JP4064662B2 - 水素透過体およびその製造方法 - Google Patents

水素透過体およびその製造方法 Download PDF

Info

Publication number
JP4064662B2
JP4064662B2 JP2001366198A JP2001366198A JP4064662B2 JP 4064662 B2 JP4064662 B2 JP 4064662B2 JP 2001366198 A JP2001366198 A JP 2001366198A JP 2001366198 A JP2001366198 A JP 2001366198A JP 4064662 B2 JP4064662 B2 JP 4064662B2
Authority
JP
Japan
Prior art keywords
hydrogen
film
porous support
alloy film
nitride film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001366198A
Other languages
English (en)
Other versions
JP2003164740A (ja
Inventor
俊樹 佐藤
雅也 得平
岳穂 川中
誠矢 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2001366198A priority Critical patent/JP4064662B2/ja
Publication of JP2003164740A publication Critical patent/JP2003164740A/ja
Application granted granted Critical
Publication of JP4064662B2 publication Critical patent/JP4064662B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Physical Vapour Deposition (AREA)
  • Fuel Cell (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水素ガスと他の種類のガスとの混合ガス(以下、「粗製ガス」という)から水素を分離するために用いられる水素透過体と、その製造方法に関するものである。
【0002】
【従来の技術】
近年、省エネルギー型分離技術として、膜による気体の選択分離法が注目されている。例えば最近、燃料電池の実用化研究が進んでくるにつれて、燃料となる水素ガスを如何に高純度で効率よく製造するかが重要な課題となっており、その代表的な方法として、都市ガスや天然ガスの如き炭化ガスの熱分解によって水素を製造し、該生成ガス(粗製ガス)から高純度の水素を得る方法がある。この場合、熱分解によって得られる粗製ガスには、水素の他、一酸化炭素や炭酸ガスなどが多量に含まれているので、それらを含む組成ガスの中から水素を分離する必要があり、そのための分離法として、多孔質体の表面に水素選択透過膜を形成させた水素透過体を利用する方法が知られている。
【0003】
こうした水素透過体は、水素を選択的に透過する水素選択透過膜と、この膜を支持する支持体から構成され、該支持体には、粉末を焼結した多孔質の金属やセラミックス、金属不織布、発泡メタル、さらにはバルク材に微細な穴を無数にあけたものなどが使用されている。
【0004】
そしてこれら多孔質支持体の表面に、例えばスパッタリング法、アークイオンプレーティング法、めっき法、溶射法、もしくは圧延箔の積層法などによって水素選択透過膜を形成し、水素透過体を得ている。
【0005】
水素選択透過膜としては、Pd系の膜(Pdや、Pd−Ag合金などのPd合金によって構成される膜)などがよく知られている。さらに、このPd系膜としては、特開2001−46845号、および特開2001−131653号に、特定の希土類元素を3〜15at%含有するPd合金膜が開示されている。これらの記載によると、上記希土類元素を含有するPd合金膜は、従来のPd−Ag合金膜の約2倍の水素透過性能を有している。
【0006】
ところで、このようなPd系の水素選択透過膜を、金属製の多孔質支持体上に直接形成させた水素透過体では、次のような問題がある。高温で粗製ガスを分離処理するなど、上記水素透過体が高温に曝された場合に、多孔質支持体の金属成分がPd系膜中に拡散し、Pdなどと反応する。よって、粗製ガスの分離処理時間の経過と共に、Pd系膜の水素選択透過性が低下してしまうのである。
【0007】
多孔質支持体の金属成分が水素選択透過膜へ拡散することを防止するため、多孔質支持体の素材にアルミナなどの酸化物を用いる方法や、金属製多孔質支持体の表面に酸化物層を形成させる方法が知られている。しかし、これら酸化物と上記の希土類元素を含有するPd系膜とは密着性が低いため、該膜が剥離してしまうといった問題があった。また、金属製多孔質支持体表面に酸化物層を形成させる場合では、支持体金属と酸化物層との熱膨張率の相違から、粗製ガス分離処理を繰り返し行うことで支持体−酸化物層界面に発生する熱応力の影響によって、酸化物層が支持体表面から剥離するといった問題もあった。
【0008】
上記の諸問題を解決する技術として、特開2000−126565号に、金属製多孔質支持体の表面に酸化処理または窒化処理を施すことで、該表面に酸化層または窒化層を形成し、該層上に水素選択透過膜を形成する方法が提案されている。この技術は、水素選択透過膜と金属製多孔質支持体との間に、酸化層または窒化層を存在させることで、該多孔質支持体の金属成分が該膜中に拡散するのを防止し、該膜の水素選択透過性の劣化を抑制するものである。さらに、この技術では、支持体の表面を酸化処理または窒化処理して酸化層または窒化層を形成するため、該酸化層や窒化層の剥離も完全に防止される。
【0009】
しかしながら、多孔質支持体表面の酸化層または窒化層と、上述の希土類元素を含有するPd系膜との密着性は必ずしも良好とはいえず、該膜の形成時、あるいは水素透過体の使用時に該膜が剥離する場合があった。
【0010】
【発明が解決しようとする課題】
本発明は上記事情に鑑みてなされたものであり、その目的は、希土類元素を含むPd合金膜を水素選択透過膜として用い、該膜の多孔質支持体への密着性および水素透過性能の耐久性を向上させた水素透過体と、その製造方法を提供することにある。
【0011】
【課題を解決するための手段】
上記目的を達成し得た本発明の水素透過体は、ステンレス鋼製またはアルミナ製多孔質支持体の片側表面に岩塩構造型の窒化膜を有し、且つ該窒化膜表面に、希土類元素の少なくとも1種を5at%以上含有するPd合金膜を有するところに要旨が存在する。
【0012】
上記窒化膜は、4a族元素、5a族元素、Cr、Alおよび希土類元素よりなる群から選択される少なくとも1種の元素の窒化物から構成されるものであることが好ましい。
【0013】
また、上記Pd合金膜が含有する希土類元素は、Y、Ce、Sm、Gd、Tb、Dy、Ho、ErおよびYbよりなる群から選択される少なくとも1種であることが推奨される。
【0014】
この他、上記Pd合金膜は、さらにAgおよび/またはCuを含有するものであることが望ましい。
【0015】
ステンレス鋼製多孔質支持体を使用する場合、該支持体の片側表面に形成される上記窒化膜は、厚みが0.5μm以上であることが好ましく、他方、アルミナ製多孔質支持体を使用する場合では、該窒化膜の厚みは、0.05μm以上であることが推奨される。さらに、上記Pd合金膜は厚みが2〜50μmであることが望ましい。
【0016】
また、多孔質支持体の片側表面の岩塩構造型の窒化膜、および該窒化膜表面のPd合金膜を、イオンプレーティング法またはスパッタリング法により形成する上記水素透過体の製造方法も本発明に包含される。
【0017】
なお、上記窒化膜および上記Pd合金膜の形成には、アークイオンプレーティング法(AIP法)を採用することが推奨される。
【0018】
【発明の実施の形態】
上述の通り、特開2000−126565号に開示の技術では、金属製多孔質支持体表面に形成された酸化層または窒化層と、希土類元素を含有するPd系の水素選択透過膜(以下、「Pd−REM合金膜」という)とは、密着性があまり良好ではなく、成膜時や水素分離時に該膜が剥離する場合があるといった問題が生じていた。
【0019】
本発明者らは、Pd−REM合金膜を多孔質支持体上に形成させた水素透過体において、該膜と該支持体との密着性を高め、且つ水素透過性能の耐久性を向上させるべく、鋭意研究を重ねた。そして、Pd−REM合金膜が、岩塩構造型の窒化物と良好な親和性を示すことに着目し、本発明を完成させたのである。
【0020】
本発明の水素透過体は、多孔質支持体表面にPd−REM合金膜を形成させるに当たり、該支持体と該膜の間に、岩塩構造型の窒化膜を介在させるところに最大の特徴を有している。本発明において、上記窒化膜は、以下の機能を有する。
【0021】
(1)金属製の多孔質支持体を用いる場合には、既述の通り、金属成分がPd合金膜中に拡散して該膜の水素透過性能を損なう問題があるが、上記岩塩構造型の窒化膜の存在により、該金属成分のPd−REM合金膜中への拡散が防止される。また、岩塩構造型の窒化物は安定であり、Pd−REM合金とは反応しないため、この窒化物から構成される膜自体がPd−REM合金膜を侵すことはない。よって、水素透過体の水素透過性能の耐久性が向上する。
【0022】
(2)Pd−REM合金膜中に存在する希土類元素は、それ自体岩塩構造型の窒化物を形成し得るものであり、他の元素の岩塩構造型窒化物とも親和性が良好である。また、岩塩構造型の窒化物は、本発明の水素透過体に係る多孔質支持体で採用されるステンレス鋼やアルミナなどの酸化物との親和性も良好である。よって、多孔質支持体表面に岩塩構造型の窒化膜を形成させ、該窒化膜表面にPd−REM合金膜を形成させることで、Pd−REM合金膜−多孔質支持体間の密着性が向上する。
【0023】
このように、上記岩塩構造型の窒化膜を採用することで、水素透過性能に優れるPd−REM合金膜の密着性と水素透過性能の耐久性が、従来よりも遥かに優れた水素透過体の提供が可能となったのである。以下、本発明の水素透過体の構成について詳細に説明する。
【0024】
本発明の水素透過体では多孔質支持体が用いられる。このような多孔質支持体を採用することで、水素選択透過膜の厚みをできる限り小さくして粗製ガスの処理量(すなわち水素透過量)を高く維持しつつ、水素透過体の機械的強度を高めることができる。
【0025】
上記多孔質支持体としては、粗製ガスの分離処理条件(通常、700℃以下)で耐久性を有する素材から構成されるものであればよく、該素材としては、ステンレス鋼(例えば、SUS310S,SUS316,SUS410,SUS430など)や、アルミナなどの耐熱酸化物が挙げられる。
【0026】
なお、水素透過体を粗製ガス処理装置へ組み込むためには、機械加工性や溶接性に優れることが望ましい。よって、上記の素材の中でも、ステンレス鋼が推奨される。
【0027】
なお仮に、多孔質支持体の素材に、岩塩構造型の窒化物を形成し得る元素(例えばTiやCrなど)を用い、上記特開2000−126565号に開示の技術によって、該多孔質支持体表面を窒化処理して窒化層を形成する、とする。この場合、上記窒化層は岩塩構造型であるため、該窒化層上にPd−REM合金膜を形成させることにより、該膜の多孔質支持体との密着性と、水素透過性能の耐久性を確保し得ることが予想される。
【0028】
しかしながら、上記の岩塩構造型の窒化物を形成し得る元素は、溶接性や機械加工性が非常に悪いため、これらを素材として水素透過体を得ることは、実質的に不可能である。
【0029】
多孔質支持体の平均孔径は、1μm以上、好ましくは2μm以上であって、10μm以下、好ましくは6μm以下であることが推奨される。平均孔径が上記範囲を下回ると、多孔質支持体を流れる水素の圧力損失が大きくなり、水素の流量が少なくなる。他方、平均孔径が上記範囲を超えると、孔を塞ぐためにPd−REM合金膜を厚くしなければならない。このため、水素透過体の水素透過速度が低下すると共に、コストも増大する。
【0030】
また、多孔質支持体の相対密度は、水素透過体の機械的強度を確保する観点から、65%以上、好ましくは70%以上とすることが望ましい。
【0031】
多孔質支持体の形状は特に限定されず、粗製ガス処理装置の形状、構造などに応じて円筒状、平板状など任意の形状に設計することができる。なお、現在実用化されている粗製ガス処理装置に適用する上で最も一般的なのは円筒状のものである。
【0032】
多孔質支持体の製造方法にも、格別の制限はなく、従来公知の方法が採用できる。例えば、素材となるステンレス鋼粒子や、アルミナなどの酸化物の粒子に、必要に応じてバインダーを混合し、焼結する方法などが挙げられる。
【0033】
上記岩塩構造型の窒化膜としては、4a族元素(Ti、Zr、Hf)、5a族元素(V、Nb、Ta)、Cr、Alおよび希土類元素(Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu)よりなる群から選択される少なくとも1種の元素の窒化物から構成されるものが挙げられる。好ましい窒化物としては、例えば、TiN、CrN、TiAlN、CrAlN、ZrN、HfN、VN、TaNなどが挙げられるが、中でも、TiN、CrN、TiAlN、CrAlNがコストの面で特に好ましく採用される。
【0034】
岩塩構造型の窒化膜の厚みは、採用する多孔質支持体の素材によって異なる。多孔質支持体の素材としてステンレス鋼を採用する場合には、上記窒化膜はより厚くする必要がある。Pd−REM合金膜は、多孔質支持体の孔を塞ぐように厚く形成させるため、該孔の内壁までPd−REM合金膜で被覆されてしまう。よって、多孔質支持体の孔の内壁が上記窒化膜で被覆されていないと、該孔部でステンレス鋼とPd−REM合金膜とが接触して反応するため、水素透過性能が損なわれてしまう。このため、上記窒化膜は、上記孔の内壁まで該窒化膜が回り込んで被覆される程度の厚みを有する必要があるのである。具体的には、上記窒化膜の厚みは0.5μm以上、好ましくは0.8μm以上とすることが推奨される。
【0035】
他方、多孔質支持体の素材として、アルミナなどの耐熱酸化物を用いる場合は、該耐熱酸化物とPd−REM合金膜とは反応しないため、該多孔質支持体の孔内壁まで、上記窒化膜で覆う必要はない。よって、上記窒化膜の厚みは、Pd−REM合金膜の密着性が確保できる程度(すなわち、耐熱酸化物製多孔質支持体の多孔質部の表面のほとんどが、上記窒化膜で覆われている程度)であればよい。具体的には、上記窒化層の厚みは0.05μm以上、好ましくは0.1μm以上とすることが推奨される。
【0036】
ただし、多孔質支持体の素材に関わらず、上記窒化膜を厚くし過ぎると、多孔質支持体の孔を塞いでしまい、水素透過体中を水素が透過し難くなる。よって、上記窒化膜の厚みは、多孔質支持体の素材がステンレス鋼の場合、およびアルミナなどの耐熱酸化物の場合のいずれにおいても、多孔質支持体の平均孔径の1/3以下とすることが望ましい。よって、上記窒化膜の厚みの好ましい上限は、上述の、多孔質支持体で推奨される平均孔径から求められる。
【0037】
上記Pd−REM合金膜は、高度な水素透過性能を有すると共に、膜中の希土類元素の存在によって、岩塩構造型の窒化膜との密着性に優れる。Pd−REM合金膜中の希土類元素の含有量は、5at%以上、好ましくは7at%以上、さらに好ましくは8at%以上である。希土類元素の含有量を上記下限以上とすることで、上記窒化膜との良好な密着性、および高度な水素透過性能を確保することができる。
【0038】
ただし、Pd−REM合金膜中の希土類元素の含有量が多過ぎると、該希土類元素が金属間化合物を形成し、これが析出するようになる。この金属間化合物が析出すると、Pd−REM合金膜の水素透過性能が低下する。よって、Pd−REM合金膜中の希土類元素の含有量は15at%以下、好ましくは12at%以下とすることが推奨される。
【0039】
Pd−REM合金膜に含有される希土類元素は、Y、Ce、Sm、Gd、Tb、Dy、Ho、ErおよびYbよりなる群から選択される少なくとも1種であることが好ましい。これらの元素は、Pd−REM合金膜中に5at%以上含有させることが容易であるため、該膜−上記窒化膜間の良好な密着性と、高度な水素透過性能を確保することができる。他方、上記以外の希土類元素では、上記の金属間化合物が生成し易いため、Pd−REM合金膜中にあまり多く含有させることが困難であり、上記の密着性や水素透過性能を十分に確保できない場合がある。
【0040】
また、Pd−REM合金膜は、さらにAgおよび/またはCuを含有するものであることが好ましい。これらの元素の存在により、Pd−REM合金膜の水素透過性能(水素透過速度)がさらに向上する。
【0041】
Pd−REM合金膜中のAgの含有量は、好ましくは10at%以上、より好ましくは15at%以上であって、好ましくは30at%以下、より好ましくは25at%以下とすることが望ましい。水素選択透過膜中の水素の透過速度は、該膜中の水素の拡散係数と、該膜中の水素の固溶度との積で決定される。Pd−REM合金膜中のAg含有量が上記範囲内にある場合、該膜中の水素の固溶度が大きく増大するため、該膜中の水素の透過速度が向上する。
【0042】
また、Pd−REM合金膜中のCuの含有量は、好ましくは45at%以上、より好ましくは47at%以上であって、好ましくは55at%以下、より好ましくは53at%以下とすることが望ましい。Cu含有量が上記範囲内にある場合、Pd−Cu合金が面心立方構造から体心立方構造に転移する。この転移により、Pd−REM合金膜中の水素の拡散係数が増大するため、該膜中の水素の透過速度が向上する。
【0043】
Pd−REM合金膜の厚みは2μm以上50μm以下とすることが好ましい。Pd−REM合金膜の厚みをこのような範囲とすることで、高純度の水素を良好な処理速度(すなわち、水素透過速度)で確保できる。
【0044】
すなわち、分離処理後の水素の純度は、用途にもよるが、通常は99.99%以上が要求される。よって、これ以上の水素純度が確保できる程度のピンホールはPd−REM膜に存在していても構わない。しかし、Pd−REM膜の厚みが2μm未満では、通常、多孔質支持体の孔が完全に塞がらずにピンホールが多数存在するため、分離処理後の水素純度を99.99%以上とすることが困難である。Pd−REM合金膜の厚みの下限は、より好ましくは5μm、さらに好ましくは8μmとすることが望ましい。
【0045】
他方、Pd−REM合金膜の厚みが増大すると、上記ピンホールは減少するものの、水素透過速度が該膜厚に反比例して低下する。また、Pdは高価であるため、コストの面からもPd−REM合金膜を薄くすることが好ましい。よって、実用的な水素透過速度を確保と、コスト面での有利さを考慮すると、Pd−REM合金膜の厚みは50μm以下とすることが好ましい。より好ましくは40μm以下、さらに好ましくは30μm以下が推奨される。
【0046】
上記の窒化膜やPd−REM合金膜の形成法としては、従来公知の種々の方法が採用できるが、緻密且つ薄い膜を、多孔質支持体表面(上記窒化膜)や上記窒化膜表面(Pd−REM合金膜)に直接形成できる点で、イオンプレーティング法やスパッタリング法が好ましい。特にPd−REM合金膜は、該膜と同じ組成の合金固体ターゲットを用いて上記例示の方法によって形成することが、該膜の組成を均一にし得る点で推奨される。また、上記窒化膜の形成においても、例えばTiAlNなどの2種以上の元素と窒素から構成される窒化物を素材とする場合は、特に上記例示の方法を採用することが好ましい。
【0047】
さらに上記例示の膜形成法の中でも、より緻密な膜形成の観点から、AIP法が特に推奨される。
【0048】
また、Pd−REM合金膜形成後、研磨を施すことにより膜中のピンホールが埋められ、一層緻密な膜とすることが可能となる。
【0049】
【実施例】
以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は本発明を制限するものではなく、前・後記の趣旨を逸脱しない範囲で変更実施をすることは全て本発明の技術的範囲に包含される。
【0050】
実験1
図1に示す円筒状の多孔質支持体1を用いた。この多孔質支持体1は、多孔質部2がSUS410製であり、この両端にSUS410製のキャップ3をレーザー溶接したものである。なお、キャップ3のうちの一方は、SUS410製のパイプ4(1/4インチφ)をレーザー溶接したものを用いた。
【0051】
多孔質部2の平均孔径は8μmである。なお、多孔質部の平均孔径は、次の方法で求めた。光学顕微鏡を用い、倍率1000倍で多孔質支持体の多孔質部を4箇所写真撮影した。得られた写真の孔の部分を黒く塗りつぶし、画像処理によって孔の面積を測定後、孔の個数で該孔の面積を割って1個当たりの孔の面積を算出し、孔を円形と仮定して平均孔径を求めた。また、多孔質部2は、外径22mm、厚み2mm、長さ70mmである。
【0052】
このステンレス鋼製多孔質支持体を、図2に示すイオンプレーティング装置内にセットした。イオンプレーティング装置の真空チャンバー5内の下部に有る3個の坩堝に、夫々Ti、Pd、Yを入れた。真空チャンバー5内を1×10-3Paまで減圧した後、窒素ガスを導入して、該真空チャンバー5内の圧力を1.3Paとした。この後、ステンレス鋼製多孔質支持体に13.56MHzの高周波(RF)を500Wで印加し、窒素プラズマを形成した。さらに、Tiの入った坩堝に電子銃6で電子線を照射し、Tiを溶解蒸発させて、ステンレス鋼製多孔質支持体表面にTiN膜を形成した(膜厚1μm)。
【0053】
その後、RF電源を切り、真空チャンバー5内への窒素の導入を止め、再び真空チャンバー5内を1×10-3Paまで減圧した。次に真空チャンバー5内にアルゴンガスを導入して、該チャンバー内の圧力を1.3Paとした。この後、ステンレス鋼製多孔質支持体に13.56MHzの高周波(RF)を500Wで印加し、アルゴンプラズマを形成した。さらに、PdおよびYの入った各坩堝に電子銃6で電子線を交互に照射してPdおよびYを溶解蒸発させ、上記TiN膜表面にPd−Y合金膜を形成して(膜厚20μm)、水素透過体(1)を得た。なお、各坩堝への電子線の照射時間を調整して、Pd−Y合金膜中のY含有量を10at%とした。
【0054】
真空チャンバー5から取り出した水素透過体(1)では、Pd−Y合金膜の剥離は認められなかった。
【0055】
得られた水素透過体(1)について、下記のピンホール評価、および水素透過耐久性試験を行った。
【0056】
[ピンホール評価]
上記水素透過体(1)を、図3に示す水素透過試験装置の加熱炉8内にセットし、該水素透過体(1)の外側および内側をロータリーポンプで減圧した後、加熱ヒーター10によって、加熱炉9内を600℃に加熱した。次に、水素透過体(1)の外側および内側にヘリウムガスを流し、外側圧力が2.026×105Pa、内側圧力が1.013×105Pa(大気圧)とした。その後、水素透過体(1)の内側から加熱炉9外へ流れ出すヘリウムガスの流量を測定し、該水素透過体(1)のPd合金膜中のピンホールの有無を確認した。
【0057】
[水素透過耐久性試験]
上記ピンホール評価の後、真空ポンプによって加熱炉9内のヘリウムガスを排気し、その後水素透過体(1)の外側に水素ガスを流して、圧力を2.026×105Paとした。このとき、水素透過体(1)の内側にはPd合金膜を通過した水素が流入して大気圧以上となるため、水素透過体(1)の内側の圧力を大気開放することによって1.013×105Paとした。他方、水素透過体(1)の外側には圧力が2.026×105Paとなるように水素を流し続けた。このようにして水素透過体(1)の外側と内側の水素の圧力に差を設けた水素透過試験を1000時間継続し、透過水素流量の経時変化を測定することによって、水素透過体(1)の水素透過性能の耐久性を評価した。
【0058】
上記ピンホール評価において、水素透過体(1)は、ヘリウムガス流量が0であり、Pd合金膜中にピンホールの無いことが確認された。また、水素透過体(1)の水素透過量は1L/minであり、1000時間経過後もこの値に変化は見られなかった。さらに上記水素透過耐久性試験後においても、Pd合金膜の剥離は認められず、良好な密着性を有していた。
【0059】
実験2
実験1と同じステンレス鋼製多孔質支持体に、大気炉中で、650℃、10分の条件で酸化処理を行い、該支持体表面に酸化層を形成した(層厚約0.3μm)。その後、図2に示すイオンプレーティング装置内にセットし、上記窒化膜を形成しなかった他は、実験1と同様にして上記ステンレス鋼製多孔質支持体の酸化層表面に、Y:10at%を含有するPd合金膜を形成して(膜厚20μm)、水素透過体(2)を作製した。しかし、Pd合金膜形成後、真空チャンバー5から水素透過体(2)を取り出したところ、Pd合金膜に剥離が生じていた。
【0060】
実験3
実験1と同じステンレス鋼製多孔質支持体に、窒素雰囲気中で1000℃の条件で熱処理を施し、該支持体表面に窒化層を形成した(層厚1μm)。その後、実験2と同様にして上記ステンレス鋼製多孔質支持体の窒化層表面に、Y:10at%を含有するPd合金膜を形成して(膜厚20μm)、水素透過体(3)を作製した。しかし、Pd合金膜形成後、真空チャンバー5から水素透過体(3)を取り出したところ、Pd合金膜に剥離が生じていた。
【0061】
実験4
図1に示す多孔質部2がアルミナ製の多孔質支持体を用いた。多孔質部2の両端のキャップ3のうち、一方はアルミナ製である。もう一方のキャップ3はSUS410製で、同じくSUS410製のパイプ4を溶接によって取り付けたものである。これらのキャップ3は、いずれもAg−Cuろう付けによって多孔質部2に接合した。なお、このアルミナ製多孔質支持体の形状・サイズは、実験1で用いたステンレス鋼製多孔質支持体と同じである。また、実験1と同様にして測定したアルミナ製多孔質部2の平均孔径は、1.5μmである。
【0062】
上記アルミナ製多孔質支持体の表面に、実験2と同様にしてY:10at%を含有するPd合金膜を形成して(膜厚20μm)、水素透過体(4)を作製した。しかし、Pd合金膜形成後、真空チャンバー5から水素透過体(4)を取り出したところ、Pd合金膜に剥離が生じていた。
【0063】
実験5
実験1で用いたものと同一形状・サイズのステンレス鋼製多孔質支持体、および実験4で用いたものと同じアルミナ製多孔質支持体の表面に、以下のようにして岩塩構造型の窒化膜を形成し、次いでPd−REM合金膜を形成した。なお、本実験で用いた多孔質支持体の多孔質部について、実験1と同様にして測定した平均孔径は、いずれも3μmである。また、ステンレス鋼製多孔質支持体の素材には、SUS310、SUS316、SUS410、SUS430のいずれかを採用した。
【0064】
図4に示す2つの蒸発源を有するスパッタリング装置を用いた。直径6インチのTiターゲット11およびPd合金ターゲット12を取り付けたスパッタリング装置内の回転テーブル13上に、上記の多孔質支持体をセットし、真空チャンバー5内が1×10-3Pa以下まで真空排気した。次に、真空チャンバー5内に、窒素ガスとアルゴンガスを1:1の流量比で導入し、該チャンバー5内の圧力を1.3Paとした。その後、多孔質支持体に100Vの負のバイアス電圧を印加し、Tiターゲット11をDCパワー1kWで放電させ、該Tiターゲット11をスパッタさせて、多孔質支持体表面にTiN膜を形成した。
【0065】
その後、Tiターゲット11の放電を止め、真空チャンバー5内を真空排気後、アルゴンガスを導入して該チャンバー5内の圧力を1.3Paとした。次に、Pd合金ターゲット12をDCパワー1kWで放電させ、該Pd合金ターゲット12をスパッタさせて、上記TiN膜表面にPd合金膜を形成して、水素透過体(5)〜(18)を得た。
【0066】
得られた水素透過体(5)〜(18)について、実験1と同様のピンホール評価および水素透過耐久性試験を行った。また、下記基準に従い、Pd合金膜の密着性を目視評価した。
○:Pd合金膜の剥離が認められない。
△:Pd合金膜の剥離が若干認められる。
×:Pd合金膜の剥離が認められる。
水素透過体(5)〜(18)の構成と上記の評価・試験結果を、表1および表2に示す。
【0067】
【表1】
Figure 0004064662
【0068】
【表2】
Figure 0004064662
【0069】
なお、表1において、例えば、水素透過体(5)のPd合金組成「Pd−10at%Ho」とは、「Hoを10at%含有するPd合金」であることを意味する。また、「多孔質支持体」の欄は、該支持体の多孔質部の素材を示す(以下同じ)。
【0070】
表1および表2から分かるように、水素透過体(5)〜(12)は、Pd合金膜の密着性、ピンホールフリー性、水素透過性とその耐久性のいずれもが良好である。
【0071】
これに対し、水素透過体(13)はTiN膜を形成しなかったため、Pd合金膜が剥離した。このため、ピンホール評価や水素透過耐久性試験は行わなかった。
【0072】
水素透過体(14)では、Pd合金膜形成直後には、該膜の剥離は認められなかった。また、水素透過耐久性試験の結果も良好で、水素透過量の低下は認められなかった。しかし、水素透過耐久性試験の終了後に直径1mm程度のPd合金膜のふくれが認められ、該膜の若干の剥離が観察された。
【0073】
水素透過体(15)および(16)は、Pd合金膜の密着性およびピンホールフリー性は良好であった。しかし、TiN膜を厚くしたため、多孔質支持体の孔がTiNで塞がれてしまい、水素透過量が極端に低下した。
【0074】
水素透過体(17)は、TiN膜を薄くしたため、ステンレス鋼製多孔質支持体の孔内壁へのTiNの被覆が不十分であり、ステンレス鋼が露出した多孔質支持体の孔内壁にPd合金膜が形成されていた。このため、水素透過耐久性試験中にステンレス鋼成分とPd合金とが反応し、該試験開始後1000時間での水素透過量が、試験開始直後の約50%にまで低下した。
【0075】
水素透過体(18)は、TiN膜を形成していないため、水素透過耐久性試験開始後5時間で、水素透過量が試験開始直後の約50%にまで低下し、さらに試験開始後100時間では、ほぼ水素が透過しなくなった(表2中、「*」印)。
【0076】
実験6
実験5で用いたものと同じステンレス鋼製多孔質支持体を、図5に示す2つの蒸発源を有するAIP装置の真空チャンバー5内にセットした。AIP装置の片方の蒸発源には岩塩構造型の窒化膜を形成するための金属または合金ターゲット14(以下、「窒化膜形成用ターゲット」という)を、他方の蒸発源にはPd合金ターゲット12を取り付けた。真空チャンバー5内の圧力を1×10-3Paにまで減圧した。その後、真空チャンバー5内に窒素ガスを導入し、該チャンバー5内の圧力を2.7Paとした。次に多孔質支持体に50Vの負のバイアス電圧を印加し、窒化膜形成用ターゲット14にアーク電流100Aを流してアーク放電を行うことにより、多孔質支持体表面に岩塩構造型の窒化膜を形成した。
【0077】
その後放電を止め、真空チャンバー5内の圧力を1×10-3Paにまで減圧し、さらにアルゴンガスを導入して該チャンバー5内の圧力を2.7Paとした。次に多孔質支持体に50Vの負のバイアス電圧を印加し、Pd合金ターゲット12にアーク電流80Aを流してアーク放電を行うことにより、岩塩構造型の窒化膜表面にPd合金膜を形成し、水素透過体(19)〜(30)を得た。
【0078】
表3に使用したターゲット、窒化膜の構成化合物、窒化膜およびPd合金膜の厚み、Pd合金膜の組成を示す。なお、Pd合金膜の組成は、ICP発光分析法によって測定した値である。表3から、Pd合金膜の組成は、使用したターゲットの組成とほぼ同じになることが分かる。
【0079】
【表3】
Figure 0004064662
【0080】
また、得られた水素透過体(19)〜(30)について、実験1と同様のピンホール評価および水素透過耐久性試験、並びに実験5と同様のPd合金膜密着性評価を行った。結果を表4に示す。
【0081】
【表4】
Figure 0004064662
【0082】
表4から分かるように、水素透過体(19)〜(26)は、Pd合金膜の密着性、ピンホールフリー性、水素透過性とその耐久性のいずれもが良好である。
【0083】
これに対し、水素透過体(27)はPd合金膜の厚みが薄く、ピンホール評価において、多くのヘリウムガスリークが測定された。水素透過量に対するヘリウムガスリーク量の割合から水素の純度を概算すると99.90%となり、通常要求されるような高純度(99.99%以上)の水素を確保することができない。
【0084】
水素透過体(28)はTiN膜の厚みが薄く、水素透過耐久性試験の際に水素透過性能が劣化し、測定開始後600時間で水素透過量が約50%に低下した。
【0085】
水素透過体(29)および(30)は、Pd合金膜中の希土類元素量が少なく、該膜の形成直後に剥離が生じた。
【0086】
【発明の効果】
本発明の水素透過体は、以上の通り、ステンレス鋼製またはアルミナ製多孔質支持体表面に岩塩構造型の窒化膜を形成し、該窒化膜表面にPd−REM合金膜を形成するものであり、該窒化膜とPd−REM合金膜の良好な親和性を利用して、Pd−REM合金膜の密着性を高めたものである。さらに、ステンレス鋼製多孔質支持体を用いた場合には、該ステンレス鋼成分とPd−REM合金膜との反応を上記窒化膜が防止するため、Pd−REM合金膜の水素透過性の劣化が抑制される。これにより、水素透過性の耐久性も向上する。
【0087】
このように、本発明の構成を採用することで、優れた水素透過性能を有するPd−REM合金膜を、従来よりも有効な形で利用し得る水素透過体の提供が可能となった。
【図面の簡単な説明】
【図1】 本発明の実施例で用いた円筒状多孔質支持体の側面模式図である。
【図2】 本発明の実施例で用いたイオンプレーティング装置の概略図である。
【図3】 本発明の実施例で用いた水素透過試験装置の概略図である。
【図4】 本発明の実施例で用いたスパッタリング装置の概略図である。
【図5】 本発明の実施例で用いたアークイオンプレーティング装置の概略図である。
【符号の説明】
1 多孔質支持体
2 多孔質部
3 キャップ
4 パイプ
5 真空チャンバー
6 電子銃
7 RF電源
8 加熱炉
9 スウェージロック
10 加熱ヒーター
11 Tiターゲット
12 Pd合金ターゲット
13 回転テーブル
14 岩塩構造型窒化膜形成用元素ターゲット
15 バイアス電源

Claims (9)

  1. ステンレス鋼製またはアルミナ製多孔質支持体の片側表面に岩塩構造型の窒化膜を有し、且つ
    該窒化膜表面に、希土類元素の少なくとも1種を5at%以上含有するPd合金膜を有することを特徴とする水素透過体。
  2. 上記窒化膜は、4a族元素、5a族元素、Cr、Alおよび希土類元素よりなる群から選択される少なくとも1種の元素の窒化物から構成されるものである請求項1に記載の水素透過体。
  3. 上記Pd合金膜が含有する希土類元素は、Y、Ce、Sm、Gd、Tb、Dy、Ho、ErおよびYbよりなる群から選択される少なくとも1種である請求項1または2に記載の水素透過体。
  4. 上記Pd合金膜が、さらにAgおよび/またはCuを含有するものである請求項1〜3のいずれかに記載の水素透過体。
  5. ステンレス鋼製多孔質支持体の片側表面に形成される上記窒化膜は、厚みが0.5μm以上である請求項1〜4のいずれかに記載の水素透過体。
  6. アルミナ製多孔質支持体の片側表面に形成される上記窒化膜は、厚みが0.05μm以上である請求項1〜4のいずれかに記載の水素透過体。
  7. 上記Pd合金膜は、厚みが2〜50μmである請求項1〜6のいずれかに記載の水素透過体。
  8. 多孔質支持体の片側表面の岩塩構造型の窒化膜、および該窒化膜表面のPd合金膜を、イオンプレーティング法またはスパッタリング法により形成することを特徴とする請求項1〜7のいずれかに記載の水素透過体の製造方法。
  9. 上記窒化膜および上記Pd合金膜を、アークイオンプレーティング法により形成する請求項8に記載の製造方法。
JP2001366198A 2001-11-30 2001-11-30 水素透過体およびその製造方法 Expired - Fee Related JP4064662B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001366198A JP4064662B2 (ja) 2001-11-30 2001-11-30 水素透過体およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001366198A JP4064662B2 (ja) 2001-11-30 2001-11-30 水素透過体およびその製造方法

Publications (2)

Publication Number Publication Date
JP2003164740A JP2003164740A (ja) 2003-06-10
JP4064662B2 true JP4064662B2 (ja) 2008-03-19

Family

ID=19176132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001366198A Expired - Fee Related JP4064662B2 (ja) 2001-11-30 2001-11-30 水素透過体およびその製造方法

Country Status (1)

Country Link
JP (1) JP4064662B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005254161A (ja) * 2004-03-12 2005-09-22 Shinichi Nakao 水素分離膜およびその製造方法
JP4777748B2 (ja) * 2004-12-01 2011-09-21 日本碍子株式会社 水素分離体及びその製造方法
US7923105B2 (en) 2004-12-01 2011-04-12 Ngk Insulators, Ltd. Hydrogen separator and process for production thereof
JP2007253066A (ja) * 2006-03-23 2007-10-04 Tokyo Gas Co Ltd 水素透過膜モジュール及びその製造方法

Also Published As

Publication number Publication date
JP2003164740A (ja) 2003-06-10

Similar Documents

Publication Publication Date Title
US6649559B2 (en) Supported metal membrane, a process for its preparation and use
US20090000480A1 (en) Composite Palladium Membrane Having Long-Term Stability for Hydrogen Separation
WO2002045832A1 (fr) Structure permeable a l'hydrogene
JP2003112020A (ja) 水素透過膜およびその製造方法
JP4064774B2 (ja) 水素透過体とその製造方法
JP2007000858A (ja) 水素透過部材およびその製造方法
ES2236779T3 (es) Membrana electrolitica solida con constituyente que mejora las propiedades mecanicas.
JP4064662B2 (ja) 水素透過体およびその製造方法
US6478853B1 (en) Amorphous Ni alloy membrane for separation/dissociation of hydrogen, preparing method and activating method thereof
JP3645088B2 (ja) 水素透過膜及びその作製方法
JPH11286785A (ja) 水素透過膜及びその作製方法
JP4347129B2 (ja) 水素製造用反応筒及び反応板
JP3746236B2 (ja) イオン伝導性セラミック膜及び表面処理
JP2006000722A (ja) 水素透過合金膜及びその製造方法
JP3174668B2 (ja) 水素分離膜
JP2004174373A (ja) 水素透過合金膜、水素透過用部材及びその製造方法
JP2005218963A (ja) 水素透過用部材およびその製造方法
US20220135401A1 (en) Core-shell composite and method for producing same
JP2001170460A (ja) 水素分離材料及びその製造方法
JP2008043907A (ja) 水素透過複合膜およびその製造方法
JP2011116603A (ja) 円筒形水素分離型改質器における水素分離膜用保護膜及びその形成方法
JP2001137673A (ja) 水素分離複合体
JP5138876B2 (ja) 酸化物プロトン導電性膜及びそれを含む水素透過構造体
JP2005197062A (ja) プロトン導電性材料、プロトン導電性構造体、燃料電池およびプロトン導電性構造体の製造方法
JP2006272167A (ja) 水素透過膜

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040809

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees