JP3678692B2 - バンドギャップ基準電圧回路 - Google Patents

バンドギャップ基準電圧回路 Download PDF

Info

Publication number
JP3678692B2
JP3678692B2 JP2001328925A JP2001328925A JP3678692B2 JP 3678692 B2 JP3678692 B2 JP 3678692B2 JP 2001328925 A JP2001328925 A JP 2001328925A JP 2001328925 A JP2001328925 A JP 2001328925A JP 3678692 B2 JP3678692 B2 JP 3678692B2
Authority
JP
Japan
Prior art keywords
circuit
voltage
power supply
constant current
current source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001328925A
Other languages
English (en)
Other versions
JP2003131749A (ja
Inventor
直昭 杉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2001328925A priority Critical patent/JP3678692B2/ja
Priority to US10/253,483 priority patent/US6998902B2/en
Publication of JP2003131749A publication Critical patent/JP2003131749A/ja
Application granted granted Critical
Publication of JP3678692B2 publication Critical patent/JP3678692B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/30Regulators using the difference between the base-emitter voltages of two bipolar transistors operating at different current densities

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、バンドギャップ基準電圧を発生させるバンドギャップ基準電圧回路に関する。
【0002】
【従来の技術】
図21は従来のバンドギャップ基準電圧回路の回路図である。図21のバンドギャップ基準電圧回路は、例えば特開平11−231948号公報に記載されている。図21の従来のバンドギャップ基準電圧回路は、熱電圧に比例した定電流を発生させ、この定電流からバンドギャップ基準電圧を発生させる基本ステージ50と、電源投入時に基本ステージ50を起動するスタートアップ回路60A,60Bと、フィルタ回路70A,70Bとを備えている。スタートアップ回路60Aは、電源投入時に基本ステージ50のノード518をプルアップし、スタートアップ回路60Bは、電源投入時に基本ステージ50のノード519をプルダウンする。
【0003】
図21のバンドギャップ基準電圧回路において、電源が投入され、高電位電力供給Vccが上昇すると、pチャネルトランジスタP514,P512がオンし、スタータノード518は、ほぼ電圧(Vbe500+Vtn500)にクランプされる。ここで、Vbe500はpnpバイポーラトランジスタQ500のベース・エミッタ間電圧を、Vtn500はnチャネルトランジスタN500のスレッショルド電圧を、それぞれ表している。このように電源投入によって高電位電力供給Vccが上昇すると、スタートアップ回路60Aはノード518をプルアップする。
【0004】
同様に、高電位電力供給Vccが上昇すると、pチャネルトランジスタP526,nチャネルトランジスタN508がオンし、スタータノード519は、ほぼ電圧VDSsatn508にクランプされる。ここで、VDSsatn508はN508の飽和ソース・ドレイン間電圧を表している。このように電源投入によって高電位電力供給Vccが上昇すると、スタートアップ回路60Bはノード519をプルダウンする。
【0005】
これらスタートアップ回路60A,60Bの動作によって、基本ステージ50内の電流路に電流が流れ始める。基本ステージ50において、第1のカレントミラーステージを構成するpチャネルトランジスタP500,P502、および第2のカレントミラーステージを構成するpチャネルトランジスタP504,P506が動作するので、スタートアップ回路60AのpチャネルトランジスタP516,P518はそれらに応答して停止ノード520に電流を供給するように動作する。これにより、停止ノード520に接続されたコンデンサC502が充電され始め、この停止ノード520の電圧が、P512のゲート・ソース間電圧をP512のスレッショルド電圧以下にするような電圧に達すると、P512はオフする。また、停止ノード520の電圧が、スタータノード518の電圧である(Vbe500+Vtn500)よりもP520のスレッショルド電圧Vtp520だけ高い電圧(Vbe500+Vtn500+Vtp520)以上であれば、P520はオン可能なので、停止ノード520は、ほぼ電圧(Vbe500+Vtn500+Vtp520)にクランプされる。
【0006】
同様に、スタートアップ回路60BのpチャネルトランジスタP524,P522は、高電位電力供給Vccの上昇の応答して停止ノード522に電流を供給するように動作する。これにより、停止ノード522に接続されたコンデンサC504が充電され始め、この停止ノード522が所定の電圧に達すると、nチャネルトランジスタN506がオンし、N508はオフする。
【0007】
この図21の従来のバンドギャップ基準電圧回路では、電力供給電圧レベルのノイズによる変動によってバンドギャップ基準電圧Vrefが上昇するという問題を解決のために、バンドギャップ基準電圧回路とその電力供給Vcc,Vssとの間に、フィルタ回路70A,70Bを挿入している。これについて以下に説明する。
【0008】
P516,P518は、それぞれ第1、第2のカレントミラーステージに接続されており、飽和領域で動作しているため、インピーダンスとしては高い状態になっている。この状態で、高電位電力供給Vccにノイズが載り、Vccレベルが大きく変動すると、オン状態のP514を介して、P512のソースにもこの変動が伝わる。一方、P516,P518は上記の通りハイインピーダンスで動作しているので、停止ノード520はC502との作用によりそれほど変動を受けない。その結果、P512のソース・ゲート間電圧がスレッショルド電圧以上になるタイミングが生じ、P512は、この影響でオンし、スタータノード518に電流を供給してしまう。
【0009】
その結果、nチャネルトランジスタN500,N502のバイアスを増加させ、P500,P502のバイアスおよびP504,P506のバイアスも増加させてしまうことになるので、バンドギャップ基準電圧Vrefが上昇してしまう。このような動作は、ノイズの周期に合わせて周期的に生じる。これを解決するために、図21のバンドギャップ基準電圧回路では、フィルタ回路を設けてVccをフィルタリングし、P512のソース電圧をほぼ一定に保持し、P512がノイズの周期に合わせてオンしないようにしている。
【0010】
【発明が解決しようとする課題】
しかしながら図21のようにスタートアップ回路を備えた従来のバンドギャップ基準電圧回路では、電源投入時の高電位電力供給Vccの上昇の速さ(急峻に上昇するか、緩やかに上昇するか)や素子の温度特性などに依存して、Vccが定電流源回路の動作可能電圧に達する前に、定電流源回路を起動させる動作(定電流源回路のノードをプルアップ、プルダウンする動作)を終了してしまったり、Vccが上記の動作可能電圧に達したあともしばらくの間、上記の起動動作を継続してしまうことがある。
【0011】
Vccが上記の動作可能電圧に達する前に上記の起動動作を終了してしまうと、定電流源回路が起動されず(動作せず)、定電流源回路は定電流を流さないので、バンドギャップ基準電圧は生成されない。逆に、Vccが上記の動作可能電圧に達したあともなお上記の起動動作を継続すると、終了までの間、定電流源回路が発生する定電流が過剰に流れ、バンドギャップ基準電圧が上昇してしまうとともに、消費電力が増大してしまう。
【0012】
また、図21の従来のバンドギャップ基準電圧回路ではフィルタ回路を挿入しているが、電源ノイズによるバンドギャップ基準電圧の上昇という問題の根本原因は、定電流源回路が起動されてバンドギャップ基準電圧を発生するようになったあとの定常動作において、図21のノード520を、高電位電力供給Vccに完全導通させずに、P516,P518を介して高電位電力供給Vccに接続し、このノード520の電圧を、高電位電力供給Vccと低電位電力供給Vssとの中間電位であってpチャネルトランジスタP520がスイッチングする電圧(Vtp520+Vtn500+Vbe500)にしていることにある。ここで、Vtp520はP520のスレッショルド電圧を、Vtn500はN500のスレッショルド電圧を、Vbe500はQ500のベース・エミッタ間電圧を、それぞれ表している。このノード520の電圧(Vtp520+Vtn500+Vbe500)は、Vccに依存してP512がオンしてしまう可能性がある電圧である。
【0013】
これによって、充電コンデンサC502とpチャネルトランジスタP516,P518とで形成される、等価的な高電位電力供給Vccのノード520に対するローパスフィルタの時定数fcが低くなり、電源ノイズレベルを低減させる帯域まで広がってしまい、電源ノイズによって周期的にスタータトランジスタP512をオンさせてしまう。P516,P518は、上記の定常動作では上記の通りハイインピーダンスで動作しているので、フィルタ回路70Aを含んだローパスフィルタを構成してしまうことになる。このローパスフィルタは、その時定数fcがフィルタ回路70Aよりも低いのと等価なので、低周波数に関しては無防備ということになる。つまり、Vccの変動は、P512のソースに印加されてしまい、周期的にP512をオンさせてしまうので、バンドギャップ基準電圧Vrefが上昇してしまう。
【0014】
また、図21のバンドギャップ基準電圧回路では、電源ノイズによってP512を周期的にオンさせてしまうことに対しての回路的対策が何もなされていない。従って、挿入したフィルタ回路のfc以下の電源ノイズが入力された場合には、フィルタ回路を設けない従来のバンドギャップ基準電圧回路と同様に、バンドギャップ基準電圧が徐々に上昇するという問題が発生する。
【0015】
さらに、図21のバンドギャップ基準電圧回路では、スタートアップ回路70Aにおいて、P516,P518,P520による貫通電流パスが存在しているため、定常動作時に不要な電流が流れてしまう。
【0016】
以上の課題を図21のバンドギャップ基準電圧回路が含んでいる理由は、P512のスイッチングを制御するノード520の電圧を、スタートアップノード518の電圧と、そのスタートアップノード518の電圧をゲート入力としてノード520と低電力供給Vssの間に挿入されたP520の動作とに依存させていることによる。
【0017】
本発明は、上記従来の課題を解決するためになされたものであり、電源投入時に確実に起動してバンドギャップ基準電圧を発生し、かつ消費電力を低減できるバンドギャップ基準電圧回路を提供することを目的とする。
【0018】
【課題を解決するための手段】
上記の目的を達成するために本発明は、
バンドギャップ基準電圧を発生させるバンドギャップ基準電圧回路において、
基準電位が供給される所定のノードと接続され、起動電圧により起動され、熱電圧に比例した定電流を発生させる定電流源回路を備え、
上記定電流源回路が動作可能な供給電圧の下限値を定義する第1の素子群を含み、
さらに、
上記定電流からバンドギャップ基準電圧を発生させるバンドギャップ基準電圧発生回路と、
上記第1の素子群と同様の第2の素子群を有し、該第2の素子群によって、上記所定のノードが上記供給電圧の上記下限値に達したことを上記第1の素子群をモニタすることなく、検知する電源電圧検知回路と、
上記供給電圧が上昇を開始してから上記下限値に達するまで、上記定電流源回路の所定のノードに所定の電圧を印加することによって、上記定電流源回路を起動し、上記供給電圧が上記下限値に達したら、上記起動を解除するとともに、上記電源電圧検知回路内の貫通電流パスを遮断する起動出力回路とを備えた
ことを特徴とするバンドギャップ基準電圧回路を提供する。
【0019】
【発明の実施の形態】
実施の形態1
図1は本発明の実施の形態1を示すバンドギャップ基準電圧回路の回路図である。実施の形態1のバンドギャップ基準電圧回路は、熱電圧に比例した定電流を発生させ、この定電流からバンドギャップ基準電圧を発生させる基本ステージ10と、電源投入時に基本ステージ10を起動するスタートアップ回路20とを備えている。
【0020】
[基本ステージ10の構成]
基本ステージ10は、定電流源回路11と、バンドギャップ基準電圧発生回路12とを備えている。定電流源回路11は、熱電圧に比例した定電流I1を発生させる。バンドギャップ基準電圧発生回路12は、上記の定電流I1からバンドギャップ基準電圧Vrefを発生させる。
【0021】
定電流源回路11は、pチャネルトランジスタP100,P102からなる第1の対と、pチャネルトランジスタP104,P106からなる第2の対と、nチャネルトランジスタN100,N102からなる第3の対とを備えている。P100およびP102のソースは、高電位電力供給Vccに接続されている。P100のドレインはP104のソースに、P102のドレインはP106のソースに、それぞれ接続されている。P104のドレインは、N100のドレインに接続されている。N100およびN102の共通ゲートは、P104のドレインとN100のドレインの接続ノード118に接続されている。N100およびN102は、互いに同一仕様である。
【0022】
また、定電流源回路11は、抵抗R100,R102と、pnpバイポーラトランジスタQ100,Q102とを備えている。R100は、P106のドレインとN102のドレインとの間に接続されている。Q100は、エミッタがN100のソースに、ベースが低電位電力供給Vssに、コレクタが基板に、それぞれ接続されている。R102は、N102のソースとQ102のエミッタ間に接続されている。Q102は、ベースが低電位電力供給Vssに、コレクタが基板に、それぞれ接続されている。
【0023】
バンドギャップ基準電圧発生回路12は、pチャネルトランジスタP108,P109、抵抗R104、およびpnpバイポーラトランジスタQ104の直列接続と、コンデンサC100とを備えている。P108のソースは、高電位電力供給Vccに接続されている。P108のゲートは、P102のゲートに接続されている。P109のゲートは、P106のゲートに接続されている。Q104のベースは、低電位電力供給Vssに接続されている。Q104のコレクタは、基板に接続されている。P110のドレインとR104との間の接続は、出力ノード110を形成している。コンデンサC100は、出力ノード110と低電位電力供給Vssとの間に接続されている。
【0024】
基本ステージ10内のP100,P102,P104,P106,P108,P109は、互いに同一仕様である。P100,P102,P108は、第1のカレントミラーステージを形成する。同様に、P104,P106,P109は、第2のカレントミラーステージを形成する。これらの第1および第2のステージは、カスコード接続され、カスコードカレントミラー回路を構成している。この実施の形態1のカスコードカレントミラー回路では、従来のカスコードカレントミラー構成と違って、P100,P102,P108の共通のゲートがP106のドレインに接続されている。同様に、P104,P106,P109の共通のゲートは、P106のドレインに直接接続されず、R100を介してP106のドレインに接続されている。
【0025】
[スタートアップ回路20の構成]
スタートアップ回路20は、電源電圧検知回路21と、出力回路22とを備えている。電源電圧検知回路21は、高電位電圧供給Vccが定電流源回路11が動作可能な高電位電圧供給Vccの電圧の下限値を定義する素子と同様の素子を有し、これらの素子によって、Vccが上記下限値に達したか否かを検知する。出力回路22は、高電位電圧供給Vccが上昇を開始してから上記下限値に達するまで、定電流源回路11を起動し、上記供給電圧が上記下限値に達したら、上記起動を解除するとともに、電源電圧検知回路21内のpパスを遮断する。
【0026】
電源電圧検知回路21は、pチャネルトランジスタP110,P111と、nチャネルトランジスタN110,N111と、pnpバイポーラトランジスタQ110とを備えている。P110のソースは高電位電力供給Vccに接続されている。P111,N111,Q110は、P110のドレインと基板との間に直列に接続されている。N110は、P110のドレインの接続ノードであるノード120と低電位電力供給Vssとの間に挿入されている。P111のゲートは、低電位電力供給Vssに接続されている。N111のゲートは、高電位電力供給Vccに接続されている。Q110のベースは、低電位電力供給Vssに接続されている。
【0027】
また、電源電圧検知回路21は、pチャネルトランジスタP112,P113と、コンデンサC110とを備えている。P112は、ゲートがノード120に接続され、ソースが高電位電力供給Vccに接続されている。P113は、ゲートが高電位電力供給Vccに接続され、ソースがP112のドレインの接続ノードであるノード121に接続され、ドレインが低電位電力供給Vssに接続されている。コンデンサC110は、ノード121と低電位電力供給Vssとの間に挿入されている。上記のノード121は、電源電圧検知回路21の出力端子になっており、出力回路22の入力端子に接続されている。
【0028】
この電源電圧検知回路21のP111,P112は、定電流源回路11のP102,P106と同一仕様であり、電源電圧検知回路21のN111は定電流源回路11のN102と同一仕様であり、電源電圧検知回路21のQ110は、定電流源回路11のQ100と同一仕様である。
【0029】
出力回路22は、pチャネルトランジスタP114,P115,P116と、nチャネルトランジスタN112,N113とを備えている。P114は、ゲートがノード121に接続されるとともに、ソースが高電位電力供給Vccに接続されている。N112は、ゲートがノード121が接続されるとともに、ソースが低電位電力供給Vssに接続されている。P115は、ゲートがP114のドレインとN112のドレインとの接続点であるノード122に接続されるとともに、ソースが高電位電力供給Vccに接続されている。N113は、ゲートがノード122に接続されるとともに、ソースが低電位電力供給Vssに接続されている。P116は、ゲートがP115のドレインとN113のドレインとの接続点であるノード123に接続され、ソースが高電位電力供給Vccに接続され、ドレインがスタータノード118に接続されている。このP116は、スタータノード118を高電位にプルアップする手段であるスタータトランジスタである。ノード123は、電源電圧検知回路21内のP110およびN110のゲートに入力される構成になっている。
【0030】
[実施の形態1の動作]
図1の実施の形態1のバンドギャップ基準電圧回路の動作について以下に説明する。なお、以下の本発明の実施の形態の説明においては、pnpバイポーラトランジスタのベース・エミッタ間電圧をVbe、pチャネルトランジスタP100の飽和ソース・ドレイン間電圧をVDSsatp、pチャネルトランジスタP100のスレッショルド電圧をVtp、nチャネルトランジスタN100の飽和ソース・ドレイン間電圧をVDSsatn、nチャネルトランジスタN100のスレッショルド電圧をVtn、とそれぞれ表記する。また、例えばpnpバイポーラトランジスタQ100のベース・エミッタ間電圧をVbe100のように表記する。また、例えば、pチャネルトランジスタP100の飽和ソース・ドレイン間電圧をVDSsatp100のように表記し、pチャネルトランジスタP100のスレッショルド電圧をVtp100のように表記する。また、例えば、nチャネルトランジスタN100の飽和ソース・ドレイン間電圧をVDSsatn100のように表記し、nチャネルトランジスタN100のスレッショルド電圧をVtn100のように表記する。また、例えば抵抗R100の抵抗値をr100のように表記する。
【0031】
[基本ステージ10の動作]
まず、基本ステージ10について説明する。図1の定電流源回路11において、高電位電力供給Vccが定電流源回路11を動作させるに十分な電圧であり、Q100とQ102のエミッタ面積比をQ100:Q102=1:Nとし、Q100およびQ102が拡散領域のコレクタ電流値で動作しているものとする。P100,P102,P104,P106,P108,P109は互いに同一仕様であり、N100,N102も互いに同一仕様であるので、P100,P102,P104,P106,P108,P109を流れる定電流であって定電流源回路11で発生される定電流I1は、
I1=1/r102*K*T/q*LN(N)…(1)
となる。
(1)式において、Kはボルツマン定数、Tは絶対温度、qは電子の電荷量である。また、LN(N)はQ100とQ102のエミッタ面積比Nの自然対数を表す。ただし、(1)式においては、pチャネルトランジスタP100,P102,P104,P106,P108,P109、およびnチャネルトランジスタN100,N102のそれぞれのMOSのドレイン電流のドレイン電圧依存(実効チンャネル長変調効果)によるI1の電源依存は無視している。
【0032】
また、バンドギャップ基準電圧発生回路12のQ104が拡散領域コレクタ電流値で動作しているものとすると、バンドギャップ基準電圧発生回路12の出力ノード110の電圧Vrefは、
Vref=Vbe104+r104/r102*K*T/q*LN(N)…(2)
となる。
ここで、(2)式中の電圧Vbe104は負温度係数を持つので、その温度係数を打ち消すように、(2)式中のr104/r102*KT/q*LN(N)項の抵抗比r104/r102と、Q100とQ102のエミッタ面積比Nの回路定数を設定すれば、Vrefは温度変動がほとんどないバンドギャップ基準電圧となる。(2)式においても、(1)式と同様に、それぞれのMOSのドレイン電流のドレイン電圧依存(実効チャネル長変調効果)によるI1の電源依存は無視している。
【0033】
定電流源回路11が定電流源として動作するには、定電流源回路11内のP100,P102,P104,P106の全てのpチャネルトランジスタと、N100,N102の全てのnチャネルトランジスタとが、飽和領域で動作していなければならない。従って、定電流源回路11が定電流源として動作できる高電位電力供給Vccの電圧の下限値は、P100,P104,N100,Q100の直列接続においてP100,P104,N100の全てが飽和領域で動作できる高電位電力供給Vccの電圧の下限値VCC1と、P102,P106,R100,N102,R102,Q102の直列接続においてP100,P104,N100の全てが飽和領域で動作できる高電位電力供給Vccの電圧の下限値VCC2との高いほうの電圧値となる。
【0034】
上記の電圧VCC1は、
VCC1=Vbc100+VDSsatp100+VDSsatp104+Vtn100…(3)
であり、
上記の電圧VCC2は、
Figure 0003678692
である。
なお、(4)式においては、I1*r100=VDSsatp102=VDSsatp106、およびVtp106=Vtp102の最適設計2条件を満足していると仮定している。
【0035】
実施の形態1のバンドギャップ基準電圧回路において、基本ステージ10のみでは、パワーアップ時において、スタータノード118の電圧はN100およびN102をターンオンさせるに十分なレベルにならない。そのため、基本ステージ10のみではパワーアップ時に上昇する高電位電力供給Vccの電圧に追随して基準電圧を発生させることができない。従って、スタートアップ回路20が必要となる。
【0036】
実施の形態1のスタートアップ回路20は、定電流源回路11が定電流源として動作する高電位電力供給Vccの電圧下限値が(4)式の電圧値VCC2である場合に、パワーアップの開始から高電位電力供給Vccが上記の電圧値VCC2になるまでの期間、ノード118を、定電流源回路11のN100およびN102をターンオンさせるに十分な電圧レベルにプルアップすることによって、定電流源回路11を起動する。
【0037】
[スタートアップ回路20の動作]
スタートアップ回路20の動作を以下に説明する。パワーアップ前、高電位電力供給Vccが0[V]のとき、P113はMOSダイオード接続された状態になり、コンデンサC110に充電されていた電荷がP113を介して放電される。よって、ノード121はP113のスレッショルド電圧Vtp113以下となる。
【0038】
P113のスレッショルド電圧Vtp113よりもN112のスレッショルド電圧Vtn112を高く設定しておき、この状態から高電位電力供給Vccが上昇すると、ノード121の電圧は高電位電力供給Vccの上昇前のまま保持されるので、P114とN112とで構成されるインバータの出力ノード122は“H”レベルとなり、その電圧は高電位電力供給Vccとともに上昇する。P115とN113とで構成されるインバータの出力ノード123は“L”レベルとなり、その電圧はスタータトランジスタP116のゲートおよび電源電圧検知回路20内のP110およびN110のゲートに入力される。よって、スタータトランジスタP116は、オンしてスタータノード118を高電位にプルアップする。また、N110はオフしている。
【0039】
高電位電力供給VccがN113の飽和ソース・ドレイン間電圧VDSsatn113とP110のスレッショルド電圧Vtp110との合計の電圧(VDSsatn113+Vtp110)以上になると、P110はオン可能状態になる。ここで、P111の飽和ソース・ドレイン間電圧VDSsatp111と、N111の飽和ソース・ドレイン間電圧VDSsatn111と、Q110のベース・エミッタ間電圧Vbe110との合計の電圧(VDSsatp111+VDSsatn111+Vbe110)を、上記の合計電圧(VDSsatn113+Vtp110)より大きく設定しておけば、P111,N111,Q110がオンせず、P110のドレイン電圧であるノード120の電圧は、ほぼ高電位電力供給Vccの電圧にクランプされ、高電位電力供給Vccの上昇に伴って上昇する。この状態は、高電位電力供給Vccが電圧(VDSsatn113+Vtp110)以上になってから電圧(VDSsatp111+VDSsatn111+Vbe110)以上になるまで続く。P112のゲートの電位も、ほぼ高電位電力供給Vccと等しく、P112はオフのままである。
【0040】
高電位電力供給Vccが上昇して電圧(VDSsatp111+VDSsatn111+Vbe110)以上になると、P111,N111,Q110がオンし、P110に電流が流れる。これにより、ノード120は電圧(VDSsatp111+VDSsatn111+Vbe110)のほぼ一定電圧にクランプされるため、P112のソース・ゲート間には電圧(Vcc−(VDSsatp111+VDSsatn111+Vbe110))が印加される。
【0041】
さらに、高電位電力供給Vccが上昇し、その値が、P111の飽和ソース・ドレイン間電圧VDSsatp111と、N111の飽和ソース・ドレイン間電圧VDSsatn111と、Q110のベース・エミッタ間電圧Vbe110と、P112のスレッショルド電圧Vtp112との合計の電圧(VDSsatp111+VDSsatn111+Vbe110+Vtp112)以上になると、P112は完全にオンする。P112がオンすると、P112が導通して電流を流し、コンデンサC110の充電が開始され、コンデンサC110の容量で決まる時定数の早さでノード121の電圧は上昇する。
【0042】
ノード121の電圧が、P114とN112とで構成されるインバータのしきい値電圧まで上昇すると、ノード122は“H”から“L”に変化し、P115とN113とで構成されるインバータの出力ノード123は、“L”から“H”に変化する。上記の出力ノード123が“L”で開始されたワンショットパルスの出力は、上記の出力ノード123が“H”に変化することで終了する。
【0043】
ノード123が“L”から“H”に変化することによって、スタータトランジスタP116はオフし、スタータノード118のプルアップが終了する。すなわち、電力供給電圧の上昇動作において、スタータノード118の電圧を、N100およびN102のソース電圧よりもスレッショルド電圧Vtn以上高くなるようにプルアップしていた起動の動作を終了する。
【0044】
ここで、高電位電力供給Vccが定電流源回路11の動作可能電圧に達するまでに時間がかかる場合には、コンデンサC110を設けなくても、定電流源回路11を起動することができる。しかし、Vccが瞬時に定電流源回路11の動作可能電圧に達する場合には、コンデンサC110を設けないと、ノード123が瞬時に“H”に変化してしまい、スタートアップ回路20は上記のプルアップの動作ができず、定電流源回路11を起動できなくなる。そこで、コンデンサC110を設け、Vccが瞬時に定電流源回路11の動作可能電圧に達しても、定電流源回路11を確実に起動できる構成としている。
【0045】
また、ノード123が“L”から“H”に変化することによって、P110がオフし、N110がオンする。N110がオンすることによって、ノード120は“L”にクランプされ、P112はオンしてそのまま保持される。これによって、ノード121は“H”にクランプされたまま保持される。
【0046】
以上のように実施の形態1のバンドギャップ基準電圧回路では、定電流源回路11が定電流源として動作可能な高電位電圧供給Vccの下限値が(4)式のVCC2(=Vbe100+VDSsatn102+Vtp106+VDSsatp102)である場合において、下限値VCC2を定義する定電流源回路11の構成素子P102,P106,N102,Q100と同様の素子P111,P112,N111,Q110を電源電圧検知回路21に設け、下限値VCC2と等しい電圧値(VDSsatp111+VDSsatn111+Vbe110+Vtp112)を電源電圧検知回路21によって検知し、高電位電力供給Vccが電圧値(VDSsatp111+VDSsatn111+Vbe110+Vtp112)(=下限値VCC2)に達するまでの期間、出力回路22によってノード118を定電流源回路11のN100およびN102をターンオンさせるに十分な電圧レベルにプルアップし、高電位電力供給Vccが(VDSsatp111+VDSsatn111+Vbe110+Vtp112)(=下限値VCC2)に達したら、上記のプルアップを終了して出力回路22からの電流供給を停止する。
【0047】
ここで、N100およびN102が動作可能なスタータノード118の電圧の下限値は(Vbe100+Vtn100)であり、スタータノード118が電圧値(Vbe100+Vtn100)に到達するまでの期間というのは、Vccが電圧値(Vbe110+VDSsatn111+VDSsatp111+Vtp112)(=下限値VCC2)に到達するまでの期間である。スタータノード118を電圧値(Vbe100+Vtn100)にする電圧にVccが上昇するまでは、スタータトランジスタP116によってスタータノード118をプルアップし、スタータノード118を電圧値(Vbe100+Vtn100)以上にできる電圧にVccが上昇して定電流源回路11の起動がなされたらすぐにスタータトランジスタP116をオフする。
【0048】
これにより、高電位電力供給Vccの立ち上がりスピードによらず、また電源電圧検知回路の構成素子の温度特性などによらず、定電流源回路11を確実に起動させてバンドギャップ基準電圧Vrefを必ず発生させることができるとともに、高電位電力供給Vccが下限値VCC2に達したあとの消費電力を低減し、Vccが下限値VCC2に達したあとにバンドギャップ基準電圧Vrefが上昇してしまうの防ぐことができる。
【0049】
この実施の形態1のバンドギャップ基準電圧回路は、定電流源回路11が定電流源として動作できる高電位電力供給Vccの下限値が、VCC2(=Vbe100+VDSsatn102+Vtp106+VDSsatp102)であって、VCC1(=Vbc100+VDSsatp100+VDSsatp104+Vtn100)よりも高い場合、すなわち(2*VDSsatp+Vtn)<(VDSsatn+Vtp1+VDSsatp)であるプロセスを使用してバンドギャップ基準電圧回路を構成する場合において、バンドギャップ基準電圧を確実に発生させたいときに有効である。
【0050】
さらに、実施の形態1のバンドギャップ基準電圧回路では、高電位電力供給Vccが(VDSsatp111+VDSsatn111+Vbe110+Vtp112)(=下限値VCC2)に達したら、P112がオンしてノード121が“H”に変化し、これによって出力回路22のN112,P115がオンして、ノード122が“L”に、ノード123が“H”に、それぞれクランプされる。これによって、電源電圧検知回路21のN110がオンしてノード120が“L”にクランプされるので、P112は確実にオンのまま保持され、ノード121を高電位電力供給Vccに低インピーダンスに導通させ、P115は確実にオンのまま保持され、ノード123を高電位電力供給Vccに低インピーダンスに導通させる。
【0051】
これにより、定電流源回路11が起動されたあとの定常動作において、出力回路22の制御入力であるノード121、およびスタータトランジスタP116のオン/オフを制御することによって出力回路22が定電流源回路11を起動する動作を制御するノード123は、高電位電力供給Vccの電源ノイズに対して同相を保つことができる。従って、スタータトランジスタP116のソース電圧とゲート電圧とは、上記の電源ノイズに対して同相を保つことができる。このように電源ノイズに対してスタータトランジスタP116のソース電圧とゲート電圧とを同相に保つことができるので、高電位電力供給Vccが下限値VCC2に達したあとは、スタータトランジスタP116は、上記の電源ノイズによってオンしてしまうことなく、確実にオフのまま保持されるので、電源ノイズによってバンドギャップ基準電圧が徐々に上昇するとはない。
【0052】
また、実施の形態1のバンドギャップ基準電圧回路では、高電位電力供給Vccが(VDSsatp111+VDSsatn111+Vbe110+Vtp112)(=下限値VCC2)に達したら、P112がオンしてノード121が“H”に変化し、これによって出力回路22のN112,P115がオンしてノード123が“H”にクランプされ、これよって電源電圧検知回路21のP110がオフしてそのまま保持される。
【0053】
これにより、定電流源回路11が起動されたあとの定常動作において、スタートアップ回路20内には貫通電流パスが存在しなくなるので、定常動作時に不要な電流が流れることはなく、消費電力を低減できる。
【0054】
実施の形態1の変形例1
図2は本発明の実施の形態1の変形例1を示すバンドギャップ基準電圧回路の回路図である。図2において、図1と同じものあるいは相当するものには同じ符号を付してある。この変形例1の回路は、スタートアップ回路20の出力回路22が上記実施の形態1とは異なった構成になっており、基本ステージ10および電源電圧検知回路21は上記実施の形態1と同一構成である。
【0055】
図2の出力回路22は、上記実施の形態1の出力回路22(図1参照)において、スタートアップトランジスタP116をnチャネルトランジスタN114に変更したものである。N114は、ゲートがノード122に接続され、ソースが低電位電力供給Vssに接続され、ドレインがスタータノードである定電流源回路11のノード117に接続されている。
【0056】
この実施の形態1の変形例1のスタートアップ回路20は、定電流源回路11が定電流源として動作する高電位電力供給Vccの電圧下限値が上記(4)式の電圧値VCC2である場合に、パワーアップの開始から高電位電力供給Vccが上記の電圧値VCC2になるまでの期間、ノード117を、P104,P106,P100,P102をターンオンさせるに十分な電圧レベルにプルダウンすることによって、定電流源回路11を起動する。
【0057】
上記実施の形態1では、電源投入時において、高電位電力供給Vccが(VDSsatp111+VDSsatn111+Vbe110+Vtp112)になるまでの期間、定電流源回路11のnチャネルトランジスタN100およびN102の共通ゲートを高電位電力供給Vccにプルアップし、これによってN100およびN102をターンオンさせるに十分な電圧レベルにして、定電流源回路11を起動していた。
【0058】
これに対し、この実施の形態1の変形例1では、pチャネルトランジスタP104およびP106の共通ゲートを低電位電力供給Vssにプルダウンするとともに、P100およびP102の共通ゲートもR100を経て低電位電力供給Vssにプルダウンし、これによってP100およびP102の対とP104およびP106の対とからなるpチャネルトランジスタのカスコードカレントミラーをターンオンさせるに十分な電圧レベルにして、定電流源回路11を起動する。この変形例1は、上記実施の形態1と同様な効果を備えている。
【0059】
実施の形態1の変形例2
図3は本発明の実施の形態1の変形例2を示すバンドギャップ基準電圧回路の回路図である。図3において、図1と同じものあるいは相当するものには同じ符号を付してある。この変形例2の回路は、基本ステージ10およびスタートアップ回路20の電源電圧検知回路21が上記実施の形態1とは異なった構成になっており、出力回路22は上記実施の形態1と同一構成である。
【0060】
上記実施の形態1では、定電流源回路11のpチャネルトランジスタ側のカレントミラー回路をカスコードにて構成していたが、この変形例2では、pチャネルトランジスタ側のカレントミラー回路をシングルにて構成している。図3の定電流源回路11は、上記実施の形態1の定電流源回路11(図1参照)において、P104,P106,R100を削除した構成になっている。また、図3のバンドギャップ基準電圧発生回路12は、上記実施の形態1のバンドギャップ基準電圧発生回路12(図1参照)において、P109を削除した構成になっている。また、図3の電源電圧検知回路21は、上記実施の形態1の電源電圧基準回路21(図1参照)において、P111を削除した構成になっている。
【0061】
この実施の形態1の変形例2のスタートアップ回路20は、電源投入時において、高電位電力供給Vccの電圧が(VDSsatn111+Vbe110+Vtp112)になるまでの期間、定電流源回路11のnチャネルトランジスタN100およびN102の共通ゲートを高電位電力供給Vccにプルアップし、これによってN100およびN102をターンオンさせるに十分な電圧レベルして定電流源回路11を起動する。
【0062】
この実施の形態1の変形例2のバンドギャップ基準電圧回路は、定電流源回路11が定電流源として動作できる高電位電力供給Vccの下限値が(Vbe100+VDSsatn102+Vtp102)である場合、すなわち(VDSsatp+Vtn)<(VDSsatn+Vtp)であるプロセスを使用してバンドギャップ基準電圧回路を構成する場合であり、かつ上記実施の形態1よりも低い高電位電力供給Vccの電圧でバンドギャップ基準電圧を発生させる構成とする場合において、バンドギャップ基準電圧を確実に発生させたいときに有効である。
【0063】
実施の形態1の変形例3
図4は本発明の実施の形態1の変形例3を示すバンドギャップ基準電圧回路の回路図である。図4において、図2および図3と同じものあるいは相当するものには同じ符号を付してある。この変形例3の回路は、基本ステージ10および電源電圧検知回路21が上記実施の形態1の変形例2と同一構成であり、出力回路回路22が上記実施の形態1の変形例1と同一構成である。ただし、N114のドレインは、スタータノードである定電流源回路11のノード119に接続されている。
【0064】
この実施の形態1の変形例3のバンドギャップ基準電圧回路は、電源投入時において、高電位電力供給Vccの電圧が(VDSsatn111+Vbe110+Vtp112)になるまでの期間、pチャネルトランジスタP100およびP102の共通ゲートを低電位電力供給Vssにプルダウンし、これによってP100およびP102をターンオンさせるに十分な電圧レベルにして定電流源回路11を起動する。この変形例3は、上記変形例2と同様の効果を備えている。
【0065】
実施の形態2
図5は本発明の実施の形態2を示すバンドギャップ基準電圧回路の回路図である。図5において、図1と同じものあるいは相当するものには同じ符号を付してある。実施の形態2のバンドギャップ基準電圧回路は、基本ステージ10と、スタートアップ回路20とを備えている。この実施の形態2の回路は、スタートアップ回路20が上記実施の形態1とは異なった構成になっており、基本ステージ10は上記実施の形態1と同一構成である。
【0066】
[実施の形態2のスタートアップ回路20の構成]
図5のスタートアップ回路20において、電源電圧検知回路21は、pチャネルトランジスタP111,P112と、nチャネルトランジスタN110とを備えている。N110のソースは低電位電力供給Vssに接続されている。P111,P112は、高電位電力供給VccとN110のドレインの接続ノードであるノード120との間に直列に接続されている。P111,P112のゲートは、低電位電力供給Vssに接続されている。
【0067】
また、図5の電源電圧検知回路21は、nチャネルトランジスタN111,N115,N117と、pnpバイポーラトランジスタQ110と、コンデンサC110とを備えている。Q110は、コレクタが基板に接続され、ベースが低電位電力供給Vssに接続されている。N111は、ソースがQ110のエミッタに接続され、ゲートがノード120に接続されている。N117は、ゲートが低電位電力供給Vssに接続され、ソースがN111のドレインの接続ノードであるノード121に接続され、ドレインが高電位電力供給Vccに接続されている。N115は、ノード121と低電位電力供給Vssとの間に挿入されている。コンデンサC110は、高電位電力供給Vccとノード121との間に挿入されている。上記のノード121は、電源電圧検知回路21の出力端子になっており、出力回路22の入力端子に接続されている。
【0068】
この電源電圧検知回路21のP111,P112は、定電流源回路11のP100,P104と同一仕様であり、電源電圧検知回路21のN111は定電流源回路11のN100と同一仕様であり、電源電圧検知回路21のQ110は、定電流源回路11のQ100と同一仕様である。
【0069】
図5の出力回路22は、pチャネルトランジスタP114,P115,P116と、nチャネルトランジスタN112,N113とを備えている。P114は、ゲートがノード121に接続されるとともに、ソースが高電位電力供給Vccに接続されている。N112は、ゲートがノード121が接続されるとともに、ソースが低電位電力供給Vssに接続されている。P115は、ゲートがP114のドレインとN112のドレインとの接続点であるノード122に接続されるとともに、ソースが高電位電力供給Vccに接続されている。N113は、ゲートがノード122に接続されるとともに、ソースが低電位電力供給Vssに接続されている。P116は、ゲートがノード122に接続され、ソースが高電位電力供給Vccに接続され、ドレインがスタータノード118に接続されている。このP116は、スタータノード118を高電位にプルアップする手段であるスタータトランジスタである。ノード122は、電源電圧検知回路21内のN115のゲートに入力され、P115のドレインとN113のドレインとの接続点であるノード123は、電源電圧検知回路21内のN110のゲートに入力される構成になっている。
【0070】
このように実施の形態2の出力回路22は、上記実施の形態1の出力回路22(図1参照)において、スタータトランジスタP116のゲートを、ノード123ではなくノード122に接続するとともに、このノード122を電源電圧検知回路22に入力する構成としたものである。
【0071】
[実施の形態2の動作]
図5の実施の形態2のバンドギャップ基準電圧回路の動作について以下に説明する。図5の実施の形態2の基本ステージ10の動作は、上記実施の形態1の基本ステージ10(図1参照)と同じである。
【0072】
実施の形態2のバンドギャップ基準電圧回路においても、基本ステージ10のみでは、パワーアップ時において、スタータノード118の電圧は、N100およびN102をターンオンさせるに十分なレベルにならない。そのため、基本ステージ10のみではパワーアップ時に上昇する高電位電力供給Vccの電圧に追随して基準電圧を発生させることができない。従って、スタートアップ回路20が必要となる。
【0073】
実施の形態2のスタートアップ回路20は、定電流源回路11が定電流源として動作する高電位電力供給Vccの電圧下限値が上記(3)式の電圧値VCC1である場合に、パワーアップの開始から高電位電力供給Vccが上記の電圧値VCC1になるまでの期間、ノード118を、定電流源回路11のN100およびN102をターンオンさせるに十分な電圧レベルにプルアップすることによって、定電流源回路11を起動する。
【0074】
図5のスタートアップ回路20の動作を以下に説明する。パワーアップ前、高電位電力供給Vccが0[V]のとき、N117はMOSダイオード接続された状態になり、コンデンサC110に充電されていた電荷がN117を介して放電される。よって、ノード121の高電位電力供給Vccに対する電圧差は、N117のスレッショルド電圧Vtn117以下となる。
【0075】
N117のスレッショルド電圧Vtn117よりもP114のスレッショルド電圧Vtp114を高く設定しておき、この状態から高電位電力供給Vccが上昇すると、ノード121の電圧は高電位電力供給Vccの上昇とともに上昇するので、P114とN112とで構成されるインバータの出力ノード122は“L”レベルとなり、P115とN113とで構成されるインバータの出力ノード123は“H”レベルとなり、その電圧は高電位電力供給Vccとともに上昇する。ノード122の電圧は、電源電圧検知回路22内のN115のゲートに入力される。よって、N115はオフしている。ノード123の電圧は、スタータトランジスタP116のゲートおよび電源電圧検知回路20内のN110のゲートに入力される。よって、スタータトランジスタP116は、オンしてスタータノード118を高電位にプルアップする。
【0076】
高電位電力供給VccがP115の飽和ソース・ドレイン間電圧VDSsatp115とN110のスレッショルド電圧Vtn110との合計の電圧(VDSsatp115+Vtn110)以上になると、N110はオン可能状態になる。ここで、N110の飽和ソース・ドレイン間電圧VDSsatn110を、P111の飽和ソース・ドレイン間電圧VDSsatp111と、P112の飽和ソース・ドレイン間電圧VDSsatp112との合計の電圧(VDSsatp111+VDSsatp112)より大きく設定しておけば、すなわちP111とP112からなるカスコードMOSの能力をN110の能力よりも十分大きく設定しておけば、N110のドレイン電圧であるノード120の電圧は、高電位電力供給Vccよりも上記の合計電圧(VDSsatp111+VDSsatp112)だけ低い電圧(Vcc−(VDSsatp111+VDSsatp112))にクランプされ、高電位電力供給Vccの上昇に伴って上昇する。
【0077】
さらに、高電位電力供給Vccが上昇し、その値が、P111の飽和ソース・ドレイン間電圧VDSsatp111と、P112の飽和ソース・ドレイン間電圧VDSsatp112と、Q110のベース・エミッタ間電圧Vbe110と、N111のスレッショルド電圧Vtn111との合計電圧(VDSsatp111+VDSsatp112+Vbe110+Vtn112)以上になると、N111は完全にオンする。N111がオンすると、N111が導通して電流を流し、コンデンサC110の充電が開始され、コンデンサC110の容量で決まる時定数の早さでノード121の電圧は下降する。
【0078】
ノード121の電圧が、P114とN112とで構成されるインバータのしきい値電圧まで低下すると、ノード122は“L”から“H”に変化し、P115とN113とで構成されるインバータの出力ノード123は“H”から“L”に変化する。上記の出力ノード123が“H”で開始されたワンショットパルスの出力は、上記の出力ノード123が“L”に変化することで終了する。
【0079】
ノード122が“H”に変化することによって、N115はオンしてそのまま保持される。また、ノード123が“L”に変化することによって、N110はオフし、ノード120の電圧は“H”にクランプされるので、N111もオンしたまま保持される。N115,N111がオンしたまま保持されることによって、ノード121は“L”にクランプされたまま保持される。
【0080】
ここで、N111は、オンしたときに、Q110を介してノード121を低電位電圧供給Vssに接続するので、N111のみでは、ノード121を低電位電圧供給Vssに低インピーダンスに導通させることができない。そこで、N115を設けて、ノード121を低電位電圧供給Vssに低インピーダンスに導通させることができる構成としている。
【0081】
また、ノード122が“H”に変化することによって、スタータトランジスタP116はオフし、スタータノード118のプルアップが終了する。すなわち、電力供給電圧の上昇動作において、スタータノード118の電圧を、N100およびN102のソース電圧よりもスレッショルド電圧Vtn以上高くなるようにプルアップしていた起動の動作を終了する。
【0082】
以上のように実施の形態2のバンドギャップ基準電圧回路では、定電流源回路11が定電流源として動作可能な高電位電圧供給Vccの下限値が上記(3)式のVCC1(=Vbe100+VDSsatp100+VDSsatp104+Vtn100)である場合において、下限値VCC1を定義する定電流源回路11の構成素子P100,P104,N100,Q100と同様の素子P111,P112,N111,Q110を電源電圧検知回路21に設け、下限値VCC1と等しい電圧値(VDSsatp111+VDSsatp112+Vbe110+Vtn111)を電源電圧検知回路21によって検知し、高電位電力供給Vccが電圧値(VDSsatp111+VDSsatp112+Vbe110+Vtn111)(=下限値VCC1)に達するまでの期間、出力回路22によってノード118を定電流源回路11のN100およびN102をターンオンさせるに十分な電圧レベルにプルアップし、高電位電力供給Vccが(VDSsatp111+VDSsatp112+Vbe110+Vtn111)(=下限値VCC1)に達したら、上記のプルアップを終了して出力回路22からの電流供給を停止する。
【0083】
これにより、高電位電力供給Vccの立ち上がりスピードによらず、また電源電圧検知回路の構成素子の温度特性などによらず、定電流源回路11を確実に起動させてバンドギャップ基準電圧Vrefを必ず発生させることができるとともに、高電位電力供給Vccが下限値VCC1に達したあとの消費電力を低減し、Vccが下限値VCC1に達したあとにバンドギャップ基準電圧Vrefが上昇してしまうの防ぐことができる。
【0084】
この実施の形態2のバンドギャップ基準電圧回路は、定電流源回路11が定電流源として動作できる高電位電力供給Vccの下限値が、VCC1(=Vbc100+VDSsatp100+VDSsatp104+Vtn100)であって、VCC2(=Vbe100+VDSsatn102+Vtp106+VDSsatp102)よりも高い場合、すなわち(2*VDSsatp+Vtn)>(VDSsatn+Vtp1+VDSsatp)であるプロセスを使用してバンドギャップ基準電圧回路を構成する場合において、バンドギャップ基準電圧を確実に発生させたいときに有効である。
【0085】
さらに、実施の形態2のバンドギャップ基準電圧回路では、高電位電力供給Vccが(VDSsatp111+VDSsatp112+Vbe110+Vtn111)(=下限値VCC1)に達したら、N111がオンしてノード121が“L”に変化し、これによって出力回路22のP114,N113がオンしてノード122が“H”にクランプされる。これによって、電源電圧検知回路21のN115は確実にオンのまま保持され、ノード121を低電位電力供給Vssに低インピーダンスに導通させ、P114は確実にオンのまま保持され、ノード122を高電位電力供給Vccに低インピーダンスに導通させる。
【0086】
これにより、スタータトランジスタP116のオン/オフを制御することによってスタータノード118のプルアップをオン/オフを制御するノード122は、高電位電力供給Vccの電源ノイズに対して同相を保つことができる。従って、スタータトランジスタP116のソース電圧とゲート電圧とは、上記の電源ノイズに対して同相を保つことができる。このように電源ノイズに対してスタータトランジスタP116のソース電圧とゲート電圧とを同相に保つことができるので、高電位電力供給Vccが下限値VCC1に達したあとは、スタータトランジスタP116は、上記の電源ノイズによってオンしてしまうことなく、確実にオフのまま保持されるので、電源ノイズによってバンドギャップ基準電圧が徐々に上昇するとはない。
【0087】
また、実施の形態2のバンドギャップ基準電圧回路では、高電位電力供給Vccが(VDSsatp111+VDSsatp112+Vbe110+Vtn111)(=下限値VCC1)に達したら、N111がオンしてノード121が“L”に変化し、これによって出力回路22のP114がオンしてノード122が“H”にクランプされ、これよって電源電圧検知回路21のN110がオフしてそのまま保持される。
【0088】
これにより、定電流源回路11が起動されたあとの定常動作において、スタートアップ回路20内には貫通電流パスが存在しなくなるので、定常動作時に不要な電流が流れることはなく、消費電力を低減できる。
【0089】
実施の形態2の変形例1
図6は本発明の実施の形態2の変形例1を示すバンドギャップ基準電圧回路の回路図である。図6において、図5と同じものあるいは相当するものには同じ符号を付してある。この変形例1の回路は、スタートアップ回路20の出力回路22が上記実施の形態2とは異なった構成になっており、基本ステージ10および電源電圧検知回路21は上記実施の形態2と同一構成である。ただし、N114のドレインは、スタータノードである定電流源回路11のノード119に接続されている。
【0090】
図6の出力回路22は、上記実施の形態2の出力回路22(図5参照)において、スタートアップトランジスタP116をnチャネルトランジスタN114に変更したものである。N114は、ゲートがノード123に接続され、ソースが低電位電力供給Vssに接続され、ドレインがスタータノードである定電流源回路11のノード117に接続されている。
【0091】
この実施の形態2の変形例1のスタートアップ回路20は、定電流源回路11が定電流源として動作する高電位電力供給Vccの電圧下限値が上記(3)式の電圧値VCC1である場合に、パワーアップの開始から高電位電力供給Vccが上記の電圧値VCC1になるまでの期間、ノード117を、P104,P106,P100,P102をターンオンさせるに十分な電圧レベルにプルダウンすることによって、定電流源回路11を起動する。
【0092】
上記実施の形態2では、電源投入時において、高電位電力供給Vccが(VDSsatp111+VDSsatp112+Vbe110+Vtn112)になるまでの期間、定電流源回路11のnチャネルトランジスタN100およびN102の共通ゲートを高電位電力供給Vccにプルアップし、これによってN100およびN102をターンオンさせるに十分な電圧レベルにして、定電流源回路11を起動させていた。
【0093】
これに対し、この実施の形態2の変形例1は、pチャネルトランジスタP104およびP106の共通ゲートを低電位電力供給Vssにプルダウンするとともに、P100およびP102の共通ゲートもR100を経て低電位電力供給Vssにプルダウンし、これによってP100およびP102の対とP104およびP106の対とからなるpチャネルトランジスタのカスコードカレントミラーをターンオンさせるに十分な電圧レベルして、定電流源回路11を起動する。この実施の形態2の変形例1は、上記実施の形態2と同様の効果を備えている。
【0094】
実施の形態2の変形例2
図7は本発明の実施の形態2の変形例2を示すバンドギャップ基準電圧回路の回路図である。図11において、図5と同じものあるいは相当するものには同じ符号を付してある。この変形例2の回路は、基本ステージ10およびスタートアップ回路20の電源電圧検知回路21が上記実施の形態2とは異なった構成になっており、出力回路22は上記実施の形態2と同一構成である。
【0095】
上記実施の形態2では、定電流源回路11のpチャネルトランジスタ側のカレントミラー回路をカスコードにて構成していたが、この変形例2では、pチャネルトランジスタ側のカレントミラー回路をシングルにて構成している。図7の定電流源回路11は、上記実施の形態2の定電流源回路11(図5参照)において、P104,P106,R100を削除した構成になっている。また、図7のバンドギャップ基準電圧発生回路12は、上記実施の形態2のバンドギャップ基準電圧発生回路12(図5参照)において、P109を削除した構成になっている。また、図7の電源電圧検知回路21は、上記実施の形態2の電源電圧基準回路21(図5参照)において、P111を削除した構成になっている。
【0096】
この実施の形態2の変形例2のスタートアップ回路20は、電源投入時において、高電位電力供給Vccの電圧が(VDSsatp111+Vbe110+Vtn111)になるまでの期間、定電流源回路11のnチャネルトランジスタN100およびN102の共通ゲートを高電位電力供給Vccにプルアップし、これによってN100およびN102をターンオンさせるに十分な電圧レベルして定電流源回路11を起動する。
【0097】
この実施の形態2の変形例2のバンドギャップ基準電圧回路は、定電流源回路11が定電流源として動作できる高電位電力供給Vccの下限値が(Vbe100+VDSsatp100+Vtn100)である場合、すなわち(VDSsatp+Vtn)>(VDSsatn+Vtp)であるプロセスを使用してバンドギャップ基準電圧回路を構成する場合であり、かつ上記実施の形態2よりも低い高電位電力供給Vccの電圧でバンドギャップ基準電圧を発生させる構成とする場合において、バンドギャップ基準電圧を確実に発生させたいときに有効である。
【0098】
実施の形態2の変形例3
図8は本発明の実施の形態2の変形例3を示すバンドギャップ基準電圧回路の回路図である。図8において、図6および図7と同じものあるいは相当するものには同じ符号を付してある。この変形例3の回路は、基本ステージ10および電源電圧検知回路21が上記実施の形態2の変形例2と同一構成であり、出力回路回路22が上記実施の形態2の変形例1と同一構成である。ただし、N114のドレインは、スタータノードである定電流源回路11のノード119に接続されている。
【0099】
この実施の形態2の変形例3のスタートアップ回路20は、電源投入時において、高電位電力供給Vccの電圧が(VDSsatp111+Vbe110+Vtn111)になるまでの期間、pチャネルトランジスタP100およびP102の共通ゲートを低電位電力供給Vssにプルダウンし、これによってP100およびP102をターンオンさせるに十分な電圧レベルにして定電流源回路11を起動する。この実施の形態2の変形例3は、上記実施の形態2の変形例2と同様の効果を備えている。
【0100】
実施の形態3
図9は本発明の実施の形態3を示すバンドギャップ基準電圧回路の回路図である。図9において、図1と同じものあるいは相当するものには同じ符号を付してある。実施の形態3のバンドギャップ基準電圧回路は、基本ステージ10と、スタートアップ回路20とを備えている。この実施の形態3の回路は、基本ステージ10が上記実施の形態1とは異なった構成になっており、スタートアップ回路20は上記実施の形態1と同一構成である。
【0101】
図9の実施の形態3の基本ステージ10は、定電流源回路11と、バンドギャップ基準電圧発生回路12とを備えている。この実施の形態3の基本ステージ10は、定電流源回路11が上記実施の形態1の基本ステージ10(図1参照)とは異なった構成になっており、バンドギャップ基準電圧発生回路12は上記実施の形態1と同一構成である。
【0102】
[実施の形態3の基本ステージ10の構成]
図9の基本ステージ10において、定電流源回路11は、pチャネルトランジスタP100,P102,P101からなる第1の対と、pチャネルトランジスタP104,P106,P103からなる第2の対と、nチャネルトランジスタN100,N102からなる第3の対と、nチャネルトランジスタN104とを備えている。P100,P102,P101のソースは、高電位電力供給Vccに接続されている。P100のドレインはP104のソースに、P102のドレインはP106のソースに、P101のドレインはP103のソースに、それぞれ接続されている。P104のドレインはN100のドレインに、P106のドレインはN102のドレインに、それぞれ接続されている。N100およびN102の共通ゲートは、P106のドレインとN102のドレインの接続ノード117に接続されている。N104のゲートは、P104のドレインとN100のドレインの接続ノード118に接続されている。N100,N102,N104は、互いに同一仕様である。
【0103】
また、定電流源回路11は、抵抗R100,R102と、pnpバイポーラトランジスタQ100,Q102,Q106と、フィードバックループの位相補償コンデンサC104とを備えている。R100は、P103のドレインとN104のドレインとの間に接続されている。Q100は、エミッタがN100のソースに、ベースが低電位電力供給Vssに、コレクタが基板に、それぞれ接続されている。Q106は、エミッタがN104のソースに、ベースが低電位電力供給Vssに、コレクタが基板に、それぞれ接続されている。R102は、N102のソースとQ102のエミッタ間に接続されている。Q102は、ベースが低電位電力供給Vssに、コレクタが基板に、それぞれ接続されている。また、この定電流源回路11のフィードバックループの位相補償コンデンサC104は、ノード118と低電位電力供給Vssとの間に接続されている。
【0104】
基本ステージ10内のP100,P102,P104,P106,P101,P103,P108,P109は、互いに同一仕様である。P100,P102,P101,P108は、第1のカレントミラーステージを形成する。同様に、P104,P106,P103,P109は、第2のカレントミラーステージを形成する。これらの第1および第2のステージは、カスコード接続され、カスコードカレントミラー回路を構成している。この実施の形態3のカスコードカレントミラー回路では、従来のカスコードカレントミラー構成と違って、P100,P102,P101,P108の共通のゲートがP103のドレインの接続ノード113に接続されている。同様に、P104,P106,P103,P109の共通のゲートは、N104のドレインの接続ノード119に接続され、R100を介してP103のドレインに接続されている。
【0105】
なお、図9の電源電圧検知回路21のP111,P112は、定電流源回路11のP101,P103と同一仕様であり、電源電圧検知回路21のN111は定電流源回路11のN104と同一仕様であり、電源電圧検知回路21のQ110は、定電流源回路11のQ106と同一仕様である。
【0106】
[実施の形態3の動作]
図9の実施の形態3のバンドギャップ基準電圧回路の動作について以下に説明する。図9の定電流源回路11において、高電位電力供給Vccが定電流源回路11を動作させるに十分な電圧であり、Q100,Q106,Q102のエミッタ面積比をQ100:Q106:Q102=1:1:Nとし、Q100,Q106,Q102が拡散領域のコレクタ電流値で動作しているものとする。P101,P103,P100,P102,P104,P106,P108,P109は互いに同一仕様であり、N104,N100,N102も互いに同一仕様であるので、P101,P103,P100,P102,P104,P106,P108,P110を流れる定電流であって定電流源回路11で発生される定電流値I1は、上記(1)で表され、上記実施の形態1においての定電流I1と同様となる。ここにおいても、それぞれのMOSのドレイン電流のドレイン電圧依存(実効チャネル長変調効果)を無視している。
【0107】
しかしながら、実施の形態3の定電流源回路11は、定電流源回路11が負帰還ループ機能を備えていることにより、N100とN102のドレイン電圧の高電位電力供給Vcc依存を極力抑えられることが、上記実施の形態1の定電流源回路11(図1参照)および従来の定電流源回路とは異なっている。なお、この高電位電力供給Vcc依存は、高電位電力供給Vccの電圧が高いときに問題になる場合がある。
【0108】
上記実施の形態1の定電流源回路11において、高電位電力供給Vccが定電流源回路11を動作させるに十分な電圧以上であるとき、N100のドレイン電圧は、高電位電力供給Vccの電圧によらず、低電位電力供給Vss側から決定され、Q100のベース・エミッタ間電圧Vbe100とN100のスレッショルド電圧Vtn100の合計の電圧(Vbe100+Vtn100)のほぼ一定値である。
【0109】
一方、N102のドレイン電圧は、高電位電力供給Vcc側から決定され、高電位電力供給Vccの電圧からP102の飽和ソース・ドレイン間電圧VDSsatp102とP106のスレッショルド電圧Vtp106の合計の電圧(VDSsatp102+Vtp106)だけ下がった電圧(Vcc−(VDSsatp102+Vtp106))のほぼ一定値である。
【0110】
従って、高電位電力供給Vccが定電流源回路11を動作させるに十分な電圧以上である場合に、N100とN102のドレイン電圧の差は、(Vcc−(VDSsatp102+Vtp106)−(Vbe100+Vtn100))となり、高電位電力供給Vccの電圧の上昇に伴って大きくなる。N100とN102のドレイン電圧の差が大きくなると、N102およびP104の実効チャネル長変調効果により、定電流源回路11はドレイン電流が増加した状態で回路動作点の均衡を保とうとするため、ノード118の電圧が上昇し、実際の定電流I1は上記(1)式の定電流I1よりも高電位電力供給Vccの電圧の上昇に伴って増加する。
【0111】
これに対し、実施の形態3の定電流源回路11は、以下に説明する負帰還ループ機能を備え、高電位電力供給Vccの電圧に依存したノード118の電圧の上昇を極力抑えている。図9の定電流源回路11において、高電位電力供給Vccの電圧の上昇によって仮にノード118の電圧が上昇したとすると、N104のゲート・ソース間電圧Vgs104が上昇する。すると、N104のドレイン電流Ids104が増加して、P100,P102,P101,P108の共通ゲート、およびP104,P106,P103,P110の共通ゲートの電圧が低下する。すると、N100のドレイン電流Ids100とN102のドレイン電流Ids102が同じ程度に増加する。このとき、N102のソースには抵抗R102が接続されているため、N102のドレイン電流Ids102の増加量ΔIds102によるノード117の上昇電圧ΔV117は、
Figure 0003678692
となり、
N100のドレイン電流Ids100の増加量ΔIds100によるノード118の上昇電圧ΔV118は、
Figure 0003678692
となる。
【0112】
(5)式および(6)式において、W/LはN100およびN102のディメンジョン、kはN100およびN102のμn*Cox、Kはボルツマン定数、Tは絶対温度、qは電子の電荷量、NはQ100とQ102のエミッタ面積比、IsはQ100のベース・エミッタ逆方向飽和電流である。なお、上記のμnは電子の移動度、上記のCoxはゲート酸化膜の容量である。また、SQRT(x)はxの2乗根を表し、LN(x)はxの自然対数を表す。
【0113】
(5)式の第3項および(6)式の第2項はドレイン電流の変化に対して対数圧縮された電圧変化となるので、両式の他項と比較して小さく、これらの項を無視すると、(5)式および(6)式はそれぞれ、
Figure 0003678692
となる。
【0114】
N100のドレイン電流Ids100の増加量ΔIds100およびN102のドレイン電流Ids102の増加量ΔIds102はほぼ等しいため、(5)’式と(6)’式とを比較すると(5)’式のほうが大きくなる。すなわち、N100のドレイン電流Ids100およびN102のドレイン電流Ids102の増加によって生じるN100のゲート電圧の上昇量は、N100のドレイン電流の増加量ΔIds100以上のドレイン電流を増加させる電圧である。従って、ノード118の電圧は低下する。ノード118の電圧が必要以上に低下すると、前記動作とは逆に、(5)’式と(6)’式から、N100のドレイン電流Ids100およびN102のドレイン電流Ids102の減少によって生じるN100のゲート電圧の低下量は、N100のドレイン電流の減少量ΔIds100以上のドレイン電流を低下させる電圧である。従って、ノード118の電圧は増加する。なお、この負帰還ループが正帰還ループになることを防止するために、位相補償コンデンサC104が設けられている。以上のように、図9の定電流源回路11において、ノード118およびノード117の電圧は、負帰還ループによって回路動作点が収束して決定されているため、高電位電力供給Vccの電圧変化依存を極力受けない。
【0115】
また、図9のバンドギャップ基準電圧発生回路12において、Q104が拡散領域コレクタ電流値で動作しているものとすると、バンドギャップ基準電圧発生回路12の出力ノード110の電圧Vrefは、上記(2)式で表され、上記実施の形態1においてのバンドギャップ基準電圧Vrefと同様となる。ここにおいても、それぞれのMOSのドレイン電流のドレイン電圧依存(実効チャネル長変調効果)を無視している。
【0116】
図9の定電流源回路11が定電流源として動作するには、定電流源回路11内のP101,P103,P100,P102,P104,P106の全てのpチャネルトランジスタと、N104,N100,N102の全てのnチャネルトランジスタとが、飽和領域で動作していなければならない。従って、定電流源回路11が定電流源として動作できる高電位電力供給Vccの電圧の下限値は、P100,P104,N100,Q100の直列接続においてP100,P104,N100の全てが飽和領域で動作できる高電位電力供給Vccの電圧の下限値VCC1と、P101,P103,R100,N104,Q106の直列接続においてP101,P103,N104の全てが飽和領域で動作できる高電位電力供給Vccの電圧の下限値VCC2との高いほうの電圧値となる。
【0117】
上記の電圧VCC1は、上記(3)式のVCC1と同じである。また、上記の電圧VCC2は、
VCC2=Vbe106+VDSsatn104+Vtp103+VDSsatp101…(7)
であり、上記(4)式のVCC2とは異なる。なお、(7)式においては、I1*r100=VDSsatp101=VDSsatp103、およびVtp101=Vtp103の最適設計2条件を満足していると仮定している。
【0118】
実施の形態3のバンドギャップ基準電圧回路においても、基本ステージ10のみでは、パワーアップ時において、スタータノード118の電圧はN100およびN102をターンオンさせるに十分な電圧レベルにならない。そのため、基準ステージ10のみではパワーアップ時に上昇する高電位電力供給Vccの電圧に追随して基準電圧を発生させることができない。従って、スタートアップ回路20が必要となる。
【0119】
実施の形態3のスタートアップ回路20は、定電流源回路11が定電流源として動作する高電位電力供給Vccの電圧下限値が(7)式の電圧値VCC2である場合に、パワーアップの開始から高電位電力供給Vccが上記の電圧値VCC2になるまでの期間、ノード118を、定電流源回路11のN100およびN102をターンオンさせるに十分な電圧レベルにプルアップすることによって、定電流源回路11を起動する。
【0120】
この実施の形態3のスタートアップ回路20の動作は、上記実施の形態1のスタートアップ回路20(図1参照)と同様である。スタートアップ回路20によって定電流源回路11が起動されたあとは、スタータノード118の電圧は、N100およびN102のソースよりもスレッショルド電圧Vtn以上高いプルアップされた電圧から定常動作の電圧に遷移し、定電流源回路11の負帰還ループ機能によって安定する。
【0121】
以上のように実施の形態3のバンドギャップ基準電圧回路では、定電流源回路11が定電流源として動作可能な高電位電圧供給Vccの下限値が(7)式のVCC2(=Vbe106+VDSsatn104+Vtp103+VDSsatp101)である場合において、下限値VCC2を定義する定電流源回路11の構成素子P101,P103,N104,Q106と同様の素子P111,P112,N111,Q110を電源電圧検知回路21に設け、下限値VCC2と等しい電圧値(VDSsatp111+VDSsatn111+Vbe110+Vtp112)を電源電圧検知回路21によって検知し、高電位電力供給Vccが電圧値(VDSsatp111+VDSsatn111+Vbe110+Vtp112)(=下限値VCC2)に達するまでの期間、出力回路22によってノード118を定電流源回路11のN100およびN102をターンオンさせるに十分な電圧レベルにプルアップし、高電位電力供給Vccが(VDSsatp111+VDSsatn111+Vbe110+Vtp112)(=下限値VCC2)に達したら、上記のプルアップを終了して出力回路22からの電流供給を停止する。
【0122】
これにより、上記実施の形態1と同様に、高電位電力供給Vccの立ち上がりスピードによらず、また電源電圧検知回路の構成素子の温度特性などによらず、定電流源回路11を確実に起動させてバンドギャップ基準電圧Vrefを必ず発生させることができるとともに、高電位電力供給Vccが下限値VCC2に達したあとの消費電力を低減し、Vccが下限値VCC2に達したあとにバンドギャップ基準電圧Vrefが上昇してしまうの防ぐことができる。
【0123】
この実施の形態3のバンドギャップ基準電圧回路は、定電流源回路11が定電流源として動作できる高電位電力供給Vccの下限値が、VCC2(=Vbe106+VDSsatn104+Vtp103+VDSsatp101)であって、VCC1(=Vbc100+VDSsatp100+VDSsatp104+Vtn100)よりも高い場合、すなわち(2*VDSsatp+Vtn)<(VDSsatn+Vtp1+VDSsatp)であるプロセスを使用してバンドギャップ基準電圧回路を構成する場合において、バンドギャップ基準電圧を確実に発生させたいときに有効である。
【0124】
また、この実施の形態3のバンドギャップ基準電圧回路では、高電位電力供給Vccが下限値VCC2に達したあとは、ノード123が高電位電力供給Vccに低インピーダンスに導通されるので、上記実施の形態1と同様に、電源ノイズによってバンドギャップ基準電圧が徐々に上昇するとはない。また、貫高電位電力供給Vccが下限値VCC2に達したあとは、電源電圧検知回路21のP110がオフされ、スタートアップ回路20内には通電流パスが存在しなくなるので、上記実施の形態1と同様に、定常動作時に不要な電流が流れることはなく、消費電力を低減できる。
【0125】
さらに、この実施の形態3のバンドギャップ基準電圧回路では、高電位電力供給Vccの電圧の上昇をノード118に負帰還させる負帰還ループを定電流源回路11に設けている。
【0126】
これにより、高電位電力供給Vccの電圧に依存せずにN100とN102のドレイン電圧が決定されるので、高電位電力供給Vccの電圧変化によるN100とN102のドレイン電圧の差の変化を極力なくすことができ、N102およびP104の実効チャネル長変調効果による定電流I1の変動を極力なくすことができる。従って、広い動作電源電圧範囲で動作を保証しなければならない場合や、pチャネルトランジスタおよびnチャネルトランジスタの実効チャネル長変調効果が大きいプロセスを使用してバンドギャップ基準電圧を発生しなければならない場合に有効である。
【0127】
実施の形態3の変形例1
図10は本発明の実施の形態3の変形例1を示すバンドギャップ基準電圧回路の回路図である。図10において、図9と同じものあるいは相当するものには同じ符号を付してある。この変形例1の回路は、スタートアップ回路20の出力回路22が上記実施の形態3とは異なった構成になっており、基本ステージ10および電源電圧検知回路21は上記実施の形態3と同一構成である。
【0128】
図10の出力回路22は、上記実施の形態3の出力回路22(図9参照)において、スタートアップトランジスタP116をnチャネルトランジスタN114に変更したものである。N114は、ゲートがノード122に接続され、ソースが低電位電力供給Vssに接続され、ドレインがスタータノードである定電流源回路11のノード119に接続されている。
【0129】
この実施の形態3の変形例1のスタートアップ回路20は、定電流源回路11が定電流源として動作する高電位電力供給Vccの電圧下限値が上記(7)式の電圧値VCC2である場合に、パワーアップの開始から高電位電力供給Vccが上記の電圧値VCC2になるまでの期間、ノード119を、P104,P106,P100,P102をターンオンさせるに十分な電圧レベルにプルダウンすることによって、定電流源回路11を起動する。
【0130】
上記実施の形態3では、電源投入時において、高電位電力供給Vccが(VDSsatp111+VDSsatn111+Vbe110+Vtp112)になるまでの期間、定電流源回路11のnチャネルトランジスタN100のドレインを高電位電力供給Vccにプルアップし、これによってN100およびN102をターンオンさせるに十分な電圧レベルして、定電流源回路11を起動していた。
【0131】
これに対し、この実施の形態3の変形例1では、pチャネルトランジスタP104およびP106の共通ゲートを低電位電力供給Vssにプルダウンするとともに、P100およびP102の共通ゲートもR100を経て低電位電力供給Vssにプルダウンし、これによってP100およびP102の対とP104およびP106の対とからなるpチャネルトランジスタのカスコードカレントミラーをターンオンさせるに十分な電圧レベルして、定電流源回路11を起動する。この実施の形態3の変形例1は、上記実施の形態3と同様な効果を備えている。
【0132】
実施の形態3の変形例2
図11は本発明の実施の形態3の変形例2を示すバンドギャップ基準電圧回路の回路図である。図11において、図9と同じものあるいは相当するものには同じ符号を付してある。この変形例2の回路は、基本ステージ10およびスタートアップ回路20の電源電圧検知回路21が上記実施の形態3とは異なった構成になっており、出力回路22は上記実施の形態3と同一構成である。
【0133】
上記実施の形態3では、定電流源回路11のpチャネルトランジスタ側のカレントミラー回路をカスコードにて構成していたが、この変形例2では、pチャネルトランジスタ側のカレントミラー回路をシングルにて構成している。図11の定電流源回路11は、上記実施の形態3の定電流源回路11(図9参照)において、P104,P106,P103,R100を削除した構成になっている。また、図11のバンドギャップ基準電圧発生回路12は、上記実施の形態3のバンドギャップ基準電圧発生回路12(図9参照)において、P109を削除した構成になっている。また、図11の電源電圧検知回路21は、上記実施の形態3の電源電圧基準回路21(図9参照)において、P111を削除した構成になっている。
【0134】
この実施の形態3の変形例2のスタートアップ回路20は、電源投入時において、高電位電力供給Vccが(VDSsatn111+Vbe110+Vtp112)になるまでの期間、定電流源回路11のnチャネルトランジスタN100のドレインを高電位電力供給Vccにプルアップし、これによってN100およびN102をターンオンさせるに十分な電圧レベルにして定電流源回路11を起動する。
【0135】
この実施の形態3の変形例2のバンドギャップ基準電圧回路は、定電流源回路11が定電流源として動作できる高電位電力供給Vcc電圧下限値が(Vbe100+VDSsatn102+Vtp102)である場合、すなわち(VDSsatp+Vtn)<(VDSS21tn+Vtp)であるプロセスを使用してバンドギャップ基準電圧回路を構成する場合であり、かつ上記実施の形態3よりも低い高電位電力供給Vccの電圧でバンドギャップ基準電圧を発生させる構成とする場合において、バンドギャップ基準電圧を確実に発生させたいときに有効である。
【0136】
実施の形態3の変形例3
図12は本発明の実施の形態3の変形例3を示すバンドギャップ基準電圧回路の回路図である。図12において、図10および図11と同じものあるいは相当するものには同じ符号を付してある。この変形例3の回路は、基本ステージ10および電源電圧検知回路21が上記実施の形態3の変形例2と同一構成であり、出力回路回路22が上記実施の形態3の変形例1と同一構成である。
【0137】
この実施の形態3の変形例3のスタートアップ回路20は、電源投入時において、高電位電力供給Vccの電圧が(VDSsatp111+Vbe110+Vtn111)になるまでの期間、pチャネルトランジスタP100およびP102の共通ゲートを低電位電力供給Vssにプルダウンし、これによってP100およびP102をターンオンさせるに十分な電圧レベルにして定電流源回路11を起動する。この実施の形態3の変形例3は、上記実施の形態3の変形例2と同様の効果を備えている。
【0138】
実施の形態4
図13は本発明の実施の形態4を示すバンドギャップ基準電圧回路の回路図である。図13において、図1および図9と同じものあるいは相当するものには同じ符号を付してある。実施の形態4のバンドギャップ基準電圧回路は、基本ステージ10と、スタートアップ回路20とを備えている。この実施の形態3の回路は、基本ステージ10が上記実施の形態1とは異なった構成になっており、スタートアップ回路20は上記実施の形態1と同一構成である。
【0139】
図13の実施の形態4の基本ステージ10は、定電流源回路11と、バンドギャップ基準電圧発生回路12とを備えている。この実施の形態4の基本ステージ10は、定電流源回路11が上記実施の形態1の基本ステージ10(図1参照)および上記実施の形態3の基本ステージ10(図9参照)とは異なった構成になっており、バンドギャップ基準電圧発生回路12は上記実施の形態1と同一構成である。
【0140】
図13の基本ステージ10において、定電流源回路11は、pチャネルトランジスタP100,P102,P105からなる第1の対と、pチャネルトランジスタP104,P106,P103からなる第2の対と、nチャネルトランジスタN100,N102からなる第3の対と、nチャネルトランジスタN101,N104とを備えている。P100,P102,P105,P101のソースは、高電位電力供給Vccに接続されている。P100のドレインはP104のソースに、P102のドレインはP106のソースに、P101のドレインはP103のソースに、それぞれ接続されている。P101のドレインはP103のソースに接続され、P101のゲートはP103のゲートに接続されている。P104のドレインはN100のドレインに、P106のドレインはN102のドレインに、P105のドレインおよびゲートはN101のドレインに、P103のドレインおよびゲートはN102のドレインに、それぞれ接続されている。N100およびN102の共通ゲートは、P106のドレインとN102のドレインの接続ノード117に接続されている。N104のゲートおよびN101のゲートは、P104のドレインとN100のドレインの接続ノード118に接続されている。N100,N102,N101,N104は、互いに同一仕様である。
【0141】
また、定電流源回路11は、抵抗R102と、pnpバイポーラトランジスタQ100,Q102,Q106,Q108と、フィードバックループの位相補償コンデンサC104とを備えている。Q100は、エミッタがN100のソースに、ベースが低電位電力供給Vssに、コレクタが基板に、それぞれ接続されている。Q106は、エミッタがN104のソースに、ベースが低電位電力供給Vssに、コレクタが基板に、それぞれ接続されている。Q108は、エミッタがN101のソースに、ベースが低電位電力供給Vssに、コレクタが基板に、それぞれ接続されている。R102は、N102のソースとQ102のエミッタ間に接続されている。Q102は、ベースが低電位電力供給Vssに、コレクタが基板に、それぞれ接続されている。また、この定電流源回路11のフィードバックループの位相補償コンデンサC104は、ノード118と低電位電力供給Vssとの間に接続されている。
【0142】
基本ステージ10内のP100,P102、P104,P106,P103,P108,P109は、互いに同一仕様である。P100,P102,P105,P108の共通のゲートはP105のドレインの接続ノード115に接続されている。P104,P106,P103,P109の共通のゲートは、P103のドレインの接続ノード119に接続されている。P100,P102,P105,P108は、第1のカレントミラーステージを形成する。同様に、P104,P106,P109は、第2のカレントミラーステージを形成する。第1のステージのP100,P102,P108と、第2のステージのP104,P106,P110とが、カスコード接続されている。第1のステージのP105はダイオード接続されており、P100,P102,P108の共通ゲートにバイアス電圧を発生させている。第2のステージのP101およびP103はダイオード接続されており、P104,P106,P109の共通ゲートにバイアス電圧を発生させている。
【0143】
なお、図13の電源電圧検知回路21のP111,P112は、定電流源回路11のP101,P103と同一仕様であり、電源電圧検知回路21のN111は定電流源回路11のN104と同一仕様であり、電源電圧検知回路21のQ110は、定電流源回路11のQ106と同一仕様である。
【0144】
[実施の形態4の動作]
図13の実施の形態4のバンドギャップ基準電圧回路の動作について以下に説明する。図13の定電流源回路11において、高電位電力供給Vccが定電流源回路11を動作させるに十分な電圧であり、Q100,Q108,Q106,Q102のエミッタ面積比をQ100:Q108:Q106:Q102=1:1:1:Nとし、Q100,Q108,Q106,Q102が拡散領域コレクタ電流値で動作しているとする。P105,P103,P100,P102,P104,P106,P108,P109は互いに同一仕様であり、N104,N101,N100,N102も互いに同一仕様であるので、P105,P103,P100,P102,P104,P106,P108,P110を流れる定電流であって定電流源回路11で発生される定電流値I1は、上記(1)式で表され、上記実施の形態1においての定電流I1と同様となる。ここにおいても、それぞれのMOSのドレイン電流のドレイン電圧依存(実効チャネル長変調効果)を無視している。
【0145】
しかしながら、実施の形態4の定電流源回路11は、上記実施の形態3の定電流源回路11と同じように負帰還ループ機能を備えている。従って、上記実施の形態3と同様に、N100とN102のドレイン電圧の高電位電力供給Vcc依存を極力抑えられることが、上記実施の形態1の定電流源回路11(図1参照)および従来の定電流源回路とは異なっている。
【0146】
上記第1の実施の形態の定電流源回路11では、上記実施の形態3において説明したように、高電位電力供給Vccが定電流源回路11を動作させるに十分な電圧以上である場合に、N100とN102のドレイン電圧の差は、(Vcc−(VDSsatp102+Vtp106)−(Vbe100+Vtn100))となり、高電位電力供給Vcc電圧の上昇に伴って大きくなる。N100とN102のドレイン電圧の差が大きくなると、N102およびP104の実効チャネル長変調効果により、定電流源回路11はドレイン電流が増加した状態で回路動作点の均衡を保とうとするため、ノード118の電圧が上昇し、実際の定電流値I1は上記(1)式の定電流値I1よりも高電位電力供給Vcc電圧の上昇に伴って増加する。
【0147】
これに対し、実施の形態4の定電流源回路11は、以下に説明する上記実施の形態3と同様の負帰還ループ機能を備え、高電位電力供給Vccの電圧に依存したノード118の電圧の上昇を極力抑えている。図13の定電流源回路11において、高電位電力供給Vccの電圧の上昇によってノード118の電圧が上昇すると、N104のゲート・ソース間電圧Vgs104およびN101のゲート・ソース間電圧Vgs101が上昇する。すると、N104のドレイン電流Ids104およびN101のドレイン電流Ids101が増加して、P100,P102,P105,P108の共通ゲート、およびP104,P106,P103,P109の共通ゲートの電圧が低下する。すると、N100のドレイン電流Ids100とN102のドレイン電流Ids102が同じ程度に増加する。このとき、N102のソースには抵抗R102が接続されているため、N102のドレイン電流Ids102の増加量ΔIds102によるノード117の上昇電圧ΔV117は、上記(5)式となり、N100のドレイン電流Ids100の増加量ΔIds100によるノード118の上昇電圧ΔV118は、上記(6)式となる。従って、上記実施の形態3と同様に、ノード118の電圧は低下する。なお、この負帰還ループが正帰還ループになることを防止するために位相補償コンデンサC104が設けられている。
【0148】
上記実施の形態3では、基本ステージ10内のP100,P102,P101,P108の第1のカレントミラーステージと、P104,P106,P103,P110の第2のカレントミラーステージから構成されるカスコードカレントミラーを低電圧動作可能にするために、R100の抵抗値をVDSsatp101/I1=VDSsatp103/I1となるように設定して、第2のステージのP104,P106,P109の共通のゲート電圧を(Vcc−(Vtp+VDSsatp))になるように設定している。
【0149】
これに対し、この実施の形態4では、VDSsatp101=VDSsatp100=VDSsatp102となるようにP101のディメンジョンを設定して、第2のステージのP104,P106,P110の共通のゲート電圧を(Vcc−(Vtp+VDSsatp))になるように設定している。
【0150】
図13のバンドギャップ基準電圧発生回路12において、Q104が拡散領域コレクタ電流値で動作しているものとすると、バンドギャップ基準電圧発生回路12の出力ノード110の電圧Vrefは、上記(2)式で表され、上記実施の形態1においてのバンドギャップ基準電圧Vrefと同様となる。ここにおいても、それぞれのMOSのドレイン電流のドレイン電圧依存(実効チャネル長変調効果)を無視している。
【0151】
図13の実施の形態4の定電流源回路11が定電流源として動作するには、定電流源回路11内のP105,P103,P100,P102,P104,P106の全てのpチャネルトランジスタと、N101,N104,N100,N102の全てのnチャネルトランジスタとが、飽和領域で動作していなければならない。従って、定電流源回路11が定電流源として動作できる高電位電力供給Vccの電圧の下限値は、P100,P104,N100,Q100の直列接続においてP100,P104,N100の全てが飽和領域で動作できる高電位電力供給Vccの電圧の下限値VCC1と、P101,P103,N104,Q106の直列接続においてP101,P103,N104の全てが飽和領域で動作できる高電位電力供給Vccの電圧の下限値VCC2との高いほうの電圧値となる。上記のVCC1は上記(3)式で表され、上記のVCC2は上記(7)式で表される。
【0152】
実施の形態4のバンドギャップ基準電圧回路においても、基本ステージ10のみでは、パワーアップ時において、スタータノード118の電圧はN100およびN102をターンオンさせるに十分な電圧レベルにならない。そのため、基準ステージのみではパワーアップ時に上昇する電力供給電圧に追随して基準電圧を発生させることができない。従って、スタートアップ回路20が必要となる。
【0153】
実施の形態4のスタートアップ回路20の動作は、上記実施の形態1のスタートアップ回路20(図1参照)と同様である。スタートアップ回路20によって定電流源回路11が起動されたあとは、スタータノード118の電圧は、N100およびN102のソースよりもスレッショルド電圧Vtn以上高いプルアップされた電圧から定常動作の電圧に遷移し、定電流源回路11の負帰還ループ機能によって安定する。
【0154】
以上のように実施の形態4のバンドギャップ基準電圧回路では、上記実施の形態3と同様に、定電流源回路11が定電流源として動作可能な高電位電圧供給Vccの下限値が上記(7)式のVCC2(=Vbe106+VDSsatn104+Vtp103+VDSsatp101)である場合において、高電位電力供給Vccの立ち上がりスピードによらず、また電源電圧検知回路の構成素子の温度特性などによらず、定電流源回路11を確実に起動させてバンドギャップ基準電圧Vrefを必ず発生させることができるとともに、高電位電力供給Vccが下限値VCC2に達したあとの消費電力を低減し、Vccが下限値VCC2に達したあとにバンドギャップ基準電圧Vrefが上昇してしまうの防ぐことができる。この実施の形態4のバンドギャップ基準電圧回路は、(2*VDSsatp+Vtn)<(VDSsatn+Vtp1+VDSsatp)であるプロセスを使用してバンドギャップ基準電圧回路を構成する場合において、バンドギャップ基準電圧を確実に発生させたいときに有効である。
【0155】
また、この実施の形態4のバンドギャップ基準電圧回路では、高電位電力供給Vccが下限値VCC2に達したあとは、ノード123が高電位電力供給Vccに低インピーダンスに導通されるので、上記実施の形態1と同様に、電源ノイズによってバンドギャップ基準電圧が徐々に上昇するとはない。また、貫高電位電力供給Vccが下限値VCC2に達したあとは、電源電圧検知回路21のP110がオフされ、スタートアップ回路20内には通電流パスが存在しなくなるので、上記実施の形態1と同様に、定常動作時に不要な電流が流れることはなく、消費電力を低減できる。
【0156】
また、この実施の形態4のバンドギャップ基準電圧回路では、上記実施の形態3と同様に、高電位電力供給Vccの電圧の上昇をノード118に負帰還させる負帰還ループを定電流源回路11に設けており、N102およびP104の実効チャネル長変調効果による定電流I1の変動を極力なくすことができるので、広い動作電源電圧範囲で動作を保証しなければならない場合や、pチャネルトランジスタおよびnチャネルトランジスタの実効チャネル長変調効果が大きいプロセスを使用してバンドギャップ基準電圧を発生しなければならない場合に有効である。
【0157】
さらに、図21の従来のバンドギャップ基準電圧回路では、基本ステージ10内のpチャネルトランジスタのカスコードカレントミラー回路を低電圧動作可能とするために、R100の抵抗値をr100=VDSsatp/I1に設定して、カスコードカレントミラー回路の第2のステージのpチャネルトランジスタの共通ゲート電圧を(Vcc−(Vtp+VDSsatp))とする構成であり、pチャネルトランジスタとは別に製造特性ばらつきを有する抵抗素子から低電圧動作可能のカスコードカレントミラー回路のバイアス電圧を発生させている。従って、製造ロットばらつきおよび動作温度によっては、R100<VDSsatp/I1となり、カスコードカレントミラー回路の第1のステージのpチャネルトランジスタを非飽和領域で動作させてしまう危険がある。
【0158】
これに対し、この実施の形態4のバンドギャップ基準電圧回路では、基本ステージ10内のP100,P102,P101,P108の第1のカレントミラーステージと、P104,P106,P103,P109の第2のカレントミラーステージとによって構成されるカスコードカレントミラー回路を低電圧動作可能にするために、VDSsatp101=VDSsatp100=VDSsatp102になるようにP101のディメンジョンを設定して、第2のステージのP104,P106,P109の共通ゲートの電圧を(Vcc−(Vtp+VDSsatp))とする回路構成とし、pチャネルトランジスタとは別に製造特性ばらつきを有する素子がない回路構成によりばらつき特性依存を持たないようにしたので、カスコードカレントミラー回路の第1のステージのpチャネルトランジスタを非飽和領域で動作させてしまう危険がない。つまり、低電圧動作可能にするために定電流源回路11のカスコードカレントミラー回路に設けられる負荷を抵抗ではなくpチャネルトランジスタとして、素子のばらつき特性依存をなくすことにより、第1のステージのpチャネルトランジスタを確実に飽和領域で動作させることができる。
【0159】
実施の形態4の変形例1
図14は本発明の実施の形態4の変形例1を示すバンドギャップ基準電圧回路の回路図である。図14において、図13と同じものあるいは相当するものには同じ符号を付してある。この変形例1の回路は、スタートアップ回路20の出力回路22が上記実施の形態4とは異なった構成になっており、基本ステージ10および電源電圧検知回路21は上記実施の形態4と同一構成である。
【0160】
図14の出力回路22は、上記実施の形態4の出力回路22(図13参照)において、スタートアップトランジスタP116をnチャネルトランジスタN114,N115に変更したものである。N114は、ゲートがノード122に接続され、ソースが低電位電力供給Vssに接続され、ドレインがスタータノードである定電流源回路11のノード119に接続されている。N115は、ゲートがノード122に接続され、ソースが低電位電力供給Vssに接続され、ドレインがもう一つのスタータノードである定電流源回路11のノード115に接続されている。
【0161】
上記実施の形態4では、電源投入時において、高電位電力供給Vccが(VDSsatp111+VDSsatn111+Vbe110+Vtp112)になるまでの期間、定電流源回路11のnチャネルトランジスタN100およびN102の共通ゲートを高電位電力供給Vccにプルアップし、これによってN100およびN102をターンオンさせるに十分な電圧レベルして、定電流源回路11を起動していた。
【0162】
これに対し、実施の形態4の変形例1では、pチャネルトランジスタP104およびP106の共通ゲートを低電位電力供給Vssにプルダウンするとともに、P100およびP102の共通ゲートも低電位電力供給Vssにプルダウンし、これによってP100およびP102の対とP104およびP106の対とからなるpチャネルトランジスタのカスコードカレントミラーをターンオンさせるに十分な電圧レベルにして、定電流源回路11を起動する。この実施の形態4の変形例1は、上記実施の形態4と同様の効果を備えている。
【0163】
実施の形態5
図15は本発明の実施の形態5を示すバンドギャップ基準電圧回路の回路図である。図15において、図5および図9と同じものあるいは相当するものには同じ符号を付してある。実施の形態5のバンドギャップ基準電圧回路は、基本ステージ10と、スタートアップ回路20とを備えている。この実施の形態5の回路は、基本ステージ10が上記実施の形態3のものと同一構成になっており、スタートアップ回路20が上記実施の形態2のものと同一構成になっている。
【0164】
なお、図15の電源電圧検知回路21のP111,P112は、定電流源回路11のP100,P104と同一仕様であり、電源電圧検知回路21のN111は定電流源回路11のN100と同一仕様であり、電源電圧検知回路21のQ110は、定電流源回路11のQ100と同一仕様である。
【0165】
実施の形態5の基本ステージ10の動作は、上記実施の形態3の基本ステージ10(図9参照)と同様であり、負帰還ループ機能を備える。また、実施の形態5のスタートアップ回路20の動作は、上記実施の形態2のスタートアップ回路20(図5参照)と同様であり、定電流源回路11が定電流源として動作する高電位電力供給Vccの電圧下限値が上記(3)式の電圧値VCC1である場合に、電源投入時において、高電位電力供給Vccが(VDSsatp111+VDSsatp112+Vbe110+Vtn112)になるまでの期間、定電流源回路11のnチャネルトランジスクN100およびN102の共通ゲートを高電位電力供給Vccにプルアップし、これによってN100およびN102をターンオンさせるに十分な電圧レベルして、定電流源回路11を起動する。スタートアップ回路20によって定電流源回路11が起動されたあとは、スタータノード118の電圧は、N100およびN102のソースよりもスレッショルド電圧Vtn以上高いプルアップされた電圧から定常動作の電圧に遷移し、定電流源回路11の負帰還ループ機能によって安定する。
【0166】
以上のように実施の形態5のバンドギャップ基準電圧回路は、上記実施の形態2のスタートアップ回路20と同様の効果、および上記実施の形態3の定電流源回路11と同様の効果を備えている。
【0167】
実施の形態5の変形例1
図16は本発明の実施の形態5の変形例1を示すバンドギャップ基準電圧回路の回路図である。図16において、図6および図15と同じものあるいは相当するものには同じ符号を付してある。この変形例1の回路は、スタートアップ回路20の出力回路22が上記実施の形態5とは異なった構成になっており、基本ステージ10および電源電圧検知回路21は上記実施の形態5と同一構成である。この変形例1の出力回路22は、上記実施の形態2の変形例1の出力回路22(図6参照)と同一構成である。
【0168】
上記実施の形態5では、電源時において、高電位電力供給Vccが(VDSsatp111+VDSsatp112+Vbe110+Vtn112)になるまでの期間、定電流源回路11のnチャネルトランジスタN100およびN102の共通ゲートを高電位電力供給Vccにプルアップして、定電流源回路11を起動させていた。
【0169】
これに対し、実施の形態5の変形例1は、pチャネルトランジスタP104およびP106の共通ゲートを低電位電力供給Vssにプルダウンさせるとともに、P100およびP102の共通ゲートもR100を経て低電位電力供給Vssにプルダウンし、これによってP100およびP102の対とP104およびP106の対とからなるpチャネルトランジスタのカスコードカレントミラーをターンオンさせるに十分な電圧レベルして、定電流源回路11を起動する。この変形例1は、上記実施の形態5と同様な効果を備えている。
【0170】
実施の形態5の変形例2
図17は本発明の実施の形態5の変形例2を示すバンドギャップ基準電圧回路の回路図である。図17において、図7、図11、および図15と同じものあるいは相当するものには同じ符号を付してある。この変形例2の回路は、基本ステージ10およびスタートアップ回路20の電源電圧検知回路21が上記実施の形態5とは異なった構成になっており、出力回路22は上記実施の形態5と同一構成である。この変形例2の基本ステージ10は、上記実施の形態3の変形例2の基本ステージ10(図11参照)と同一構成であり、この変形例2の電源電圧検知回路21は、上記実施の形態2の変形例2の電源電圧検知回路21(図7参照)と同一構成である。
【0171】
上記実施の形態5では、定電流源回路11のpチャネルトランジスタ側のカレントミラー回路をカスコードにて構成していたが、この変形例2では、pチャネルトランジスタ側のカレントミラー回路をシングルにて構成している。
【0172】
この実施の形態5の変形例2のスタートアップ回路20は、電源投入時において、高電位電力供給Vccの電圧が(VDSsatp111+Vbe110+Vtn111)になるまでの期間、定電流源回路11のnチャネルトランジスタN100およびN102の共通ゲートを高電位電力供給Vccにプルアップし、これによってN100およびN102をターンオンさせるに十分な電圧レベルして定電流源回路11を起動する。
【0173】
この実施の形態5の変形例2のバンドギャップ基準電圧回路は、定電流源回路11が定電流源として動作できる高電位電力供給Vccの下限値が(Vbe100+VDSsatp100+Vtn100)である場合、すなわち(VDSsatp+Vtn)>(VDSsatn+Vtp)であるプロセスを使用してバンドギャップ基準電圧回路を構成する場合であり、かつ上記実施の形態5よりも低い高電位電力供給Vccの電圧でバンドギャップ基準電圧を発生させる構成とする場合において、バンドギャップ基準電圧を確実に発生させたいときに有効である。
【0174】
実施の形態5の変形例3
図18は本発明の実施の形態5の変形例3を示すバンドギャップ基準電圧回路の回路図である。図18において、図16および図17と同じものあるいは相当するものには同じ符号を付してある。この変形例3の回路は、基本ステージ10および電源電圧検知回路21が上記実施の形態1の変形例5と同一構成であり、出力回路回路22が上記実施の形態5の変形例1と同一構成である。
【0175】
この実施の形態5の変形例3のスタートアップ回路20は、電源投入時において、高電位電力供給Vccの電圧が(VDSsatp111+Vbe110+Vtn111)になるまでの期間、pチャネルトランジスタP100およびP102の共通ゲートを低電位電力供給Vssにプルダウンし、これによってP100およびP102をターンオンさせるに十分な電圧レベルにして定電流源回路11を起動する。この実施の形態5の変形例3は、上記実施の形態5の変形例2と同様の効果を備えている。
【0176】
実施の形態6
図19は本発明の実施の形態6を示すバンドギャップ基準電圧回路の回路図である。図19において、図5および図13と同じものあるいは相当するものには同じ符号を付してある。実施の形態6のバンドギャップ基準電圧回路は、基本ステージ10と、スタートアップ回路20とを備えている。この実施の形態6の回路は、基本ステージ10が上記実施の形態4のものと同じ構成になっており、スタートアップ回路20が上記実施の形態2のものと同じ構成になっている。
【0177】
なお、図19の電源電圧検知回路21のP111,P112は、定電流源回路11のP100,P104と同一仕様であり、電源電圧検知回路21のN111は定電流源回路11のN100と同一仕様であり、電源電圧検知回路21のQ110は、定電流源回路11のQ100と同一仕様である。
【0178】
実施の形態6の基本ステージ10の動作は、上記実施の形態4の基本ステージ10(図13参照)と同様であり、負帰還ループ機能を備える。また、実施の形態6のスタートアップ回路20の動作は、上記実施の形態2のスタートアップ回路20(図5参照)と同様であり、定電流源回路11が定電流源として動作する高電位電力供給Vccの電圧下限値が上記(3)式の電圧値VCC1である場合に、電源投入時において、高電位電力供給Vccが(VDSsatp111+VDSsatp112+Vbe110+Vtn112)になるまでの期間、定電流源回路11のnチャネルトランジスクN100およびN102の共通ゲートを高電位電力供給Vccにプルアップし、これによってN100およびN102をターンオンさせるに十分な電圧レベルして、定電流源回路11を起動する。スタートアップ回路20によって定電流源回路11が起動されたあとは、スタータノード118の電圧は、N100およびN102のソースよりもスレッショルド電圧Vtn以上高いプルアップされた電圧から定常動作の電圧に遷移し、定電流源回路11の負帰還ループ機能によって安定する。
【0179】
以上のように実施の形態6のバンドギャップ基準電圧回路は、上記実施の形態2のスタートアップ回路20と同様の効果、および上記実施の形態4の定電流源回路11と同様の効果を備えている。
【0180】
実施の形態6の変形例1
図20は本発明の実施の形態6の変形例1を示すバンドギャップ基準電圧回路の回路図である。図20において、図14および図19と同じものあるいは相当するものには同じ符号を付してある。この変形例1の回路は、スタートアップ回路20の出力回路22が上記実施の形態6とは異なった構成になっており、基本ステージ10および電源電圧検知回路21は上記実施の形態6と同一構成である。この変形例1の出力回路22は、上記実施の形態4の変形例1の出力回路22(図14参照)と同一構成である。
【0181】
図20の出力回路22は、上記実施の形態6の出力回路22(図19参照)において、スタートアップトランジスタP116をnチャネルトランジスタN114,N115に変更したものである。N114は、ゲートがノード122に接続され、ソースが低電位電力供給Vssに接続され、ドレインがスタータノードである定電流源回路11のノード119に接続されている。N115は、ゲートがノード122に接続され、ソースが低電位電力供給Vssに接続され、ドレインがもう一つのスタータノードである定電流源回路11のノード115に接続されている。
【0182】
上記実施の形態6では、電源投入時において、高電位電力供給Vccが(VDSsatp111+Vbe110+Vtn111)になるまでの期間、定電流源回路11のnチャネルトランジスタN100およびN102の共通ゲートを高電位電力供給Vccにプルアップし、これによってN100およびN102をターンオンさせるに十分な電圧レベルして、定電流源回路11を起動していた。
【0183】
これに対し、実施の形態6の変形例1では、pチャネルトランジスタP104およびP106の共通ゲートを低電位電力供給Vssにプルダウンするとともに、P100およびP102の共通ゲートも低電位電力供給Vssにプルダウンし、これによってP100およびP102の対とP104およびP106の対とからなるpチャネルトランジスタのカスコードカレントミラーをターンオンさせるに十分な電圧レベルして、定電流源回路11を起動する。この実施の形態6の変形例1は、上記実施の形態6と同様の効果を備えている。
【0184】
【発明の効果】
以上説明したように本発明によれば、電源投入時に確実に起動してバンドギャップ基準電圧を発生し、かつ消費電力を低減できるという効果がある。
【図面の簡単な説明】
【図1】本発明の実施の形態1を示すバンドギャップ基準電圧回路の回路図である。
【図2】実施の形態1の変形例1を示すバンドギャップ基準電圧回路の回路図である。
【図3】実施の形態1の変形例2を示すバンドギャップ基準電圧回路の回路図である。
【図4】実施の形態1の変形例3を示すバンドギャップ基準電圧回路の回路図である。
【図5】本発明の実施の形態2を示すバンドギャップ基準電圧回路の回路図である。
【図6】実施の形態2の変形例1を示すバンドギャップ基準電圧回路の回路図である。
【図7】実施の形態2の変形例2を示すバンドギャップ基準電圧回路の回路図である。
【図8】実施の形態2の変形例3を示すバンドギャップ基準電圧回路の回路図である。
【図9】本発明の実施の形態3を示すバンドギャップ基準電圧回路の回路図である。
【図10】実施の形態3の変形例1を示すバンドギャップ基準電圧回路の回路図である。
【図11】実施の形態3の変形例2を示すバンドギャップ基準電圧回路の回路図である。
【図12】実施の形態3の変形例3を示すバンドギャップ基準電圧回路の回路図である。
【図13】本発明の実施の形態4を示すバンドギャップ基準電圧回路の回路図である。
【図14】実施の形態4の変形例1を示すバンドギャップ基準電圧回路の回路図である。
【図15】本発明の実施の形態5を示すバンドギャップ基準電圧回路の回路図である。
【図16】実施の形態5の変形例1を示すバンドギャップ基準電圧回路の回路図である。
【図17】実施の形態5の変形例2を示すバンドギャップ基準電圧回路の回路図である。
【図18】実施の形態5の変形例3を示すバンドギャップ基準電圧回路の回路図である。
【図19】本発明の実施の形態6を示すバンドギャップ基準電圧回路の回路図である。
【図20】実施の形態6の変形例1を示すバンドギャップ基準電圧回路の回路図である。
【図21】従来のバンドギャップ基準電圧回路の回路図である。
【符号の説明】
10 基本ステージ、 11 定電流源回路、 12 バンドギャップ基準電圧発生回路、 20 スタートアップ回路、 21 電源電圧検知回路、 22出力回路。

Claims (10)

  1. バンドギャップ基準電圧を発生させるバンドギャップ基準電圧回路において、
    基準電位が供給される所定のノードと接続され、起動電圧により起動され、熱電圧に比例した定電流を発生させる定電流源回路を備え、
    上記定電流源回路が動作可能な供給電圧の下限値を定義する第1の素子群を含み、
    さらに、
    上記定電流からバンドギャップ基準電圧を発生させるバンドギャップ基準電圧発生回路と、
    上記第1の素子群と同様の第2の素子群を有し、該第2の素子群によって、上記所定のノードが上記供給電圧の上記下限値に達したことを上記第1の素子群をモニタすることなく、検知する電源電圧検知回路と、
    上記供給電圧が上昇を開始してから上記下限値に達するまで、上記定電流源回路の所定のノードに所定の電圧を印加することによって、上記定電流源回路を起動し、上記供給電圧が上記下限値に達したら、上記起動を解除するとともに、上記電源電圧検知回路内の貫通電流パスを遮断する起動出力回路とを備えた
    ことを特徴とするバンドギャップ基準電圧回路。
  2. 上記起動出力回路は、上記供給電圧が上記下限値に達したら、上記起動を制御するノードを供給電源に低インピーダンスに導通させることを特徴とする請求項1に記載のバンドギャップ基準電圧回路。
  3. 上記起動出力回路は、上記供給電圧が上昇を開始してから上記下限値に達するまで、上記所定のノードを所定の電圧にプルアップすることを特徴とする請求項1に記載のバンドギャップ基準電圧回路。
  4. 上記起動出力回路は、上記供給電圧が上昇を開始してから上記下限値に達するまで、上記所定のノードを所定の電圧にプルダウンすることを特徴とする請求項1に記載のバンドギャップ基準電圧回路。
  5. 上記下限値が、1つのpMOSトランジスタのソース・ドレイン間飽和電圧と、他の1つのpMOSトランジスタのスレッショルド電圧と、1つのnMOSトランジスタのソース・ドレイン間飽和電圧と、1つのバイポーラトランジスタのベース・エミッタ間電圧とによって定義され、
    上記電源電圧検知回路における、上記第2の素子群が、2つのpMOSトランジスタと、1つのnMOSトランジスタと、1つのバイポーラトランジスタからなる
    ことを特徴とする請求項1に記載のバンドギャップ基準電圧回路。
  6. 上記下限値が、1つのpMOSトランジスタのスレッショルド電圧と、1つのnMOSトランジスタのソース・ドレイン間飽和電圧と、1つのバイポーラトランジスタのベース・エミッタ間電圧とによって定義され、
    上記電源電圧検知回路における、上記第2の素子群が、1つのpMOSトランジスタと、1つのnMOSトランジスタと、1つのバイポーラトランジスタからなる
    ことを特徴とする請求項1に記載のバンドギャップ基準電圧回路。
  7. 上記下限値が、2つのpMOSトランジスタのソース・ドレイン間飽和電圧と、1つのnMOSトランジスタのスレッショルド電圧と、1つのバイポーラトランジスタのベース・エミッタ間電圧とによって定義され、
    上記電源電圧検知回路における、上記第2の素子群が、2つのpMOSトランジスタと、1つのnMOSトランジスタと、1つのバイポーラトランジスタからなる
    ことを特徴とする請求項1に記載のバンドギャップ基準電圧回路。
  8. 上記下限値が、1つのpMOSトランジスタのソース・ドレイン間飽和電圧と、1つのnMOSトランジスタのスレッショルド電圧と、1つのバイポーラトランジスタのベース・エミッタ間電圧とによって定義され、
    上記電源電圧検知回路における、上記第2の素子群が、1つのpMOSトランジスタと、1つのnMOSトランジスタと、1つのバイポーラトランジスタからなる
    ことを特徴とする請求項1に記載のバンドギャップ基準電圧回路。
  9. 上記定電流源回路は、上記供給電圧の上昇を負帰還させることによって上記定電流の電源電圧依存を低減する負帰還ループを有することを特徴とする請求項1に記載のバンドギャップ基準電圧回路。
  10. 低電圧動作可能とするために上記定電流源回路に設けられた負荷が、MOSトランジスタである
    ことを特徴とする請求項1に記載のバンドギャップ基準電圧回路。
JP2001328925A 2001-10-26 2001-10-26 バンドギャップ基準電圧回路 Expired - Fee Related JP3678692B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001328925A JP3678692B2 (ja) 2001-10-26 2001-10-26 バンドギャップ基準電圧回路
US10/253,483 US6998902B2 (en) 2001-10-26 2002-09-25 Bandgap reference voltage circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001328925A JP3678692B2 (ja) 2001-10-26 2001-10-26 バンドギャップ基準電圧回路

Publications (2)

Publication Number Publication Date
JP2003131749A JP2003131749A (ja) 2003-05-09
JP3678692B2 true JP3678692B2 (ja) 2005-08-03

Family

ID=19144907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001328925A Expired - Fee Related JP3678692B2 (ja) 2001-10-26 2001-10-26 バンドギャップ基準電圧回路

Country Status (2)

Country Link
US (1) US6998902B2 (ja)
JP (1) JP3678692B2 (ja)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005101156A1 (ja) * 2004-04-16 2005-10-27 Matsushita Electric Industrial Co., Ltd. 基準電圧発生回路
JP2006121448A (ja) * 2004-10-22 2006-05-11 Matsushita Electric Ind Co Ltd 電流源回路
US7633334B1 (en) * 2005-01-28 2009-12-15 Marvell International Ltd. Bandgap voltage reference circuit working under wide supply range
US7224209B2 (en) 2005-03-03 2007-05-29 Etron Technology, Inc. Speed-up circuit for initiation of proportional to absolute temperature biasing circuits
JP2006244228A (ja) * 2005-03-04 2006-09-14 Elpida Memory Inc 電源回路
TWI269955B (en) * 2005-08-17 2007-01-01 Ind Tech Res Inst Circuit for reference current and voltage generation
TWI350436B (en) * 2005-10-27 2011-10-11 Realtek Semiconductor Corp Startup circuit, bandgap voltage genertor utilizing the startup circuit, and startup method thereof
TWI394367B (zh) * 2006-02-18 2013-04-21 Seiko Instr Inc 帶隙定電壓電路
US7208929B1 (en) * 2006-04-18 2007-04-24 Atmel Corporation Power efficient startup circuit for activating a bandgap reference circuit
GB2442494A (en) * 2006-10-06 2008-04-09 Wolfson Microelectronics Plc Voltage reference start-up circuit
JP4394106B2 (ja) 2006-10-19 2010-01-06 Okiセミコンダクタ株式会社 基準電流生成回路
JP5237549B2 (ja) * 2006-12-27 2013-07-17 セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー 定電流回路
US7859340B2 (en) * 2007-03-30 2010-12-28 Qualcomm Incorporated Metal-oxide-semiconductor circuit designs and methods for operating same
US7932641B2 (en) * 2007-06-11 2011-04-26 International Business Machines Corporation Low voltage head room detection for reliable start-up of self-biased analog circuits
US7768343B1 (en) 2007-06-18 2010-08-03 Marvell International Ltd. Start-up circuit for bandgap reference
TW200901608A (en) * 2007-06-27 2009-01-01 Beyond Innovation Tech Co Ltd Bias supply, start-up circuit, and start-up method for bias circuit
JP5123679B2 (ja) * 2008-01-28 2013-01-23 ルネサスエレクトロニクス株式会社 基準電圧生成回路及びその起動制御方法
JP5245871B2 (ja) * 2009-01-30 2013-07-24 ミツミ電機株式会社 基準電圧発生回路
JP2012038930A (ja) * 2010-08-06 2012-02-23 Ricoh Co Ltd 半導体集積回路装置
USD669541S1 (en) * 2011-01-05 2012-10-23 G.A.E.M.S., Inc. Control panel of chassis for a video game console
US8278995B1 (en) * 2011-01-12 2012-10-02 National Semiconductor Corporation Bandgap in CMOS DGO process
TWI459173B (zh) * 2012-01-31 2014-11-01 Fsp Technology Inc 參考電壓產生電路及參考電壓產生方法
JP6124609B2 (ja) * 2013-01-31 2017-05-10 ラピスセミコンダクタ株式会社 起動回路、半導体装置、及び半導体装置の起動方法
CN103488232B (zh) * 2013-09-30 2016-02-17 深圳市芯海科技有限公司 一种基于cmos工艺的斩波带隙基准电路及参考电压芯片
US9739681B2 (en) * 2014-10-29 2017-08-22 Kulite Semiconductor Products, Inc. Systems and methods for electrically identifying and compensating individual pressure transducers
CN104503530B (zh) * 2015-01-09 2016-11-16 中国科学技术大学 一种高性能高可靠度的低压cmos基准电压源
JP6600207B2 (ja) * 2015-09-17 2019-10-30 ローム株式会社 基準電流源回路
JP6640507B2 (ja) * 2015-09-24 2020-02-05 ローム株式会社 基準電流源回路および半導体集積回路
CN107562116A (zh) * 2017-09-01 2018-01-09 福建省福芯电子科技有限公司 一种电源电压产生电路
TWI654509B (zh) 2018-01-03 2019-03-21 立積電子股份有限公司 參考電壓產生器
CN109240402A (zh) * 2018-09-27 2019-01-18 深圳市精嘉微电子有限公司 一种提高Bandgap电路电源抑制比的启动电路
TWI708253B (zh) * 2018-11-16 2020-10-21 力旺電子股份有限公司 非揮發性記憶體良率提升的設計暨測試方法
CN109491437B (zh) * 2019-01-14 2024-03-22 成都凡米科技有限公司 一种线性稳压器电路
CN113220057B (zh) * 2021-04-21 2021-12-31 电子科技大学 一种高抗噪声的浮动带隙基准源
US20230100998A1 (en) * 2021-09-29 2023-03-30 Skyworks Solutions, Inc. Reference startup circuit for audio amplifiers
CN115756061A (zh) * 2022-11-28 2023-03-07 四川和芯微电子股份有限公司 超低功耗带隙基准启动电路

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5087830A (en) * 1989-05-22 1992-02-11 David Cave Start circuit for a bandgap reference cell
JP2759226B2 (ja) * 1990-03-20 1998-05-28 新日本無線株式会社 基準電圧発生回路
JP2874634B2 (ja) * 1996-03-01 1999-03-24 日本電気株式会社 基準電圧回路
JPH08339232A (ja) * 1996-06-25 1996-12-24 Rohm Co Ltd 基準電圧回路
EP0840193B1 (en) * 1996-11-04 2002-05-02 STMicroelectronics S.r.l. Band-gap reference voltage generator
JPH1132494A (ja) * 1997-07-10 1999-02-02 Fuji Xerox Co Ltd モータ制御装置
KR19990045273A (ko) 1997-11-14 1999-06-25 윌리엄 비. 켐플러 전원 라인 잡음에 강한 밴드 갭 기준 회로
US6002243A (en) * 1998-09-02 1999-12-14 Texas Instruments Incorporated MOS circuit stabilization of bipolar current mirror collector voltages
US6191644B1 (en) * 1998-12-10 2001-02-20 Texas Instruments Incorporated Startup circuit for bandgap reference circuit
JP3422706B2 (ja) * 1998-12-15 2003-06-30 松下電器産業株式会社 基準電圧発生回路のスタートアップ回路
JP4345152B2 (ja) * 1999-01-14 2009-10-14 ソニー株式会社 起動回路およびそれを用いた電圧供給回路
US6525598B1 (en) * 1999-01-29 2003-02-25 Cirrus Logic, Incorporated Bias start up circuit and method
JP2000339962A (ja) * 1999-06-02 2000-12-08 Hitachi Ltd 電圧発生回路
CN1154032C (zh) * 1999-09-02 2004-06-16 深圳赛意法微电子有限公司 预调节器、产生参考电压的电路和方法
KR100400304B1 (ko) * 2000-12-27 2003-10-01 주식회사 하이닉스반도체 커런트 미러형의 밴드갭 기준전압 발생장치
US6570437B2 (en) * 2001-03-09 2003-05-27 International Business Machines Corporation Bandgap reference voltage circuit

Also Published As

Publication number Publication date
JP2003131749A (ja) 2003-05-09
US20030080806A1 (en) 2003-05-01
US6998902B2 (en) 2006-02-14

Similar Documents

Publication Publication Date Title
JP3678692B2 (ja) バンドギャップ基準電圧回路
KR101465598B1 (ko) 기준 전압 발생 장치 및 방법
US6150872A (en) CMOS bandgap voltage reference
US7990130B2 (en) Band gap reference voltage circuit
US5453679A (en) Bandgap voltage and current generator circuit for generating constant reference voltage independent of supply voltage, temperature and semiconductor processing
US6737908B2 (en) Bootstrap reference circuit including a shunt bandgap regulator with external start-up current source
KR20030003904A (ko) 온도변화에 따라 내부 기준전압 값을 조절할 수 있는 내부기준전압 생성회로 및 이를 구비하는 내부 공급전압생성회로
US4902915A (en) BICMOS TTL input buffer
US7057444B2 (en) Amplifier with accurate built-in threshold
JP2007305010A (ja) 基準電圧生成回路
JPH0816266A (ja) 調製回路を有するバンドギャップ基準発生装置およびキックスタート回路
US20070210856A1 (en) Band gap constant-voltage circuit
CN111142602B (zh) 一种带隙基准电压源快速启动电路
JP4394106B2 (ja) 基準電流生成回路
US20230223903A1 (en) Bandgap amplifier biasing and startup scheme
JP2965141B2 (ja) 始動回路を有するバンドギャップリファレンス回路
JP4345152B2 (ja) 起動回路およびそれを用いた電圧供給回路
US6778008B2 (en) Process-compensated CMOS current reference
JP5040397B2 (ja) 基準電圧回路
JP2000175441A (ja) チャージポンプ回路
JP4931619B2 (ja) バンドギャップ定電圧回路
JP2001028540A (ja) チャージポンプ回路
JP4904954B2 (ja) 基準電圧発生回路
JP4249599B2 (ja) 基準電圧回路
US6377114B1 (en) Resistor independent current generator with moderately positive temperature coefficient and method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050510

R150 Certificate of patent or registration of utility model

Ref document number: 3678692

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080520

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees