JP3942786B2 - 接合検査装置及び方法 - Google Patents

接合検査装置及び方法 Download PDF

Info

Publication number
JP3942786B2
JP3942786B2 JP2000025247A JP2000025247A JP3942786B2 JP 3942786 B2 JP3942786 B2 JP 3942786B2 JP 2000025247 A JP2000025247 A JP 2000025247A JP 2000025247 A JP2000025247 A JP 2000025247A JP 3942786 B2 JP3942786 B2 JP 3942786B2
Authority
JP
Japan
Prior art keywords
thickness
image
electronic component
ray
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000025247A
Other languages
English (en)
Other versions
JP2000352559A (ja
Inventor
勝 市原
規之 鈴木
昌治 辻村
一正 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000025247A priority Critical patent/JP3942786B2/ja
Publication of JP2000352559A publication Critical patent/JP2000352559A/ja
Application granted granted Critical
Publication of JP3942786B2 publication Critical patent/JP3942786B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えばフリップチップ、BGA(ボールグリッドアレイ)、CSP(チップスケールパッケージ)等のような電子部品であってその裏面に電極がある電子部品を含む表面実装部品の電極と、例えば回路基板のような被装着体に形成されている電極との間の接合状態をX線透視画像に基づき検査する、X線を用いた接合検査装置及び方法に関する。
【0002】
【従来の技術】
従来、透視型X線検査機を用いた実装検査方法としては、部品実装後の回路基板にX線を垂直に照射するように配置したX線発生器と、当該回路基板を透視したX線を検出するX線検出器とを用いて、回路基板及び回路基板上の電子部品を透視したX線を画像に変換して、該画像を目視検査、又は画像認識装置による自動検査にて、部品の電極と回路基板の電極との接合部の位置ずれ、電極間のショート、半田等の接合材の過不足やボイド、半田ボールの飛散や異物の混入等を検査していた。
【0003】
又、断層型X線検査機を用いた実装検査方法としては、部品実装後の回路基板にX線を斜めから照射するように配置したX線発生器と、当該回路基板を透視したX線を検出するX線検出器とを、それぞれ上記回路基板と平行な平面上で互いに同期して回転させ、上記回路基板の一定の高さに焦点を合わせてそれ以外の高さに位置する面を上記回転動作でぼかすことにより上記回路基板の水平断面画像を得て、両面実装基板の表側と裏側を個別に検査できるX線ラミノグラフィーと呼ばれる手法を用いたX線検査方法も実用化されている。
【0004】
【発明が解決しようとする課題】
近年、携帯情報機器等の電子機器の市場では、商品の小型、軽量化が求められており、電子機器を構成する回路基板に対しても小型、軽量化の要望が強くなっている。そのため、電子部品の裏面に電極を設けることによりパッケージサイズを小型化したBGA(ボールグリッドアレイ)や、それをさらに小型化して半導体ベアチツプと同じくらいの大きさにしたCSP(チップスケールパッケージ)などのパッケージ部品、さらにはパッケージ化されていない半導体ベアチップにおけるバンプ電極を介して回路基板上に直接実装するフリップチップ実装が広く採用されつつある。
【0005】
ところで、回路基板上への電子部品の実装では、電極接合部に不良があると電子機器が正常に動作しないので、接合不良のある回路基板はその製造工程のできるだけ早い段階で回収し、修理又は廃棄する必要がある。ところが、上述のBGA、CSPや、フリップチップでは、電極が電子部品の裏面にあるため実装後において電極接合部は外から見えないので、従来のリード付き電子部品のように電極接合部の外観検査ができないという問題があった。
そのため、電極接合部の不良は、電子機器が動作可能な状態まで組み立てられた後の機能検査によって初めて発見されており、実装不良のある回路基板に対しても無駄な組立工程を経る必要があった。このロスコストを削減するために、実装直後において上記電極接合部をX線を用いて非破壊で検査しようとする取り組みがなされており、電極接合部の3次元的形状検査が求められている。
【0006】
しかし、従来の技術では、検査箇所の材質やX線照射条件によりX線吸収係数が異なるため、単にX線画像の濃淡から検査箇所の高さ方向の形状を定量的に測定するということはできず、半田等の接合材の3次元的形状測定が困難であった。
又、物質を透視するX線量は物質の厚さに対して指数関数的に減衰する。よって、X線シンチレータから発せられる光をカメラで撮像してその画像濃淡により物質の厚さを測定する場合、撮像系における、画像の濃淡のダイナミックレンジと分解能の制限とにより、検査対象物の薄い部分では上記X線シンチレータの輝度が測定領域を越えてしまい、その結果、画像情報が欠落し、一方、検査対象物の厚い部分では検査対象物の厚みの変化量に対するX線画像の濃淡の変化量を正確に測定ができないという問題点があった。
【0007】
さらに、X線画像の電子増幅による粒子ノイズやX線焦点の大きさによる画像ぼけ等の影響で画像が不鮮明となるため、画像計測精度が劣化し、高精度な検査が困難であった。
又、上記透視型X線装置による両面実装基板の検査では、基板の表面の部品と裏面の部品が重なって写るため、通常の撮像方法及び認識方法で検査することが困難である。又、上述の断層撮影方法を用いた検査装置は、構造的に設備コストが高くなるという問題点があった。
本発明はこのような問題点を解決するためになされたもので、実装された電子部品の電極接合部のX線検査において、検査箇所の高さ方向を含む3次元形状を高精度で検査可能な接合検査装置及び方法を提供することを第1目的とし、検査箇所の輪郭形状の検査精度を従来に比べて向上可能な接合検査装置及び方法を提供することを第2目的とし、透視型X線装置を用いて両面装着後の被装着体の表面と裏面とをそれぞれ個別に検査可能な接合検査装置及び方法を提供することを第3目的とする。
【0008】
【課題を解決するための手段】
本発明の第1態様の接合検査装置は、電子部品の部品側電極と上記電子部品が装着される被装着体の被装着体側電極との接合部分に照射するX線を発生するX線発生器と、
上記接合部分を透過したX線を可視光に変換するX線シンチレータと、
上記X線シンチレータから送出された上記可視光にてなる上記接合部分のX線透視画像を撮像する撮像装置と、
上記接合部分の厚みとX線透視画像の明るさとの関係を示す第1較正情報を予め格納し、上記撮像装置から供給された上記接合部分のX線透視画像について上記第1較正情報を用いて上記接合部分における厚さ情報を生成し、さらに、上記第1較正情報に代えて又は上記第1較正情報とともに、各測定点における厚みと、上記測定点におけるX線透視画像の明るさが検出用明るさに達するまでに要する画像蓄積時間との関係を示した第2較正情報を格納し、上記撮像装置から供給された上記装着部分内の検査箇所における明るさが上記検出用明るさに到達するまでの時間を元に上記第2較正情報に基づいて上記検査箇所の厚さ情報を生成する制御装置と
を備えたことを特徴とする。
【0009】
上記第1較正情報は、上記部品側電極と上記被装着体側電極との上記接合部分と同じ材質にてなり複数の測定点において上記X線の透視方向に沿った厚みが互いに異なりかつそれぞれの上記厚みが既知である教示治具を用いて得られ、上記X線発生器、X線シンチレータ、及び撮像装置を用いて、上記被装着体及び電子部品に代えて上記教示治具をX線撮像して、上記各測定点におけるX線透視画像の明るさを求め、得られる各測定点の厚みと各明るさとの関係に基づいて上記接合部分の厚みとX線透視画像の明るさとの関係を示した情報であるように構成することもできる。
【0011】
又、本発明の第2態様の接合検査装置は、上記第1態様の接合検査装置において、上記X線発生器は、上記接合部分を含み上記被装着体上に上記電子部品が装着された装着部分にX線を照射し、
上記撮像装置は、上記装着部分のX線透視画像を蓄積する画像蓄積部を有し、上記制御装置は、上記X線透視画像の蓄積開始時において上記X線透視画像内の最も明るい部分の明るさが白色に到達するまで上記撮像装置に対して上記X線透視画像の蓄積を行わせるように構成することもできる。
【0012】
又、本発明の第3態様の接合検査装置は、上記第1態様又は第2態様の接合検査装置において、板状の上記被装着体の一方の面に装着される上記電子部品と他方の面に装着される上記電子部品との少なくとも一部が上記被装着体を間に挟んで互いに重なり合って配置される場合であって、上記一方及び他方の両面に装着されたそれぞれの上記電子部品における上記装着部分の上記厚さ情報を生成するとき、上記制御装置は、上記一方の面に装着された電子部品の上記接合部分の第1厚さ情報を求め、さらに両面にて重なり合って電子部品が装着されたところの上記接合部分について第2厚さ情報を求め、該第2厚さ情報から上記第1厚さ情報を減算して上記他方の面に装着された電子部品の上記接合部分の厚さ情報を求めるように構成することもできる。
【0013】
又、本発明の第4態様の接合検査方法は、電子部品の部品側電極と上記電子部品が装着される被装着体の被装着体側電極との接合部分にX線を照射し、
上記接合部分を透過したX線を可視光に変換して該可視光にてなる上記接合部分のX線透視画像を撮像し、
上記接合部分の厚みとX線透視画像の明るさとの関係を示す第1較正情報を用いて、上記接合部分のX線透視画像について上記接合部分における厚さ情報を生成し、さらに、上記第1較正情報に代えて又は上記第1較正情報と共に、各測定点における厚みと、上記測定点における明るさが検出用明るさに達するまでに要する画像蓄積時間との関係を示した第2較正情報を用いて、上記装着部分内の検査箇所における明るさが上記検出用明るさに到達するまでの時間を元に上記第2較正情報に基づいて上記検査箇所における厚さ情報を生成する、ことを特徴とする。
【0014】
【発明の実施の形態】
本発明の実施形態である接合検査装置、及び該接合検査装置にて実行される接合検査方法について、図を参照しながら以下に説明する。尚、各図において同じ構成部分については同じ符号を付している。
又、上記「課題を解決するための手段」に記載する「被装着体」の機能を果たす一例として本実施形態では電子部品104が装着される回路基板103を例に採るがこれに限定されるものではなく、例えば、電子部品104が装着される、液晶表示部を有する基板や、さらには電子部品104を装着する部品等を含む概念である。又、上記「課題を解決するための手段」に記載する「電子部品」としては、上述したように樹脂封止され裏面に電極を露出させたような電子部品や、パッケージ化されていない上記フリップチップ実装されるベアチップのような電子部品等を含む概念である。又、以下に記載する第1及び第2実施形態に記載する「電子部品104」として、上記BGA、CSP、フリップチップ等の表面実装部品を例に採る。
【0015】
第1実施形態;
図1に示すように、本実施形態の電極接合検査装置101は、大別してX線発生器111と、X線シンチレータ115と、撮像装置120と、制御装置121とを備える。又、上記撮像装置120は、カメラ117、及び該カメラ117が送出する撮像情報が供給される画像処理装置118から構成される。
上記X線発生器111は、電子部品104の裏面に形成された部品側電極と、該電子部品104が装着される回路基板103に形成された被装着体側電極との接合により回路基板103上に電子部品104が装着された装着部分151に照射するX線152を発生する。ここでX線の照射条件としては、約50kVから200kV程度の電圧を用い、本実施形態では、90kV、0.5mAを使用している。又、上記装着部分151へX線を照射するときの上記照射条件は、後述の教示治具125を使用して較正情報を得るときに使用した照射条件と同一の条件である。
尚、本実施形態では、X線152は上記装着部分151の範囲に照射されるが、少なくとも、上記部品側電極と上記被装着体側電極との接合部分の範囲に照射されれば良い。
上記X線シンチレータ115は、上記装着部分151を透過したX線を、該X線のX線強度に比例した光量を有する可視光に変換する。このとき、X線152は、透過した少なくとも一つの物質の厚みと、該物質におけるX線吸収係数に応じて減衰されるので、回路基板103及び電子部品104の上記装着部分115における各部分のX線減衰量に応じたX線透視画像がX線シンチレータ115に映し出される。よってX線シンチレータ115は、上記X線透視画像に対応して可視光を発生する。
【0016】
X線シンチレータ115から発した上記可視光は、ミラー116にて反射させてカメラ117に入射させる。このようにミラー116を設けるのは、X線の照射範囲外にカメラ117を配置しX線の直射によるカメラ116のダメージを避けるためである。
カメラ117にて撮像された上記装着部分151の画像は、画像処理装置118にて画像処理される。電子部品104の上記部品側電極と、回路基板103の上記被装着体側電極との接合部分には、一般的にX線の吸収率が高い鉛や錫等の重金属材料が使われることから、X線による透視画像に対応する上記可視光を画像処理することで、上記接合部分は、上記装着部分151内での上記接合部分の周辺部に比べて黒く表示される。よって、上記接合部分とその周辺部とを区別することができる。画像処理後の画像は、制御装置121及び表示装置の一例としてのモニタテレビ119に送出される。
【0017】
制御装置121は、上記X線発生器111、カメラ117、及び画像処理装置118に接続され、これらの動作制御を行うとともに、さらに、記憶装置122には、上記接合部分の厚みとX線透視画像の明るさとの関係を示す第1較正情報を格納し、撮像装置120の画像処理装置118から供給された上記装着部分のX線透視画像について上記第1較正情報を用いて装着部分151内の上記接合部分における厚さ情報を生成する。さらに、上記記憶装置122には、上記接合部分について良好な接続が行われた場合の上記接合部分における良品厚さ情報が格納されている。図6〜図8には、上記BGAタイプの電子部品104と回路基板103の接合部分の断面図を示し、図6には、電子部品104の上記部品側電極1041と、該電子部品104が装着される回路基板103に形成された被装着体側電極1031とが半田ボール1042及びクリーム半田1032にて正常に接合された、良品の場合が示され、図7にはクリーム半田1032が不足している場合が示され、図8には半田ボール1042とクリーム半田1032とが接合していない接触不良、いわゆるオープン不良の場合が示されている。上述した電極接合検査装置101にてX線による厚さ測定を行ったとき、図7の半田不足の場合には、半田ボール1042の周辺部分1033の厚さが上記良品の場合に比べて低くなり、又、図8の上記オープン不良の場合には、半田ボール1042の中心付近での厚さが上記良品の場合に比べて厚くなる。このように、制御装置121は、上記部品側電極1041と上記被装着体側電極1031との上記接合部分における厚みを上記画像の濃淡に基づき観察し、上記良品の場合の厚み情報と比較することで、該接合部分の接合の良否を判定する。
【0018】
ここで、上記第1較正情報とは以下のようにして求める。即ち、図3に示すような、上記部品側電極と上記被装着体側電極との上記接合部分に同じ材質にてなり例えば階段状やくさび状等の形状にてなり複数の測定点1251−1、1251−2、…を有する教示治具125であってその厚み方向である上記X線の透過方向1252に沿った厚みが互いに異なりかつ各厚みが既知である教示治具125を、上記X線発生器111、カメラ117、及び画像処理装置118を用いて撮像する。本実施形態では、教示治具125は、半田ボール1042と同一材質の材料にて作製されている。又、上記同一材質とは、X線の透過率が同一である材質をいい、具体的には材料成分及び該成分の含有量の両者が同一である材質をいう。又、教示治具125は9つの測定点1251−1〜1251−9を有するが、厚みの異なる測定点の数はこれに限定されるものではない。上記撮像により画像処理装置118から送出される画像1253は、図4に示すように上記測定点1251−1から1251−9に向けて、教示治具125の厚みが増加するに伴い、順次、画像濃度、本実施形態では白黒カメラを使用しているので白色の濃度値が段階的に減少していく。上述のように各測定点1251における教示治具125の厚みは判っているので、各測定点1251の厚み寸法と各測定点1251に対応する相対画像濃度値との関係に基づいて、横軸がX線透過物質の厚さ、縦軸が相対画像濃度を表す座標系にそれぞれの上記測定点1251の濃度値をプロットして各プロットを結ぶ近似曲線を作成し、図5に示す対数曲線1254を作成することができる。このようにして求まった上記対数曲線1254を表す情報が上記第1較正情報に相当する。又、該第1較正情報は、回路基板103上に電子部品104が装着された上記装着部分151の上記接合部分を検査する前に制御装置121の上記記憶装置122に格納されている必要があるが、その格納方法は、検査開始前に実際に上記教示治具125を使用して上記第1較正情報を得て格納してもよいが、実際的には、予め求めた上記第1較正情報を記録した例えばフロッピーディスク等の記録媒体から供給してもよいし、又、通信回線を使用して供給する方法等、公知の方法を採ることができる。 又、上記画像濃度を示す画像全体の各画素毎に、上記対数曲線1254を使って変換すればX線透視画像を厚さを表す画像に変換することもできる。
【0019】
このように構成される電極接合検査装置101における動作を以下に説明する。
検査対象である、回路基板103上に電子部品104が装着された上記装着部分151に対してX線発生器111からX線152を照射して、上記装着部分151を透過した画像情報に対応してX線シンチレータ115から送出される可視光をカメラ117にて撮像する。カメラ117にて撮像されたX線透視画像は画像処理装置118に送出され画像処理が行われ、処理後の画像は、制御装置121へ送出される。制御装置121は、上記第1較正情報と、上記処理後の画像における上記相対画像濃度とに基づいて、上記装着部分151の内、特に上記接合部分の厚み情報を生成し、さらに、該厚み情報と上記良品の場合の厚み情報とを比較して、各接合部分の接合の良否を判断する。
【0020】
上述したように、上記第1較正情報を使用することで、検査箇所である上記装着部分151について、回路基板103及び電子部品104の厚み方向に沿った高さ方向を含んだ3次元形状にて高精度で検査することが可能となる。
【0021】
第1変形例;
上述した電極接合検査装置101の変形例として以下の構成を採ることもできる。
本変形例では、上記カメラ117に代えて、図9に示す画像蓄積型のカメラ1171を使用する。X線を用いた非破壊検査では、検査対象に入射したX線の強度と検査対象を透過した後のX線強度の関係は、I=I0exp(−μx)、にて表される。ここで、Iは透過X線の強度、I0は入射X線の強度、μはX線が透過した物質の吸収係数、xは当該X線が透過する物質の厚み、である。上記画像蓄積型のカメラ1171は、長時間露光可能なシャッター機構1172と、撮像画像を蓄積可能な、画像蓄積部に相当する画像メモリ1173とを有し、微弱な光量の撮像対象部分、言い換えるとX線透過量が少ない撮像対象部分でも、長時間露光を行うことにより、上記相対画像濃度を引き上げることができる。
【0022】
X線シンチレータ115は、透過したX線の強度に比例して発光するので、同一の検査条件、検査対象物にて上記画像蓄積時間を変化させた場合、撮像により得たX線透視画像の上記相対画像濃度と透過物質の厚さとの関係は、図10に示すようなグラフで表される。尚、この図10に示すような関係を測定するときにも、上述した教示治具125を使用することができる。又、図11には、例えばX線発生器111から照射されるX線152の強度を強、中、低と変化させた場合において、上記相対画像濃度と画像蓄積時間との関係が示されている。同一の相対画像濃度を得ようとしたとき、当然ながら、X線152の強度が最も強い場合(グラフ161)、上記画像蓄積時間が最も短く、次に上記強度が中程度の場合(グラフ162)が次に短く、上記強度が最も低い程度の場合(グラフ163)が最も長くなる。
【0023】
図14〜図18を参照して、画像蓄積時間の違いによる上記相対画像濃度の変化を説明する。尚、図14〜図17は、上記接合部分の内の一つの部分における、上記画像処理装置118から送出された上記処理済画像を示し、上記接合部分に相当する画像164と、上記接合部分の周辺部分の画像165と、測定ライン166とを示している。又、図14は、上記画像蓄積時間が1秒の場合の画像であり、図15は4秒の場合であり、図16は8秒の場合であり、図17は16秒の場合の画像である。図18の(a)〜(d)は、図14〜図17の各測定ライン166に対応しており、各測定ラインにおける輝度を示すグラフであり、図18の(a)〜(d)における横軸は、測定ライン166に沿った座標値、具体的には画素数を表しており、縦軸は輝度値、具体的には本実施形態では0〜255階調を示している。
【0024】
図14における画像蓄積時間が1秒の場合では、画像蓄積時間が短すぎる為に全体に画像が暗く、図18の(a)に示すように、接合部分の画像164とその周辺部分の画像165との境界が明確に識別できない。図15における画像蓄積時間が4秒の場合でも、図18(b)に示すように上記画像164と上記画像165とのコントラストは十分でない。図16における画像蓄積時間が8秒の場合、図18(c)に示すように上記画像165の上記相対画像濃度がカメラ1171のダイナミックレンジの最大値に達して、上記画像164と上記画像165とのコントラストが最大になり、上記接合部分の大きさや形状の判定に最適な画像となる。後述のように、画像蓄積開始から上記相対画像濃度がカメラ1171のダイナミックレンジの最大値に達するまでの時間が登録され、登録された蓄積時間にて撮像を行うことで、常に図18の(c)に近い相対画像濃度で検査を行うことが可能となる。一方、図17における画像蓄積時間が16秒の場合、図18(d)に示すように上記画像165の上記相対画像濃度がカメラ1171のダイナミックレンジの最大値を超えてしまうことから、上記接合部分の画像164の大きさが実際より小さくなり、上記接合部分の正確な形状判定ができなくなる。
【0025】
このような画像蓄積型のカメラ1171を有する電極接合検査装置における動作は、大きく分けて、画像蓄積時間決定動作と検査動作とに分けられる。
上記画像蓄積時間決定動作は、検査対象物に最適な画像蓄積時間を求める動作である。つまり、図12に示すように、ステップ(図内では「S」にて示す)1では、検査対象物の、電子部品104を装着した回路基板103を当該電極接合検査装置にセットし、上記装着部分151に対してX線発生器111からX線を照射する。ステップ2では、カメラ1171のシャッター機構1172にてシャッターを開き、X線シンチレータ115から発せられミラー116を介して供給されるX線透視画像の蓄積を開始する。
ステップ3〜ステップ5にて、制御装置121は画像処理装置118から一定時間毎に供給される処理済画像に基づいて、上記X線透視画像におけるコントラストが最大になるまでコントラストの判定を繰り返す。ここで、コントラストが最大になるとは、X線透視画像の蓄積を開始した時点で上記X線透視画像内の最も明るい部分が、本実施形態では上記相対画像濃度の最大値、つまり白色に達した時点にてコントラストが最大になったものと判断する。尚、上記コントラストが最大になった判断としては、上記X線透視画像内の最も明るい部分が上記相対画像濃度の最大値に達した時点に限定するものではなく、例えば上記最も明るい部分が上記相対画像濃度のある設定値に到達した時点とすることもできる。又、上記最も明るい部分とは、撮像した上記X線透視画像内の最も明るい画素をいう。上記図14〜図17に示す例の場合、X線透視画像の蓄積を開始した時点で上記X線透視画像内の最も明るい部分は、図14に示す上記画像165に対応する。よって、該画像165が上記相対画像濃度の最大値に到達した時点である図16に示される時点にてコントラストが最大になったものと判断される。
上記コントラストが最大になったと判断されたならば、制御装置121は、ステップ6にて上記X線152の照射を停止し、ステップ7にてX線透視画像の蓄積開始からコントラストが最大になるまでに要した時間を登録する。
【0026】
上記検査動作では、上記画像蓄積時間決定動作にて用いた検査対象物と同一若しくは同程度の、電子部品104を装着した回路基板103が当該電極接合検査装置に搬入され、ステップ8にて上記装着部分151に対してX線発生器111からX線を照射する。ステップ9では、カメラ1171のシャッター機構1172にてシャッターを開き、X線シンチレータ115から発せられミラー116を介して供給されるX線透視画像の画像メモリ1173への蓄積を開始する。次に、ステップ10では、制御装置121は、カメラ1171に対して上記ステップ7で登録された画像蓄積時間にわたり画像蓄積を続けさせた後、ステップ11にて画像処理装置118から処理済画像の供給を受け、ステップ12でX線の照射を停止する。そして制御装置121は、ステップ13では、上述したように予め格納している上記良品厚さ情報と上記処理済画像との比較を行うことで検査箇所である上記接合部分の良否判定を行う。
【0027】
以上説明したように本変形例によれば、回路基板104の接合部分を含む画像の中で撮像開始時に最も明るい部分がカメラ1171のダイナミックレンジの最大値に一致するまで画像蓄積時間を制御するように構成した。これにより、接合部分とそれ以外の背景部分とのコントラストが最大になり上記接合部分の輪郭形状がより鮮明になる。よって、上記接合部分の輪郭形状の検査精度を向上することができる。
【0028】
第2変形例;
又、上述のように画像蓄積が可能なカメラ1171を使用した場合には、以下のような変形例を構成することもできる。
即ち、同一の検査条件、検査対象物にて上記画像蓄積時間を変化させることで得られる、上記図10に示すような、撮像により得たX線透視画像の上記相対画像濃度と透過物質の厚さとの関係に基づいて、図19に示すように、画像蓄積時間を横軸に、透過物質の厚さを縦軸に取って、相対画像濃度値が例えば50に達するまでの、透過物質の厚さと画像蓄積時間との関係を表すグラフを作成することができる。
制御装置121の上記記憶装置122に、上記第1較正情報に代えて、又は上記第1較正情報とともに、上述の画像蓄積時間と透過物質の厚さとの関係を示した第2較正情報を格納する。尚、上記画像蓄積時間を定めるときの上記相対画像濃度値は上述の50に限定されるものではなく、画像蓄積時間から透過物質の厚さを求めるのに、各検査対象に応じて適切となる検出用明るさに対応する値であればよい。尚、上記第2較正情報を得るために、例えば上記教示治具125を用いることもできる。即ち、教示治具125の各測定点1251について、各測定点1251の厚みは既知であるから、所望の厚みの測定点1251における上記相対画像濃度値が例えば50に到達するまでの時間を求めることで、上記第2較正情報を得ることができる。
このような第2較正情報を使用することで、制御装置121は、画像処理装置118から供給される処理済画像内の任意の厚さ検査したい箇所について、上記相対画像濃度が例えば50に達するまでの画像蓄積時間を測定することで、検査対象物における上記処理済画像内の上記任意の厚さ検査箇所における透過物質の厚さを求めることができる。
【0029】
上記第2較正情報を使用した場合における、上記接合部分の良否判定動作は図20に示す動作にて実行される。
ステップ21では、電子部品104を装着した回路基板103が当該電極接合検査装置に搬入され、上記装着部分151に対してX線発生器111からX線を照射する。ステップ22では、カメラ1171のシャッター機構1172にてシャッターを開き、X線シンチレータ115から発せられミラー116を介して供給されるX線透視画像の蓄積を開始すると同時に、ステップ23ではカメラ1171の画像メモリ1173への画像蓄積時間の測定を開始する。
【0030】
次に、ステップ24〜ステップ26にて、X線透視画像の画像蓄積と、該X線透視画像内において厚さ測定を行いたい任意の厚さ検査箇所における上記相対画像濃度の値が設定値、例えば上記50に到達したか否かの判定を繰り返す。上記相対画像濃度が上記設定値に到達したならば、制御装置121は、ステップ27にてX線透視画像の蓄積開始から上記設定値到達までの画像蓄積時間を測定し、ステップ28にてX線の照射を停止する。次に、制御装置121は、ステップ29にて、ステップ27にて求めた上記画像蓄積時間を元に、上記第2較正情報を使用して上記厚さ検査箇所における厚さを求める。そしてステップ30にて、制御装置121は、上記厚さ検査箇所における厚さと、予め記憶装置122に格納した、良品の場合において上記厚さ検査箇所に対応する箇所の基準厚さとを比較し、検査箇所である上記厚さ検査箇所の良否判定を行う。
【0031】
以上説明したように本変形例によれば、X線透視画像の画像蓄積時間を制御できるカメラを使用して、厚さ測定を行う上記厚さ検査箇所の画像濃度が所定の値になるまでX線透視画像を蓄積し、当該蓄積時間から測定箇所の厚さを求めるようにしたことから、検査箇所の厚さを測定する際に、接合部分の厚さが大きく変化しても上記蓄積時間を変化させることで厚さ測定の分解能を最大にすることができ、よって検査精度を従来に比べて向上させることができる。
【0032】
第3変形例;
さらに上記制御装置121は、上述のような機能に代えて又は上述の機能に付加するようにして、以下のような機能を実行するように構成することもできる。即ち、上述した各例では、画像処理装置118から供給される処理済画像に基づいて上記接合部分の上記厚みを求めたが、本例では、上記処理済画像を元に回路基板103に装着されている電子部品104の位置ズレを求める。以下に具体的に説明する。
上記部品位置ズレの自動検査は以下のように行われる。まず、回路基板103に形成された上記被装着体側電極のNC座標データと、回路基板103に形成されている2つの補正マークのNC座標データとを、予めCADデータ等から制御装置121の記憶装置122に格納しておく。尚、上記NC座標データとは、どの部品を回路基板上のどの位置にどの順番で装着するか等の部品装着動作に関する情報であるNCプログラム内に含まれる、上記被装着体側電極や補正マークの座標データであり、例えば当該電極接合検査装置101に設定された座標系における原点を基準として得られる絶対的な座標データである。
当該電極接合検査装置101に、電子部品104装着済の回路基板103が搬入された後、上述のX線撮像により画像処理装置118から得られる処理済画像に基づき上記2つの補正マークの位置を認識し、上記搬入によるX、Y方向及び回転方向の位置ズレ量を求める。さらに、当該位置ズレ量から回路基板103の上記被装着体側電極における上記NC座標データを補正し、補正後の上記被装着体側電極の補正NC座標データと、上記処理済画像から求めた電子部品104の部品側電極の実際の位置データとのズレ量を求めることにより行う。
【0033】
さらに図21、22を参照して上記部品位置ズレの検査方法を説明する。図21において、ステップ41では、検査対象であり電子部品104装着済の回路基板103が当該電極接合検査装置101に搬入された後、上記装着部分151にX線が照射される。図1では、電子部品104の全体を網羅してX線152が照射されている図示となっているが、一般的には、X線152の照射範囲は電子部品104の全範囲よりも狭い。よって、次のステップ42では、図22に示す補正マーク1034へ上記照射範囲を移動させるため、X,Y方向への移動装置131又は移動装置132にて回路基板103又はX線発生器111を移動させる。次のステップ43にて、制御装置121は画像処理装置118から供給される上記処理済画像に基づき補正マーク1034の実際の位置を求める。同様に、ステップ44にて、補正マーク1035へ移動し、ステップ45にて制御装置121は補正マーク1035の実際の位置を求める。次に、ステップ46にて、制御装置121は、補正マーク1034及び補正マーク1035の上記NC座標データと上記実際の位置データとから、補正マーク1034及び補正マーク1035の位置ズレ量を求め、該位置ズレ量に基づき、回路基板103上の各被装着体側電極1036の位置を求める。
次に、ステップ47にて、検査対象の接合部分の位置へ移動し、ステップ48にて、画像処理装置118からそれぞれの部品側電極1043の位置を認識する。次にステップ49にて、制御装置121は、求めたそれぞれの部品側電極1043の位置データを元に、下記の数1に示す計算式に基づいて電子部品104の位置ずれ量を求める。ステップ50でX線の照射を停止した後、ステップ51にて、部品側電極1043と上記被装着体側電極1036とが互いに外れることなく接合しているか否かの良否判定を行う。
【0034】
【数1】
Figure 0003942786
【0035】
ここで、dXP:X方向の電子部品の位置ズレ量、dYP:Y方向の電子部品の位置ズレ量、dθP:回転方向の電子部品の位置ズレ量、xki:検出されたそれぞれの上記部品側電極のX座標、yki:検出されたそれぞれの上記部品側電極のY座標、xni:それぞれの上記部品側電極のNC座標データにおけるX座標、yni:それぞれの上記部品側電極のNC座標データにおけるY座標、n:電極数、である。又、上記回転方向の電子部品の位置ズレとは、図22に示す部品中心1044を回転中心とした電子部品104の回転量であって、上記NC座標データ上の電子部品104の位置に対する実際の電子部品104の位置とズレ量である。
【0036】
以上説明したように本変形例によれば、複数の上記被装着体側電極に対応する複数の部品側電極の位置ずれ方向、及び位置ずれ量の各平均値から電子部品104の水平方向の位置ずれ量と回転方向の位置ずれ量とを求めるように構成した。よって、電子部品の実装位置ずれ量を高精度に計測することが可能となる。
【0037】
第2実施形態;
上述の第1実施形態における電極接合検査装置101は、回路基板103の片面に電子部品104を装着したものに対して検査を行う装置である。一方、該第2実施形態では、図23に示すように、上述した電極接合検査装置101からなら2台の電極接合検査装置101Aと電極接合検査装置101Bとについて、上記電極接合検査装置101Aに備わり、上記制御装置121に相当する制御装置121Aと、上記電極接合検査装置101Bに備わり、上記制御装置121に相当する制御装置121Bとを接続する。そして回路基板103の両面に電子部品104を装着したものに対して上記接合部分の接合検査を可能とする電極接合検査装置201である。該電極接合検査装置201は、概略、以下のように動作する。
【0038】
即ち、電子部品の両面実装工程において、回路基板の一方の面をA面、他方の面をB面としたとき、最初に行われるA面実装工程では片面のみに電子部品が実装されているので、上述の第1実施形態の電極接合検査装置101にて上記接合部分についてX線を用いた検査が可能である。しかし、該回路基板を反転して上記B面に電子部品を実装すると上記A面にも実装部品が存在することから、X線透視画像では上記A面とB面が重なった画像となり、そのままでは検査が困難になる。
そのため、上記A面のX線透視画像を基板反転に合わせて画像を反転し、上記B面のX線透視画像から前記A面の反転画像を減算することによりB面のみの画像を抽出して検査する。このとき、上記A面、B面の上記X線透視画像の上記相対画像濃度は透過物質の厚さの対数関数で表されるので、単純に両者を減算してもB面だけの画像を抽出することはできない。そのため、上記画像の減算は、X線透視画像を対数変換して作成した、厚さに関する画像により行う。又、A面画像とB面画像とを対応させる為に、回路基板にバーコード等にて識別情報である基板IDを印刷しておき、上記A面の撮像を行う電極接合検査装置で読み取った基板IDと、撮像したA面における上記厚さ画像とを一緒にして、上記B面の撮像を行う電極接合検査装置に送信する。該B面の電極接合検査装置では、検査対象基板から読み取った基板IDと上記A面の電極接合検査装置から送られた上記基板lDが一致したとき、B面の電極接合検査装置にて得た厚さ画像から上記A面の電極接合検査装置にて得た厚さ画像を減算して接合検査を行う。
【0039】
以下、図24を用いて上記接合検査動作について説明する。
回路基板103のA面に装着された電子部品104の接合部分を検査するA面検査工程において、ステップ61にて、上記A面に電子部品104を実装した回路基板103を搬入し、ステップ62にてX線を上記B面側から照射する。次にステップ63にて制御装置121Aは画像処理装置118からX線透視画像の供給を受け、ステップ64にて制御装置121Aは、上記X線透視画像の相対画像濃度について透過物質の厚さの対数関数で表されているのを、厚さの関数に変換して接合部分を検査する。ステップ65では、変換した上記厚さの関数にて表された、第1厚さ情報に相当する画像情報と当該回路基板のID(識別情報)とを、回路基板103のB面に装着された電子部品104の接合部分を検査する電極接合検査装置101Bに送信し、ステップ66でX線照射を停止する。ステップ67では、生産を続行するかどうかの判断を行い、続行するときにはステップ61に戻ってステップ61〜67を繰り返す。
又、上記電極接合検査装置101Aによる検査後、回路基板103は、部品実装機へ搬送され、B面側に電子部品104が装着される。
【0040】
一方、回路基板103のB面に装着された電子部品104の接合部分を検査するB面検査工程では、ステップ68にて、予め上記電極接合検査装置101Aから上記第1厚さ情報と上記基板IDを受信し、電極接合検査装置101Bの制御装置121Bの記憶装置122に記憶しておく。次に、ステップ69では、B面側にも電子部品104が装着されて両面に電子部品104が装着された回路基板103が電極接合検査装置101Bに搬入される。ステップ70にて、A面側からX線が照射される。次にステップ71にて、制御装置121Bは画像処理装置118からA、B両面に装着されている電子部品104のX線透視画像の供給を受ける。ステップ72では、制御装置121Bは、上記制御装置121Aと同様に当該X線透視画像を第2厚さ情報に相当する厚さ画像情報に変換した後、上記電極接合検査装置101Aから供給された、同じ基板IDを有する回路基板103の上記第1厚さ情報を反転、つまり厚さの高、低が逆転するようにして、減算することによりB面に装着された電子部品104の接合部分のみの厚さ情報を抽出する。
次に、ステップ73では、制御装置121Bは、抽出された上記厚さ情報に基づきB面に装着された電子部品104の接合部分を検査した後、ステップ74でX線照射を停止する。ステップ75では生産を続行するかどうかの判断を行い、続行するときにはステップ68に戻ってステップ68〜75を繰り返す。
【0041】
以上説明したように本第2実施形態によれば、両面実装後の回路基板におけるX線透視画像の上記第2厚さ情報から、表面のみ実装した後の回路基板におけるX線透視画像の上記第1厚さ情報を減算することで、回路基板の裏面の接合部分を検査する機能を有するように構成した。よって、透過型X線装置を用いて両面実装後の回路基板の表面と裏面とに実装された電子部品の接合部分をそれぞれ個別に検査することができる。
【0042】
上述の第1及び第2実施形態では、検査対象として、電子部品104の裏面に形成された部品側電極と、回路基板103に形成された被装着体側電極との接合部分を例に採っているが、これに限定されず、例えば複数の電子部品同士の接合部分を検査対象とすることもできる。
【0043】
【発明の効果】
以上詳述したように本発明の第1態様の接合検査装置、及び第4態様の接合検査方法によれば、制御装置を備え、被装着体と電子部品との装着部分のX線透視画像について第1較正情報を用いて上記装着部分内の接合部分における厚さ情報を生成するようにした。ここで上記第1較正情報は、被装着体と電子部品との接合部分に同じ材質にてなりX線の透視方向に沿った厚みが互いに異なりかつ各厚みが既知である複数の測定点を有する教示治具を用いて得られた上記接合部分の厚みとX線透視画像の明るさとの関係を示す情報である。よって、上記装着部分について、上記被装着体及び電子部品の厚み方向に沿った高さ方向を含んだ3次元形状にて高精度で検査することが可能となる。
【0044】
又、本発明の第2態様の接合検査装置によれば、画像蓄積が可能な撮像装置を備えることで、上記X線透視画像の蓄積開始時に最も明るい部分が白色に到達するまで画像蓄積時間を制御するように構成した。これにより、上記接合部分とそれ以外の背景部分とのコントラストが最大になり上記接合部分の輪郭形状がより鮮明になる。よって、上記接合部分の輪郭形状の検査精度を向上することができる。
【0045】
又、本発明の第3態様の接合検査装置によれば、被装着体の表裏両面に電子部品が装着された被装着体におけるX線透視画像の第2厚さ情報から、上記表裏面の一方の面のみに装着した後の上記被装着体におけるX線透視画像の第1厚さ情報を減算することで、上記被装着体の上記表裏面の他方の面に装着された電子部品の接合部分を検査するように構成した。よって、透過型X線装置を用いて上記被装着体の両面に実装された電子部品の接合部分をそれぞれ個別に検査することができる。
【図面の簡単な説明】
【図1】 本発明の第1実施形態における電極接合検査装置の構成を示す図である。
【図2】 図1に示す電極接合検査装置にて教示治具を撮像した状態を示す図である。
【図3】 図2に示す教示治具の斜視図である。
【図4】 図2に示す電極接合検査装置にて教示治具を撮像したときのX線透視画像を示す図である。
【図5】 図1に示す電極接合検査装置にて作成した第1較正情報を説明するためのグラフである。
【図6】 回路基板と電子部品との接合部分であって良品の場合を示す断面図である。
【図7】 回路基板と電子部品との接合部分であって半田不足の場合を示す断面図である。
【図8】 回路基板と電子部品との接合部分であって接続不良の場合を示す断面図である。
【図9】 図1に示す電極接合検査装置に備わるカメラ部分の変形例を示す図である。
【図10】 図9に示すカメラにて画像蓄積時間を変化させた場合において、相対画像濃度と透過物質の厚さとの関係を示すグラフである。
【図11】 発光体の輝度を変化させた場合において、相対画像濃度と画像蓄積時間との関係を示すグラフである。
【図12】 図9に示すカメラを使用して撮像を行う場合であって画像蓄積時間の設定動作を行うときの動作を示すフローチャートである。
【図13】 図9に示すカメラを使用して撮像を行う場合であって設定した画像蓄積時間にて撮像を行い接合部分の良否判定を行うときの動作を示すフローチャートである。
【図14】 図9に示すカメラを使用して撮像を行う場合であって画像蓄積時間が不足している状態の画像を示す図である。
【図15】 図9に示すカメラを使用して撮像を行う場合であって画像蓄積時間が不足している状態の画像を示す図である。
【図16】 図9に示すカメラを使用して撮像を行う場合であって画像蓄積時間が良好な状態の画像を示す図である。
【図17】 図9に示すカメラを使用して撮像を行う場合であって画像蓄積時間が超過している状態の画像を示す図である。
【図18】 (a)は図14に示す測定ラインに沿った位置と輝度との関係を示すグラフであり、(b)は図15に示す測定ラインに沿った位置と輝度との関係を示すグラフであり、(c)は図16に示す測定ラインに沿った位置と輝度との関係を示すグラフであり、(d)は図17に示す測定ラインに沿った位置と輝度との関係を示すグラフである。
【図19】 一定の相対画像濃度に達するまでの画像蓄積時間と、透過物質の厚さとの関係を示した第2較正情報を説明するためのグラフである。
【図20】 上記第2較正情報を使用して接合部分の良否判定を行う動作を示すフローチャートである。
【図21】 回路基板に装着された電子部品の位置ズレの検査動作を示すフローチャートである。
【図22】 回路基板に装着された電子部品が位置ズレ状態にある場合を示す図である。
【図23】 本発明の第2実施形態における電極接合検査装置の構成を示す図である。
【図24】 上記接合検査動作を示すフローチャートである。
【符号の説明】
101…電極接合検査装置、103…回路基板、104…電子部品、
111…X線発生器、115…X線シンチレータ、120…撮像装置、
121…制御装置、125…教示治具、
201…電極接合検査装置、
1173…画像蓄積部。

Claims (11)

  1. 電子部品の部品側電極と上記電子部品が装着される被装着体の被装着体側電極との接合部分に照射するX線を発生するX線発生器と
    上記接合部分を透過したX線を可視光に変換するX線シンチレータと
    上記X線シンチレータから送出された上記可視光にてなる上記接合部分のX線透視画像を撮像する撮像装置と
    上記接合部分の厚みとX線透視画像の明るさとの関係を示す第1較正情報を予め格納し、上記撮像装置から供給された上記接合部分のX線透視画像について上記第1較正情報を用いて上記接合部分における厚さ情報を生成し、さらに、上記第1較正情報に代えて又は上記第1較正情報とともに、各測定点における厚みと、上記測定点におけるX線透視画像の明るさが検出用明るさに達するまでに要する画像蓄積時間との関係を示した第2較正情報を格納し、上記撮像装置から供給された上記装着部分内の検査箇所における明るさが上記検出用明るさに到達するまでの時間を元に上記第2較正情報に基づいて上記検査箇所の厚さ情報を生成する制御装置と
    を備えたことを特徴とする接合検査装置。
  2. 上記第1較正情報は、上記部品側電極と上記被装着体側電極との上記接合部分と同じ材質にてなり複数の測定点において上記X線の透視方向に沿った厚みが互いに異なりかつそれぞれの上記厚みが既知である教示治具を用いて得られ、上記X線発生器、X線シンチレータ、及び撮像装置を用いて、上記被装着体及び電子部品に代えて上記教示治具をX線撮像して、上記各測定点におけるX線透視画像の明るさを求め、得られる各測定点の厚みと各明るさとの関係に基づいて上記接合部分の厚みとX線透視画像の明るさとの関係を示した情報である、請求項1記載の接合検査装置。
  3. 上記X線発生器は、上記接合部分を含み上記被装着体上に上記電子部品が装着された装着部分にX線を照射し、
    上記撮像装置は、上記装着部分のX線透視画像を蓄積する画像蓄積部を有し、
    上記制御装置は、上記X線透視画像の蓄積開始時において上記X線透視画像内の最も明るい部分の明るさが白色に到達するまで上記撮像装置に対して上記X線透視画像の蓄積を行わせる、請求項1又は2記載の接合検査装置。
  4. 上記X線透視画像内の最も明るい部分は、上記X線透視画像内において上記接合部分以外の部分である、請求項3記載の接合検査装置。
  5. 上記制御装置は、さらに、上記部品側電極と上記被装着体側電極とが良好に接合したときの良品厚さ情報を有し、生成した上記接合部分の厚さ情報を上記良品厚さ情報と比べることで上記接合部分の良否を判断する、請求項1から4のいずれかに記載の接合検査装置。
  6. 板状の上記被装着体の一方の面に装着される上記電子部品と他方の面に装着される上記電子部品との少なくとも一部が上記被装着体を間に挟んで互いに重なり合って配置される場合であって、上記一方及び他方の両面に装着されたそれぞれの上記電子部品における上記装着部分の上記厚さ情報を生成するとき、上記制御装置は、上記一方の面に装着された電子部品の上記接合部分の第1厚さ情報を求め、さらに両面にて重なり合って電子部品が装着されたところの上記接合部分について第2厚さ情報を求め、該第2厚さ情報から上記第1厚さ情報を減算して上記他方の面に装着された電子部品の上記接合部分の厚さ情報を求める、請求項1から5のいずれかに記載の接合検査装置。
  7. 上記X線発生器は、上記第1較正情報を得るためにX線を発生したときと同一の照射条件にて上記接合部分へのX線の照射を行う、請求項1から6のいずれかに記載の接合検査装置。
  8. 電子部品の部品側電極と上記電子部品が装着される被装着体の被装着体側電極との接合部分にX線を照射し、
    上記接合部分を透過したX線を可視光に変換して該可視光にてなる上記接合部分のX線透視画像を撮像し、
    上記接合部分の厚みとX線透視画像の明るさとの関係を示す第1較正情報を用いて、上 記接合部分のX線透視画像について上記接合部分における厚さ情報を生成し、さらに、上記第1較正情報に代えて又は上記第1較正情報と共に、各測定点における厚みと、上記測定点における明るさが検出用明るさに達するまでに要する画像蓄積時間との関係を示した第2較正情報を用いて、上記装着部分内の検査箇所における明るさが上記検出用明るさに到達するまでの時間を元に上記第2較正情報に基づいて上記検査箇所における厚さ情報を生成する、ことを特徴とする接合検査方法。
  9. 上記接合部分を含んだ装着部分におけるX線透視画像内において上記接合部分とそれ以外の部分とのコントラストが最大になるように上記X線透視画像の蓄積を行う、請求項8記載の接合検査方法。
  10. 上記部品側電極と上記被装着体側電極とが良好に接合したときの良品厚さ情報と、生成した上記接合部分の厚さ情報とを比べて上記接合部分の良否を判断する、請求項8又は9に記載の接合検査方法。
  11. 板状の上記被装着体の一方の面に装着される上記電子部品と他方の面に装着される上記電子部品との少なくとも一部が上記被装着体を間に挟んで互いに重なり合って配置される場合であって、上記一方及び他方の両面に装着されたそれぞれの上記電子部品における上記接合部分の上記厚さ情報を生成するとき、上記一方の面に装着された電子部品の上記接合部分の第1厚さ情報を求め、次に両面にて重なり合って電子部品が装着されたところの上記接合部分について第2厚さ情報を求めた後、該第2厚さ情報から上記第1厚さ情報を減算して上記他方の面に装着された電子部品の上記接合部分の厚さ情報を求める、請求項8から10のいずれかに記載の接合検査方法。
JP2000025247A 1999-04-09 2000-02-02 接合検査装置及び方法 Expired - Fee Related JP3942786B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000025247A JP3942786B2 (ja) 1999-04-09 2000-02-02 接合検査装置及び方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10244099 1999-04-09
JP11-102440 1999-04-09
JP2000025247A JP3942786B2 (ja) 1999-04-09 2000-02-02 接合検査装置及び方法

Publications (2)

Publication Number Publication Date
JP2000352559A JP2000352559A (ja) 2000-12-19
JP3942786B2 true JP3942786B2 (ja) 2007-07-11

Family

ID=26443163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000025247A Expired - Fee Related JP3942786B2 (ja) 1999-04-09 2000-02-02 接合検査装置及び方法

Country Status (1)

Country Link
JP (1) JP3942786B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103890570A (zh) * 2011-11-09 2014-06-25 雅马哈发动机株式会社 X射线检查方法及装置
CN107505341A (zh) * 2017-09-14 2017-12-22 中国科学院苏州生物医学工程技术研究所 一种基于x射线的led芯片缺陷自动检测设备及方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4228773B2 (ja) * 2003-05-13 2009-02-25 ソニー株式会社 基板検査装置
JP2004347384A (ja) * 2003-05-21 2004-12-09 Hitachi Ltd X線ct装置及びx線ct装置による画像作成方法
CN1860361B (zh) * 2003-10-14 2010-05-05 美陆技术株式会社 结合x射线检验和视觉检验的印刷电路板检验系统
JP2007192598A (ja) * 2006-01-17 2007-08-02 Saki Corp:Kk 被検査体の検査装置
JP4684928B2 (ja) * 2006-03-29 2011-05-18 アンリツ産機システム株式会社 X線検査システム
JP5350350B2 (ja) * 2010-10-19 2013-11-27 セイコープレシジョン株式会社 X線位置計測装置、x線位置計測装置の位置計測方法、及びx線位置計測装置の位置計測用プログラム
JP6941851B2 (ja) * 2016-12-26 2021-09-29 株式会社イシダ 質量推定装置
JP7004303B2 (ja) * 2018-03-15 2022-01-21 株式会社アースニクスエム X線反射型計測装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103890570A (zh) * 2011-11-09 2014-06-25 雅马哈发动机株式会社 X射线检查方法及装置
US9256930B2 (en) 2011-11-09 2016-02-09 Yamaha Hatsudoki Kabushiki Kaisha X-ray inspection method and device
CN103890570B (zh) * 2011-11-09 2016-02-24 雅马哈发动机株式会社 X射线检查方法及装置
CN107505341A (zh) * 2017-09-14 2017-12-22 中国科学院苏州生物医学工程技术研究所 一种基于x射线的led芯片缺陷自动检测设备及方法
CN107505341B (zh) * 2017-09-14 2020-10-20 中国科学院苏州生物医学工程技术研究所 一种基于x射线的led芯片缺陷自动检测设备及方法

Also Published As

Publication number Publication date
JP2000352559A (ja) 2000-12-19

Similar Documents

Publication Publication Date Title
JP4631460B2 (ja) X線検査方法
JPH07221151A (ja) 部品間の接合部を検査する方法および装置
JP3942786B2 (ja) 接合検査装置及び方法
JPH02138855A (ja) X線透過画像によるはんだ付部の検査方法及びその装置
JP3629397B2 (ja) 接合検査装置及び方法、並びに接合検査方法を実行させるプログラムを記録した記録媒体
JP2011075470A (ja) 画像処理プログラム、画像処理方法および画像処理装置
JP3599986B2 (ja) フリップチップ接合検査方法および検査装置
KR101043612B1 (ko) X선 검사시스템 및 이를 이용한 검사방법
JP2010145359A (ja) X線検査装置、x線検査方法およびx線検査プログラム
JP4660998B2 (ja) 接合検査装置
JP4228773B2 (ja) 基板検査装置
JP4118455B2 (ja) 実装部品検査方法
JP4333349B2 (ja) 実装外観検査方法及び実装外観検査装置
JP4340373B2 (ja) 接合検査装置、方法、及び接合検査方法を実行するプログラムを記録した記録媒体
JP4449596B2 (ja) 実装基板検査装置
JP6255851B2 (ja) はんだ濡れ上がり検査装置およびはんだ濡れ上がり検査方法
JPH06118029A (ja) X線検査装置およびx線検査方法
JPH0989536A (ja) Bga接合部検査装置及び方法
JPH04330761A (ja) 電子装置の検査方法及び装置
JP2945537B2 (ja) 半田付け検査方法及び装置
JPH0743329B2 (ja) 内部欠陥検査方法及びその装置
JP3969337B2 (ja) バンプ検査装置
KR102558069B1 (ko) 구체 높이 측정 시스템 및 방법
WO2024117099A1 (ja) 検査装置
JPH0618450A (ja) 平面サンプル用断層撮影装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070404

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees