JP2011116603A - 円筒形水素分離型改質器における水素分離膜用保護膜及びその形成方法 - Google Patents

円筒形水素分離型改質器における水素分離膜用保護膜及びその形成方法 Download PDF

Info

Publication number
JP2011116603A
JP2011116603A JP2009277080A JP2009277080A JP2011116603A JP 2011116603 A JP2011116603 A JP 2011116603A JP 2009277080 A JP2009277080 A JP 2009277080A JP 2009277080 A JP2009277080 A JP 2009277080A JP 2011116603 A JP2011116603 A JP 2011116603A
Authority
JP
Japan
Prior art keywords
hydrogen separation
membrane
separation membrane
cylindrical
porous protective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009277080A
Other languages
English (en)
Inventor
Hideto Kurokawa
英人 黒川
Takumi Nishii
匠 西井
Yoshinori Shirasaki
義則 白崎
Isamu Yasuda
勇 安田
Toru Shimamori
融 島森
Yasuhiro Takagi
保宏 高木
Hidekazu Shigaki
秀和 志垣
Hideaki Hikosaka
英昭 彦坂
Hiroyuki Tanaka
裕之 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd, Tokyo Gas Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2009277080A priority Critical patent/JP2011116603A/ja
Publication of JP2011116603A publication Critical patent/JP2011116603A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

【課題】水素分離型改質器における水素分離膜への飛来微粒子による問題を解決する。
【解決手段】それ自体で改質触媒としての役割と水素分離膜を支持する役割を同時に果たす円筒状改質触媒兼支持体の外周面に金属膜または合金膜からなる水素分離膜を配置してなる水素分離型改質器において、前記水素分離膜の表面に対して、外部からFe、Cr、NiおよびPの1種または2種以上を含む微粒子が飛来し付着して起こる前記水素分離膜の劣化及び剥離を防止するための金属酸化物からなる多孔質保護膜を配置してなることを特徴とする円筒形水素分離型改質器における水素分離膜用多孔質保護膜及びその製造方法。
【選択図】図1

Description

本発明は、天然ガスや都市ガスなどの炭化水素ガスの水蒸気改質により改質ガスを生成し、且つ、生成改質ガスを水素分離膜により精製して高純度の水素を製造する円筒形水素分離型改質器における水素分離膜用保護膜及びその形成方法に関する。
水素製造に使用される水素分離膜モジュールは、ガスを透過する金属またはセラミックス、もしくはその混合体からなる改質触媒兼支持体と、水素分離膜の支持体への拡散を防止するための拡散バリア層と、水素分離膜とから構成されている。
従来、支持体成分の拡散や被処理ガスに含まれる金属微粉末などの外因微粒子などによる水素分離膜の耐久性の低下を防ぐために、多孔性金属焼結体の外表面に配された水素透過膜を覆って金属繊維などを素材とした外装多孔体を形成する方法(特許文献1)や、多孔質基体の表面に配された水素透過性金属からなる水素分離層の表面に緻密なプロトン伝導性及び電子伝導性の保護層を形成する方法(特許文献2)や、水素分離膜の上にシリカやゼオライトからなるセラミックス多孔質膜を形成する方法(特許文献3、4)などが知られている。
特開2007−90295号公報 特開2006−289345号公報 特開2004−271525号公報 特開平11−57433号公報
特許文献1のように、水素分離膜の保護のために、筒状の外装多孔体を用いた場合、水素分離膜に対して非接触であっても酸化皮膜に起因するFeやCrなどを含む微粒子の飛来により、水素分離膜が劣化する可能性があり、完全とは言えない。また、特許文献2のように、レーザーアブーション法を用いる場合、保護膜形成プロセスのコストを増加させ、大量生産には不向きである。
特許文献3は、水素センサに係るものではあるが、Pd膜への水素以外の気体汚染物の浸透を防ぐためPd膜の面にゼオライト膜が配置されている。ゼオライト膜は、操作温度が室温の場合には高い浸透防止性能を示すが、温度が高くなるにつれて浸透防止性能が低下するという欠点を有しており、水素センサの保護膜としては機能するものの、水素分離膜が使用される500〜600℃においては適用できない。
また、特許文献4のように、セラミックス膜であるシリカ系保護膜は数回のディップコーティング後、450℃、1時間という低い焼結温度で多孔質薄膜を形成可能であり、大量生産に向いており、プロセスとしては優れている。しかし、前駆物質としてポリシラザンを用いる必要があり、0.2μm厚さの保護膜を形成するために、ディップコーティングなどのプロセス過程における原材料ロスを50%とした場合、市販ベースで面積1m3あたり約5万円の原材料費がかかる。
天然ガスを燃料とする水素製造装置である水素分離型改質器において、Pd、Ag、Nb、Cu、Ti、Vを含む合金を用いた水素分離膜に外部からFe、Cr、Ni、Pなどを含む微粒子が飛来し付着して起こる膜の劣化及び剥離が水素分離膜3の劣化原因の一つであることが判明した。それら微粒子は、支持基体に対して水素分離膜を溶接により接合する際などの過程で不可避的に付着するものと推認される。
本発明は、そのような飛来微粒子による問題を解決するためになされたものであり、円筒形水素分離型改質器における、飛来微粒子による水素分離膜劣化現象を防ぐ水素分離膜用多孔質保護膜、および、円筒形水素分離型改質器の水素分離膜への表面保護膜形成法を提供することを目的とするものである。
本発明(1)は、それ自体で改質触媒としての役割と水素分離膜を支持する役割を同時に果たす円筒状改質触媒兼支持体の外周面に金属膜または合金膜からなる水素分離膜を配置してなる水素分離型改質器において、前記水素分離膜の表面に対して、外部からFe、Cr、NiおよびPの1種または2種以上を含む微粒子が飛来し付着して起こる前記水素分離膜の劣化及び剥離を防止するための金属酸化物からなる多孔質保護膜を配置してなることを特徴とする円筒形水素分離型改質器における水素分離膜用多孔質保護膜である。
本発明(2)は、それ自体で改質触媒としての役割と水素分離膜を支持する役割を同時に果たす円筒状改質触媒兼支持体の内周面に金属膜または合金膜からなる水素分離膜を配置してなる水素分離型改質器において、前記水素分離膜の表面に対して、外部からFe、Cr、NiおよびPの1種または2種以上を含む微粒子が飛来し付着して起こる前記水素分離膜の劣化及び剥離を防止するための金属酸化物からなる多孔質保護膜を配置してなることを特徴とする円筒形水素分離型改質器における水素分離膜用多孔質保護膜である。
本発明(3)は、それ自体で改質触媒としての役割と水素分離膜を支持する役割を同時に果たす円筒状改質触媒兼支持体の外周面に金属膜または合金膜からなる水素分離膜を配置してなる水素分離型改質器における水素分離膜用多孔質保護膜の形成方法であって、前記水素分離膜の表面に対して、外部からFe、Cr、Ni、Pを含む微粒子が飛来し付着して起こる前記水素分離膜の劣化及び剥離を防止するための金属酸化物からなる多孔質保護膜を配置することを特徴とする円筒形水素分離型改質器における水素分離膜用多孔質保護膜の形成方法である。
本発明(4)は、それ自体で改質触媒としての役割と水素分離膜を支持する役割を同時に果たす円筒状改質触媒兼支持体の内周面に金属膜または合金膜からなる水素分離膜を配置してなる水素分離型改質器における水素分離膜用多孔質保護膜の形成方法であって、前記水素分離膜の表面に対して、外部からFe、Cr、Ni、Pを含む微粒子が飛来し付着して起こる前記水素分離膜の劣化及び剥離を防止するための金属酸化物からなる多孔質保護膜を配置することを特徴とする円筒形水素分離型改質器における水素分離膜用多孔質保護膜の形成方法である。
本発明(1)、(3)は、円筒状改質触媒兼支持体の外周面に金属膜または合金膜からなる水素分離膜を配置してなる水素分離型改質器を対象とするのに対して、本発明(2)、(4)は、円筒状改質触媒兼支持体の内周面に金属膜または合金膜からなる水素分離膜を配置してなる水素分離型改質器を対象とする点で異なる。
本発明によれば、円筒形水素分離型改質器における水素分離膜の表面に保護膜を配置することにより、前記水素分離膜の表面に対して、外部からFe、Cr、Ni、Pを含む微粒子が飛来し付着して起こる前記水素分離膜の劣化及び剥離を防止することができる。
図1は、円筒形水素分離型改質器において、水素分離膜の外周面に本発明に係る多孔質保護膜を配置した態様を説明する図である。 図2は、円筒状改質触媒兼支持体の外側に拡散バリア層、拡散バリア層の外側に水素分離膜を配した円筒形水素分離型改質器の構成態様を説明する図である。
本発明で対象とする円筒形水素分離型改質器は、それ自体で改質触媒としての役割と水素分離膜を支持する役割を同時に果たす円筒状改質触媒兼支持体の外周面または内周面に水素分離膜を配置してなる円筒形水素分離型改質器である。この円筒形水素分離型改質器は、水素分離膜を円筒状の改質触媒兼支持体の外周面に配置して、すなわち円筒状の改質触媒兼支持体の外周面または内周面に水素分離膜を支持することで構成される。
このうち、改質触媒兼支持体は、円筒状で、改質触媒としての役割と水素分離膜を支持する役割を同時に果たす部材であり、且つ、多孔質である必要がある。多孔質とは、改質触媒兼支持体が原料ガス、すなわち炭化水素と水蒸気の混合ガス流の流通側から水素分離膜側へガスを流通させ、透過する連通孔を有するとの意味である。
円筒状の改質触媒兼支持体の外周または内周に金属膜を配することにより水素分離型改質器を構成する。改質触媒兼支持体の構成材料としては、それ自体改質触媒としての機能を有し且つ水素分離膜を支持する機能を有する多孔質材料が用いられる。
多孔質材料の例としては、ニッケルとイットリア安定化ジルコニアの混合物の焼結体(=Ni−YSZサーメット)、その他、それらの機能を有する多孔質セラミックス、多孔質サーメット、改質触媒坦持の金属メッシュなどが挙げられる。これらの材料は、多孔質で、ガス透過構造を有することが必須である。
Ni−YSZサーメットの場合、例えばNi粒子、NiO粒子及びYSZ(=イットリア安定化ジルコニア)粒子を混合し、混合物を押し出し成形、加圧成形等により成形し、焼成することにより作製される。こうして得られる焼結体中のNi成分の含有量は10〜99mass%の範囲で選定される。
水素分離膜は水素を選択的に透過する部材であり、水素を含む混合ガスから水素を選択的に透過させて水素を分離する役割をする。水素分離膜の構成材料としてはPd、Ag、Nb、Cu、TiまたはVからなる金属膜やそれら金属の2種以上を合金化した膜が用いられる。例えば、Pd合金膜の場合、Pdと合金化する金属としてはAu、Ag、Cu、Pt、Rh、Ru、Ir、Ce、Sm、Tb、Dy、Ho、Er、Yb、Y、Gdが挙げられ、Pdに対してそれら金属の二種以上を組み合わせてもよい。
それらの金属膜や合金膜は、拡散バリア層を介して、改質触媒兼支持体に対して支持される。金属膜や合金膜の作製にはめっき法や蒸着法その他適宜の方法を適用することができる。以下、金属膜及び合金膜を含めて適宜金属膜と称している。
拡散バリア層は、改質触媒兼支持体を構成する成分であるNiと例えばPd−Ag合金からなる水素分離膜との間にそれら成分間の拡散が起こり、その拡散に起因して水素分離膜が劣化するのを防ぐための層である。拡散バリア層の材料としてはイットリア安定化ジルコニア(YSZ)などが使用される。
改質触媒兼支持体は、改質触媒としての役割と水素分離膜を支持する役割を同時に果たすので、従来のメンブレンリアクタでは必須とする改質触媒層を支持体に対して別途配置する必要がない。このため、本発明で対象とする円筒形水素分離型改質器は、従来の水素製造装置に比べて格段に小型化できる。特に、改質触媒兼支持体は、それ自体改質触媒としての役割を果たし、改質触媒層を別途必要としないので、従来の水素製造装置では生じる、改質触媒との接触による水素分離膜の破損の問題を生じない。
炭化水素ガスを改質触媒兼支持体で水蒸気改質して改質ガスを生成し、生成改質ガスを改質触媒兼支持体に支持した水素分離膜により精製し、高純度の水素を製造する。
〈円筒状改質触媒兼支持体の外周面に水素分離膜である金属膜を配する構造〉
図2は、円筒状改質触媒兼支持体1の外側に拡散バリア層2、拡散バリア層2の外側に水素分離膜である金属膜3を配した円筒形水素分離型改質器の構成態様例を説明する図である。図2(a)は円筒状改質触媒兼支持体1の斜視図で、内部構造が分かるように透視的に示し、図2(b)は円筒状改質触媒兼支持体1のうちの一部の断面を切り出し、拡大して示した図である。
図2のとおり、円筒状改質触媒兼支持体1の外周面に拡散バリア層2を配し、その拡散バリア層2の外周面に水素分離膜3を配して構成される。符号5は外筒である。外筒5は、その径が水素分離膜3の外径より大きく、水素分離膜3の外周と外筒5の内周との間が精製水素取り出し用の空間、流路となる。図2では円筒形水素分離型改質器を横置きに示しているが、縦置きにしても使用される。
円筒形水素分離型改質器の使用時には、図2(a)のとおり、原料ガスである天然ガス等の炭化水素と水蒸気の混合ガスは、円筒状改質触媒兼支持体1の内側にその一方の端部から導入される。導入原料ガスは、その他端に向けて流れながら、改質触媒兼支持体の連通孔を通過しながら改質され、水素を生成する。水素を含む混合ガスのうちの水素は、水素分離膜3により選択的に透過、精製され、水素分離膜3と外筒5との間の流路を経て取り出される。水素分離膜3を透過しない成分は円筒状改質触媒兼支持体1の他端からオフガスとして取り出される。
〈円筒状改質触媒兼支持体の内周面に水素分離膜である金属膜を配する構造〉
円筒状改質触媒兼支持体1の内周面に水素分離膜である金属膜3を配する構造では、円筒状改質触媒兼支持体1の内周面に拡散バリア層2を配し、その拡散バリア層2の内周面に水素分離膜である金属膜3を配して構成される。横置きのほか、縦置きにしても使用される点については図2に示す態様の場合と同様である。
円筒状改質触媒兼支持体1の内周面に水素分離膜である金属膜3を配する構造では、原料ガスは、円筒状改質触媒兼支持体1の外周と外筒5との間の一方の端部から導入され、その他端に向けて流れながら、改質触媒兼支持体1の連通孔を通過しながら改質され、水素を生成する。水素を含む混合ガスのうちの水素は、水素分離膜3により選択的に透過、精製され、水素分離膜3内の流路を経て取り出される。水素分離膜3を透過しない成分は円筒状改質触媒兼支持体1の外周と外筒5との間の流路を他方の端部へ向けて流れオフガスとして取り出される。
図1は、図2(b)に対応し、円筒形水素分離型改質器において、水素分離膜3の外周面に本発明に係る多孔質保護膜4を配置した態様を説明する図である。図1のとおり、水素分離膜3の外周面に多孔質保護膜4を配置する。多孔質保護膜4は、各金属酸化物粒子がほぼ独立し、隣接する各粒子間で上下方向に曲折して連通する孔が形成されている。
円筒形水素分離型改質器において、水素分離膜3の表面に、当該円筒形水素分離型改質器の運転条件である400〜600℃の温度領域において、(a)水素分離膜の構成材料である金属や合金との拡散が起らず、(b)水素透過量をほとんど減少させることのないところの、(c)空孔率20%以上の金属酸化物を含む、(d)厚さ1〜100μmの層を形成する。この多孔質保護膜によって、飛来微粒子の水素分離膜への付着による劣化現象を防ぐことができる。
〈多孔質保護膜の構成材料〉
本発明において、多孔質保護膜の構成材料としては、CeO2、Gd23、La23、Y23、BaO、SrO、Cr23、MgO、Mn23、ZrO2,Rb2O,Cs2Oなどの金属酸化物が使用できる。
〈多孔質保護膜の形成〉
水素分離膜の表面への多孔質保護膜の形成は、直径が数十〜数百nmの金属酸化物微粉末を水素分離膜表面に塗布した後、低温焼結によって、多孔質保護膜を水素分離膜の外周面に形成する。直径が数十〜数百nmの金属酸化物粉末は、好ましくは硝酸塩水和物とグリシンを用いたGNP(Glycine nitrate process)微細粉末形成法(非特許文献1)によって生成することができる。
L. A. Chick, L. R. Pederson, G. D.Maupin, J. L. Bates, L. E. Thomas and G. J. Exarhos, Materials Letters, 10, 1990, p. 6-12
〈GNP微細粉末形成法について〉
GNP微細粉末形成法について、その概略を説明すると以下のとおりである。
まず、作製しようとする金属酸化物の構成元素(例えばセリウム)を含む硝酸塩水和物を0.0001〜0.001mol/mL(モル/ミリリットル)の濃度で水に溶解する。この溶液に、硝酸塩水和物の硝酸塩基のモル(mol)数に対して約半分のmol数のグリシンを加え、十分に溶解した溶液を準備する。この溶液を少量ずつ200℃〜300℃に加熱したステンレス製の容器に注ぎ反応させる。
おおよそ180℃程度でグリシンと硝酸塩水和物が点火、反応し、微細な粉末が舞い上がる。そこで、200メッシュ以上の目の細かいステンレス製の網で容器を覆い、その粉末の飛散を防止する。全ての溶液を容器に投入後、容器を冷却し、内部の微粉末を収集する。得られる金属酸化物微粉末の粒径は通常50nm程度もしくはそれ以下で、最大でも100nmである。
多孔質保護膜は、水素分離膜により選択的に透過した水素を、多孔質保護膜の水素分離膜側から水素回収側へ向けて通過させる連通孔を有する必要がある。このため、多孔質保護膜についてその気孔率を確保するために、焼結温度で燃焼消滅、すなわち燃焼により消滅する炭素や有機物微細粉末などの気孔形成剤をコーティング液に混合することで多孔質保護膜を形成する。
低温焼結の温度は700〜800℃の範囲で選定でき、焼結時間は1時間ないしその前後で行うことができる。酸化物粒子の焼結をそのような温度に低温化させるために、低温焼結助剤の添加による焼結温度低下法(非特許文献2)を組み合わせることにより、700〜800℃という低温による焼結を実現することができる。
Jason. D. Nicholas, Lutgard C. De Jonghe, Solid State Ionics, Volume 178, Issues 19-20, 2007, p. 1187-1194
低温焼結助剤としてはLi化合物を使用する。Li化合物の例としては酸化リチウム、水酸化リチウム、硝酸リチウム、炭酸リチウム、酢酸リチウム、ハロゲン化リチウムなどが挙げられるが、これらに限定されない。これらLi化合物は、後述還元処理で還元されてLiとなり、これに続く後述空気雰囲気での焼成時に、従来に比べてより低温で多孔質保護膜材料を緻密に焼結する役割をする。なお、低温焼結助剤における“低温”とは、その“従来に比べてより低温で”における当該低温の意味である。
水素分離膜の表面への多孔質保護膜の構成材料である酸化物粉末、形成材料である気孔形成剤、低温焼結助剤を含むコーティング液の塗布は、スプレーコーティング、スクリーンプリンティングなどの低コスドな方法で行うことができる。
本発明における、多孔質保護膜の構成材料に対する低温焼結助剤の添加量は、多孔質保護膜材料100mol%に対して3mol%以上であるのがよく、その範囲は好ましくは3〜8mol%の範囲である。例えば、5mol%程度の硝酸リチウムの添加により、700〜800℃という低温による焼結を実現することができる。
本発明においては、多孔質保護膜構成材料に低温焼結助剤を添加したスラリーを水素分離膜表面に塗布した後、700℃〜800℃の温度範囲で焼結する。焼結雰囲気は、空気雰囲気でも可能であるが、還元雰囲気であるのがよい。
以上の工程をより具体的に述べると以下(1)〜(4)のとおりである。
(1)まず、多孔質保護膜の構成材料、低温焼結助剤を含むスラリーの作製は、溶媒として水または水とアルコールの混合溶媒を使用し、これに多孔質保護膜の構成材料、低温焼結助剤、有機バインダー、分散剤を混合し、ボールミル等により十分攪拌してスラリーとする。
(2)次いで、そのスラリーを水素分離膜表面に塗布する。この塗布はスプレーコーティング、スクリーンプリンティングなどにより行うことができる。
(3)次いで、700℃〜800℃において還元雰囲気で焼結する。焼結時間は、水素分離膜表面に塗布したスラリー中の成分を十分焼結できる時間であればよく、例えば1時間等、適宜選定することができる。低温焼結助剤であるLi化合物は還元雰囲気での焼結処理中にLiへ還元される。
焼結雰囲気は、酸化雰囲気でも還元雰囲気でもよいが、改質触媒兼支持体の材料の成分であるNiが酸化しない水素/水蒸気雰囲気(=水素と水蒸気の混合ガス雰囲気)や一酸化炭素/二酸化炭素雰囲気(=一酸化炭素と二酸化炭素水素の混合ガス雰囲気)であるのが好ましい。これにより、Niの酸化を防ぎ、また水素分離膜について、水素透過能つまり水素透過速度を落とすことなく、外部から飛来する微粒子の分離膜表面への付着を防止する多孔質の酸化物保護膜を形成することができる。
以下、本発明を実施例を基に説明するが、本発明が実施例に限定されないことはもちろんである。金属酸化物の例としてCeO2(酸化セリウム)を使用した。
Ni−YSZサーメット(Ni=47mass%、YSZ=53mass%)の改質触媒兼支持体1の外表面に、YSZからなる拡散バリア層2を配置し、その表面にPd−Ag合金膜を配置した。Pd−Ag合金膜(Pd=77mass%、Ag=23mass%)の表面に、GNP微細粉末形成法によって生成した直径が20〜30nmの酸化セリウム粉末の水性懸濁液に硝酸リチウムを5mol%、気孔形成剤として炭素を加えた懸濁液をスプレーコーティングにより塗布した。硝酸リチウムは焼結助剤であり、焼結温度を低下させるためのものである。
次いで、水素/水蒸気雰囲気中、800℃、1時間で焼結し、水素分離膜の外周面に厚さ20μmの酸化セリウム保護膜を形成した。
図1中、表面多孔質保護膜4として示している層は、上記のようにして形成した層の断面を拡大して示したものである。表面多孔質保護膜4中、酸化セリウム粒子が層状に存在しており、各酸化セリウム粒子間で上下方向に曲折した連通孔が形成されている。
酸化セリウムの場合、気孔率30〜40%、厚さ5μmの保護膜を形成するために、コーティングプロセス過程における原材料ロスを50%とすると、原材料である酸化セリウムのコストは市販ベースで保護膜1m3あたり約5000円となり、シリカ保護膜に対して原料コストを約10分の1に抑えることができる。膜厚をさらに薄くすることも可能であり、厚さ2μmの保護膜の場合、原材料である酸化セリウムのコストは市販ベースで保護膜1m3あたり約2000円となり、シリカ保護膜に対して原料コストを約25分の1に抑えることができる。
本発明によれば、GNP微細粉末形成法による酸化物粒子+薄膜コーティング+低温焼結による多孔質膜形成工程により、より低コストで水素分離膜面に外部から飛来する微粒子の分離膜表面への付着を防止するための酸化セリウム保護膜を形成することができる。
1 改質触媒兼支持体
2 拡散バリア層
3 水素分離膜
4 多孔質保護膜
5 外筒

Claims (10)

  1. それ自体で改質触媒としての役割と水素分離膜を支持する役割を同時に果たす円筒状改質触媒兼支持体の外周面に金属膜または合金膜からなる水素分離膜を配置してなる水素分離型改質器において、前記水素分離膜の表面に対して、外部からFe、Cr、NiおよびPの1種または2種以上を含む微粒子が飛来し付着して起こる前記水素分離膜の劣化及び剥離を防止するための金属酸化物からなる多孔質保護膜を配置してなることを特徴とする円筒形水素分離型改質器における水素分離膜用多孔質保護膜。
  2. それ自体で改質触媒としての役割と水素分離膜を支持する役割を同時に果たす円筒状改質触媒兼支持体の内周面に金属膜または合金膜からなる水素分離膜を配置してなる水素分離型改質器において、前記水素分離膜の表面に対して、外部からFe、Cr、NiおよびPの1種または2種以上を含む微粒子が飛来し付着して起こる前記水素分離膜の劣化及び剥離を防止するための金属酸化物からなる多孔質保護膜を配置してなることを特徴とする円筒形水素分離型改質器における水素分離膜用多孔質保護膜。
  3. 請求項1または2において、水素分離膜を構成する前記金属膜または合金膜が、Pd膜または、PdとAg、Nb、Cu、Ti及びVから選ばれた少なくとも1種とを含むPd合金膜であることを特徴とする円筒形水素分離型改質器における水素分離膜用多孔質保護膜。
  4. 請求項1、2または3において、多孔質保護膜の構成材料である前記金属酸化物が、CeO2、Gd23、La23、Y23、BaO、SrO、Cr23、MgO、Mn23、ZrO2、Rb2OまたはCs2Oであることを特徴とする円筒形水素分離型改質器における水素分離膜用多孔質保護膜。
  5. それ自体で改質触媒としての役割と水素分離膜を支持する役割を同時に果たす円筒状改質触媒兼支持体の外周面に金属膜または合金膜からなる水素分離膜を配置してなる水素分離型改質器における水素分離膜用多孔質保護膜の形成方法であって、前記水素分離膜の表面に対して、外部からFe、Cr、Ni、Pを含む微粒子が飛来し付着して起こる前記水素分離膜の劣化及び剥離を防止するための金属酸化物からなる多孔質保護膜を配置することを特徴とする円筒形水素分離型改質器における水素分離膜用多孔質保護膜の形成方法。
  6. それ自体で改質触媒としての役割と水素分離膜を支持する役割を同時に果たす円筒状改質触媒兼支持体の内周面に金属膜または合金膜からなる水素分離膜を配置してなる水素分離型改質器における水素分離膜用多孔質保護膜の形成方法であって、前記水素分離膜の表面に対して、外部からFe、Cr、Ni、Pを含む微粒子が飛来し付着して起こる前記水素分離膜の劣化及び剥離を防止するための金属酸化物からなる多孔質保護膜を配置することを特徴とする円筒形水素分離型改質器における水素分離膜用多孔質保護膜の形成方法。
  7. 請求項5または6において、水素分離膜を構成する前記金属膜または合金膜が、Pd膜または、PdとAg、Nb、Cu、Ti及びVから選ばれた少なくとも1種とを含むPd合金膜であることを特徴とする円筒形水素分離型改質器における水素分離膜用多孔質保護膜の形成方法。
  8. 請求項5、6または7において、前記多孔質保護膜の構成材料である金属酸化物が、CeO2、Gd23、La23、Y23、BaO、SrO、Cr23、MgO、Mn23、ZrO2、Rb2OまたはCs2Oであることを特徴とするとする円筒形水素分離型改質器における水素分離膜用多孔質保護膜の形成方法。
  9. 請求項5〜8のいずれか1項において、前記金属酸化物として、GNP微細粉末形成法により直径が数十〜数百nmの金属酸化物微粉末を製造し、当該金属酸化物微粉末を水素分離膜表面に塗布した後、低温焼結することを特徴とする円筒形水素分離型改質器における水素分離膜用多孔質保護膜の形成方法。
  10. 請求項9において、前記金属酸化物微粉末に低温焼結助剤としてLi化合物を添加することを特徴とする円筒形水素分離型改質器における水素分離膜用多孔質保護膜の形成方法。
JP2009277080A 2009-12-04 2009-12-04 円筒形水素分離型改質器における水素分離膜用保護膜及びその形成方法 Pending JP2011116603A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009277080A JP2011116603A (ja) 2009-12-04 2009-12-04 円筒形水素分離型改質器における水素分離膜用保護膜及びその形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009277080A JP2011116603A (ja) 2009-12-04 2009-12-04 円筒形水素分離型改質器における水素分離膜用保護膜及びその形成方法

Publications (1)

Publication Number Publication Date
JP2011116603A true JP2011116603A (ja) 2011-06-16

Family

ID=44282390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009277080A Pending JP2011116603A (ja) 2009-12-04 2009-12-04 円筒形水素分離型改質器における水素分離膜用保護膜及びその形成方法

Country Status (1)

Country Link
JP (1) JP2011116603A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014184381A (ja) * 2013-03-22 2014-10-02 Ngk Spark Plug Co Ltd 水素分離体
JPWO2013039092A1 (ja) * 2011-09-13 2015-03-26 日立金属株式会社 水素分離装置及びその運転方法
WO2022260063A1 (ja) * 2021-06-08 2022-12-15 日本碍子株式会社 メンブレンリアクタ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1157433A (ja) * 1997-08-27 1999-03-02 Tonen Corp 水素分離材料
JP2004149332A (ja) * 2002-10-29 2004-05-27 Tokyo Gas Co Ltd 水素製造装置
JP2006289345A (ja) * 2005-03-14 2006-10-26 Ngk Insulators Ltd 水素分離体及びその製造方法
JP2009016350A (ja) * 2007-07-04 2009-01-22 Korea Inst Of Science & Technology 燃料電池用電極−電解質複合体粉末及びその調製方法
JP2009152016A (ja) * 2007-12-19 2009-07-09 Tokyo Gas Co Ltd 固体酸化物形燃料電池用インターコネクタへの保護膜コーティング方法
JP2009234798A (ja) * 2008-03-25 2009-10-15 Ngk Spark Plug Co Ltd 水素分離装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1157433A (ja) * 1997-08-27 1999-03-02 Tonen Corp 水素分離材料
JP2004149332A (ja) * 2002-10-29 2004-05-27 Tokyo Gas Co Ltd 水素製造装置
JP2006289345A (ja) * 2005-03-14 2006-10-26 Ngk Insulators Ltd 水素分離体及びその製造方法
JP2009016350A (ja) * 2007-07-04 2009-01-22 Korea Inst Of Science & Technology 燃料電池用電極−電解質複合体粉末及びその調製方法
JP2009152016A (ja) * 2007-12-19 2009-07-09 Tokyo Gas Co Ltd 固体酸化物形燃料電池用インターコネクタへの保護膜コーティング方法
JP2009234798A (ja) * 2008-03-25 2009-10-15 Ngk Spark Plug Co Ltd 水素分離装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013039092A1 (ja) * 2011-09-13 2015-03-26 日立金属株式会社 水素分離装置及びその運転方法
JP2014184381A (ja) * 2013-03-22 2014-10-02 Ngk Spark Plug Co Ltd 水素分離体
WO2022260063A1 (ja) * 2021-06-08 2022-12-15 日本碍子株式会社 メンブレンリアクタ
JPWO2022260063A1 (ja) * 2021-06-08 2022-12-15
JP7500781B2 (ja) 2021-06-08 2024-06-17 日本碍子株式会社 メンブレンリアクタ

Similar Documents

Publication Publication Date Title
JP4883364B2 (ja) 多孔質支持体/水素選択透過膜基板及び多孔体支持型燃料電池
ES2429868T3 (es) Membrana con una microestructura de tamaño nanométrico estable y método para producir la misma
JP5139813B2 (ja) 酸化還元の安定なアノード
US8486184B2 (en) Oxygen-permeable membrane and method for the production thereof
JP2004207088A (ja) ガス透過性基体及びこれを用いた固体酸化物形燃料電池
ES2809823T3 (es) Membrana compuesta de doble función de transporte de oxígeno
JP2009292706A (ja) 燃料改質モジュール及びその運転方法
JP2011116603A (ja) 円筒形水素分離型改質器における水素分離膜用保護膜及びその形成方法
JP4347129B2 (ja) 水素製造用反応筒及び反応板
JP2008189540A (ja) 酸素透過膜及び水素発生装置
JP2009062258A (ja) 燃料改質モジュール及び水素発生装置
JP2007287685A (ja) 固体酸化物形燃料電池及びその製造方法
JP4759664B2 (ja) 水素分離膜及び水素分離方法
JP4064774B2 (ja) 水素透過体とその製造方法
JP4911916B2 (ja) 水素分離装置
JP2008246314A (ja) 水素分離装置及び燃料電池
JP2010095413A (ja) 水素製造装置
WO2017172238A1 (en) Catalyst-containing oxygen transport membrane
JP5041194B2 (ja) 固体酸化物形燃料電池
JP5867502B2 (ja) 水素分離膜及び水素分離装置
JP2006272159A (ja) 金属表面に形成させた触媒及びその形成方法
JP2007051036A (ja) 酸素イオン伝導体および酸素分離膜
JP2011195349A (ja) 水素製造装置
JP2021010909A (ja) 酸素透過膜、その製造方法、および改質器
JP5041193B2 (ja) 固体酸化物形燃料電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120302

A977 Report on retrieval

Effective date: 20130705

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A02 Decision of refusal

Effective date: 20131203

Free format text: JAPANESE INTERMEDIATE CODE: A02