JP3998602B2 - 超伝導フィルタ - Google Patents

超伝導フィルタ Download PDF

Info

Publication number
JP3998602B2
JP3998602B2 JP2003143868A JP2003143868A JP3998602B2 JP 3998602 B2 JP3998602 B2 JP 3998602B2 JP 2003143868 A JP2003143868 A JP 2003143868A JP 2003143868 A JP2003143868 A JP 2003143868A JP 3998602 B2 JP3998602 B2 JP 3998602B2
Authority
JP
Japan
Prior art keywords
coupling
resonant
elements
resonance
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003143868A
Other languages
English (en)
Other versions
JP2004349966A (ja
Inventor
浩之 福家
喜昭 寺島
史彦 相賀
六月 山崎
博幸 加屋野
龍典 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003143868A priority Critical patent/JP3998602B2/ja
Priority to US10/849,472 priority patent/US7215225B2/en
Publication of JP2004349966A publication Critical patent/JP2004349966A/ja
Priority to US11/717,100 priority patent/US7411475B2/en
Application granted granted Critical
Publication of JP3998602B2 publication Critical patent/JP3998602B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • H01P1/20327Electromagnetic interstage coupling
    • H01P1/20354Non-comb or non-interdigital filters
    • H01P1/20372Hairpin resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • H01P1/20327Electromagnetic interstage coupling
    • H01P1/20354Non-comb or non-interdigital filters
    • H01P1/20381Special shape resonators

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、超伝導フィルタに係り、特に、超伝導高周波フィルタにおける共振素子の結合の改良に関する。
【0002】
【従来の技術】
無線または有線で情報を通信する通信機器には、主要部品として高周波フィルタが組み込まれている。この高周波フィルタは、所望の周波数帯のみを取り出すとの機能を有することから、通信機器にとっては、機能上重要な構成要素とされている。通信機器において、周波数を有効に利用し、省エネルギーで通信機器を動作させるためには、このフィルタには、減衰特性に優れ、挿入損失が小さいことが要求されている。このような要求に応えるフィルタを構成するためには、高いQ値の共振素子が必要とされる。近年、高いQ値の共振素子を実現する一つの方法として、共振素子を構成する導体に、表面抵抗のきわめて小さい材料である高温超電導体を用いることが提案されている。
【0003】
超伝導薄膜で作られる高周波フィルタの構造では、基板上にマイクロストリップラインなどの分布定数回路で半波長共振素子等が形成されている。これら共振素子は、通常、多段に配置され、空間的に互いに結合されている。
【0004】
高周波フィルタにおいては、互いに共振素子が空間的に電磁界結合されてフィルタ特性が定まることから、共振素子が配置される相対位置を定めることがフィルタの一般的な設計方法とされている。即ち、強い結合が必要な場合には共振素子間が狭くなるように、また、弱い結合が必要とされる場合には共振素子間が広くなるように共振素子が配置されるようにフィルタが設計されている。
【0005】
典型的なフィルタ構造として知られるチェビシェフ関数型フィルタは、互いに隣接する共振素子間の電磁界結合のみを利用してフィルタが構成されている。このチェビシェフ関数型フィルタでは、各共振素子が直線状に配置される等の構造が採用され、各共振素子は、互いに隣接する共振素子以外の共振素子に対して比較的大きな距離に保たれ、不必要な結合が比較的発生し難い構造に形成されている。
【0006】
他方、減衰極によってスカート特性を急峻化し、また、群遅延特性を平坦化するために、ある共振素子が隣接する共振素子以外の共振素子に意図的に結合(飛び越し結合と称する。)させた構造の疑似楕円関数型のフィルタが非特許文献1で知られている。この非特許文献1には、空間的な結合を用いる隣接結合及び飛び越し結合を形成する方法が開示されている。
【0007】
非特許文献2には、隣接する共振素子の結合には空間的な結合が用いられ、飛び越し結合には、結合用伝送線路が用いられる方法が開示されている。この文献2に開示された従来技術では、共振素子が直線状に配列され、隣接する共振素子以外の共振素子は、比較的離れて配置されている。
【0008】
【非特許文献1】
IEEE Transactions on Microwave Theory and Techniques、第47巻(1999年)、第1656頁
【0009】
【非特許文献2】
IEEE Microwave Theory and Techniques Symposium Digest (2000年)、第661頁
【0010】
【発明が解決しようとする課題】
チェビシェフ関数型フィルタでは、互いに隣接する共振素子以外の共振素子に対して比較的大きな距離に保たれ、不必要な結合が比較的発生し難い構造を有している。しかし、共振素子間の距離は、有限の値であり、隣接する共振素子以外の素子間の結合は、ゼロにはなり得ず、隣接する共振素子以外の素子間の結合によって、実際のフィルタ特性が所望のフィルタ特性からずれた特性となってしまう問題がある。即ち、本来の所望の特性を得るために設計された共振素子の配置は、再度の設計或いは調整が必要であるとされている。
【0011】
非特許文献1に開示された空間的な結合を用いて隣接結合及び飛び越し結合を形成する方法では、飛び越し結合を作ろうとするために、本来は無関係な共振素子同士が接近し、その結果、それらの間に不必要な結合が発生するという問題がある。
【0012】
非特許文献2に開示される隣接する共振素子の結合には、空間的な結合が用いられ、飛び越し結合には、結合用伝送線路が用いられる。この方法においては、互いに隣接する共振素子以外の共振素子に対して比較的大きな距離に保たれ、不必要な結合が比較的発生し難い構造を有している。しかし,隣接する共振素子以外の共振素子間の距離は、なお有限の値であり、隣接する共振素子以外の素子間の結合は、ゼロにはなり得えない。従って、このような構造のフィルタにおいては、実際のフィルタ特性が所望のフィルタ特性からずれた特性となってしまう問題がある。即ち、本来の所望の特性を得るために設計された共振素子の配置は、再度の設計或いは調整が必要であるとされている。
【0013】
この発明は、上述したような事情に鑑みなされたものであって、その目的は、超電導フィルタにおいて、共振素子間での不必要な結合を遮断し、所望の結合のみを得ることが可能な超電導フィルタを提供するにある。
【0014】
【課題を解決するための手段】
この発明によれば、
基板と、
前記基板上に設けられた入出力用線路と、
前記入出力用線路間に配置され、空間結合又は直接結合によって互いに結合する共振素子と、
前記基板上に設けられ、直接結合する共振器間に直接結合を発生させるための結合用伝送路と、
前記基板上に設けられ、いかなる任意の3つの前記共振素子間における空間的結合を2つ以下に限定する金属導体部と,
を具備し、前記金属導体部が前記基板の厚さの10乃至20倍の高さを有することを特徴とする超電導フィルタが提供される。
【0015】
【発明の実施の形態】
以下図面を参照して、この発明の実施の形態に係る超伝導フィルタを説明する。
【0016】
図1は、この発明の実施形態に係る超伝導フィルタの基本的な構造を概略的に示す断面図である。
【0017】
この図1に示される共振器は、超伝導マイクロストリップ線路共振器であって、基板2の上面にその共振器のパターン4及び共振器のパターン4の両側に励振線8−1、8−2が設けられ、この基板2の下面には、薄膜6、例えば、Y系銅酸化物超伝導膜のYBCO薄膜が形成されている。この基板2は、例えば、その直径が約50mm、その厚さが0.43mmで、その比誘電率が例えば、約10のMgOで作られている。共振器のパターン4は、励振線8−1、8−2間の領域に配置されている。この共振器のパターン4及び励振線8−1、8−2等も同様に薄膜、例えば、Y系銅酸化物超伝導膜のYBCO薄膜で形成されている。基板2の下面薄膜6は、接地されている。
【0018】
ここでは、マイクロストリップ線路構造におけるストリップ線路が所定の形状に形成されている共振器を例にして説明するが、平面型伝送線路構造であれば何れの形態にあっても良く、下記構造を適用することができる。例えば、ストリップ構造及びコプレーナ構造等におけるストリップ線路にあっても下記に述べるような共振器のパターン構造を採用することができる。
【0019】
図2は、図1に示される超伝導フィルタの基本的な回路パターンの一例を示している。この図2に示される回路パターンは、基板2上に形成された入出力用線路31,32、共振素子11〜16、結合用伝送線路21、22、23、24及び隔壁41,42から構成されている。隔壁41,42は、入出力用線路31,32、共振素子11〜16及び結合用伝送線路21、22、23、24が薄膜として形成されるに対して隔壁41,42は、これらに比べて十分な厚みを有し、これら入出力用線路31,32、共振素子11〜16及び結合用伝送線路21、22、23、24に比べてある程度の高さを有して仕切板としての機能を有することとなる。この仕切板(隔壁)の高さは、通常は基板の厚さの10倍ないし20倍である。尚、図1では、この隔壁は、図面を簡略化するために省略していることに注意されたい。
【0020】
これら,隔壁を除く,回路パターンを構成する各部は、上述したように基板3上で厚みを有して形成されるが、基板3の厚みに比べて十分に小さいことから、この回路パターンは、実質的には平面的な空間内に実質上平面的に形成されているとみなすことができる。
【0021】
図2に示す回路パターンにおいては、基板2上に入出力用線路31,32が対向して形成され、この間に略コ字形(丸みのないU字形)に形成された第1〜第6の共振素子(所謂ヘアピン型半波長共振素子)11〜16がその開口部を同一方向に向けて互いに略平行に配列されている。これら共振素子11〜16は、例えば、共振周波数が1.93GHzであり、各共振素子の線路幅は、例えば、約0.4mmで、その全長が約30mmで形成される。
【0022】
共振素子11〜16は、各共振素子11〜16に対して結合されるべき被結合共振素子11〜16が定められ、また、この被結合共振素子11〜16は、直接結合される直接結合共振素子11〜16及び空間的に結合されるべき共振素子11〜16に分類されている。また、共振素子11〜16は、各共振素子11〜16に対して隣接する共振素子11〜16であっても空間的な結合が阻止されるべき共振素子11〜16が定められている。
【0023】
即ち、図2に示すように第2及び第3の共振素子12、13間及び第4及び第5の共振素子14、15間には、互いに隣接するこれらの共振素子12、13及び共振素子14、15が空間的に結合することを阻止する金属導体の隔壁41,42が夫々設けられ、隔壁41,42は、これら共振素子12、13及び共振素子14、15の空間的結合を阻止する為にこれら共振素子12、13、14、15が基板2上の平面内においてには互いに直接対向されないようにこれらの全長よりも長く延出されている。ここで、平面内において直接対向されないとは、素子の大きさに比較して十分に小さい共振素子の厚み程度である略平面と見なされる基板2上の平面的空間が介在物、即ち、金属導体の隔壁41,42によって分離され、その夫々の分離された平面的空間内に配置されていることを意味している。これら共振素子11〜16は、隔壁41,42によって隔てられた互いに空間的に結合する第1グループの第1及び第2の共振素子11、12、第2グループの第3及び第4の共振素子13、14及び第3グループの第5及び第6の共振素子15、16に区分されている。
【0024】
ここで、金属導体の隔壁を設けずに空間的な電磁界結合を無視できるほど小さくするためには、共振素子間の距離を、共振素子の線路幅の50倍以上あける必要がある。着目した共振素子から共振素子の線路幅の50倍以上離れた共振素子と、着目する共振素子との間では、実質的な電磁界結合が生じていないと見なすことができることが実験的に確認されている。従って、各共振素子に着目すると、空間的に電磁界結合されるべき共振素子以外の共振素子であって空間的電磁界結合が阻止されるべき共振素子は、着目する共振素子から共振素子の線路幅(W)の50倍以内の範囲(L=50W)内にあるものに限られ、この共振素子を対象とし着目する共振素子から空間的な電磁界結合を阻害するように金属導体の隔壁を設けることが必要とされる。
【0025】
互いに空間的結合が阻止されている第2の共振素子12及び第3の共振素子13、第4及び第5の共振素子14及び共振素子15、第2の共振素子12及び第5の共振素子15、並びに第1の共振素子11及び第6の共振素子16は、それぞれ結合用伝送線路21、22、23、24で連結されている。ここで、連結とは、伝送線路による連結に限られず、連結された2個の共振素子間に電磁界結合が生ずるような構造であれば何れの構造が採用されても良く、結合用伝送線路と共振素子とが必ずしも連続している必要はなく、その間に結合用の要素が介在されても良い。線路31及び32は、入出力用の線路であって、外部の素子又は線路と接続される。
【0026】
尚、図2に示される回路パターンにおいては、ヘアピン型半波長共振素子11〜16が直線状に並列されているが、共振素子11〜16は、必ずしも一直線上に並んでいる必要はなく、また、開口部を一方向に揃える必要もない.
図3は、この超伝導フィルタが所望の特性を示すために必要な共振素子間の結合を表した概念図である。共振素子11、12、15、及び16は、隣接配置に伴う空間的結合以外に飛び越し結合され、共振素子12及び15は、夫々3箇所の結合先である共振器11,13,15及び共振器12,14,16に結合されている。
【0027】
図1の回路パターンにおいては、共振素子11と共振素子12、共振素子13と共振素子14、共振素子15と共振素子16はそれぞれ空間的な電磁界結合によって結合されている。共振素子12と共振素子13、共振素子14と共振素子15、共振素子12と共振素子15、共振素子11と共振素子16は、結合用伝送線路21,22,23によって結合されている。結合用伝送線路21,22,23は、夫々連結した二つの共振素子間のみに結合を生じさせ、伝送線路21,22,23によって連結されない他の共振素子には結合を生じさせない。また、各共振素子は、隔壁によって2個一組に隔離されているために、ある共振素子が空間的に直接対向される共振素子は1個しかなく、共振素子11と共振素子12、共振素子13と共振素子14、共振素子15と共振素子16のような直接的に隣接している共振素子結合以外には空間的な電磁界結合は発生されない。
【0028】
さらに、共振素子12は、結合用伝送線路21、23によって夫々共振素子13,15に接続される。二つの共振素子間を結合用伝送線路を用いて結合させる場合、結合の強さは、主として伝送線路を共振素子に接続する場所によって決まる。伝送線路の両端をそれぞれの共振素子の全長の中央部に接続した場合に結合がゼロとなり、端部へ接続点をずらすに従い結合量は大きくなる。即ち、特定の値の結合量を得る場所は、共振素子の中央点からある特定の距離だけ離れた点であり、中央から両側にあって合計2点存在する。共振素子12が共振素子13と所望の結合を得るための結合用伝送線路を接続する位置(すなわち共振素子12の全長の中央点CPから接続点までの距離)は、共振素子12が共振素子15と所望の結合を得るための結合用伝送線路を接続する位置とほとんど同じであったが、それぞれの接続位置を共振素子の中央点CPから左右に振り分けることで結合用伝送線路が重なることなく配置可能である。共振素子15についても同様に結合用伝送線路が重なることなく配置可能である。従って、結合用伝送線路22、23が交差したり,接続点が重なったりすることがないように配置することができる。
【0029】
このように、1つの共振素子に関しては、結合用伝送線路を用いた結合では,その結合の強さが同程度であっても、最大2つを接続することができ、回路パターンの構成に応じて1つの共振素子に2個以内(0個を含む。)の結合用伝送線路22、23を接続することができる。
【0030】
このように、図2に示される回路パターンを有する超伝導フィルタにおいては、図3に示す所望の結合を理想的に実現することができる。この超伝導フィルタを70Kに冷却してマイクロは特性を測定したところ、中心周波数1.93GHz、通過バンド幅20MHz、リップル0.1dB以下、挿入損失0.1dB以下となり、所望のフィルタ特性が得られることが確認されている。
【0031】
尚、図1及び図2は、マイクロストリップライン構造のフィルタを示しているが、平面型伝送線路構造であればどのような構造に適用されても良く、既に述べたように、例えば、ストリップライン構造或いはコプレーナ構造などにも適用可能である。
【0032】
また、共振素子は半波長共振素子を例示しているが、必ずしも半波長共振素子にかぎられるものでないことは明らかである。
【0033】
さらにまた、基板は、MgOに限らず、LaAlO3基板、サファイア基板等があげられる。また、良質なY系銅酸化物超伝導膜を得るために、基板と超伝導膜の間にはバッファ層を設けても良い。バッファ層としては、CeOあるいはYSZ等がある。
【0034】
Y系銅酸化物超伝導膜の形成法としては、スパッタリング法、レーザー蒸着法、CVD法などがある。超伝導膜の厚さは、約500nmが適当であり、リソグラフィー法を用いて、形成した超電導膜の片面を加工して超伝導フィルタとすることができる。また、裏面は超電導膜のまま、接地面としても良い。超伝導フィルタは、金メッキした銅製の台に固定して入出力線に接続される。電気的接触をよくするために接地面や入出力線を接続する箇所に金薄膜を形成してもよい。
【0035】
以下、種々の回路パターンの実施例について説明する。
【0036】
実施例1
図3に示されるような共振素子間の結合を実現するためのパターンとして、図4に示されるような形態であっても良い。この実施例では、共振素子13と共振素子14の間にも金属導体の隔壁43が設けられ、共振素子13と共振素子14とは、空間的な結合に関しては孤立され、結合用伝送線路25によって互いに結合されている。既に述べたように隔壁43は、共振素子13及び共振素子14が互いに基板平面上で直接対向されないようにその全長よりも長く延出されている。
【0037】
この実施例1にあっても、ある共振素子が直接空間を介して対向される共振素子は、少なくとも1個、即ち、1個又は0個であり、不必要な空間的な電磁界結合は発生されない。また、共振素子に接続される結合用伝送線路の数は、2個以下であるので、結合用伝送線路の接続点が重なるような問題もない。このように、図4のパターンの超伝導フィルタにおいては、図3に示す所望の結合が理想的に実現される。このような構成の超伝導フィルタを70Kに冷却してマイクロは特性を測定したところ、中心周波数1.93GHz、通過バンド幅20MHz、リップル0.1dB以下、挿入損失0.1dB以下となり、所望のフィルタ特性が得られることが確認されている。
【0038】
実施例2
図3に示すような共振素子間の結合を実現するためのパターンとして、図5に示されるような形態が採用されても良い。第2の共振素子12は、線路幅の50倍以内の範囲内において、この第2の共振素子12に隣接する第1の共振素子11及び第3の共振素子13に基板平面上で直接対向され、第2の共振素子12と第1の共振素子11及び第2の共振素子12と第3の共振素子13とは、空間的な電磁界結合によって結合されている。しかし、互いに隣接する第1の共振素子11及び第3の共振素子13については、その間に金属の隔壁41が設けられ、第1の共振素子11と第3の共振素子13とは、空間的に結合されない。第4から第6の共振素子14、15、16についても同様に第5の共振素子15は、線路幅の50倍以内の範囲内において、この第5の共振素子15に隣接する第4の共振素子14及び第6の共振素子16に基板平面上で直接対向され、第5の共振素子15と第4の共振素子14及び第5の共振素子15と第6の共振素子16とは、空間的な電磁界結合によって結合されている。しかし、互いに隣接する第4の共振素子14及び第6の共振素子16については、その間に金属の隔壁42が設けられ、第4の共振素子14と第6の共振素子16とは、空間的に結合されない。
【0039】
さらに、第1から第3の共振素子11、12、13の群(グループ)及び第4から第6の共振素子14、15、16の群(グループ)の間には、金属の隔壁43が設けられ、互いにて基板平面上においては、直接対向されず、空間的に結合されない。
【0040】
共振素子11と共振素子16、共振素子12と共振素子15、共振素子13と共振素子14とは、それぞれ結合用伝送線路24、23、25によって結合されている。図5に示すように何れの共振素子11〜16においても、接続されている結合用伝送線路は、既に述べた実施例と同様に2個以下であって接続位置に関する問題は生じない。このように、図5に示すパターンの超伝導フィルタにおいては、図3に示す所望の結合が理想的に実現され、所望のフィルタ特性が得られる。
【0041】
ところで、図5に示すパターンでは、結合用伝送線路が共振素子に接続する接続部が左右で対称になっているパターン(共振素子13と共振素子14との結合)と、非対称になっているパターン(共振素子12と共振素子15との結合など)がある。一般に、結合には、容量的な結合と磁気的な結合の2種類があり、必要に応じて使い分ける場合がある。結合用伝送線路を用いて結合をとる場合、共振素子に接続する位置が左右で対称か非対称かで容量的な結合と磁気的な結合を作り分けることができる。図5に示されるパターンにあっては、何れの共振素子においても、接続されている結合用伝送線路は1個であり、共振素子に接続する位置を対称または非対称のいずれにすることも可能である。このように、共振素子に接続されている結合用伝送線路が1個の場合には、容量的な結合と磁気的な結合とを作り分ける必要がある場合に有用である。
【0042】
実施例3
図3に示すような共振素子間の結合を実現するためのパターンとして、図6に示されるような形態であっても良い。共振素子11〜16において、線路幅の50倍以内の範囲内において、空間的な電磁界結合によって結合されている互いに隣接する共振素子の組を形成している。共振素子12及び共振素子15は、空間を介して基板2上の平面内において互いに直接対向される共振素子がそれぞれ2個ずつ存在する。しかし、隔壁41、42、43が基板上の平面内に設けられることによって、隣接する共振素子は、基板上で互いに分離され、空間的な電磁界結合が実質的に阻害される。即ち、共振素子11及び共振素子13は、基板上で互いに隣接する関係に配置されているが、隔壁41によって基板2上の平面的空間内において互いに分離され、空間的な電磁界結合が実質的に阻害される。同様に、共振素子14及び共振素子16は、基板上で互いに隣接する関係に配置されているが、隔壁42によって基板2上の平面的空間内において互いに分離され、空間的な電磁界結合が実質的に阻害されている。また、共振素子11〜13の群(グループ)と共振素子14〜16の群(グループ)とは、隔壁43によって基板2上の平面的空間内において互いに分離され、空間的な電磁界結合が実質的に阻害されている。尚、共振素子13及び共振素子14についても、空間を介して基板2上の平面内において互いに直接対向される共振素子がそれぞれ2個ずつ存在(夫々共振素子12及び共振素子14が相当し、共振素子13及び共振素子15が相当する。)する。
【0043】
共振素子11と共振素子16、共振素子12と共振素子15間は、結合用伝送線路23、24によっての飛び越し結合されている。何れの共振素子においても、接続されている結合用伝送線路は、2個以下であって接続位置に関する問題は生じない。このように、図6に示されるパターンの超伝導フィルタにおいては、図2に示す所望の結合が理想的に実現され、所望のフィルタ特性が得られる。
【0044】
この実施例では、結合用伝送線路の数が2個と少なくなっている。結合用伝送線路の長さは、共振素子の共振周波数に相当する波長λの1/4または3/4の長さに定められることが好ましい。所望の超伝導フィルタの中心周波数が低くなると波長は長くなり、中心周波数が1GHzになると、MgO基板上での共振素子の共振周波数に相当する波長は100mm以上にもなる。このとき結合用伝送線路の長さも、1/4の場合で25mm、3/4の場合では75mmにもなる。超伝導フィルタは、低温に冷却して機能させることを考えると、素子サイズはコンパクトであるほど都合が良い。また、製造コストの観点でもコンパクトなほうが有利である。図3に示されるような共振素子間の結合を実現するためのパターンは、図2〜図6などに例示されている。特に、図6のように結合用伝送線路の数が少ないパターンでは、素子サイズはコンパクトになり冷却効率や製造コストの観点で有効である。
【0045】
また、所望の超伝導フィルタの中心周波数が低くなると波長は長くなるため、共振素子の長さは長くなる。共振素子を細かく折り曲げた方が、コンパクトにレイアウトできるため、冷却効率や製造コストの点で有利である。一般に、結合用伝送線路を共振素子に接続する位置は、共振素子の全長の中央点から全長の数%程度の距離である。従って、素子を細かく折り曲げる場合は、結合用伝送線路を接続しやすくするために、共振素子の全長の中央点から左右に全長の数%程度の距離の部分を外側に露出させるように折り曲げることが好ましい。即ち、共振素子には、結合用伝送線路に接続する為にその全長の中央点から互いに反対方向に全長の数%程度の延出部が設けられ、この延出部に結合用伝送線路が接続されることが好ましい。
【0046】
各共振素子11〜16は、図2及び図4に示すようにコ字形状或いは図5及び図6に示すような開口部を有する多角形状に限らず、図7〜図10に示すように様々な形状で形成されても良い。図7においては、共振素子の線路セグメントが折り曲げられて逆T字形状に形成され、図8においては、共振素子の線路セグメントが折り曲げられて梯子形状に形成されている。図7及び図8に示す形状は、中心線に関して左右対称であることから、その共振素子の線路セグメント長の中心位置CPは、中心線上に設けられる。これに対して、図9及び図10に示す形状は、中心線に関して左右非対称であることから、その共振素子の線路セグメント長の中心位置CPは、中心線上から偏奇して設けられる。対称な形状の共振素子においては、2つの結合用伝送線路を接続することができるように結合用伝送線路が接続される延出部は、中央点から左右に全長の数%程度の距離で延出され、その延出部が結合用伝送線路に接続する為に共振素子の外方に配置されていれば良いこととなる。これに対して、非対称な形状の共振素子においては、1つの結合用伝送線路を接続することができれば良いように結合用伝送線路が接続される延出部は、中央点から左右の一方に延出され、その距離が全長の数%程度で、その延出部が結合用伝送線路に接続する為に共振素子の外方に配置されていれば良いこととなる
以上の実施例では、共振素子を6個並べた超伝導フィルタを例に挙げたが、他の段数のフィルタついても適用できることはいうまでもない。もちろん、共振素子の数は偶数個或いは奇数個のいずれであっても良い。図11には、第1〜第11の共振素子11〜20で構成される超伝導フィルタの例が示されている。このフィルタにおいては、10個の共振素子11〜20は、5つの群(グループ)の共振素子11〜20に分けられ、これらの群(グループ)の共振素子11〜20は、金属製の隔壁43〜46によって分離され、各群(グループ)の共振素子11〜20は、互いに空間的に結合され、異なる群(グループ)の共振素子11〜20は、結合用伝送線路24〜28によって結合されている。
【0047】
以上の実施例では、図3、図5及び図6に示されるように共振素子間の結合の概念図が中央を対称軸として左右に対称になるように構成されているが、必ずしも対称でなくとも良い。また、入出力部分と共振素子との結合は、両者が離れて結合しているいわゆるギャップ励振と呼ばれる結合の方式をとっているが、この方法に限定されることはなく、両者が直接つながっているいわゆるタップ励振などの方式でもよい。
【0048】
実施例4
図12に示されるように、4つの結合先を持つ共振素子13を含むような共振素子間の結合を実現するためのパターンとして、図13に示すような共振素子の配置例がある。共振素子13は、共振素子12及び共振素子14に空間的に結合されると共に共振素子11及び共振素子15に結合用伝送線路21、22によって結合されている。図13に示される配置では、前述した実施例と同様に、本来不必要な空間的な電磁界結合は、金属製の隔壁41、42、43によって遮断され、また結合用伝送線路21、22は、1つの共振素子11、13、15には2個以下しか接続されず、接続に関する問題も生じない。このように図13に示されるパターンの超伝導フィルタにおいても、図12に示す所望の結合が理想的に実現されて、所望のフィルタ特性が得られる。
【0049】
同様に、5つ以上の結合先を持つ共振素子を含むような場合でも、共振素子に接続される結合用伝送線路は、2個以下であって、ある共振素子に隣接する共振素子が複数ある場合でも、その共振素子は、基板上の平面空間で分離して配置することができ、所望の結合を理想的に実現することが可能であり、所望のフィルタ特性を実現することができる。
【0050】
実施例5
図14は、ある共振素子12の周囲に3個の共振素子11が隣接し、これらが空間的結合されているパターンの例を示している。このパターンは、図15に示す結合の概念図を実現するためのパターンに相当している。図14に示されるように、共振素子12の周囲に3個の共振素子11,13,14が隣接し、これらが空間的結合されている場合にあっても、共振素子12以外の他の共振素子11,13,14は、金属製の隔壁41、42、43によって互いに空間的に結合されず、不必要な空間的な電磁界結合が阻止されている。また、共振素子11,13は、結合用伝送線路21によって結合され、共振素子13,14は、結合用伝送線路22によって結合され、共振素子11,14は、結合用伝送線路23によって結合されている。このような回路パターンにあっても、各共振素子に接続されている結合用伝送線路は2個以下であり、接続点に関する問題は生ぜず、所望の結合が理想的に実現可能であり、所望のフィルタ特性が実現できる。
【0051】
同様に、ある共振素子に対して空間的に結合先とされる共振素子が4個以上ある場合においても、共振素子に接続される結合用伝送線路は2個以下となる。このように、ある共振素子が空間的に結合される共振素子が複数ある場合にあっても、その共振素子同士が互いに空間的に結合することができない配置が可能で、所望の結合が理想的に実現可能であり、所望のフィルタ特性を実現することができる。
【0052】
【発明の効果】
以上述べてきたように、本発明によれば、共振素子間での不必要な結合を遮断し、所望の結合のみを得ることが可能な超電導フィルタが提供される。また、この発明の実施例に係る超電導フィルタによれば、共振素子における結合用伝送線路の接続点が重複することのないように設定でき、且つ、このような超電導フィルタにおいては、所望の結合を理想的に実現することができ、所望のフィルタ特性を得ることが可能になる。
【図面の簡単な説明】
【図1】この発明の実施形態に係る超伝導フィルタの基本的な構造を概略的に示す断面図である。
【図2】この発明の実施形態に係る超伝導フィルタにおける共振素子並びに隔壁の配置及びその結合状態を示す概略的平面図である。
【図3】図2に示した超伝導フィルタにおいて所望の特性を得るために必要な共振素子間の結合を概念的に示す結線図である。
【図4】この発明の他の実施形態に係る超伝導フィルタにおける共振素子並びに隔壁の配置及びその結合状態を示す概略的平面図である。
【図5】図4に示した超伝導フィルタにおいて所望の特性を得るために必要な共振素子間の結合を概念的に示す結線図である。
【図6】この発明の更に他の実施形態に係る超伝導フィルタにおける共振素子並びに隔壁の配置及びその結合状態を示す概略的平面図である。
【図7】この発明の実施形態に係る超伝導フィルタにおける共振素子の形態の一例を概略的に示す平面図である。
【図8】この発明の実施形態に係る超伝導フィルタにおける共振素子の形態の変形例を概略的に示す平面図である。
【図9】この発明の実施形態に係る超伝導フィルタにおける共振素子の形態の他の変形例を概略的に示す平面図である。
【図10】この発明の実施形態に係る超伝導フィルタにおける共振素子の形態の更に他の変形例を概略的に示す平面図である。
【図11】この発明の更にまた他の実施形態に係る超伝導フィルタにおける共振素子並びに隔壁の配置及びその結合状態を概略的に示す平面図である。
【図12】この発明の変形実施形態に係る超伝導フィルタであって、4つの共振素子と結合している共振素子を有する超伝導フィルタにおいて、所望の特性を得るために必要な共振素子間の結合を概念的に示す結線図である。
【図13】図12に示した結線を実現する超伝導フィルタにおける共振素子並びに隔壁の配置及びその結合状態の一例を概略的に示す平面図である。
【図14】この発明の他の変形実施形態に係る超伝導フィルタであって、3つの共振素子と空間的に電磁結合している共振素子を有する超伝導フィルタにおける共振素子並びに隔壁の配置及びその結合状態を概略的に示す平面図である。
【図15】図14に示した超伝導フィルタにおいて所望の特性を得るために必要な共振素子間の結合を概念的に示す結線図である。
【符号の説明】
2...基板、4...共振器のパターン、6...薄膜、11〜20...共振素子、21〜28...結合用伝送線路、31、32...入出力用線路、41〜46...隔壁

Claims (4)

  1. 基板と、
    前記基板上に設けられた入出力用線路と、
    前記入出力用線路間に配置され、空間結合又は直接結合によって互いに結合する共振素子と、
    前記基板上に設けられ、直接結合する共振器間に直接結合を発生させるための結合用伝送路と、
    前記基板上に設けられ、いかなる任意の3つの前記共振素子間における空間的結合を2つ以下に限定する金属導体部と,
    を具備し、前記金属導体部が前記基板の厚さの10乃至20倍の高さを有することを特徴とする超電導フィルタ。
  2. 前記各共振素子に接続する結合用伝送路は2つ以下であることを特徴とする請求項1の超電導フィルタ。
  3. 前記共振素子は、マイクロストリップ線路或いはストリップ線路から形成されていることを特徴とする請求項1の超電導フィルタ。
  4. 前記共振素子の少なくとも1つは、前記結合用伝送路によってのみ他の共振素子と結合されていることを特徴とする請求項1の超電導フィルタ。
JP2003143868A 2003-05-21 2003-05-21 超伝導フィルタ Expired - Fee Related JP3998602B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003143868A JP3998602B2 (ja) 2003-05-21 2003-05-21 超伝導フィルタ
US10/849,472 US7215225B2 (en) 2003-05-21 2004-05-20 Superconductor filter
US11/717,100 US7411475B2 (en) 2003-05-21 2007-03-13 Superconductor filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003143868A JP3998602B2 (ja) 2003-05-21 2003-05-21 超伝導フィルタ

Publications (2)

Publication Number Publication Date
JP2004349966A JP2004349966A (ja) 2004-12-09
JP3998602B2 true JP3998602B2 (ja) 2007-10-31

Family

ID=33531514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003143868A Expired - Fee Related JP3998602B2 (ja) 2003-05-21 2003-05-21 超伝導フィルタ

Country Status (2)

Country Link
US (2) US7215225B2 (ja)
JP (1) JP3998602B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4886268B2 (ja) 2005-10-28 2012-02-29 株式会社東芝 高周波発振素子、ならびにそれを用いた車載レーダー装置、車間通信装置および情報端末間通信装置
JP4309902B2 (ja) 2006-05-24 2009-08-05 株式会社東芝 共振回路、フィルタ回路及びアンテナ装置
JP4769753B2 (ja) * 2007-03-27 2011-09-07 富士通株式会社 超伝導フィルタデバイス
JP6151071B2 (ja) * 2013-04-12 2017-06-21 株式会社東芝 フィルタおよび共振器
CN109786903B (zh) * 2019-03-29 2021-02-12 中国科学院微电子研究所 一种滤波电路及其形成方法
CN110197940B (zh) * 2019-06-13 2021-10-08 中国电子科技集团公司第二十九研究所 一种改进型发夹线滤波器及其操作方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3153209A (en) * 1962-06-18 1964-10-13 Julius A Kaiser Microwave filter utilizing two resonant rings and having terminals permitting use to band pass or band reject
US3754198A (en) * 1972-03-20 1973-08-21 Itt Microstrip filter
NL7314269A (nl) * 1973-10-17 1975-04-21 Philips Nv Microgolfinrichting voorzien van een 1/2 lambda resonator.
JPS5761313A (en) * 1980-09-30 1982-04-13 Matsushita Electric Ind Co Ltd Band-pass filter for ultra-high frequency
FR2613557A1 (fr) * 1987-03-31 1988-10-07 Thomson Csf Filtre comportant des elements a constantes reparties associant deux types de couplage
JPH01112801A (ja) * 1987-10-26 1989-05-01 Kokusai Electric Co Ltd 誘電体帯域フィルタ
US5537082A (en) * 1993-02-25 1996-07-16 Murata Manufacturing Co., Ltd. Dielectric resonator apparatus including means for adjusting the degree of coupling
KR0171021B1 (ko) 1995-12-22 1999-03-30 양승택 X-밴드용 섭동준 고리형 고온초전도 이중모드 5-극 대역통과 필터 및 그 제조방법
JP3379326B2 (ja) * 1996-02-20 2003-02-24 三菱電機株式会社 高周波フィルタ
US5801605A (en) * 1996-08-26 1998-09-01 Microphase Corporation Distributed TEM filter with interdigital array of resonators
JP2861975B2 (ja) 1996-11-01 1999-02-24 株式会社移動体通信先端技術研究所 平面型フィルタ素子
DE69723809T2 (de) * 1996-12-27 2004-04-15 Murata Mfg. Co., Ltd., Nagaokakyo Filtervorrichtung
JP3113842B2 (ja) * 1997-08-25 2000-12-04 株式会社移動体通信先端技術研究所 フィルタ
JP3929197B2 (ja) * 1999-03-17 2007-06-13 松下電器産業株式会社 高周波回路素子
JP2001102809A (ja) 1999-09-29 2001-04-13 Nec Corp マイクロストリップ超伝導フィルタ及びその調整方法
JP3610861B2 (ja) * 2000-01-31 2005-01-19 三菱電機株式会社 低域通過フィルタ
JP3766791B2 (ja) 2001-10-12 2006-04-19 シャープ株式会社 高周波フィルタ回路および高周波通信装置
JP3860559B2 (ja) * 2003-05-20 2006-12-20 株式会社東芝 帯域通過フィルタ

Also Published As

Publication number Publication date
JP2004349966A (ja) 2004-12-09
US20050007210A1 (en) 2005-01-13
US7215225B2 (en) 2007-05-08
US7411475B2 (en) 2008-08-12
US20070241842A1 (en) 2007-10-18

Similar Documents

Publication Publication Date Title
US7181259B2 (en) Resonator having folded transmission line segments and filter comprising the same
US7345557B2 (en) Multi-section coupler assembly
JP4309902B2 (ja) 共振回路、フィルタ回路及びアンテナ装置
US7764147B2 (en) Coplanar resonator and filter using the same
US7411475B2 (en) Superconductor filter
JP5575081B2 (ja) 共振素子、高周波フィルタ、無線システム
JP6490928B2 (ja) マルチバンドフィルタ
JP3926291B2 (ja) 帯域通過フィルタ
US6011983A (en) Band-pass filter apparatus using superconducting integrated nonradiative dielectric waveguide
JP2004260510A (ja) フィルタ回路
JP2009055576A (ja) 複数組の減衰極を有するフィルタ回路
JP3860559B2 (ja) 帯域通過フィルタ
JP6265460B2 (ja) デュアルバンド共振器及びそれを用いたデュアルバンド帯域通過フィルタ
EP1564834B1 (en) Microwave filter
JP2010081295A (ja) 共振器およびフィルタ
JP4113196B2 (ja) マイクロ波フィルタ
US7525401B2 (en) Stacked filter
WO2018203521A1 (ja) デュアルバンド共振器、及び、それを用いたデュアルバンド帯域通過フィルタ
JP3794688B2 (ja) 超伝導フィルタ
JP2002290117A (ja) コプレーナ線路型並列共振器及びそれを用いたコプレーナ線路型帯域通過フィルタ
KR100586324B1 (ko) 스커트 특성 조절이 용이한 극소형 고온초전도체 필터
JP2008042608A (ja) 帯域通過フィルタ
JP2002076706A (ja) フィルタ回路
CN110994113A (zh) 一种微波谐振器
JP2000068718A (ja) マイクロストリップライン装置の結合構造、高周波フィルタ、送受共用器および通信装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070312

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070606

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070807

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees