JP4193194B2 - Nb3Sn超伝導線材の製造方法 - Google Patents

Nb3Sn超伝導線材の製造方法 Download PDF

Info

Publication number
JP4193194B2
JP4193194B2 JP2003083323A JP2003083323A JP4193194B2 JP 4193194 B2 JP4193194 B2 JP 4193194B2 JP 2003083323 A JP2003083323 A JP 2003083323A JP 2003083323 A JP2003083323 A JP 2003083323A JP 4193194 B2 JP4193194 B2 JP 4193194B2
Authority
JP
Japan
Prior art keywords
wire
base material
composite
atomic
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003083323A
Other languages
English (en)
Other versions
JP2004296124A (ja
Inventor
恭治 太刀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai University Educational Systems
Original Assignee
Tokai University Educational Systems
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai University Educational Systems filed Critical Tokai University Educational Systems
Priority to JP2003083323A priority Critical patent/JP4193194B2/ja
Publication of JP2004296124A publication Critical patent/JP2004296124A/ja
Application granted granted Critical
Publication of JP4193194B2 publication Critical patent/JP4193194B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【0001】
【発明の属する技術分野】
本発明は、NMR分析装置、核融合炉、高密度エネルギー貯蔵等の種々の新技術開発を可能にする高磁界発生用のNb3 Sn超伝導線材の製造方法に関する。
【0002】
【従来の技術】
超伝導線材としては、Nb−Ti系の合金線材が多く用いられ、電力消費なしに大電流を通電し、高磁界を発生することができる。しかし、この合金線材は液体ヘリウム温度(4.2K)における発生磁界の限度が約9テスラ(9T)である。従って核融合装置、NMR分析装置などに必要な10T以上の高磁界を発生するためには、化合物系超伝導線材を用いる必要がある。A15型結晶構造をもつNb3 Sn化合物は、このような要求に応える超伝導材料の一つとして知られている。その臨界温度Tc は約18K、上部臨界磁界Bc2(4.2K)は約21Tで、Nb−Tiの約9K及び約11.5テスラに比べて、それぞれ2倍近く高い値をもつ。Nb3 Sn化合物の線材を作製する方法としては、例えば非特許文献1に記載されたブロンズ法が用いられている。ブロンズ法はNbを芯材とし、これをCu−Sn合金マトリックスで包んだ複合体を作り、これを塑性加工したのち、拡散熱処理することによりNb芯とマトリックスの界面にNb3 Sn化合物相を生成する方法である。
【0003】
さらにブロンズ法において、本発明者はCu−Sn合金マトリックスに少量のTiを添加することにより上部臨界磁界Bc2が改善されることを見出し、非特許文献2に発表した。その後この製法は工業化された。この線材を用いて4.2Kで18.8テスラ、1.6Kで21.6テスラの磁界が発生され、2002年にたんぱく質の構造解析等に有用な世界最高の920MHzNMR分析装置が完成された。しかし、ブロンズ法線材の特性は限界に達しており、次世代の高磁界超伝導線材の開発が待望されている。
【0004】
本発明者は、Ti,Zr,Hf,V及びTaの群から選ばれた1種または2種以上の金属とSnの合金または金属間化合物を芯(コア)材とし、NbまたはNb合金をシース材として前記芯材を充填して得た複合体を線材に加工後、熱処理することにより高磁界特性に優れたNb3 Sn線材を作製しうることを特許文献1において提案している。さらに本発明者は、特願2001−275401の出願明細書(未公開)において関連発明を出願している。これらはいずれも粉末コア法によるものである。
【0005】
【非特許文献1】
K.Tachikawa:Filamentary A15 Superconductors, Plenum Press(1980)p1
【0006】
【非特許文献2】
関根久,飯嶋安男,伊藤喜久男,太刀川恭治:日本金属学会誌,第49巻,10号(1985)913頁
【0007】
【特許文献1】
特開平11−250749号公報
【0008】
【発明が解決しようとする課題】
しかし、上記の従来法では、Ti,Zr,Hf,V及びTaの群から選ばれた1種または2種以上の金属とSnとの合金または金属間化合物を作製する工程及びこの合金または金属間化合物をシース材に充填するために粉末に粉砕する工程を必須とするが、これら工程は必ずしも容易でなく工業化する上での課題となっていた。
【0009】
また、従来の粉末コア法により線材を作製すると、線材が波打つように変形する所謂ソーセージングを生じることがあり、これにより均一な断面形状を有する長尺線材の加工が困難であった。
【0010】
本発明の目的とするところは、高磁界特性の向上に最も効果的であるTaを使用し、しかも、可塑性を有する基材からなる複合体を使用して工業化する上での上記課題を解消し、もって、線材作成コストを低減し、所望の組成の芯材を容易に作成できるNb3Sn超伝導線材の製造方法を提供することにある。
【0011】
【課題を解決するための手段】
現在広く用いられている超伝導線材として、Nb-Ti合金線材やブロンズ法により作製されたNb3Sn化合物線材があり、Ti添加ブロンズ法(Nb,Ti)3Sn線材を用いて1.6K運転で世界最高性能の920MHz級NMR分析装置が開発されている。しかし、ブロンズ法線材の性能は限界に達しており、超伝導線材の更なる高磁界特性の向上が期待されている。本発明者はそのような期待に応えるべく鋭意研究した結果、最近次世代超伝導線材としてTa-Sn粉末コアとNb(Nb-Ta)シースを用いた(Nb,Ta)3Sn超伝導線材を開発した。
【0012】
この線材では熱処理によりシースのNbがコアヘと移動し、それによりコアに含まれるSnのシースヘの拡散を促進させるため、従来法(ブロンズ法)の線材よりも厚く均一な(Nb,Ta)3Sn層が形成される。これはSnがTaよりNbと金属間化合物を作り易いこと、またTaとNbが互に固溶し易く、シースのNbが芯材に固溶するため空孔を生じ、シースへのSnとTaの拡散を促進するという本発明者が見出した新たな知見に基づくものである。本発明では、新たに加工性に富むSn-Taシートを作製し、(Nb,Ta)3Sn超伝導線材の作製、および基材へのCuの添加効果を検討することを目的とした。
【0013】
本発明によれば、TaがNb3 Sn層に固溶するため高磁界特性が向上し、またシースのNbが芯に拡散するため、反応後芯にボイドが発生することがない。芯にボイドが発生すると線材の機械的性質を劣化させる。
【0014】
本発明は上記の知見に基づいてなされたものであり、以下の構成を備えている。
(1)Ta,Ti,Hfからなる群より選択される一種又は二種以上の金属MとSnとの混合体をSnの融点以上1200℃以下の温度域で溶製することにより70原子%以上81.89原子%以下のSnを含む可塑性を有する合金を含む第1の基材を得る工程と、前記第1の基材とNbまたはNb系合金からなる第2の基材とを交互に積層して複合体を作製する工程と、前記複合体を線材に加工する工程と、前記線材を熱処理する工程と、を具備することを特徴とするNb3Sn超伝導線材の製造方法。
【0015】
(2)MはTa,Ti,Hfからなる群より選択される一種又は二種以上の金属を水素化した金属水素化物であってもよい。後述する参考例に示すようにTa-Hのような金属水素化物を用いると、原料粉末が微粉化され、実用上有用な極細多芯形式の線材を容易に作製することができる。
【0017】
複合体作製工程の前に、第1の基材をSnの融点以上1200℃以下の温度域で溶製する。このような温度域で第1の基材を溶製するとSnと金属Mが合金化され、その後の加工上の取り扱いが容易になる。なお、溶製温度が1200℃を超えると、Snが蒸発して成分コントロールすることが難しくなる。
【0019】
(3)第1の基材は、さらに第3の元素が添加されて第2の基材との複合加工性が改善されていることが好ましい。第1の基材に含まれるSnは第2の基材を構成するNbに比べて軟らかいので、これらの第3の元素を添加して硬さを調整する。これにより第1の基材と第2の基材との伸びが揃い、伸びが一様な伸線加工を行うことができる。
【0020】
(3)第3の元素は、Bi,In,Sb,Mg,Ag,Zn,Al,Ge,Si,Pbからなる群より選択される一種又は二種以上の元素である。なお、第3の元素の添加量は0.5〜20原子%とすることが望ましい。0.5原子%未満の添加量ではSnの硬さ上昇が不十分であり、20原子%を超える添加量ではSnが硬くなりすぎるからである。
【0021】
(4)第1の基材は、さらにCuを0.5乃至30原子%含有することが望ましい。Cu添加量が0.5原子%を下回ると熱処理温度を低下させる効果が得られなくなるからである。一方、添加量が30原子%を超えると超伝導特性の低下を生じるからである。
【0022】
(5)第2の基材は、Ta,Ti,Hfからなる群より選択される一種又は二種以上の金属を含有するNb合金である。
【0023】
(6)複合体作製工程において、第1の基材または第2の基材のうちのいずれか一方と実質的に同じ組成の芯材を用いて、第1の基材と第2の基材を交互に重ね合わせて芯材の周囲に捲回する。
【0025】
(7)第2の基材は、Ta,Ti,Hfの群から選択される一種又は二種の元素を20原子%以下含有するNb合金からなる。これら元素の添加量が20原子%を超えると超伝導特性の低下を生じるからである。
【0026】
(8)Cuマトリックス内に(1)乃至(7)のいずれかの方法で得られた複合体を充填し、この複合体を線材に加工後熱処理する。
【0027】
また、複合体を線材に加工する工程中に、複合体をSnの融点以上650℃以下の温度域で中間焼鈍することが望ましい。この焼鈍効果によって組織が均質化するという利点があり、超伝導特性を向上させる上で有利にはたらく。
【0028】
【発明の実施の形態】
TaとSnの混合体(第1の基材)とNbまたはNb合金(第2の基材)とを交互に積層して得た複合体あるいは前記混合体をNbまたはNb合金シース材に充填して得た複合体を線材に加工後熱処理を行ってNb3 Sn超伝導線材を作製する。TaとSnの混合体中のSnの含有量は20〜80原子%の範囲にあることが望ましく、Sn含有量が20原子%未満であると生成されるNb3 Sn層の厚さが薄くなり、また80原子%を超えるとNb3 Sn層中のTa固溶量が減少し、高磁界特性改善の効果が減少する。加工後の熱処理温度は700℃〜950℃の範囲が適当で、真空中または不活性ガス雰囲気中で行うのがよい。
【0029】
TaとSnの混合体(第1の基材)をSnの融点以上1200℃以下の温度で溶製すると、Snが溶融してSn中にTaが分散した加工の容易な合金が得られ、NbまたはNb合金との複合体を作製し、さらにこれを線材加工する際、取り扱い易くなる利点がある。1200℃を超える温度で溶製すると、Snの蒸発のために組成が変動するので好ましくない。
【0030】
第1の基材は、さらに第3の元素が添加されて第2の基材との複合加工性が改善されていることが好ましい。第1の基材に含まれるSnは第2の基材を構成するNbに比べて軟らかいので、これらの第3の元素としてBi,In,Sb,Mg,Ag,Zn,Al,Ge,Si,Pbを添加して硬さを調整する。これにより第1の基材と第2の基材との伸びが揃い、伸びが一様な伸線加工を行うことができるようになる。この場合に、第3の元素の添加量は0.5〜20原子%とすることが望ましい。0.5原子%未満の添加量ではSnの硬さ上昇が不十分であり、20原子%を超える添加量ではSnが硬くなりすぎるからである。
【0031】
さらに、第1の基材に0.5〜30原子%のCuを含有させると熱処理温度の低下に顕著な効果がある。0.5原子%未満のCu添加では効果がなく、30原子%以上のCu添加では高磁界特性を劣化させる。3乃至15原子%のCu添加がとくに好ましく、これにより熱処理温度を800℃以下に低下させることができ、工業生産上のメリットが大きい。
【0032】
一方、Nb合金が20原子%以下のTa、Ti及びHfの群から選択された1種または2種の金属を含むと高磁界特性の改善に明瞭な効果がある。含有量が20原子%を超えると超伝導特性を低下させるとともに、線材加工に中間焼鈍が必要となり好ましくない。また超伝導線材を実用する際には、急激な磁界変動があっても超伝導性を安定に保つために、Cuマトリックスと複合して用いることが必要となる。従って本発明による芯材とシース材の複合体をCuマトリックス内に挿入したのち加工と熱処理を行い、実用に供する。
【0033】
【実施例】
以下、本発明の好ましい実施例についてそれぞれ説明する。
[実施例1]
実施例1として、Nbシートを用いるJR法またはNbメッシュシートを用いる改良型JR法(MJR法)により各種の線材を作製した。その作製方法について図1〜図4および表1を参照して説明する。
(試料の作製)
Ta量が40原子%以上ではTa-Snは粉末化され、線材化には粉末コア法を適用した。本発明ではTa量が30原子%以下のときに加工性を持つSn-Taシートが作製できるという知見を得た。そこで、Ta/Sn比が3/7、1/3となるようにTaとSnの粉末を調合し、その後1×10-5Torrの真空中において800℃×10時間で溶製した。また、3/7、1/3の混合粉末に5質量%のCuを添加し、同様の処理を行った。
【0034】
その後プレス加工、平ロール圧延を行い、厚さ200μmのシート2に加工した。図1に示すように、Sn-Taシート2を厚さ240μmのNbシート3と共にNb芯材4のまわりに重ねて巻き込み、Sn-Ta/Nb捲回体5を得た(工程S1)。このSn-Ta/Nb捲回体5を外径/内径が10/7mmφのNb−4原子%Ta管6のなかに挿入して組み込んだ(工程S2)。
【0035】
この複合体5,6を溝ロール加工または平ロール加工により断面円形または矩形の長尺物品とした(工程S3)。さらに、これを引き抜き加工により最終的に直径1.35〜1.90mmφの丸線に加工した(工程S4)。
【0036】
また、Nbシート3の代わりに厚さが340μmのNbメッシュシートを用いて、同様の操作によりMJR法線材を別途に作製した。
【0037】
作製した試料は1×10-5Torrの真空中において775℃〜925℃×80時間の熱処理を行い、超伝導線材を作製した。最後に作製した線材の臨界温度Tc、および高磁界中における臨界電流Icを測定した。
【0038】
(評価)
本発明では、Sn中にTa粒子が均一に分布した加工性に富むSn-Taシートを作製することができた。
【0039】
JR法線材ははじめ溝ロール加工を行うと、内部組織に四角いあとが残るが、良好な組織が得られることが判明した。MJR法線材においては、Nbメッシュシートを用いることで容易に多芯形式線材の作製が可能であることが判明した。
【0040】
表1に従来の粉末コア法および本発明のJR法、JR法(Cu添加したもの)及びMJR法によりそれぞれ作製した(Nb,Ta)3Sn線材の臨界温度Tc(K)の測定結果を示す。表1中にてOnは超伝導遷移の開始点の温度を、Offは超伝導遷移の終了点の温度を、Midは超伝導遷移の中点の温度をそれぞれ示す。表1から明らかなように、どの線材においてもほぼ同じ臨界温度Tcを示すことが判明した。
【0041】
図2は、横軸に磁界の強さ(T)、左縦軸に臨界電流Ic(A)、右縦軸に線径1.35mmの線材における臨界電流密度Jc(A/cm2)をそれぞれとって、JR法により組成、線径、熱処理温度を種々変えて作製した各試料の高磁界中における超伝導特性を調べた結果を示す特性線図である。図2中にて特性線AはTa/Sn=3/7組成で線径1.35mmφの試料を900℃×80時間の条件で熱処理した結果を、特性線BはTa/Sn=3/7組成で線径1.35mmφの試料を925℃×80時間の条件で熱処理した結果を、特性線CはTa/Sn=3/7組成で線径1.90mmφの試料を900℃×80時間の条件で熱処理した結果を、特性線DはTa/Sn=1/3組成で線径1.90mmφの試料を900℃×80時間の条件で熱処理した結果をそれぞれ示した。なお、図中にてプロット記号の上側に矢印を付したものはその値以上の結果が得られたデータを示した。
【0042】
特性線Aに示すように、線径1.35mmφの試料を900℃×80時間で中間熱処理すると、4.2K、23テスラで線材断面積当り1.2×104A/cm2の極めて有望な臨界電流密度Jcが得られた。ちなみに超伝導線材を実用化するときには1.0×104A/cm2以上のJcが要求される。
【0043】
なお、熱処理温度が900℃(特性線A)の線材と925℃(特性線B)の線材とを比較してみると、23テスラ以下では925℃のほうが低いJcとなるのは、高い熱処理温度により(Nb,Ta)3Snの結晶粒が粗大化し磁束のピン止め点が減少したためと考えられる。
【0044】
さらに、900℃で熱処理を行った線材(本発明方法で作製した特性線A〜Dの試料とは異なる別の試料)の特性を減圧下の液体ヘリウム中2.1Kで評価したところ、25テスラの超高磁界で1.0×104A/cm2のJcを示した。
【0045】
また、特性線C,Dに示すように、4.2K、23テスラで200A以上の臨界電流Icが確認された。
【0046】
図3は、横軸に磁界の強さ(T)、左縦軸に臨界電流Ic(A)、右縦軸に線径1.35mmの線材における臨界電流密度Jc(A/cm2)をそれぞれとって、種々のCu添加JR線材試料の高磁界中における超伝導特性を調べた結果を示す特性線図である。図3中にて特性線EはTa/Sn=1/3組成で線径1.35mmφの5質量%Cu添加試料を800℃×80時間の条件で熱処理した結果を、特性線FはTa/Sn=3/7組成で線径1.35mmφの5質量%Cu添加試料を800℃×80時間の条件で熱処理した結果を、特性線GはTa/Sn=1/3組成で線径1.35mmφの5質量%Cu添加試料を775℃×80時間の条件で熱処理した結果を、特性線HはTa/Sn=1/3組成で線径1.90mmφの5質量%Cu添加試料を800℃×80時間の条件で熱処理した結果をそれぞれ示した。なお、図中にてプロット記号を括弧で括って表示したものはフラックスジャンプのため正確ではないデータ(不確定データ)を、プロット記号の上側に矢印を付したものはその値以上の結果が得られたデータを示した。
【0047】
図3では特性線Gに示すように、4.2K、22テスラで線材断面積当たり1.3×104A/cm2のJcが得られた。また、特性線Hに示すように、4.2K、22テスラで200Aの臨界電流Icが確認された。
【0048】
このように少量のCuを添加することにより、熱処理温度を900℃から775℃まで低下させることができ、実用化に有利なことが判明した。これはNb−Sn−Cu3元系となることにより融点が減少し、低い温度でも拡散が速く進行するためと考えられる。
【0049】
図4に臨界電流密度Jc−磁界特性について実施例線材(Cuを含まない)と比較例線材とを比べた結果を示す。図中にて特性線Mは本発明を代表する実施例の(Nb,Ta)3Sn線材(図2の曲線A)の結果を、特性線Nは920MHz級NMR分析装置に用いられている従来のブロンズ法(Nb,Ti)3Sn線材(比較例)の結果をそれぞれ示した。
【0050】
図2及び図3から明らかなように、本発明により製造した線材は、4.2Kで20テスラ以上の性能を充分備えており、蛋白質の構造解析などに必要なNMR分析装置、クリーンなエネルギー源として期待される核融合、冷凍機直冷型超伝導マグネットなど幅広い分野での応用が期待される。
【0051】
[参考例]
参考例として、水素化物を用いて各種の線材を作製した。その作製方法について図5〜図8および表2を参照して説明する。
【0052】
Ta-Sn粉末をコアに用い、Nbシースと反応させると厚い(Nb,Ta)3Sn層が形成され、このようにして作製された(Nb,Ta)3Sn超伝導線材は優れた高磁界特性を示す。この製法においてTa粒子を微細で均一にすることができると、実用的な極細多芯線材化が容易になると考えられる。そこで、本実施例では新しく微粉化が容易となる水素化物Ta-Hを出発物質として線材を作製し、その組織と超伝導特性について比較検討した。
【0053】
(試料の作製)
次に、図5を参照して試料の作製方法について説明する。
先ず市販品のフレーク状Ta-Hを乳鉢で約30分間かけて粉砕し(工程S21)、次いでAr雰囲気中で遊星型ボールミル装置(以下BMと略称する)を用いて30分間粉砕し(工程S22)、Ta-H粉末を作製した。これにSn粉末をTa/Sn原子比が3/7または4/6になるようにそれぞれ調合した。
【0054】
次いで、925℃で約10時間溶融拡散を行い(工程S23)、Ta-Sn粉末を作製した。この工程S23の過程で脱水素が行われたと考えられる。さらに、このTa-H/Sn混合粉末にCu粉末を5質量%混合した粉末、同混合粉末にCu粉末を7.5質量%混合した粉末、およびTa-Hの代わりに市販品のTa粉末を用いた粉末も同様にしてそれぞれ作製した(工程S24)。
【0055】
作製した各種の粉末は粒度分布測定装置により粉末の粒径を測定した。その後、Nb-4at%Taシース(外径8.0mm、内径5.0mm)にTa-Sn粉末を充填して複合体を作製し(工程S25)、溝ロール、平ロール加工を行い(工程S26)、厚さ0.6mm、幅4mmのテープを作製した。作製したテープを1×10-5Torrの真空中において各濃度で80時間熱処理し(工程S27)、超伝導テープ試料を得た。作製試料について組織観察、及び臨界温度Tc、高磁界中における臨界電流Ic測定を行った。以下、Ta-Hを出発物質として作製した試料を「TH」と表記することとする。
【0056】
(評価)
市販のTa粉末(325メッシュ以下)は粗く、大きさもばらついているが、Ta-HをBM粉砕して作製した粉末は粒子の大きさが著しく細かくなり、均一化することが光学顕微鏡観察により確認された。
【0057】
図6は各粉体原料の粒度分布を示す棒グラフである。市販のTa粉末では、2〜3μmφと20〜30μmφに粒度分布のピークが存在するが、BM粉砕Ta-H粉末では3μmφ以上の粒子が見られず微粒子化され、また分布範囲も狭くなることが判明した。
【0058】
900℃×80時間の熱処理後の市販Ta粉末を用いた超伝導テープの試料断面と本発明方法を用いて作製したTH試料断面とをそれぞれ光学顕微鏡により観察した。その結果、市販Ta粉末を用いた試料の熱処理後の組織は一部の粗大なTa粒子がコアの部分に残っているが、TH試料は組織が細かく均一にできていることが確認された。これは、Ta-Hを用いたことによりTa粉末が微粉化されたためと推察される。また、TH試料においても熱処理後に、従来と同様に厚い(Nb,Ta)3Sn層が生成された。
【0059】
表2にTH3/7のBMした試料とBMしていない試料、Cuを添加した試料の臨界温度Tc(K)を示した。BMした試料とBMしてない試料を比べると、On/Offの状態で殆ど変わらない値になった。Cuを添加した試料は熱処理温度を低くしても、臨界温度が高い値になった。
【0060】
図7および図8は、各種試料の臨界電流Ic(左縦軸)−臨界電流密度Jc(右縦軸)−磁界(横軸)特性を4.2Kの温度条件下で調べた結果をそれぞれ示す。図7中の特性線PはTa-H/Sn=3/7組成のCu無添加試料(TH3/7)を880℃×80時間の条件で熱処理した結果を、特性線QはTa-H/Sn=3/7組成のCu無添加試料(TH3/7)を900℃×80時間の条件で熱処理した結果を、特性線RはTa-H/Sn=3/7組成のCu無添加試料(TH3/7)を925℃×80時間の条件で熱処理した結果をそれぞれ示した。図8中の特性線UはTa-H/Sn=3/7組成の5質量%Cu添加試料(TH3/7+5Cu)を800℃×80時間の条件で熱処理した結果を、特性線VはTa-H/Sn=4/6組成の7.5質量%Cu添加試料(TH4/6+7.5Cu)を775℃×80時間の条件で熱処理した結果を、特性線WはTa-H/Sn=4/6組成のボールミル粉砕7.5質量%Cu添加試料(TH4/6+7.5Cu(BM))を800℃×80時間の条件で熱処理した結果をそれぞれ示した。
【0061】
図8に示すように、コアにCuを数質量%添加した試料(特性線U,V,W)では775℃〜800℃の熱処理でも臨界電流Icを多く流し、良い特性が得られることが確認できた。
【0062】
参考例では、BMした線材のTc値はマイナス325メッシュの純Taを用いた試料と変りがなく、また4.2K,22Tで1×104/cm2のJcが得られた。
【0063】
このように参考例では、少量のCuをTa-Snコアに添加すると熱処理温度が900℃から775℃〜800℃に低下し、4.2K,21Tで1.5×104A/cm2のJcが得られた。
【0064】
さらに、参考例では、Ta-Hを用いることで微細なTa粉末にすることに成功し、また従来と同様に厚い(Nb,Ta)3Sn層が得られることが判明した。
【0065】
さらに、M金属の水素化物を粉砕した微粉末を用いてSn−M合金を作製すると、Sn中にMが微細に分散するために実用線材作製上のメリットが大きい。
【0066】
[実施例3]
実施例3として、複数のNb芯材のまわりにSnTaCuシートを巻き付ける方法により多芯線を作製した。その作製方法について以下に述べる。
(線材の作製)
Sn粉末とTa粉末をSn/Ta原子比が7/3になるように調合し、これに5質量%のCu粉末を添加し、石英るつぼを用いて真空雰囲気中において800℃×10時間の加熱を行い、SnTaCu合金を溶製した。使用したSn粉末、Ta粉末およびCu粉末の粒度はいずれもマイナス325メッシュであった。
【0067】
溶製したSnTaCu合金をプレス加工により板状にし、次いで平ロールにより厚さ100μmのシートに加工した。このシートを直径1.2mmのNb芯材のまわりに6回巻き付けたものを7本つくり、これら7本の捲回体を外径10mm内径7.3mmのNb-4atom%Taシース管のなかに挿入して組み込み、複合体とした。
【0068】
この複合体を溝ロール加工により所定長さの長尺物品とし、さらに線引加工(引き抜き加工)により最終的に直径1.4mmの線材とした。なお、本実施例では線材の溝ロールおよび線引加工中において中間焼鈍を行わなかった。このようにして得た線材を800℃×80時間の条件で熱処理した。
【0069】
(評価)
図9は、本実施例の多芯線材の横断面を拡大して示す顕微鏡写真である。熱処理後の線材の断面を光学顕微鏡により観察した結果、7本のNb芯材の周囲およびNb-4atom%Taシース管の内側にそれぞれ厚いNb3Sn層が生成されていることを確認できた。顕微鏡視野内で測定したところ、生成Nb3Sn層の厚みは30〜50μmの程度であった。
【0070】
この線材を4.2K、20テスラの垂直磁界中で臨界電流Icを測定したところ250Aとなり、線材の単位断面積当りの臨界電流密度Jcは約1.6×104A/cm2であった。
【0071】
[実施例4]
実施例4として、実施例1と同様のシートJR法を用いて第1の基材がSnTiCu合金である線材を作製した。その作製方法について以下に述べる。
(線材の作製)
Tiを25原子%含むCu-Ti母合金を粉砕し、マイナス325メッシュのSn粉末と調合して、Sn90質量%(81.89原子%)、Ti2質量%、Cu8質量%の組成の混合粉末を作製した。
【0072】
この混合粉末を石英るつぼに装入し、真空雰囲気中において800℃×10時間の加熱を行い、SnTiCu合金を溶製した。この合金をプレス加工により板状とし、次いで平ロールにより厚さ100μmのシートに加工した。このSnTiCu合金シートを厚さ100μmのNbシートと重ね合わせ、直径1.2mmのNb芯材のまわりに10回巻き付けて捲回体とした。この捲回体を外径8mm内径5.5mmのNb-1.1atom%Tiシース管のなかに挿入して組み込み、複合体とした。
【0073】
この複合体を溝ロールにより1.5×1.5mm角に加工した後、平ロール加工により厚さ0.8mm、幅2.5mmの平角線材に圧延した。なお、本実施例では線材の溝ロールおよび線引加工中において中間焼鈍を行わなかった。このようにして得た線材を800℃×80時間の条件で熱処理した。
【0074】
(評価)
この線材を4.2K、20テスラの垂直磁界中で臨界電流Icを測定したところ345Aとなり、線材の単位断面積当りの臨界電流密度Jcは約1.7×104A/cm2であった。
【0075】
【表1】
Figure 0004193194
【0076】
【表2】
Figure 0004193194
【0077】
【発明の効果】
以上説明したように、本発明の方法で作製された線材は、1GHzNMR分析装置に必要な23.5テスラの磁界の発生を達成しうる可能性を示したので、従来法で作製された線材と比較して格段に高いJc磁界特性が得られ、蛋白質の構造解析などに必要なNMR分析装置、クリーンなエネルギー源として期待される核融合、冷凍機直冷型超伝導マグネットなどの幅広い分野に応用することができる。
【0078】
また、本発明によれば、TaとSnの合金あるいは金属間化合物を作製し、さらにこれをシース材に充填するため粉末に粉砕する工程を省略することができるので、線材作製コストが大幅に削減されるとともに、望ましい組成の芯材を容易に作製することができる。その結果、4.2Kで23テスラ、2.1Kで25テスラの磁界を発生しうる、インパクトの大きい超伝導線材を容易に提供することができる。なお、超伝導線材を磁界発生に実用する際には、Ic を線材全断面積で除した臨界電流密度Jc が1×104 A/cm2 以上あることが望ましい。
【0079】
また、本発明によれば、Sn中にMが分散した可塑性に優れたSn−M合金とNb又はNb合金との複合体を線材に加工した後に反応熱処理するので、従来の粉末コア法よりも加工しやすく、また均一性に優れた線材を提供することができる。このように本発明方法により製造された線材は可塑性に富むものであるため、極細多芯線材の製造などが可能となり、工業的な利用価値が極めて高く、実用的である。
【0080】
また、本発明の方法は、従来のブロンズ法において必要とされていた多くの中間焼鈍を省略することができるので、製造コストを大幅に低減することができる。
【0081】
さらに、本発明によれば、少量のCuの添加によりNb3Sn層を生成する反応が促進されるので、最終熱処理温度を低下させ、製造コストを低く抑えることができる。
【0082】
また、さらに本発明によれば、水素化物を出発物質として微細なM粒子をSn中に均一に分散させることができるので、従来よりもさらに超伝導特性に優れた線材を提供できるとともに、実用上好ましい極細多芯形式の線材を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る超伝導線材の製造方法(ジェリーロール法)の概要を示すブロック工程図。
【図2】超伝導特性{臨界電流Ic(左縦軸),線径1.35mm臨界電流密度Jc(右縦軸)−磁界(横軸)特性}を示す特性線図。
【図3】超伝導特性{臨界電流Ic(左縦軸),線径1.35mm臨界電流密度Jc(右縦軸)−磁界(横軸)特性}を示す特性線図。
【図4】超伝導特性(臨界電流密度Jc−磁界特性)について本発明方法で作製した実施例サンプルと従来法で作製した比較例サンプルとを比べて示す特性線図。
【図5】本発明の他の実施形態に係る超伝導線材の製造方法の概要を示す工程図。
【図6】粉体原料の粒径分布を示す棒グラフ。
【図7】超伝導特性{臨界電流Ic(左縦軸),臨界電流密度Jc(右縦軸)−磁界(横軸)特性}を示す特性線図。
【図8】超伝導特性{臨界電流Ic(左縦軸),臨界電流密度Jc(右縦軸)−磁界(横軸)特性}を示す特性線図。
【図9】本発明方法を用いて製造された極細多芯線材の横断面を示す顕微鏡写真。
【符号の説明】
2…第1の基材(Sn-Mシート)
3…第2の基材(Nbシート)
4…芯材(Nb棒)
5…複合体(Sn-M/Nb捲回体)
6…外筒(Nb-Taチューブ)

Claims (8)

  1. Ta,Ti,Hfからなる群より選択される一種又は二種以上の金属MとSnとの混合体をSnの融点以上1200℃以下の温度域で溶製することにより70原子%以上81.89原子%以下のSnを含む可塑性を有する合金を含む第1の基材を得る工程と、
    前記第1の基材とNbまたはNb系合金からなる第2の基材とを交互に積層して複合体を作製する工程と、
    前記複合体を線材に加工する工程と、
    前記線材を熱処理する工程と、を具備することを特徴とするNb3Sn超伝導線材の製造方法。
  2. 前記Mは、Ta,Ti,Hfからなる群より選択される一種又は二種以上の金属を水素化した金属水素化物であることを特徴とする請求項1記載の方法。
  3. 前記第1の基材はさらに第3の元素が添加されて前記第2の基材との複合加工性が改善されたものであり、前記第3の元素はBi,In,Sb,Mg,Ag,Zn,Al,Ge,Si,Pbからなる群より選択される一種又は二種以上の元素からなることを特徴とする請求項1または2のいずれか1項記載の方法。
  4. 前記第1の基材は、Cuを0.5乃至30原子%含有することを特徴とする請求項1乃至3のうちのいずれか1記載の方法。
  5. 前記第2の基材は、Ta,Ti,Hfからなる群より選択される一種又は二種以上の金属を含有するNb合金であることを特徴とする請求項1乃至4のうちのいずれか1記載の方法。
  6. 前記複合体作製工程において、前記第1の基材または前記第2の基材のうちのいずれか一方と実質的に同じ組成の芯材を用いて、前記第1の基材と前記第2の基材を交互に重ね合わせて前記芯材の周囲に捲回することを特徴とする請求項1乃至5のうちのいずれか1記載の方法。
  7. 前記第2の基材は、Ta,Ti,Hfの群から選択される一種又は二種の元素を20原子%以下含有するNb合金からなることを特徴とする請求項1乃至6のうちのいずれか1記載の方法。
  8. Cuマトリックス内に請求項1乃至7のいずれかの方法で得られた複合体を充填し、この複合体を線材に加工後熱処理することを特徴とする方法。
JP2003083323A 2003-03-25 2003-03-25 Nb3Sn超伝導線材の製造方法 Expired - Lifetime JP4193194B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003083323A JP4193194B2 (ja) 2003-03-25 2003-03-25 Nb3Sn超伝導線材の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003083323A JP4193194B2 (ja) 2003-03-25 2003-03-25 Nb3Sn超伝導線材の製造方法

Publications (2)

Publication Number Publication Date
JP2004296124A JP2004296124A (ja) 2004-10-21
JP4193194B2 true JP4193194B2 (ja) 2008-12-10

Family

ID=33398829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003083323A Expired - Lifetime JP4193194B2 (ja) 2003-03-25 2003-03-25 Nb3Sn超伝導線材の製造方法

Country Status (1)

Country Link
JP (1) JP4193194B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4742843B2 (ja) * 2005-12-14 2011-08-10 日立電線株式会社 Nb3Sn超電導線用芯線、Nb3Sn超電導線及びその製造方法
EP3650568A1 (de) * 2018-11-06 2020-05-13 Bernd Spaniol Niob-zinn legierung und verfahren zur ihrer herstellung
CN113192685A (zh) * 2021-04-26 2021-07-30 福建师范大学 一种高载流密度、低损耗的Nb3Al前驱体线材及其制备方法
CN113192686A (zh) * 2021-04-26 2021-07-30 福建师范大学 一种改良型Nb3Al前驱体线材及其制备方法

Also Published As

Publication number Publication date
JP2004296124A (ja) 2004-10-21

Similar Documents

Publication Publication Date Title
US7018954B2 (en) Processing of magnesium-boride superconductors
US20050163644A1 (en) Processing of magnesium-boride superconductor wires
JP4034802B2 (ja) 超電導線材製造用NbまたはNb基合金棒およびNb3Sn超電導線材の製造方法
Glowacki Niobium aluminide as a source of high-current superconductors
Kumakura et al. Superconducting Properties of Diffusion-Processed Multifilamentary ${\rm MgB} _ {2} $ Wires
Banno Low-temperature superconductors: Nb3Sn, Nb3Al, and NbTi
JP4193194B2 (ja) Nb3Sn超伝導線材の製造方法
Chen et al. Ag Doping Effect on the Superconductivity of Nb 3 Al Prepared Using High-Energy Ball Milling Method
Tsapleva et al. The Materials Science of Modern Technical Superconducting Materials
JP3945600B2 (ja) Nb 3 Sn超伝導線材の製造方法
Flukiger et al. Composite core Nb/sub 3/Sn wires: preparation and characterization
US6376099B1 (en) CU-containing NB3A1 multifilamentary superconductive wire and process for producing the same
JP3778971B2 (ja) 酸化物超電導線材およびその製造方法
JPWO2021024529A1 (ja) Nb3Sn超伝導線材用前駆体、その製造方法、および、それを用いたNb3Sn超伝導線材の製造方法
JP2916382B2 (ja) Nb3 Sn超電導体の製造方法
Peter Superconductor: Wires and cables: Materials and processes
Tachikawa et al. High-field performance and structure of (Nb, Ta)/sub 3/Sn superconductors produced by Ta-Sn core
JP2007027089A (ja) 銅包含物を含む超伝導エレメント及び複合材料及びその製造方法
JPH06158212A (ja) Nb3Al系超電導導体とその製造方法、並びにNb3Al系超電導前駆組成物、並びに高磁界発生用超電導マグネット
Fischer et al. Fabrication of Bi-2223 tapes
Suenaga Understanding properties and fabrication processes of superconducting Nb3Sn wires
JP4009167B2 (ja) 粉末法Nb▲3▼Sn超電導線材
Kikuchi et al. Nb/sub 3/(Al, Ge) multifilamentary wires made by the rapidly-heating/quenching process
JP2007258112A (ja) Nb基化合物超伝導線材の製造方法
JP4771037B2 (ja) Nb3Sn超伝導線材の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080912

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4