JP4034802B2 - 超電導線材製造用NbまたはNb基合金棒およびNb3Sn超電導線材の製造方法 - Google Patents

超電導線材製造用NbまたはNb基合金棒およびNb3Sn超電導線材の製造方法 Download PDF

Info

Publication number
JP4034802B2
JP4034802B2 JP2005337821A JP2005337821A JP4034802B2 JP 4034802 B2 JP4034802 B2 JP 4034802B2 JP 2005337821 A JP2005337821 A JP 2005337821A JP 2005337821 A JP2005337821 A JP 2005337821A JP 4034802 B2 JP4034802 B2 JP 4034802B2
Authority
JP
Japan
Prior art keywords
based alloy
superconducting wire
wire
producing
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005337821A
Other languages
English (en)
Other versions
JP2007141796A (ja
Inventor
隆好 宮崎
茂信 難波
享司 財津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005337821A priority Critical patent/JP4034802B2/ja
Priority to CN2006800434771A priority patent/CN101313373B/zh
Priority to KR1020087012101A priority patent/KR20080061403A/ko
Priority to US12/083,247 priority patent/US20090258788A1/en
Priority to PCT/JP2006/321839 priority patent/WO2007060819A1/ja
Priority to EP06822768A priority patent/EP1953769A1/en
Publication of JP2007141796A publication Critical patent/JP2007141796A/ja
Application granted granted Critical
Publication of JP4034802B2 publication Critical patent/JP4034802B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/02Alloys based on vanadium, niobium, or tantalum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0184Manufacture or treatment of devices comprising intermetallic compounds of type A-15, e.g. Nb3Sn
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49014Superconductor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

本発明は、NbSn超電導線材を製造するための有用な方法、およびこうした製造方法で素材として用いられる超電導線材製造用NbまたはNb基合金棒に関するものであり、殊に押出しや伸線加工時における加工上の不都合を発生させることなく、良好な超電導特性と共に大きいn値を示し、高磁場発生用超電導マグネットの素材として有用なNbSn超電導線材を製造する方法およびそのためのNbまたはNb基合金棒に関するものである。
超電導線材が実用化されている分野のうち、高分解能核磁気共鳴(NMR)分析装置に用いられる超電導マグネットについては発生磁場が高いほど分解能が高まることから、超電導マグネットは近年ますます高磁場化の傾向にある。
高磁場発生用超電導マグネットに使用される超電導線材としては、NbSn線材が実用化されており、このNbSn超電導線材の製造には主にブロンズ法が採用されている。このブロンズ法では、図1(NbSn超電導線材製造用複合材の模式図)に示すように、Cu−Sn基合金(ブロンズ)マトリックス1中に、複数(図1では7)のNb若しくはNb基合金からなる芯材2を埋設し、伸線加工することによって上記芯材2を細径化してフィラメントとし、この芯材2のフィラメントとブロンズ複合材を複数束ねて線材群となし、その外周に安定化の為の銅(安定化Cu)を配置した後伸線加工する。上記線材群を600℃以上800℃以下程度で熱処理(拡散熱処理)することにより、Nbフィラメントとマトリックスの界面にNbSn化合物層を生成する方法である。
NbSn超電導線材を製造する方法としては、上記ブロンズ法の他に、チューブ法、内部拡散法および粉末法等も知られている。このうちチューブ法では、図2(NbSn超電導線材製造用複合材の模式図)に示すように、NbまたはNb基合金からなるチューブ(パイプ状部材)3の中にSnまたはSn基合金からなる芯材4を配置し、これを必要に応じてCuパイプ5内に挿入等して伸線加工等の縮径加工を施した後、熱処理によってNbとSnを拡散反応させてNbSnを生成する方法である(例えば、特許文献1)。また加工性の観点から、芯材4とNbチューブ3の間にCuパイプ6を配置することがある(例えば、特許文献2)。
また、内部拡散法では、図3(NbSn超電導線材製造用複合材の模式図)に示すように、CuまたはCu基合金からなる母材7の中央部に、SnまたはSn基合金からなる芯材8を埋設すると共に、芯材8の周囲の母材7中に複数(この図では15)のNbまたはNb基合金からなる芯材9を配置し、伸線加工した後、熱処理によって芯材8中のSnを拡散させ、芯材9中のNbと反応させることによってNbSnを生成させる方法である(例えば、特許文献3)。
一方、粉末法では、図4(NbSn超電導線材製造用複合材の模式図)に示すように、Nb若しくはNb基合金からなるシース(パイプ状部材)10内に、少なくともSnを含む原料粉末(例えば、Ta−Sn系粉末)を充填して粉末コア部11を形成し、これを更にCu製ビレット(図示せず)に挿入して複合材とし、この複合材を押出し、伸線加工等の縮径加工を施すことによって線材化した後、マグネット等に巻き線してから熱処理を施すことによってシースの内面側からNbSn超電導相を成形する。
尚、前記図2〜4では、説明の便宜上単芯の複合材を示したが、実用上ではCuマトリックス中に複数本の単芯が配置された多芯の複合材の形で用いられるのが一般的である。
また、上記のような複合材を用いて、超電導線材を製造するに当って、Nb3Sn相内に、Ti,Ta,Zr,Hf等の元素を含有させることも提案されている。こうした元素をNbSn内に含有させることによって、これらの元素を含有しないNb3Sn超電導線材と比べて、高磁場での超電導特性が向上するといわれている。Nb3Sn相内に上記の元素を含有させる手段として、例えば特許文献4には、内部拡散法においてSn金属芯(前記図3の芯材8)に30原子%以下、またはNb金属芯(前記図3の芯材9)に5原子%以下のTiを含有させることによって、15T(テスラ)以上の外部磁場中での臨界電流密度Jcが向上できることが示されている。
特開昭52−16997号公報 特許請求の範囲等 特開平3−283320号公報 特許請求の範囲等 特開昭49−114389号公報 特許請求の範囲等 特公平1−8698号公報 特許請求の範囲等
超電導線材を製造する際には、その前駆体となる複合材を、押出しや伸線加工等の縮径加工(以下、「伸線加工」で代表することがある)を施して作製されるので、円形の断面を有する線材が汎用されることになる。また或る程度の加工を施した後に六角伸線という断面が六角形となる伸線を行い、その六角断面の素材を数本若しくは数値百本組み合わせて多芯型複合線材とし、これに対して更に伸線加工が行われる場合がある。伸線を行なう際に、その途中で加工性が悪くなった場合には中間焼鈍を施されることもある。このようにして、伸線加工前には数十〜数百mm程度であった断面が数ミクロン単位にまで伸線加工されることになる。
こうした加工率の高い伸線加工を実施するためには、素材断面が伸線加工に伴って均一に変形することが必要となる。上記したいずれの方法を実施するにしても、NbやNb基合金が構成素材(パイプ状部材または芯材)として用いられるが、加工率の高い伸線加工を施すと、複合材内のNb若しくはNb基合金が円形を保持できず、菱形や角形に変形するという現象が生じることがある。また構成素材として用いるNbやNb基合金では、最終的な超電導線材の特性を向上させるという観点から、Ti,Ta,Zr,Hf等の元素が添加される場合があるが、これらの元素の添加は加工性を却って低下させ、上記の現象を発生し易くすることにもなる。
こうした現象が発生すると、伸線途中で断線は起こる原因となり、或いは最終的に超電導線材としたときにおける臨界電流密度(Jc)の低下やn値(超電導状態から常電導状態への転移の鋭さを示す指標となる値)の低下、更には交流ロスの増大といった問題が発生することがある。
こうしたことから、断面の形状変化が起こらないように伸線率を調整すること、即ち断面積が小さい伸線素材と準備して比較的低い加工率でも加工することによって、上記のような不都合の発生を回避することが行なわれている。しかしながら、こうした方法では、製造効率が極めて悪いものとなることから、大面積の伸線素材を用いた場合であっても変改を生じることなく、良好な加工が実現できるような技術の確立が望まれているのが実情である。
本発明はこうした状況の下でなされたものであって、その目的は、NbSn超電導線材を製造するときに用いるNbまたはNb基合金における加工性を良好にすることのできるNbまたはNb基合金棒、およびこのようなNbまたはNb基合金棒を用いて良好な超電導特性(特に臨界電流密度およびn値)を発揮する超電導線材を製造するための有用な方法を提供することにある。
上記目的を達成することのできた本発明のNbまたはNb基合金棒とは、超電導線材を製造するために用いられるNbまたはNb基合金棒であって、断面が円形である鋳型にて鋳造した後、断面形状が円形である加工装置によって熱間加工または冷間加工し、円柱状に形成されたものである点に要旨を有するものである。
本発明のNbまたはNb基合金棒においては、上記熱間加工若しくは冷間加工を行なうに際して、全工程を円形に維持されるように形成されたものが好ましい。
また、本発明のNbまたはNb基合金棒においては、(a)結晶粒径が5〜100μm(より好ましくは5〜50μm)である、(b)炭素、窒素、酸素および水素よりなる群から選ばれる1種または2種以上の元素の濃度が200ppm以下である、(c)Ti,Ta,ZrおよびHfよりなる群から選択される1種または2種以上を0.1〜20質量%含有する、等の要件を満足することが好ましい。
一方、上記目的を達成することのできた本発明の製造方法とは、上記のような超電導線材製造用NbまたはNb基合金棒を用いてNb3Sn系超電導線材を製造するに当り、
(a)前記熱間加工または冷間加工された円柱状のNbまたはNb基合金棒を用い、Cu若しくはCu基合金およびSn若しくはSn基合金と、或いはCu−Sn基合金と複合化して超電導線材製造用複合材とする工程と、
(b)前記複合化された超電導線材製造用複合材を、縮径加工して線材化して超電導線材製造用前駆体線材とする工程と、
(c)前記超電導線材製造用前駆体線材を熱処理して超電導相を形成する工程と、
を含んでなる点に要旨を有するものである。
この製造方法においては、円柱状のNbまたはNb基合金棒を、Cu−Sn基合金と複合化して前記超電導線材製造用複合材とすることによって、ブロンズ法または内部拡散法に適用できるものとなる。また、円柱状のNbまたはNb基合金棒を用い、これを円筒状に加工した後、Cu若しくはCu基合金およびSn若しくはSn基合金と複合化して前記超電導線材製造用複合材とすることによって、粉末法またはチューブ法に適用できるものとなる。
本発明によれば、超電導線材製造用複合材を伸線加工するときの形状を考慮し、熱間加工または冷間加工の段階にてその見合った形状に作製することによって、異方性が解消され、良好な均一加工ができるNbまたはNb基合金棒が得られ、こうした棒材を素材として用いて超電導線材を製造することによって、優れた臨界電流密度を有すると共に大きいn値を有し、10Tを超える高い磁場を発生するNbSn超電導線材が実現でき、こうした超電導線材では、コンパクト且つ低コストのNMRマグネット、加速器用マグネット、核融合用マグネット等を実現する上で有用なものとなる。
本発明者らは、超電導線材製造用複合材を伸線加工するときに素材の構成部材であるNbまたはNb基合金(以下、「Nb基合金」で代表することがある)が不均一変形を生じる原因について様々な角度から検討した。その結果、その製造工程の履歴に起因して、特定の集合組織が形成され、これが不均一変形の原因になることを突き止めた。即ち、Nb基合金は再結晶しにいくものであることから、こうした現象が顕著に生じるものと考えられた。また、たとえ再結晶しても、生成した再結晶集合組織に起因して、伸線加工前に断面が円形であってもその円形が崩れ、角形や菱形のような断面になる傾向がある。
上記Nb基合金は、鋳造の段階で断面が円形若しくは矩形状の状態で鋳片とされ、その後の加工(熱間加工や冷間加工)の段階で、断面が角形や菱形或は楕円状となるような加工が行なわれ、最終的に円形断面若しくは矩形状断面の素材として複合材料の素材とされるのであるが、こうした製造工程で供給されたものでは、断面形状の隅部となる部分(矩形では4箇所)に強い変形を受け、その部分が特に特定の集合組織が発達することになる。そして、こうした集合組織部分では、変形しにくい状態となる、その結果、その後行なわれる伸線加工において、均一な加工が困難となり、断面形状が歪(いびつ)になると考えられた。
そこで、本発明者らは、不均一変形を避けることができる集合組織について鋭意研究を重ねた。その結果、断面内が中心に対して軸対称の集合組織を有する場合には、伸線加工後期となっても断面が矩形若しくは菱形となることがなく、円形を維持したまま伸線が継続できることが判明した。尚、本発明における「円形」とは、真円は勿論のこと、真円に至らずとも真円に近い形状を含む趣旨である。
本発明で希望する集合組織は軸対称なものであるが、こうした集合組織を得るに当っては、鋳込み(鋳造)の段階で断面が円形である鋳型にて鋳造すると共に、断面形状が円形である加工装置を用いて加工を行なうようにすれば良い。即ち、製造工程を通じて、常に断面が軸対称を受ける加工(断面が円形を維持する加工)を実施すれば、上記集合組織が発達することが判明したのである。特に、加工(熱間加工および冷間加工)を行なうに際しては、最終断面形状が円形になれば良いというのでなく、全工程を円形に維持されるように形成されることが好ましい。尚、本発明における熱間加工は、熱間圧延や熱間鍛造等を含み、冷間加工は冷間圧延や冷間鍛造等を含むものである。
本発明のNbまたはNb基合金棒(以下、「Nb基合金棒」で代表することがある)においては、その平均結晶粒径が5〜100μmであることが好ましく、より好ましくは5〜50μmである。この結晶粒径は、加工性に影響を与えるものであり、この平均結晶粒径が5μm未満になると、加工硬化が激しくなって、伸線加時に割れが発生し易くなる。一方、平均結晶粒径が大きくなればなるほど加工性(延性)自体は良好になるのであるが、平均結晶粒径が100μmを超えると、表面性状が悪くなり(表面に凹凸が生じ易い)、複合部材としたときに隣接する部材との変形抵抗が大きくなって均一加工が困難になる場合がある。尚、鋳型の大きさ(径)が小さい場合、加工率をとれず、前記粒径よりも大きくなることがある。その場合には、長手方向に圧縮する据え込み鍛造を行なっても良い。
また、本発明のNb基合金棒には、不可避的な不純物として、炭素、窒素、酸素および水素等が含まれることになるが、これらは侵入型固溶体を形成する元素(侵入型元素)であり、あまり多く含まれると加工硬化が高くなりすぎて、成形加工自体も困難になることがある。こうしたことから、これらの元素濃度は合計で200ppm以下にすることが好ましい。一方、これらの濃度の下限については、特に限定するものではないが、20ppm以上とするのが好ましい。即ち、超電導線材は銅または銅合金との複合材であるので、上記元素の含有量が少なくなり過ぎると、周囲の銅または銅合金との変形抵抗差が大きく過ぎ、複合加工時に却ってソーセージング、リボン状変形といった不均一変形を誘発し、特性の劣化を引き起こす場合がある。
上記平均結晶粒径は、鋳造、圧延等の加工と焼鈍による調整によってその大きさを制御することができる。また、上記不純物濃度は、合金溶解時の高真空化、高真空中での繰り返し溶解等によってその低減を図ることができる。
本発明のNb基合金棒には、必要によって、Ti,Ta,ZrおよびHfよりなる群から選択される1種または2種以上を0.1〜20質量%含有することも有効である。これらの元素は、最終的に超電導特性(特に、臨界電流密度Jc)の向上に有効である。こうした効果を発揮させるためには、その含有量を0.1質量%以上とすることが好ましいが、20質量%を超えて含有させると加工性が劣化することになる。
上記のようなNb基合金棒を用いて超電導線材を製造することによって、フィラメントとなるNb基合金の変形が円形に近い状態で均一に加工でき、断面内での電流分布を均一にすることができ、臨界電流密度Jcやn値を改善することができる。また上記のように結晶粒径を適切に制御することによって、Nb基合金と隣接する部材との接触抵抗が低減され、フィラメント間でのカップリングを抑制して、超電導線材における交流ロスを低減することもできる。
上記のような超電導線材製造用Nb基合金棒を用いてNbSn系超電導線材を製造するに当たっては、通常の手順に従えばよいが、例えば下記(a)〜(c)の工程を含んで実施すれば良い。
(a)前記熱間加工または冷間加工された円柱若しくは略円柱状のNbまたはNb基合金棒を用い、Cu若しくはCu基合金およびSn若しくはSn基合金と、或いはCu−Sn基合金と複合化して超電導線材製造用複合材料とする工程、
(b)前記複合化された超電導線材製造用複合材料を、縮径加工して線材化して超電導線材製造用前駆体線材とする工程と、
(c)前記超電導線材製造用前駆体線材を熱処理して超電導相を形成する工程と、
この製造方法においては、円柱若しくは略円柱状のNbまたはNb基合金棒を、例えばCu若しくはCu基合金およびSn若しくはSn基合金と、或はCu−Sn基合金と複合化して前記超電導線材製造用複合材(前記図1、2)とすることによってブロンズ法または内部拡散法に適用できるものとなる。また、円柱若しくは略円柱状のNbまたはNb基合金棒を用い、これを円筒状若しくは円筒状に加工した後、Cu若しくはCu基合金およびSn若しくはSn基合金と複合化して前記超電導線材製造用複合材(前記図3、4)とすることによって、粉末法またはチューブ法に適用できるものとなる。尚、粉末法を適用するに当っては、Snを主体とする粉末(例えば、Ta−Sn粉末)を用いることになるがあるが、複合化するときのSn基合金とはこうした粉末をも含む趣旨である。
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
実施例1
内径が300mmの円筒状鋳型を用いてNb棒を鋳造し、下記(A)または(B)の条件にて最終径が14mmとなるまで圧延を行なった。このとき得られたNb棒は、EB(エレクトロンビーム)による溶解条件制御、具体的には、ビームの強度、ビームの断面積、ビーム出力と溶解回数、および溶解時の真空度等を制御することによって不可避的不純物を低減したものであり、C:30ppm、N:20ppm、O:20ppm、H:10ppmである。圧延後のNb棒における平均結晶粒径を測定したところ、いずれの条件で得られたものも100μmであった。
(A)圧延断面形状が円形の圧延装置で4パス熱間圧延後、圧延断面形状が楕円形の圧延装置で4パス熱間圧延(Nb棒A)
(B)圧延断面形状が円形の圧延装置で4パス熱間圧延(Nb棒B)
上記各Nb棒(Nb棒A、B)を用い(外径:14mm、長さ:200mm)、外径:67mmのCu−15質量%Sn−0.3質量%Ti合金に7本埋設して複合材を作製した(前記図1参照)。これらの複合材を、押出し、伸線加工により対辺が2mmの断面六角形の線材(六角単芯線材)に加工した。
得られた六角単芯線を所定の長さに切断して673本束ね、外径:68mm、内径:160mmのCu製管中に1.5mmの厚みのNb製拡散バリヤー層を配置した内側に配置して多芯型複合材とした。この複合材を、押出し、伸線加工によって最終線径が0.3mmとなるように加工して超電導線材製造用前駆体線材とした。
これらの複合材を用いて、700℃で100時間のNbSn生成熱処理を施して、NbSn超電導線材とした。得られたNbSn超電導線材について、下記の条件で臨界電流密度Jc、n値および交流ロスを測定した。それらの結果を、下記表1に示す。
[臨界電流密度Jcの測定]
液体ヘリウム中で18Tの外部磁場の下、試料(超電導線材)に通電し、4端子法によって発生電圧を計測し、この値が0.1μV/cmの電界が発生した電流値(臨界電流Ic)を線材の非Cu部当りの断面積で除して臨界電流密度Jcを求めた。
[n値の測定]
臨界電流を求めたのと同じ計測によって得られた(Ic−V)曲線において、0.1μV/cmと1.0μV/cmの間のデータを両対数表示し、その傾きとして求めた。尚、上記電流と電圧の関係は、経験的に下記(1)式のような近似式で表されるが、この式に基づいてnの値(即ち、「n値」)を求めたものである。
V=Vc(Iop/Ic)…(1)
但し、IopおよびIcは、夫々マグネットの運転電流、線材の臨界電流であり、VcはIcを定義する基準電圧である。
[交流ロスの測定]
液体ヘリウム中で外部磁場を±3T掃引してピックアップコイル法により得られた磁化曲線の面積として求めた。
Figure 0004034802
この結果から明らかなように、本発明のNb棒Bを用いて製造したものでは、良好な臨界電流Jcおよびn値が得られており、しかも交流ロスも小さくなっていることが分かる。
実施例2
内径が300mmの円筒状鋳型を用いてNb−7.5質量%Ta合金棒を鋳造し、下記(C)または(D)の条件にて最終径が55mmとなるまで圧延を行なった。このとき得られたNb棒は、EBによる溶解条件を制御することによって不可避的不純物を低減したものであり、C:20ppm、N:20ppm、O:30ppm、H:10ppmである。圧延後のNb合金棒における平均結晶粒径を測定したところ、いずれの条件で得られたものも150μmであった。
(C)圧延断面形状が円形の圧延装置で4パス熱間圧延後、圧延断面形状が矩形の圧延装置で4パス熱間圧延(Nb基合金棒C)
(D)圧延断面形状が円形の圧延装置で4パス熱間圧延(Nb基合金棒D)
上記各Nb基合金棒(Nb棒C、D)を用い、穿孔加工によって外径:55mm、内径:30mmのパイプ状部材に加工した(長さ:150mm)。
一方、Ta粉末:Sn粉末=6:5(原子比)となるように秤量し、これらをVブレンダー中で約30分間混合した。この混合粉末(原料粉末)に、真空中で950℃、10時間熱処理を施した後粉砕した。この混合粉末に、Cu粉末;5質量%、Sn粉末:25質量%添加して混合粉末とした。
得られた混合粉末を、前記パイプ状部材に充填して複合部材を作製した(前記図3参照)。これらの複合部材を、外径:65mm、内径:30mmのCu製ビレットに挿入して押し出しビレットを作製した。これを押出し、伸線加工により対辺が4mmの断面六角形の線材(六角単芯線材)に加工した。
得られた六角単芯線を所定の長さに切断して163本束ね、外径:65mm、内径:58mmのCu製管中に配置して多芯型複合材料とした。この複合材料を、押出し、伸線加工によって最終線径が1.2mmとなるように加工して超電導線材製造用前駆体線材とした。
これらの複合材料を用いて、650℃で250時間のNbSn生成熱処理を施して、NbSn超電導線材とした。得られたNbSn超電導線材について、実施例と同様にして臨界電流密度Jc、n値および交流ロスを測定した。それらの結果を、下記表2に示す。
Figure 0004034802
この結果から明らかなように、本発明のNb基合金棒Dを用いて製造したものでは、良好な臨界電流密度Jcおよびn値が得られており、しかも交流ロスも小さくなっていることが分かる。
また、鍛造断面形状が円形で大きさの異なる4つの鍛造型を準備し、大きな型から小さな型に段階的に順次径が小さくなるように繰り返し丸く叩いて鍛造してNb棒を形成した。このように断面が円形の型で鍛造して円形状に形成されたNb棒は、Nb材を回転させながら平型で叩いて径を小さくして円形状に鍛造されたNb棒に比べて、良好な特性を示した。
ブロンズ法に適用される複合材を模式的に示した断面図である。 チューブ法に適用される複合材を模式的に示した断面図である。 内部拡散法に適用される複合材を模式的に示した断面図である。 粉末法に適用される複合材を模式的に示した断面図である。
符号の説明
1 Cu−Sn基合金マトリックス
2,9 NbまたはNb基合金からなる芯材
3,10 NbまたはNb基合金からなるパイプ状部材
4,8 SnまたはSn基合金からなる芯材
5,6 Cuパイプ
7 CuまたはCu基合金からなる母材
11 粉末コア部

Claims (8)

  1. 超電導線材を製造するために用いられるNbまたはNb基合金棒であって、断面が円形である鋳型にて鋳造した後、断面形状が円形である加工装置によって熱間加工または冷間加工し、円柱状に形成されたものであることを特徴とする超電導線材製造用NbまたはNb基合金棒。
  2. 熱間加工または冷間加工を行なうに際して、全工程を円形に維持されるように形成されてなる請求項1に記載の超電導線材製造用NbまたはNb基合金棒。
  3. 平均結晶粒径が5〜100μmである請求項1または2に記載の超電導線材製造用NbまたはNb基合金棒。
  4. 炭素、窒素、酸素および水素よりなる群から選ばれる1種または2種以上の元素の濃度が200ppm以下である請求項1〜3のいずれかに記載の超電導線材製造用NbまたはNb基合金棒。
  5. Ti,Ta,ZrおよびHfよりなる群から選択される1種または2種以上を0.1〜20質量%含有するものである請求項1〜4に記載の超電導線材製造用NbまたはNb基合金棒。
  6. 請求項1〜5のいずれかに記載の超電導線材製造用NbまたはNb基合金棒を用いてNbSn系超電導線材を製造するに当り、
    (a)前記熱間加工または冷間加工された円柱状のNbまたはNb基合金棒を用い、Cu若しくはCu基合金およびSn若しくはSn基合金と、或いはCu−Sn基合金と複合化して超電導線材製造用複合材とする工程と、
    (b)前記複合化された超電導線材製造用複合材を、縮径加工して線材化して超電導線材製造用前駆体線材とする工程と、
    (c)前記超電導線材製造用前駆体線材を熱処理して超電導相を形成する工程と、
    を含んでなることを特徴とするNbSn超電導線材の製造方法。
  7. 円柱状のNbまたはNb基合金棒を、Cu若しくはCu基合金およびSn若しくはSn基合金と、或はCu−Sn基合金と複合化して前記超電導線材製造用複合材とするブロンズ法または内部拡散法が適用される請求項6に記載の製造方法。
  8. 円柱状のNbまたはNb基合金棒を用い、これを円筒状に加工した後、Cu若しくはCu基合金およびSn若しくはSn基合金と複合化して前記超電導線材製造用複合材とする粉末法またはチューブ法が適用される請求項6に記載の製造方法。
JP2005337821A 2005-11-22 2005-11-22 超電導線材製造用NbまたはNb基合金棒およびNb3Sn超電導線材の製造方法 Expired - Fee Related JP4034802B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2005337821A JP4034802B2 (ja) 2005-11-22 2005-11-22 超電導線材製造用NbまたはNb基合金棒およびNb3Sn超電導線材の製造方法
CN2006800434771A CN101313373B (zh) 2005-11-22 2006-11-01 超导线材制造用Nb类棒状材料及Nb3Sn超导线材的制造方法
KR1020087012101A KR20080061403A (ko) 2005-11-22 2006-11-01 초전도 선재 제조용 Nb계 막대 형상재 및 Nb3Sn초전도 선재의 제조 방법
US12/083,247 US20090258788A1 (en) 2005-11-22 2006-11-01 Nb-Based Rod Material for Producing Superconducting Wire Material and Method of Producing Nb3Sn Superconducting Wire Material
PCT/JP2006/321839 WO2007060819A1 (ja) 2005-11-22 2006-11-01 超電導線材製造用Nb系棒状材およびNb3Sn超電導線材の製造方法
EP06822768A EP1953769A1 (en) 2005-11-22 2006-11-01 Nb-CONTAINING ROD-SHAPED MATERIAL FOR USE IN MANUFACTURE OF SUPERCONDUCTING WIRE AND METHOD FOR MANUFACTURE OF Nb3Sn SUPERCONDUCTING WIRE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005337821A JP4034802B2 (ja) 2005-11-22 2005-11-22 超電導線材製造用NbまたはNb基合金棒およびNb3Sn超電導線材の製造方法

Publications (2)

Publication Number Publication Date
JP2007141796A JP2007141796A (ja) 2007-06-07
JP4034802B2 true JP4034802B2 (ja) 2008-01-16

Family

ID=38067055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005337821A Expired - Fee Related JP4034802B2 (ja) 2005-11-22 2005-11-22 超電導線材製造用NbまたはNb基合金棒およびNb3Sn超電導線材の製造方法

Country Status (6)

Country Link
US (1) US20090258788A1 (ja)
EP (1) EP1953769A1 (ja)
JP (1) JP4034802B2 (ja)
KR (1) KR20080061403A (ja)
CN (1) CN101313373B (ja)
WO (1) WO2007060819A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5308683B2 (ja) * 2008-01-29 2013-10-09 株式会社神戸製鋼所 ブロンズ法Nb3Sn超電導線材製造用NbまたはNb基合金棒、Nb3Sn超電導線材製造用前駆体およびその製造方法、並びにNb3Sn超電導線材
CN102082009B (zh) * 2010-12-28 2012-05-30 西部超导材料科技有限公司 一种青铜法Nb3Sn超导线材的制备工艺
GB2498999A (en) * 2012-02-02 2013-08-07 Siemens Plc Mechanical superconducting switch
EP2808873A1 (de) * 2013-05-28 2014-12-03 Nexans Elektrisch leitfähiger Draht und Verfahren zu seiner Herstellung
RU2547814C1 (ru) * 2013-12-04 2015-04-10 Общество с ограниченной ответственностью "Научно-производственное предприятие "НАНОЭЛЕКТРО" СПОСОБ ПОЛУЧЕНИЯ Nb3Sn СВЕРХПРОВОДНИКА МЕТОДОМ ВНУТРЕННЕГО ИСТОЧНИКА ОЛОВА
DE102015203305A1 (de) * 2015-02-24 2016-08-25 Bruker Eas Gmbh Halbzeugdraht mit PIT-Elementen für einen Nb3Sn-haltigen Supraleiterdraht und Verfahren zur Herstellung des Halbzeugdrahts
GB2540729B (en) * 2015-05-01 2018-03-21 Oxford Instruments Nanotechnology Tools Ltd Superconducting magnet
CN106298059B (zh) * 2016-08-11 2017-12-22 西部超导材料科技股份有限公司 一种内锡法Nb3Sn复合超导线材最终坯料的组装方法
CN110722014B (zh) * 2019-10-21 2021-04-09 青岛理工大学 一种Nb锭坯、Nb棒的制备方法及其应用
CN111105901B (zh) * 2019-12-23 2022-03-08 福建师范大学 一种改良型青铜法Nb3Sn超导线材的制备方法
CN111262051B (zh) * 2020-03-13 2021-01-29 中国科学院电工研究所 一种内锡工艺的Nb3Sn超导线接头及其制备方法
CN115747597B (zh) * 2022-11-23 2024-02-27 西部超导材料科技股份有限公司 一种NbTaHf合金铸锭及其制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5424109B2 (ja) * 1973-02-27 1979-08-18
US3838503A (en) * 1972-07-12 1974-10-01 Atomic Energy Commission Method of fabricating a composite multifilament intermetallic type superconducting wire
JPS5216997A (en) 1975-07-31 1977-02-08 Toshiba Corp Processing method of multi-superconductor
JPS62174354A (ja) 1986-01-25 1987-07-31 Natl Res Inst For Metals Ti添加Nb3Sn複合超電導線材の製造法
JPH03238158A (ja) * 1990-02-16 1991-10-23 Furukawa Electric Co Ltd:The Nb―Ti系合金のアーク溶解鋳造方法
JPH03283320A (ja) 1990-03-30 1991-12-13 Showa Electric Wire & Cable Co Ltd Nb↓3Sn多芯超電導線の製造方法
JP2865798B2 (ja) * 1990-04-20 1999-03-08 株式会社フジクラ Cu−Nb合金導体からなるマグネットワイヤの製造方法
WO2001096620A2 (en) * 2000-05-22 2001-12-20 Cabot Corporation High purity niobium and products containing the same, and methods of making the same
US6583362B2 (en) * 2001-11-05 2003-06-24 General Electric Company Zirconia-stabilized multi-filamentary niobium-tin superconducting wire
ITTO20020927A1 (it) * 2002-10-23 2004-04-24 Europa Metalli Spa Metodo di composizione a freddo di un semilavorato per l'ottenimento di cavi superconduttori ad elevate prestazioni, in particolare in niobio-titanio.
JP2004342561A (ja) * 2003-05-19 2004-12-02 Kobe Steel Ltd Nb▲3▼Sn超電導線材
JP4523861B2 (ja) * 2005-03-10 2010-08-11 株式会社神戸製鋼所 Nb3Sn超電導線材の製造方法

Also Published As

Publication number Publication date
KR20080061403A (ko) 2008-07-02
CN101313373A (zh) 2008-11-26
CN101313373B (zh) 2011-09-07
JP2007141796A (ja) 2007-06-07
WO2007060819A1 (ja) 2007-05-31
EP1953769A1 (en) 2008-08-06
US20090258788A1 (en) 2009-10-15

Similar Documents

Publication Publication Date Title
JP4034802B2 (ja) 超電導線材製造用NbまたはNb基合金棒およびNb3Sn超電導線材の製造方法
JP4523861B2 (ja) Nb3Sn超電導線材の製造方法
EP2696381B1 (en) Niobium-titanium based superconducting wire
JP4227143B2 (ja) Nb3Sn超電導線材およびそのための前駆体
EP1780812A2 (en) Internal diffusion process Nb3Sn superconducting wire
JP2007214002A (ja) Nb3Sn超電導線材の製造方法およびそのための前駆体
EP2713413A2 (en) Nb3Sn superconducting wire and precursor of same
JP7148103B2 (ja) Nb3Sn超伝導線材用前駆体、その製造方法、および、それを用いたNb3Sn超伝導線材の製造方法
US7887644B2 (en) Superconductive elements containing copper inclusions, and a composite and a method for their production
JP4193194B2 (ja) Nb3Sn超伝導線材の製造方法
JP4727914B2 (ja) Nb3Sn超電導線材およびその製造方法
JP4791346B2 (ja) Nb3Sn超電導線材およびそのための前駆体並びに前駆体用Nb複合単芯線
Hishinuma et al. Study of RHQT-processed Nb3Al multifilamentary rectangular tape strand to be applied to a fusion magnet
JP5069948B2 (ja) 超電導線材製造用NbまたはNb基合金シートおよび超電導線材製造用前駆体
JP4723327B2 (ja) 粉末法Nb3Sn超電導線材の製造方法およびそのための前駆体
JP2004342561A (ja) Nb▲3▼Sn超電導線材
JP4476800B2 (ja) Nb3Sn超電導線材の製造方法
JP2003115226A (ja) Nb▲3▼Sn超電導線材の製造方法
JP2001357734A (ja) Nb▲3▼Sn超電導線材およびそれを用いた超電導マグネット
JP2007220493A (ja) Nb3Sn超電導線材の製造方法およびそのための前駆体
JP2008047386A (ja) Nb3Sn超電導線材およびその製造方法
JP2007173102A (ja) Nb3Sn超電導線材製造用前駆体およびその製造方法
JP2006085986A (ja) Nb3Sn超電導線材の製造方法およびそのための複合線材
JP2004214018A (ja) Nb3Sn線材の製造方法
JPH0528859A (ja) Nb3Sn系超電導線材の製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4034802

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees