランジスタとをオンオフ制御して前記メインスイッチング用トランジスタに供給される入力電圧を電圧変換した出力電圧を生成するDC−DCコンバータにおいて、
    前記入力電圧が所定電圧以下の時に、前記入力電圧とは異なる電源が供給され、前記同期整流用トランジスタを駆動する駆動回路を備えることを特徴とするDC−DCコンバータ。
  15. 前記入力電圧に基づいて電源用コンデンサを充電し、前記入力電圧の低下時に前記電源用コンデンサの蓄積電荷に基づく第2電源を生成する電源回路を備え、
    前記駆動回路は、前記入力電圧の遮断時に前記第2電源により動作して前記メインスイッチング用トランジスタをオフすると共に前記同期整流用トランジスタをオンするようにしたことを特徴とする請求項14記載のDC−DCコンバータ。
  16. 前記DC−DCコンバータの制御回路は、
    前記出力電圧の分圧電圧と基準電圧とを比較する誤差増幅器と、
    前記誤差増幅器の出力信号と三角波発振器の出力信号とを電圧比較し、該比較結果に応じて相補な第1及び第2出力信号を出力するPWM比較器と、
    前記第1出力信号に基づいて生成した第1制御信号を前記メインスイッチング用トランジスタに供給する第1駆動回路と、前記第2出力信号に基づいて生成した第2制御信号を前記同期整流用トランジスタに供給する第2駆動回路とを含む前記駆動回路と、を備え、
    前記誤差増幅器と前記PWM比較器と前記三角波発振器には前記入力電圧が第1電源として供給され、
    前記第2駆動回路には第2電源が供給される
    ことを特徴とする請求項14又は請求項15記載のDC−DCコンバータ。
  17. 前記電源回路は、
    前記入力電圧を検出し検出結果に応じた制御信号を出力する入力電圧検出部と、前記入力電圧を前記電源用コンデンサに供給する経路に設けられたスイッチ素子を有し、前記制御信号に基づいて、前記入力電圧が動作可能電圧よりも高いときには前記スイッチ素子をオンし、前記入力電圧が動作可能電圧より低いときに前記スイッチ素子をオフする電源部と、を備えたことを特徴とする請求項15記載のDC−DCコンバータ。
JP2005103940A 2005-03-31 2005-03-31 Dc−dcコンバータ、dc−dcコンバータの制御回路、及びdc−dcコンバータの制御方法 Expired - Fee Related JP4347249B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005103940A JP4347249B2 (ja) 2005-03-31 2005-03-31 Dc−dcコンバータ、dc−dcコンバータの制御回路、及びdc−dcコンバータの制御方法
TW094129869A TWI281306B (en) 2005-03-31 2005-08-31 Circuit and method for controlling DC-DC conberter
US11/225,186 US7336060B2 (en) 2005-03-31 2005-09-14 Circuit and method for controlling a DC-DC converter by enabling the synchronous rectifier during undervoltage lockout
KR1020050099844A KR100718522B1 (ko) 2005-03-31 2005-10-21 Dc-dc 컨버터, dc-dc 컨버터의 제어 회로, 및dc-dc 컨버터의 제어 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005103940A JP4347249B2 (ja) 2005-03-31 2005-03-31 Dc−dcコンバータ、dc−dcコンバータの制御回路、及びdc−dcコンバータの制御方法

Publications (2)

Publication Number Publication Date
JP2006288062A JP2006288062A (ja) 2006-10-19
JP4347249B2 true JP4347249B2 (ja) 2009-10-21

Family

ID=37069586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005103940A Expired - Fee Related JP4347249B2 (ja) 2005-03-31 2005-03-31 Dc−dcコンバータ、dc−dcコンバータの制御回路、及びdc−dcコンバータの制御方法

Country Status (4)

Country Link
US (1) US7336060B2 (ja)
JP (1) JP4347249B2 (ja)
KR (1) KR100718522B1 (ja)
TW (1) TWI281306B (ja)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7940033B2 (en) * 2003-04-22 2011-05-10 Aivaka, Inc. Control loop for switching power converters
JP4673046B2 (ja) * 2004-11-26 2011-04-20 ザインエレクトロニクス株式会社 スイッチング電源
JP4328290B2 (ja) * 2004-12-28 2009-09-09 富士通マイクロエレクトロニクス株式会社 電源回路、半導体集積回路装置、電子機器及び電源回路の制御方法
JP4679309B2 (ja) * 2005-09-06 2011-04-27 株式会社東芝 半導体装置
US7265523B2 (en) * 2005-10-24 2007-09-04 Aivaka Control loop for switching power converters
EP2021879A4 (en) * 2006-04-26 2010-04-28 Aivaka REGULATED USE AND FREQUENCY CYCLE CLOCK
WO2007127463A2 (en) * 2006-04-27 2007-11-08 Aivaka Startup for dc/dc converters
JP5021954B2 (ja) * 2006-05-09 2012-09-12 ローム株式会社 低電圧誤動作防止回路、方法ならびにそれを利用した電源回路および電子機器
JP4895854B2 (ja) * 2007-02-16 2012-03-14 アルパイン株式会社 ドライバ回路
DE102007046341A1 (de) * 2007-09-27 2009-04-23 Infineon Technologies Ag Schaltungsanordnung zum Verarbeiten eines hochfrequenten Signals
TW200934130A (en) * 2008-01-25 2009-08-01 Advanced Analog Technology Inc Pulse width modulation controller and the controlling method thereof
TW200934131A (en) * 2008-01-29 2009-08-01 Advanced Analog Technology Inc Pulse width modulation controller and the controlling method thereof
KR101527966B1 (ko) * 2008-09-02 2015-06-17 페어차일드코리아반도체 주식회사 스위치 모드 전력 공급 장치 및 그 구동 방법
TWI403080B (zh) * 2009-08-24 2013-07-21 Green Solution Tech Co Ltd 具電流偵測的電荷幫浦電路及其方法
JP2012090387A (ja) * 2010-10-18 2012-05-10 Panasonic Corp Dc−dcコンバータ
JP2012114987A (ja) * 2010-11-22 2012-06-14 Rohm Co Ltd 電流モード同期整流dc/dcコンバータ
TWI419447B (zh) * 2011-01-27 2013-12-11 Holtek Semiconductor Inc 電源轉換器及其功率電晶體的閘極驅動器
JP5126558B2 (ja) * 2011-05-16 2013-01-23 オンキヨー株式会社 スイッチングアンプ
JP6252244B2 (ja) * 2014-02-27 2017-12-27 株式会社デンソー モータ駆動装置
JP6591220B2 (ja) * 2015-07-15 2019-10-16 ルネサスエレクトロニクス株式会社 半導体装置および電力制御装置
JP6690818B2 (ja) * 2016-03-18 2020-04-28 新日本無線株式会社 スイッチング制御回路
US11863062B2 (en) * 2018-04-27 2024-01-02 Raytheon Company Capacitor discharge circuit
US11569727B2 (en) * 2018-07-17 2023-01-31 Mitsubishi Electric Corporation Drive circuit and power conversion device

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4009420A (en) * 1975-05-02 1977-02-22 The United States Of America As Represented By The Secretary Of The Navy Solid state power controller
US5350988A (en) * 1990-07-10 1994-09-27 Alliedsignal, Inc. Digital motor controller
JPH0530755A (ja) 1991-07-23 1993-02-05 Fuji Electric Co Ltd インバ−タ装置の放電回路
EP0741447A3 (en) * 1995-05-04 1997-04-16 At & T Corp Method and device for controlling a synchronous rectifier converter circuit
JP3405871B2 (ja) 1995-11-28 2003-05-12 富士通株式会社 直流−直流変換制御回路および直流−直流変換装置
JP3691635B2 (ja) 1997-05-15 2005-09-07 富士通株式会社 電圧制御回路及びdc/dcコンバータ
US5847554A (en) * 1997-06-13 1998-12-08 Linear Technology Corporation Synchronous switching regulator which employs switch voltage-drop for current sensing
FI19992686A (fi) * 1999-12-14 2001-06-15 Nokia Networks Oy Synkronitasasuuntaus
EP1160963A3 (en) * 2000-05-31 2004-02-04 Sanken Electric Co., Ltd. DC-to-DC converter
KR100426606B1 (ko) * 2000-10-30 2004-04-08 가부시키가이샤 무라타 세이사쿠쇼 Dc ―dc 컨버터 및 이를 사용한 전자장치
JP4651832B2 (ja) * 2001-03-05 2011-03-16 富士通セミコンダクター株式会社 電源システムの過電圧保護装置
US6947272B2 (en) * 2001-11-20 2005-09-20 Texas Instruments Incorporated Inrush current control method using a dual current limit power switch
JP3427935B1 (ja) * 2002-10-11 2003-07-22 ローム株式会社 スイッチング電源装置
US6924633B2 (en) * 2003-12-19 2005-08-02 Texas Instruments Incorporated Pulse width modulation controller with double pulse immunity
US7203041B2 (en) * 2004-04-30 2007-04-10 Power-One, Inc Primary side turn-off of self-driven synchronous rectifiers
US7414425B2 (en) * 2004-05-10 2008-08-19 Temic Automotive Of North America, Inc. Damping control in a three-phase motor with a single current sensor

Also Published As

Publication number Publication date
US20060220631A1 (en) 2006-10-05
KR20060106605A (ko) 2006-10-12
JP2006288062A (ja) 2006-10-19
US7336060B2 (en) 2008-02-26
TW200635192A (en) 2006-10-01
KR100718522B1 (ko) 2007-05-16
TWI281306B (en) 2007-05-11

Similar Documents

Publication Publication Date Title
JP4347249B2 (ja) Dc−dcコンバータ、dc−dcコンバータの制御回路、及びdc−dcコンバータの制御方法
JP4481879B2 (ja) スイッチング電源装置
US7262587B2 (en) Circuit and method for controlling DC-DC converter
JP4997891B2 (ja) Dc−dcコンバータ及びdc−dcコンバータの制御方法
US7221129B2 (en) Switching regulator and method for changing output voltages thereof
US10158289B2 (en) DC/DC converter
US7714546B2 (en) Step-up regulator with multiple power sources for the controller
US8686705B2 (en) Current mode synchronous rectification DC/DC converter
US7248030B2 (en) Circuit and method for controlling step-up/step-down DC-DC converter
US7098639B2 (en) DC-DC converter and method for controlling DC-DC converter
US8076914B2 (en) Switching regulator including low-pass filter configured to have time constant for step-up operation and time constant for step-down operation
JP5852380B2 (ja) Dc/dcコンバータ
JP2014023269A (ja) 半導体集積回路およびその動作方法
WO2007114466A1 (ja) スイッチング制御回路
JP4487649B2 (ja) 昇降圧型dc−dcコンバータの制御装置
JP4416689B2 (ja) スイッチングレギュレータ及びスイッチングレギュレータの出力電圧切換方法
JP2007129841A (ja) 電源回路および半導体集積装置
JP2011125075A (ja) スイッチングレギュレータ
JP5515390B2 (ja) スイッチング電源装置
JP2007151322A (ja) 電源回路およびdc−dcコンバータ
JP2006254685A (ja) スイッチング電源装置
JP6455180B2 (ja) 電源制御用半導体装置
JP4997984B2 (ja) 同期整流型dc−dcコンバータ。
JP2007159275A (ja) Dc−dcコンバータ
JP2024049738A (ja) 電源制御装置およびそれを備えたスイッチング電源

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090715

R150 Certificate of patent or registration of utility model

Ref document number: 4347249

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees