JP3773963B2 - ポリエーテルポリオールの製造方法 - Google Patents

ポリエーテルポリオールの製造方法 Download PDF

Info

Publication number
JP3773963B2
JP3773963B2 JP11020394A JP11020394A JP3773963B2 JP 3773963 B2 JP3773963 B2 JP 3773963B2 JP 11020394 A JP11020394 A JP 11020394A JP 11020394 A JP11020394 A JP 11020394A JP 3773963 B2 JP3773963 B2 JP 3773963B2
Authority
JP
Japan
Prior art keywords
reactor
propylene oxide
unsaturation
polyol
allyl alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11020394A
Other languages
English (en)
Other versions
JPH07165907A (ja
Inventor
エフ パゾス ジョーズ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer Antwerpen NV
Original Assignee
Bayer Antwerpen NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Antwerpen NV filed Critical Bayer Antwerpen NV
Publication of JPH07165907A publication Critical patent/JPH07165907A/ja
Application granted granted Critical
Publication of JP3773963B2 publication Critical patent/JP3773963B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/30Post-polymerisation treatment, e.g. recovery, purification, drying
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4866Polyethers having a low unsaturation value

Description

【0001】
【産業上の利用分野】
本発明は、ポリエーテルポリオールの合成に関する。特に、本発明は、慣用の塩基触媒を用いて従来の低不飽和ポリエーテルポリオールを製造するための非常に生産的な方法に関する。この方法の手がかりは、アリルアルコールと低級アリルアルコールプロポキシレートをエポキシド重合の間に反応混合物から効率的にかつ連続的に取り出し得るという知見にある。
【0002】
【従来の技術】
ポリウレタン製造用の有用な中間体であるポリエーテルポリオールは、ヒドロキシル基またはアミノ基を含む開始剤と塩基触媒の存在下でプロピレンオキシドを重合させることにより商業的に製造されている。ポリオール生成物の呼称官能価は開始剤の官能価に相当するが、実際には平均ヒドロキシル官能価は呼称官能価より低くなる。実際の官能価が低くなる理由は、プロピレンオキシドの一部が塩基性反応条件下でアリルアルコールへ異性化し、このアリルアルコールがプロポキシル化されてポリエーテルモノオール不純物を生成することにある。ポリエーテルモノオール不純物(ポリオールの不飽和を測定することにより見積もる)は、それらがポリウレタンの物理的性質に悪影響を及ぼすことから、最小限に抑えることが好ましい。
【0003】
異性化の副反応は2つの重要な方法において従来のポリエーテルポリオール合成を制限する。まず第一に、許容される反応速度を達成しかつプロピレンオキシドの異性化を最小限に抑えるために、この反応は約95〜120℃の範囲の温度で行わねばならない。これより高い温度では、重合速度が速くなり、またバッチ時間が短縮されるが、異性化反応速度も同様に増加し、その結果ポリオールの不飽和度が許容限界を越えてしまう。これより低いバッチ温度では、バッチ時間が時間数の代わりに日数や週数で測定される。かくして、ポリオールの品質の犠牲なしでは比較的高い反応温度を用いることができないので、生産性が限られる。第二に、約2,000より大きい当量を有するポリオールは、一般に、極めて高レベルのモノオール不純物の生成なくしては、慣用の塩基触媒を用いて製造することができない。
【0004】
低レベルのポリエーテルモノオール不純物を含有するポリエーテルポリオールを製造するための以前のアプローチは、慣用の触媒を用いて比較的低温でポリオールを製造することに注意を向けてきたか、あるいは複金属シアン化物のような特殊な触媒を使用してきた。低不飽和ポリオールは改良されたポリウレタンを提供することができるので、このポリオールへの合成経路には興味をそそられる。
【0005】
プロペニル不飽和はアリル系の不飽和よりも好ましい。というのは、プロペニル基が酸加水分解やイオン交換処理によりヒドロキシル末端基へ容易に変換されるからである。従来の方法で作られたポリエーテルポリオールは主にアリル系の不飽和をもっている。反応温度を上げることによってプロペニル不飽和の割合をわずかに高めることができるが、その場合には総不飽和が許容限界をはるかに越えてしまう。従って、より高い割合のプロペニル末端基を有するポリオールを得るために、従来の方法において反応温度を上げることは実際的でない。
【0006】
【発明が解決しようとする課題】
好ましい方法は慣用の塩基触媒を用いて比較的高い温度(130〜180℃)でポリエーテルポリオールの製造を可能にするものであるが、過剰レベルの一官能性ポリエーテル不純物を生成するものであってはならない。好ましくは、その方法は速いエポキシド供給速度、短いバッチ時間、そして低減した触媒要求量を可能にするだろう。好ましい方法はプロセスの安全性を向上させるために低いエポキシド濃度で行われるだろう。慣用の塩基触媒を用いて低不飽和の高当量ポリオールを製造し得る方法が価値のある方法であろう。好ましい方法は比較的低い総不飽和を有するポリオールの製造を可能にするものであり、その際比較的高い割合の不飽和がプロペニル末端基から誘導されるだろう。
【0007】
【課題を解決するための手段】
本発明は、低減した不飽和を有するポリエーテルポリオールの製造方法に関する。この方法は、高当量の低不飽和ポリエーテルポリオールを高い生産速度で、あるいは従来の当量のポリエーテルポリオールをさらに高い生産速度で製造するために用いることができる。この方法の秘訣は、エポキシドの重合の間にポリエーテルポリオールからアリルアルコールと低級アリルアルコールプロポキシレートを取り出すことにある。
【0008】
本発明の方法は、開始剤とエポキシド重合触媒の存在下でプロピレンオキシドを重合させることを含んでいる。重合の間に、アリルアルコールと低級アリルアルコールプロポキシレートが蒸留により取り除かれる。
【0009】
本発明の一態様において、液体反応混合物の上の気相が蒸留により連続的にまたは定期的に取り出されて、分離される。未反応のプロピレンオキシドは反応器へ返送され、一方アリルアルコールと低級アリルアルコールプロポキシレートはこのプロセスから取り除かれる。
【0010】
本発明の第二の態様では、反応混合物の液相の一部を連続的にまたは定期的に取り出す。取り出した部分から揮発性成分をフラッシュ(気化)させ、そしてポリエーテルポリオールを反応混合物に戻す。揮発性成分は蒸留により分離する。好ましくは、未反応のプロピレンオキシドをポリオール合成反応器に返送し、より高い沸点のアリルアルコールと低級アリルアルコールプロポキシレートをこのプロセスから取り除く。
【0011】
反応混合物からのアリルアルコールと低級アリルアルコールプロポキシレートの除去は、比較的高い反応温度を用いることができるので、生産性の向上またはより低い触媒濃度を可能にする。モノオールの含量が低下することから生成物の品質が向上する。また、この方法を用いることにより、ポリオールの不飽和を最小限にし、かつ低不飽和で高当量のポリエーテルを製造することができる。本発明は、ポリオール合成法を行うための装置も含むものである。
【0012】
本発明は、また、本発明方法により入手可能となるポリエーテルポリオールを含んでいる。これらのポリエーテルポリオール(一般に塩基触媒を用いる方法により製造される)は、約20〜60の範囲内のヒドロキシル価、約0.20meq/gより小さい粗不飽和、および約30モル%より大きい未精製ポリオール中のプロペニル末端基含量を有する。精製によりプロペニル末端基を除去すると、低減した不飽和を有するポリオールが得られる。
【0013】
図1は、本発明方法の一態様を示す。液体反応混合物上の気相を、場合により不活性ガスまたは溶媒の助けをかりて、攪拌タンク反応器(1)から蒸留塔(2)へパージし、蒸留塔(2)において未反応のプロピレンオキシドをアリルアルコールと低級アリルアルコールプロポキシレートから分離する。精製した未反応プロピレンオキシドは反応器へ返送する。目的のポリエーテル生成物は反応器内に残留する。
【0014】
図2は、プロピレンオキシドと開始剤と触媒を攪拌タンク反応器(3)内で加熱することからなる本発明の第二の態様を示す。反応器の内容物をポンプ(7)でプラグ流れ (plug-flow)反応器(4)へ、次いでフラッシャー(5)へ移し、そこで揮発物をストリッピングする。ストリッピングしたポリエーテルポリオールはポンプ(8)で反応器へ返送する。未反応のプロピレンオキシドは蒸留塔(6)を使ってアリルアルコールと低級アリルアルコールプロポキシレートから分離する。未反応のプロピレンオキシドを反応器へ返送し、一方アリルアルコールと低級アリルアルコールプロポキシレートをこの系から取り除く。
【0015】
本発明の方法では、開始剤とエポキシド重合触媒の存在下でプロピレンオキシドを重合させてポリエーテルポリオールを製造する。プロピレンオキシドは単独で用いても、エチレンオキシド、ブテンオキシドなどの他のエポキシドとの組合せで用いてもよい。他のエポキシドはプロピレンオキシドとの混合供給物として添加することも、EOキャップしたポリオールの製造のように、ブロックとしてのPO重合の後で添加することもできる。
【0016】
本発明方法において有用な開始剤はヒドロキシルまたはアミノ官能基を有し、当分野で周知である。開始剤は低分子量化合物、例えばグリセリン、ソルビトール、エチレンジアミン、トリメチロールプロパン、プロピレングリコールなどであり得る。また、プロポキシル化グリセリンのような低分子量および中分子量(Mn =200〜2000)のポリエーテルポリオールも開始剤として適している。これより大きい分子量のポリオールも開始剤として使用できるが、あまり好ましいものではない。
【0017】
本発明の方法にはどのようなエポキシド重合触媒も使用することができる。この方法にはアルカリ金属水酸化物やアルコキシドのような安価で慣用の塩基触媒を用いることが有利である。その他の適当な触媒としては、複金属シアン化物のような有機金属エポキシド重合触媒が含まれる。アルカリ金属水酸化物が経済性および入手し易さの点で好ましい。
【0018】
本発明方法は多種多様なポリエーテルポリオールの製造に用いることができる。一般的に、ポリオールは約2〜8の官能価および約15〜300mgKOH/g、好ましくは約20〜150mgKOH/g、より好ましくは約28〜112mgKOH/gの範囲内のヒドロキシル価を有するだろう。ポリオール中に存在する不飽和の量およびタイプは重合触媒の種類、反応温度、プロセス条件などに大きく影響されるだろう。しかし、一般には、本発明方法により製造されたポリオールは、従来の方法により製造されたポリオールと比べて、比較的低レベルのアリル系不飽和を含むだろう。
【0019】
本発明方法の秘訣は、ポリエーテルモノオール不純物の形成を最小限に抑えるために、蒸留により反応混合物からアリルアルコールと低級アリルアルコールプロポキシレートを連続的にまたは定期的に取り出すことにある。本当に驚くべきことだが、本発明者は、アリルアルコールと低級アリルアルコールプロポキシレートが比較的不揮発性の分離し難いポリエーテルモノオール不純物へと生長する前に、それらをポリオールから効果的に取り除くことができ、かくして非常に低い不飽和を有するポリエーテルポリオールを製造し得ることを見いだした。
【0020】
反応器には最初に開始剤とエポキシド重合触媒を入れる。通常は、この混合物を希望の反応温度に加熱し、プロピレンオキシドを反応器に供給して重合を開始させる。
【0021】
本発明の一態様では、液体反応混合物の上の気相を蒸留により連続的にまたは定期的に取り出す。未反応の精製プロピレンオキシドは反応器へ戻すが、アリルアルコールと低級アリルアルコールプロポキシレートはこのプロセスから除去する。このプロセスを図1に示す。
【0022】
プロピレンオキシドは有利には液面より下で液体反応混合物中へ散布される。揮発性物質(プロピレンオキシド、アリルアルコールおよび低級アリルアルコールプロポキシレートを含む)を液体からパージし、分離のために蒸留塔またはフラッシャーに移す。所望により、気相へのこれらの成分の流れを促進するために窒素やアルゴンなどの不活性ガスを用いることができる。また、プロピレンオキシド(PO)が反応するよりも速くPOを反応器に供給することもでき、これにより過剰のPOが液体反応混合物からのアリルアルコールとAAプロポキシレートの取り出しを容易にするように働く。さらに、アリルアルコールとAAプロポキシレートを取り出すために希釈剤として溶媒を用いることができる。適当な溶媒は適度に揮発性で、反応条件に対して不活性の溶媒である。例として、脂肪族および芳香族炭化水素、そしてエーテルを挙げることができるが、これらに限定されない。好ましくは、溶媒はプロピレンオキシド、アリルアルコールおよびAAプロポキシレートから蒸留により簡単に分離できるものである。気相の連続的または定期的取り出しの利点は、それが重合反応器から熱を取り去る方法を提供することにある。
【0023】
本発明の第二の態様では、重合中に反応器から液体反応混合物の一部を取り出し、ポリエーテルポオール成分から揮発性成分を分離するのに効果的な条件下で加熱する。好ましくは、この工程をフラッシャーにおいて昇温で行う。ストリッピングしたポリエーテルポオールは重合反応器へ連続的にまたは定期的に返送する。このプロセスを図2に示してある。
【0024】
反応器へのエポキシドの供給速度および反応混合物を取り出してフラッシュ(気化)する速度は、平均ポリオールヒドロキシル基がエポキシド分子との反応前に約1〜10回再循環されるように制御することが好ましい。反応温度が高ければ高いほど、エポキシドの供給速度を速くすることができる。エポキシドの転化率は一般に約10〜70%、より好ましくは約20〜60%の範囲内であろう。所望により、攪拌タンク反応器とフラッシャーの間にインラインでプラグ流れ反応器を配置することにより、より高い転化率を達成することもできる。第一の態様と同様に、不活性ガスや溶媒の使用が可能である。
【0025】
再循環速度を選択するに際して、当業者は装置の性能によって幾分か制限されるだろう。比較的遅い再循環速度は比較的高い転化率をもたらすが、効率のよいフラッシングを必要とするだろう。ところが、効率のよいフラッシングには比較的高性能のフラッシャー、良好な真空能および効率的な冷却が必要となろう。より速い再循環速度とより低い転化率が実行可能であるならば、それほど高性能でないフラッシャー/冷却システムを使うことも可能である。一段階フラッシュ操作は通常アリルアルコールの除去には十分である。
【0026】
フラッシング法の利点は、それが重合反応器から熱を取り去る方法を提供することにある。フラッシャーは一般的には約130〜180℃の範囲内の温度と、約1〜1000mmの範囲内の圧力で操作される。好ましくは、温度またはエポキシドの供給速度が勾配をなしている間はフラッシングを行わない。これに対して、クックアウト (cookout)/ストリップ (strip)期間、すなわち重合を完結させかつ揮発物を除くためにエポキシドの更なる添加を行うことなく反応混合物を加熱している間に、フラッシャーを使うことが好ましい。
【0027】
上記の両態様では、ストリッピングした揮発性成分を、一段階のフラッシュ操作により、あるいは蒸留により、未反応のプロピレンオキシドと高沸点成分(アリルアルコールおよびアリルアルコールプロポキシレートを含む)とに分離する。適当な蒸留またはフラッシング法はどれも使用できる。所望により、アリルアルコールとアリルアルコールプロポキシレートを含有する流れを“そのまま”使用して、より高級のアリルアルコールプロポキシレートを製造することができる。また、この成分をさらに分離・精製してもよい。未反応のプロピレンオキシドは凝縮して、重合反応器へ再循環するか、貯蔵容器へ移すことが好ましい。
【0028】
重合反応は希望するどのような温度で行ってもよい。従来のポリエーテルポリオールの合成温度(95〜120℃)を用いることができる。本発明の利点は、より一層高い温度を使える点にある。かくして、本発明の方法は約95〜190℃の範囲内の温度で行うことができる。より好ましい範囲は約120〜180℃である。約130〜160℃の範囲が最も好ましい。
【0029】
本発明は、また、第二の態様に従って本発明方法を実施するための装置を含むものである。この装置はプロピレンオキシドの供給源、攪拌タンク反応器、フラッシャー、それに揮発性成分を分離するための蒸留塔を含んでいる。
【0030】
プロピレンオキシドの供給源は純粋なプロピレンオキシド、混合エポキシド、プロピレンオキシドと他のエポキシドの別個の供給物、およびこの方法からの再循環エポキシドの流れのいずれの供給源であってもよい。
【0031】
適当な攪拌タンク反応器はどれも使える。反応器はエポキシド用の入口、液体反応混合物用の出口、およびストリッピングしたポリエーテルポリオール用の戻し口を備えている。反応混合物を攪拌タンク反応器からフラッシャーへ移すためにポンプを使ってもよい。
【0032】
フラッシャーは液体反応混合物から揮発物をストリッピングするのに適したどのような装置であってもよい。フラッシャーには反応混合物の入口、ストリッピングしたポリエーテルポリオールの出口、およびストリッピングした揮発物の出口が付いている。昇温において、減圧、大気圧、または大気圧以上の圧力でフラッシャーを操作する。ストリッピングしたポリエーテルポリオールを攪拌タンク反応器へ返送するためにポンプを使うことが好ましい。
【0033】
蒸留塔は未反応のエポキシド(通常は主にプロピレンオキシド)を高沸点揮発性物質(アリルアルコールと低級アリルアルコールプロポキシレートを含む)から分離することができるどのような塔であってもよい。所望により、簡便な一段階フラッシャーを使うか、アリルアルコールをアリルアルコールプロポキシレートから分離するのに十分なほど精巧な塔を使うことができる。
【0034】
場合により、該装置は攪拌タンク反応器とフラッシャーの間にインラインでプラグ流れ反応器を含んでいる。プラグ流れ反応器を使用すると、1回通過あたりのプロピレンオキシドの転化率を高めることができ、プロセス効率を上げるのに役立つ。
【0035】
本発明方法は従来のポリエーテルポリオール合成と比べて多くの利点をもたらす。非常に高い温度を使用することができるので、反応速度がより速くなり、エポキシド供給速度が高まり、そしてバッチ時間が大いに短縮される。従来法と比べて40〜300%の生産性の向上が達成される。生産性の向上は設備能力の増加につながる。
【0036】
また、より高い温度でのプロポキシル化は低減した触媒レベルの使用可能性をもたらす。新たな触媒の消耗およびポリオールからの触媒の除去が比較的少ない。この方法は低エポキシド濃度(10〜20%の代わりに2〜4%)で行われるので、プロセスの安全性が向上する。
【0037】
本発明の方法を使って多種多様のポリエーテルポリオールを製造することができるが、以前には入手できなかった何種類かのポリエーテルポリオールを本発明方法により製造できるようになった。
【0038】
かくして、本発明は、本発明方法によって入手できるようになった低不飽和を有するある種のポリエーテルポリオールを含むものである。本発明のポリエーテルポリオールは一般に塩基触媒を用いて作られ、塩基触媒はある割合のプロペニル型不飽和を有する生成物をもたらす。本発明のポリエーテルポリオールは約20〜60の範囲内のヒドロキシル価、不飽和の全量に基づいて約30モル%より大きいプロペニル末端基含量、および約0.2meq/gより小さい粗不飽和を有する。精製した生成物は約0.08meq/gより小さい不飽和を有する。
【0039】
特に、約50〜60mgKOH/gの範囲内の粗ヒドロキシル価を有する本発明のポリオールは、約30モル%より大きいプロペニル末端基含量、約0.06meq/gより小さい粗不飽和、および約0.042meq/gより小さい精製不飽和を有するだろう。
【0040】
約40〜49mgKOH/gの範囲内の粗ヒドロキシル価を有する本発明のポリオールは、約40モル%より大きいプロペニル末端基含量、約0.10meq/gより小さい粗不飽和、および約0.060meq/gより小さい精製不飽和を有するだろう。
【0041】
約30〜39mgKOH/gの範囲内の粗ヒドロキシル価を有する本発明のポリオールは、約50モル%より大きいプロペニル末端基含量、約0.15meq/gより小さい粗不飽和、および約0.075meq/gより小さい精製不飽和を有するだろう。
【0042】
約20〜29mgKOH/gの範囲内の粗ヒドロキシル価を有する本発明のポリオールは、約60モル%より大きいプロペニル末端基含量、約0.20meq/gより小さい粗不飽和、および約0.080meq/gより小さい精製不飽和を有するだろう。
【0043】
このような低不飽和と共に、このような高割合のプロペニル不飽和を有するポリオールは、従来のポリエーテルポリオール合成からは得られない。プロペニル不飽和の割合が高いことは、酸加水分解またはイオン交換処理によってプロペニル末端基をヒドロキシル末端基へ容易に変換できるので有利である。従来のポリエーテルポリオールは形成される不飽和(アリル系およびプロペニル)の全量を制御するために約120℃より低い温度で作られるのが常である。これらのポリオールは一般に30モル%以上のプロペニル末端基含量をもたないだろう。従来法において反応温度を高くすると、プロペニル不飽和が30モル%を越えるが、ポリオールの精製後の不飽和は、除去できない多量の加水分解不能なアリル系不飽和のために、許容レベルを越えてしまうだろう。
【0044】
従って、本発明ポリオールの総不飽和は酸加水分解またはイオン交換処理による精製によって非常に低減されるが、従来のポリオールの総不飽和は同一の処理によってほんのわずかしか減少しない。例えば、下記の比較例C5およびC9に示すように、従来のポリオールをイオン交換により精製しても、総不飽和がほんのわずか(C5では0.036から0.035meq/gへ、そしてC9では0.044から0.040meq/gへ)減少するにすぎない。これに対して、本発明のポリオールをイオン交換で精製すると(実施例6および10参照)、プロペニル含量が高いために、総不飽和が大きく(実施例6では0.034から0.012meq/gへ、そして実施例10では0.028から0.013meq/gへ)減少する。
【0045】
低不飽和のポリオールは複金属シアン化物触媒を用いて製造されていたが、本発明方法は触媒の低コスト、あまり強く要求されない触媒の分離、触媒を変えることなくエトキシル化する能力といった利点を提供する。
【0046】
【実施例】
以下の実施例は本発明を単に例示するものである。当業者は本発明の精神および特許請求の範囲に含まれる多くの変更を理解するであろう。
【0047】
比較例1
117℃での成形ポリオールの従来の製法
装置はプロピレンオキシドの供給源と攪拌タンク反応器から成り、該反応器にはプロピレンオキシドの入口と、反応器の頂部に(所望により、液体反応混合物の上から)蒸気を取り出すための出口が付いている。この実験では、43.4mgKOH/gのヒドロキシル価、0.044meq/gの粗不飽和、および0.56重量%のKOH含量を有するプロピレンオキシドをベースにしたトリオール開始剤(100g)を反応器に導入した。ポリオール開始剤を117℃に加熱し、プロピレンオキシド(50g)を約2時間にわたって加えた。この混合物をPOの添加なしにさらに1.9時間反応させ、その後混合物をストリッピング(117℃、3〜4mm、1時間)して揮発物を除いた。粗製の生成物(142g)を単離し、分析した。粗製のポリオールは33.8mgKOH/gのヒドロキシル価と0.085meq/gの不飽和を示した。イオン交換クロマトグラフィーで精製した後のポリオールはヒドロキシル価が35.7mgKOH/gで、不飽和が0.082meq/gであった(表1参照)。
【0048】
実施例2
117℃での気相分離によるAAおよびAAプロポキシレートの連続的分離
比較例1の装置を使用した。反応器に比較例1で用いたトリオール開始剤(100g)を入れた。この開始剤を117℃に加熱し、プロピレンオキシドを反応器の底から液体中へ散布したが、反応器は5%NaOH水溶液を含有するスクラバーに開口していた。また、反応器からの出口ラインは、ストリッピングしたPOの分析用サンプルを集めるためのドライアイストラップを備えていた。
プロピレンオキシド(合計約675g)を130〜150g/時間で混合物に散布し、気相(PO、アリルアルコールおよび低級アリルアルコールプロポキシレートを含む)を反応器からスクラバーに連続してパージした。POの添加後、生成物を117℃、3〜4mmで0.5時間ストリッピングした。粗製のポリオール生成物(約154g)を単離し、分析した。粗製のポリオールは29.1mgKOH/gのヒドロキシル価と0.068meq/gの不飽和を示した。イオン交換クロマトグラフィーで精製した後のポリオールは31.0mgKOH/gのヒドロキシル価と0.050meq/gの不飽和を示した(表1参照)。
【0049】
この実施例から、本発明の方法は、同一温度で従来法により製造した生成物と比べて、低不飽和を有するポリオールをもたらすことが分かった。
【0050】
比較例3
150℃での成形ポリオールの従来の製法
反応を150℃で行う以外は、比較例1の手順に従った。ポリオール開始剤を150℃に加熱し、プロピレンオキシド(50g)を約1.8時間にわたって加えた。この混合物をPOの添加なしにさらに1.5時間反応させ、その後混合物をストリッピング(150℃、3〜4mm、1時間)して揮発物を除いた。粗製の生成物(157g)を単離し、分析した。粗製のポリオールは37.6mgKOH/gのヒドロキシル価と0.181meq/gの不飽和を示した。イオン交換クロマトグラフィーで精製した後のポリオールは46.7mgKOH/gのヒドロキシル価と0.035meq/gの不飽和を示した(表1参照)。
【0051】
実施例4
150℃での気相分離によるAAおよびAAプロポキシレートの断続的分離
例1〜3の装置およびポリオール開始剤を使用した。開始剤を反応器に入れて150℃に加熱した。トルエンとプロピレンオキシド(重量で1:1)の混合供給物を各回約9gずつの増加分で17回反応器に導入した。各増加分のPO/トルエンの添加後、混合物を加圧下で反応させたが、その際各増加分の添加後圧力が初期値のほぼ半分に低下するまで反応させた。その後、過剰のエポキシドをドライアイストラップに排出し、トルエン(およびアリルアルコールとAAプロポキシレート)を150℃、3〜4mmで5分間ストリッピングすることにより取り出した。最終増加分の添加後、混合物を150℃、3〜4mmで10分間ストリッピングし、生成物を単離した。次いで粗製の生成物(150g)を分析した。粗製のポリオールは32.1mgKOH/gのヒドロキシル価と0.100meq/gの不飽和をもっていた。イオン交換クロマトグラフィーで精製した後のポリオールは36.6mgKOH/gのヒドロキシル価と0.026meq/gの不飽和を示した(表1参照)。
【0052】
この実施例から、本発明方法は、117℃で従来法により製造した生成物と同等のまたはそれより低い不飽和を有する生成物を150℃で合成し得たことが明らかである。
【0053】
【表1】
気相分離による低不飽和ポリエーテルポリオールの合成
例# C1 2* C3 4**
ポリオールの型 成形 成形 成形 成形
プロセス条件
開始剤(g) 100 100 100 100
開始剤OH# 43.4 43.4 43.4 43.4
(mg KOH/g)
粗不飽和(meq/g) 0.044 0.044 0.044 0.044
開始剤中のKOH% 0.56 0.56 0.56 0.56
反応温度(℃) 117 117 150 150
反応したPO(g) 42 54 57 50
粗製ポリオール
OH# 33.8 29.1 37.6 32.1
(mg KOH/g)
不飽和(meq/g) 0.085 0.068 0.181 0.100
精製ポリオール
OH# 35.7 31.0 46.7 36.6
(mg KOH/g)
不飽和(meq/g) 0.082 0.050 0.035 0.026
【0054】
表1の説明。
*、 130〜150g/時間で液体反応混合物中にPOを散布した;
気相の連続分離;PO転化率8%。
**、PO/トルエン(1:1)混合物の断続的添加およびフラッシング;
17部のPO/トルエンを添加し、反応させ、フラッシュさせた;
PO転化率65%。
【0055】
例5〜11
一般方法:液相からのアリルアルコールとAAプロポキシレートの分離
装置はプロピレンオキシドの供給源と攪拌タンク反応器から成り、該反応器にはプロピレンオキシドの入口と、反応器の底部に液体反応混合物を取り出すための出口と、ストリッピングしたポリオールの戻し口が付いていた。ポンプを使って攪拌タンク反応器からの液体反応混合物を該出口から第二の容器(フラッシャーとして作用する)へ移送した。フラッシャーは液体反応混合物の入口と、ストリッピングしたポリオールの出口と、ストリッピングした揮発物の出口を備えていた。第二ポンプを使って、フラッシャーからのストリッピングしたポリオール混合物を戻し口から攪拌タンク反応器へ返送した。このポンプは、反応器の液面が設定液面以下に下がったとき、ストリッピングした液体をフラッシャーから反応器へ自動的にポンプ輸送するように設定されていた(図2参照)。
反応器に0.41〜0.66%のKOHを含むスターターポリオール(開始剤)を導入した(表2及び表3参照)。反応器に窒素を数回流し、70psiに加圧した。反応器とフラッシャーポットを希望する反応温度に加熱した(表2及び表3参照)。フラッシャーは約100mmに減圧した。反応器の温度が希望の反応温度に達したら、20mL/分で反応混合物の循環を開始し、次いでプロピレンオキシドの反応器への供給を開始した(供給量については表2及び表3参照)。表2及び表3に示した時間にわたってプロピレンオキシドを反応器へ連続的に供給した。プロピレンオキシドの添加後、残留モノマーが実質的に反応してしまうか取り除かれるまで、加熱とストリッピングを続けた。粗製のポリオールはイオン交換クロマトグラフィーで精製した。粗製および精製ポリオールの物理的性質を表2及び表3に示す。
【0056】
【表2】
高生産性で、低不飽和のポリエーテルポリオールの合成
例# C5 6 7 8
ポリオールの型 スラブ スラブ スラブ スラブ
プロセス条件
開始剤(g) 100 100 100 100
開始剤OH# 111.5 111.5 111.5 111.5
開始剤中のKOH% 0.66 0.66 0.66 0.66
反応温度(℃) 117 150 160 180
PO供給量 0.5 2.5 2.5 1.3
(g/min/100g開始剤)
PO転化率(%) 100 34 39 60
PO供給時間(h) 3.7 2.1 1.4 2.2
クックアウト時間(h) 2.2 0.3 0.2 0.1
全バッチ時間(h) 5.9 2.4 1.6 2.3
粗製ポリオール
OH# 54.5 59.6 61.8 59.2
(mg KOH/g)
不飽和(meq/g) 0.036 0.034 0.040 0.058
精製ポリオール
OH# 56.3 63.6 63.0 61.3
(mg KOH/g)
不飽和(meq/g) 0.035 0.012 0.015 0.030
【0057】
【表3】
高生産性で、低不飽和のポリエーテルポリオールの合成
例# C9 10 11
ポリオールの型 成形 成形 低モノオール
プロセス条件
開始剤(g) 100 100
開始剤OH# 111.5 111.5
開始剤中のKOH% 0.41 0.41
反応温度(℃) 105 130 130
PO供給量 1.5 1.3
(g/min/100g開始剤)
PO転化率(%) 100 20 20
PO供給時間(h) 〜6.0 3.3
クックアウト時間(h) 〜3.5 0.3
全バッチ時間(h) 〜9.5 3.6
粗製ポリオール
OH# 44.0 46.2 32.0
(mg KOH/g)
不飽和(meq/g) 0.044 0.028 0.028
精製ポリオール
OH# 44.0 47.0 33.0
(mg KOH/g)
不飽和(meq/g) 〜0.04 0.013 0.007
【0058】
実施例12
フラッシャーポットの代わりにワイプト−フィルム蒸留器 (wiped-film still) を使用した以外は、例5〜11の一般方法に従った。スターターポリオールは0.62%のKOHを含みかつ112mgKOH/gのヒドロキシル価と0.011meq/gの不飽和を有するポリ(オキシプロピレン)トリオールであった。反応器にスターターポリオール(500g)を加えて窒素を流した後、反応器とワイプト−フィルム蒸留器を150℃に加熱した。反応混合物を100mL/分(20mL/分/100gスターター)で循環させた。プロピレンオキシドの反応器への供給量は6g/分(1.2g/分/100gスターター)とした。ワイプト−フィルム蒸留器に48〜49mmの減圧を加え、反応器内の背圧を窒素により70psiに維持した。合計1591gのプロピレンオキシドを4.5時間かけて反応器に供給したところ、転化率は32%であった。プロピレンオキシドの添加後、生成物を加熱し、0.5時間ストリッピングした。粗製の生成物は55.8mgKOH/gのヒドロキシル価と0.024meq/gの不飽和を示した。イオン交換クロマトグラフィーで精製した生成物はヒドロキシル価が56.7mgKOH/gで、不飽和が0.016meq/gであった。
【0059】
実施例13
攪拌タンク反応器とフラッシャーの間にプラグ流れ反応器(PFR)を配置するように装置を変更した以外は、実施例12の手順に従った。PFRの温度は150℃に維持した。比較的大きいシステム容量のため、1100gのスターターポリオールを使用した。反応混合物を220mL/分(20mL/分/100gスターター)で循環させた。プロピレンオキシドの反応器への供給量は13.2g/分(1.2g/分/100gスターター)とした。ワイプト−フィルム蒸留器に73〜80mmの減圧を加え、反応器内の背圧を窒素により70psiに維持した。合計2070gのプロピレンオキシドを2.7時間かけて反応器に供給したところ、転化率は52%であった。プロピレンオキシドの添加後、生成物を加熱し、0.5時間ストリッピングした。粗製の生成物は59.4mgKOH/gのヒドロキシル価と0.034meq/gの不飽和を示した。イオン交換クロマトグラフィーで精製した生成物はヒドロキシル価が60.2mgKOH/gで、不飽和が0.025meq/gであった。
【0060】
実施例14
EOでキャップしたトリオールの製造
実施例13の手順に概ね従った。スターターポリオールは0.46%のKOHを含みかつ85.2mgKOH/gのヒドロキシル価と0.005meq/gの不飽和を有するポリ(オキシプロピレン)トリオールであった。反応器にスターターポリオール(1100g)を加えて窒素を流した後、反応器とワイプト−フィルム蒸留器をそれぞれ150℃、155℃に加熱した。反応混合物を220mL/分(20mL/分/100gスターター)で循環させた。プロピレンオキシドの反応器への供給量は10g/分(0.9g/分/100gスターター)とした。ワイプト−フィルム蒸留器に83〜90mmの減圧を加え、反応器内の背圧を窒素により70psiに維持した。合計2352gのプロピレンオキシドを4.2時間かけて反応器に供給したところ、転化率は44%であった。プロピレンオキシドの添加後、生成物を加熱し、0.5時間ストリッピングした。粗製の生成物は46.7mgKOH/gのヒドロキシル価と0.041meq/gの不飽和を示した。
【0061】
粗製の生成物はEOでキャップしたポリオールに基づいて約18重量%のエチレンオキシドを用いて末端キャップした。117℃で3〜4時間かけてEOを加えた。イオン交換クロマトグラフィーで精製した後のEOでキャップした生成物はヒドロキシル価が39.0mgKOH/gで、不飽和が0.016meq/gであった。炭素−13のNMR分析から、このポリオールは76%の第一ヒドロキシル末端基および19重量%のEO単位をもつことが分かった。
【0062】
上記の実施例は単なる例示であって、本発明は特許請求の範囲により規定されるものである。
【図面の簡単な説明】
【図1】本発明方法の1つの実施態様を示した説明図である。
【図2】本発明方法のもう1つの実施態様を示した説明図である。
【符号の説明】
1 攪拌タンク反応器
2 蒸留塔
3 攪拌タンク反応器
4 プラグ流れ反応器
5 フラッシャー
6 蒸留塔
7 ポンプ
8 ポンプ

Claims (8)

  1. (a)反応器内で、プロピレンオキシドと開始剤とエポキシド重合触媒を含有する反応混合物を重合させてポリエーテルポリオールを製造すること;
    (b)重合の間、液体反応混合物の上の気相の一部を反応器から連続的にまたは定期的に取り出すこと;
    (c)取り出した部分を蒸留して、アリルアルコールと低級アリルアルコールプロポキシレートから未反応のプロピレンオキシドを分離すること;および
    (d)プロピレンオキシドを反応器に返送すること;
    を含むことを特徴とする、ポリエーテルポリオールの製造方法。
  2. エポキシド重合触媒がアルカリ金属水酸化物であることを特徴とする、請求項記載の方法。
  3. 重合温度が95〜190℃の範囲内であることを特徴とする、請求項記載の方法。
  4. (a)反応器内で、プロピレンオキシドと開始剤とエポキシド重合触媒を含有する反応混合物を重合させてポリエーテルポリオールを製造すること;
    (b)重合の間、反応混合物の液相の一部を反応器から連続的にまたは定期的に取り出すこと;
    (c)取り出した部分を、ポリエーテルポリオール成分から揮発性成分を分離するのに効果的な温度で加熱すること;
    (d)ポリエーテルポリオール成分を反応器に返送すること;
    (e)蒸留により揮発性成分を未反応のプロピレンオキシドと高沸点成分(アリルアルコールおよびアリルアルコールプロポキシレートを含む)とに分離すること;および
    (f)未反応のプロピレンオキシドを回収すること;
    を含むことを特徴とする、ポリエーテルポリオールの製造方法。
  5. エポキシド重合触媒がアルカリ金属水酸化物であることを特徴とする、請求項記載の方法。
  6. 重合温度が95〜190℃の範囲内であることを特徴とする、請求項記載の方法。
  7. フラッシャーを使ってポリエーテルポリオール成分から揮発性成分を分離することを特徴とする、請求項記載の方法。
  8. 回収したプロピレンオキシドを反応器に再循環させることを特徴とする、請求項記載の方法。
JP11020394A 1993-05-06 1994-04-27 ポリエーテルポリオールの製造方法 Expired - Fee Related JP3773963B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/058109 1993-05-06
US08/058,109 US5364973A (en) 1993-05-06 1993-05-06 Productive process for making conventional and low-unsaturation polyether polyols

Publications (2)

Publication Number Publication Date
JPH07165907A JPH07165907A (ja) 1995-06-27
JP3773963B2 true JP3773963B2 (ja) 2006-05-10

Family

ID=22014739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11020394A Expired - Fee Related JP3773963B2 (ja) 1993-05-06 1994-04-27 ポリエーテルポリオールの製造方法

Country Status (6)

Country Link
US (1) US5364973A (ja)
EP (1) EP0623637B1 (ja)
JP (1) JP3773963B2 (ja)
CA (1) CA2119630A1 (ja)
DE (1) DE69430277T2 (ja)
ES (1) ES2173906T3 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE168703T1 (de) * 1995-12-29 1998-08-15 Basf Corp Niedrigungesättigte polyoxyalkylen polyetherpolyole
US5689012A (en) * 1996-07-18 1997-11-18 Arco Chemical Technology, L.P. Continuous preparation of low unsaturation polyoxyalkylene polyether polyols with continuous additon of starter
NO20001903L (no) * 1999-04-14 2000-10-16 Dow Chemical Co Polyuretan-filmer fremstilt fra polyuretan-dispersjoner
CN1310998C (zh) * 2002-01-22 2007-04-18 旭硝子株式会社 聚醚类的连续制备方法
EP1601708B1 (en) * 2003-02-26 2006-12-27 Shell Internationale Researchmaatschappij B.V. Process for preparation of polyether polyols
AU2004220072A1 (en) * 2003-03-07 2004-09-23 Dow Global Technologies Inc. Continuous process and system of producing polyether polyols
DE102004013551A1 (de) * 2004-03-19 2005-10-06 Goldschmidt Gmbh Alkoxylierungen in mikrostrukturierten Kapillarreaktoren
ATE373685T1 (de) * 2004-06-09 2007-10-15 Shell Int Research Verfahren zur herstellung von geruchsarmem polyetherpolyol
EP1935918A1 (en) 2006-12-20 2008-06-25 Repsol Ypf S.A. New reactive polyols
JP5214489B2 (ja) * 2008-02-28 2013-06-19 三洋化成工業株式会社 ポリオキシアルキレンアルコールの製造方法
JP2009286963A (ja) * 2008-05-30 2009-12-10 Sanyo Chem Ind Ltd ポリオキシアルキレンアルコールの製造方法
JP2010077417A (ja) * 2008-08-26 2010-04-08 Sanyo Chem Ind Ltd ポリオキシアルキレンアルコールの製造方法
JP5291737B2 (ja) * 2010-02-26 2013-09-18 三洋化成工業株式会社 アルキレンオキサイド付加物の製造方法
JP6193168B2 (ja) * 2014-03-31 2017-09-06 三洋化成工業株式会社 アルキレンオキサイド付加物の製造方法
KR102331060B1 (ko) * 2014-04-09 2021-11-25 바스프 에스이 폴리에테르 폴리올의 연속 제조 방법
CN110358070B (zh) * 2019-06-12 2021-11-09 佳化化学科技发展(上海)有限公司 一种低气味聚醚多元醇的生产工艺及系统
CN114409889A (zh) * 2021-12-13 2022-04-29 山东一诺威新材料有限公司 减少dmc催化合成聚醚多元醇中高分子量部分拖尾的方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US300963A (en) * 1884-06-24 And chaeles
US3271462A (en) * 1962-06-29 1966-09-06 Wyandotte Chemicals Corp Elimination of polyoxyalkylene unsaturation
US3278459A (en) * 1963-02-14 1966-10-11 Gen Tire & Rubber Co Method of making a polyether using a double metal cyanide complex compound
US3393243A (en) * 1964-09-24 1968-07-16 Jefferson Chem Co Inc Process of preparing polyoxypropylene polyether polyols
US3829505A (en) * 1970-02-24 1974-08-13 Gen Tire & Rubber Co Polyethers and method for making the same
DE2755089C3 (de) * 1977-12-10 1982-05-13 Bayer Ag, 5090 Leverkusen Verfahren zur Reinigung von Rohpolyäthern
JPS55102532A (en) * 1979-01-30 1980-08-05 Mitsui Toatsu Chem Inc Recovery of allyl ether compound
US5114619A (en) * 1989-07-14 1992-05-19 The Dow Chemical Company Production of polyether polyols with reduced unsaturation
US5010187A (en) * 1988-11-18 1991-04-23 Dow Chemical Company Production of polyether polyols with reduced unsaturation
US5342541A (en) * 1989-03-29 1994-08-30 The Dow Chemical Company Purified hydroxy-functional polyether compounds
US5095061A (en) * 1990-07-13 1992-03-10 The Dow Chemical Company Process to reduce propenyl polyethers in hydroxyfunctional polyethers
US5013042A (en) * 1990-07-18 1991-05-07 Joseph Garnes Golf putting practice device

Also Published As

Publication number Publication date
ES2173906T3 (es) 2002-11-01
JPH07165907A (ja) 1995-06-27
DE69430277D1 (de) 2002-05-08
DE69430277T2 (de) 2002-10-02
EP0623637A1 (en) 1994-11-09
CA2119630A1 (en) 1994-11-07
US5364973A (en) 1994-11-15
EP0623637B1 (en) 2002-04-03

Similar Documents

Publication Publication Date Title
JP3773963B2 (ja) ポリエーテルポリオールの製造方法
KR0147818B1 (ko) 중합체로부터 더블 금속 시안화 착물 촉매의 회수 방법
EP1212370B1 (en) Process for preparing polyethers
KR101469276B1 (ko) 중합체 폴리올 스트리핑 방법
US5099074A (en) Process for the preparation of polyether glycols
JPH093186A (ja) 酸化エチレンでキャップされたポリオールの製造方法
KR102069569B1 (ko) 저분자량 충격 폴리에테르를 제조하는 개선된 방법
JP2003517082A (ja) ポリトリメチレンエーテルグリコールの調製のための連続的な方法
EP0583251A1 (en) METHOD FOR CLEANING AND END-ENCLOSING POLYOLS USING CYANIDE CATALYSTS CONTAINING TWO METALS.
US20080249268A1 (en) Method For Producing a Polyisobutene
JPH10212348A (ja) ポリエーテルポリオールの製造方法
US5545712A (en) Preparation process for polyoxyalkylene polyol
US5393856A (en) Liquid phase and aqueous solutions of poly(vinyl methyl ether) from highly purified vinyl methyl ether monomer
JP3739178B2 (ja) ポリオキシアルキレンポリオールの製造方法
CN111225936A (zh) 制造聚醚多元醇的连续工艺
EP1601708B1 (en) Process for preparation of polyether polyols
JP3739175B2 (ja) ポリオキシアルキレンポリオールの製造方法
CN115003730A (zh) 使用铝化合物和环脒的环氧烷聚合
JP2644327B2 (ja) ポリエーテルポリオールの精製方法
JP3076726B2 (ja) ポリオキシアルキレンポリオールの製造方法
EP0832147B1 (en) Process for preparing low unsaturation polyether polyols
CN115838474A (zh) 一种双酚a聚醚的制备方法
JPH11322918A (ja) ポリオキシアルキレンポリオールの製造方法
JPH09110770A (ja) アルキレングリコールアルキルエーテルの精製方法
RU2266887C1 (ru) Способ очистки c5-углеводородов

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees