JP3606232B2 - 炭素構造体の製造装置および製造方法 - Google Patents

炭素構造体の製造装置および製造方法 Download PDF

Info

Publication number
JP3606232B2
JP3606232B2 JP2001167340A JP2001167340A JP3606232B2 JP 3606232 B2 JP3606232 B2 JP 3606232B2 JP 2001167340 A JP2001167340 A JP 2001167340A JP 2001167340 A JP2001167340 A JP 2001167340A JP 3606232 B2 JP3606232 B2 JP 3606232B2
Authority
JP
Japan
Prior art keywords
carbon nanotube
electrodes
carbon
structure including
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001167340A
Other languages
English (en)
Other versions
JP2002356316A (ja
Inventor
一則 穴澤
浩之 渡邊
正昭 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Fujifilm Business Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd, Fujifilm Business Innovation Corp filed Critical Fuji Xerox Co Ltd
Priority to JP2001167340A priority Critical patent/JP3606232B2/ja
Priority to US10/080,701 priority patent/US6902655B2/en
Priority to CNB021065764A priority patent/CN1197767C/zh
Publication of JP2002356316A publication Critical patent/JP2002356316A/ja
Application granted granted Critical
Publication of JP3606232B2 publication Critical patent/JP3606232B2/ja
Priority to US11/106,540 priority patent/US7578980B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/006Processes utilising sub-atmospheric pressure; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0809Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes employing two or more electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0822The electrode being consumed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0824Details relating to the shape of the electrodes
    • B01J2219/0826Details relating to the shape of the electrodes essentially linear
    • B01J2219/0828Wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0824Details relating to the shape of the electrodes
    • B01J2219/0826Details relating to the shape of the electrodes essentially linear
    • B01J2219/083Details relating to the shape of the electrodes essentially linear cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/085Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy creating magnetic fields
    • B01J2219/0852Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy creating magnetic fields employing permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/085Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy creating magnetic fields
    • B01J2219/0854Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy creating magnetic fields employing electromagnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/085Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy creating magnetic fields
    • B01J2219/0862Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy creating magnetic fields employing multiple (electro)magnets
    • B01J2219/0866Four (electro)magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0879Solid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0894Processes carried out in the presence of a plasma
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/30Purity

Description

【0001】
【発明の属する技術分野】
本発明は、カーボンナノチューブやフラーレン等の炭素構造体を製造するための製造装置および製造方法に関する。
【0002】
【従来の技術】
1985年に発見されたC60を代表とするフラーレンや1991年に発見されたカーボンナノチューブは、それまでの炭素物質とは異なる特異な電子物性を示すため、グラファイト、アモルファスカーボン、ダイヤモンドとは異なる新しい炭素の同素体として注目を集めている。
【0003】
例えば、C60やC70に代表されるフラーレンは、それら以外にも多数の種類があり、多数の炭素原子が球状の籠型に配置されて一つの分子を構成している。またフラーレンは、ベンゼン等の有機溶媒に可溶なため取り扱い性がよく、超伝導体や半導体としての性質だけでなく、高い光官能効果を示すので、電子写真感光材料としての応用も考えられている。さらに、フラーレンの内部に異種の元素をドープしたり、外部に多種の化学官能基を付与することで、機能性材料として有効な物性が発現する。
【0004】
一方、カーボンナノチューブは、フラーレンと同様、炭素のみを構成元素とした新しい材料であり、光官能効果、半導体材料等としての機能を有することが発見され、電子工業の各分野における活用が望まれている。特に、カーボンナノチューブは、わずかに原子配列の仕方(カイラリティ)が変化することで、半導体にも、導体にもなり得ることから、ナノメーターサイズの低次元電気伝導材料やスイッチング素子としての期待も高い。また、電界放出型の電子源や水素貯蔵材料としても注目されているほか、トンネル電子顕微鏡や原子間力顕微鏡の探針としての利用も試みられている。
【0005】
従来、フラーレンやカーボンナノチューブは、抵抗加熱法、炭素棒を原料としたアーク放電等のプラズマ放電による方法、レーザーアブレーション法、アセチレンガスを用いた化学気相成長法(CVD法)等で製造できることが知られている。しかしながら、アーク放電やレーザーアブレーション等の方法によってフラーレンやカーボンナノチューブが生成される詳細なメカニズムに関しては、様々な議論があり、現在でも統一的な解釈はなされていない。
【0006】
フラーレンやカーボンナノチューブの製造に関しては、大量合成を目的に種々の方法が検討されてきた。初期において考案された抵抗加熱法は、希ガス中で2本のグラファイトの先端を接触させ、数十Aから数百Aの電流を通電させることにより、グラファイトを加熱、蒸発させる方法であった。しかし、この方法では、グラム単位の試料を得ることは非常に困難であるため、現在ではほとんど用いられていない。
【0007】
アーク放電法は、グラファイト棒等を陰極と陽極に用い、HeやAr等の希ガス中においてアーク放電を起こすことで、フラーレンやカーボンナノチューブを合成する方法である。アーク放電によるアークプラズマにより、陽極先端部は約4000℃以上まで温度が上昇し、陽極の先端部が蒸発、多量のカーボンラジカルを生成する。このカーボンラジカルがフラーレンやカーボンナノチューブを含む煤となって、陰極や装置の内壁に堆積する。陽極にNi化合物や鉄化合物等を含ませておけば、触媒として作用し、単一壁のカーボンナノチューブを効率良く作製することができる。
【0008】
レーザーアブレーション法は、グラファイトにYAGレーザーのようなパルスレーザーを照射し、グラファイト表面でプラズマを発生させ、フラーレンやカーボンナノチューブを生じさせる方法である。この方法の特徴は、上記アーク放電法に比べ、比較的純度の高いフラーレンやカーボンナノチューブが得られることである。
【0009】
化学気相成長法では、原料としてアセチレンガスやメタンガスを用い、原料ガスの化学分解反応により、高純度のフラーレンやカーボンナノチューブが製造できる。最近では、フッ素化合物を化学処理し、電子線照射等により効率良くカーボンナノチューブを製造する方法も発見されている。
【0010】
アーク放電法において、グラファイト棒を電極として用いると、アークプラズマ中に多量に存在する電子やイオンが陽極側のグラファイト棒に衝突することで、グラファイト棒の先端の温度は約4000℃まで上昇し、カーボンラジカル、カーボンイオンおよび中性粒子が多量に放出される。これらが、陰極やチャンバー(装置の内壁)に付着したり、陽極側に再付着する過程で、カーボンナノチューブが生成されると考えられている。しかし、アークプラズマ中では、励起されたイオンや電子との衝突により、複雑な化学反応が多様に起きているので、カーボンイオンの量や運動エネルギーを安定に制御することが難しく、フラーレンやカーボンナノチューブとともに、多量のアモルファスカーボン粒子、および、グラファイト粒子が同時に生成し、それらの混在した煤となってしまう。
【0011】
したがって、フラーレンやカーボンナノチューブを工業的に利用しようとする場合、フラーレンやカーボンナノチューブの精製分離が必要となる。特にカーボンナノチューブは溶媒に溶けないので、その精製に関しては遠心分離法、酸化法、限外ろ過法、電気泳動法などの手法が提案されている。しかし、カーボンナノチューブと、不純物となるアモルファスカーボンやグラファイト粒子と、の物理的性質や化学的性質がほぼ等しいので、完全に不純物を取り除く分離精製法は確立されていない。また、多くの精製過程を経るために、その精製過程において、収率が極端に低下したり、逆に分散剤として用いる界面活性剤により、アルカリ金属等や有機物が混入するなどの問題がある。この課題を解決するために、カーボンナノチューブの合成段階において、できるだけ、高純度なカーボンナノチューブ、すなわち、グラファイト粒子やアモルファスカーボン等が混在しないカーボンナノチューブを合成することが望まれている。
【0012】
前述のように、アーク放電法でフラーレンやカーボンナノチューブを作製する際には、電極としてグラファイトが使用されるが、この電極がアーク放電により、CやC、Cなどのラジカルを含むアークプラズマとなって蒸発し、フラーレンやカーボンナノチューブのソースとなっている。しかし、同時にグラファイト粒子やアモルファスカーボンのソースにもなっている。CやC、Cなどのラジカルを含むアークプラズマがどのような条件で陰極堆積時にグラファイト粒子やアモルファスカーボン、そしてフラーレンやカーボンナノチューブになるのか、その詳細はわかっていない。
以下、特に高純度化が望まれているカーボンナノチューブについて、従来における高純度化の問題点について述べる。
【0013】
アーク放電法における高純度なカーボンナノチューブの合成は、Journetらが純度80%程度のシングルウォールカーボンナノチューブを合成した例が報告されている(C.Journet et.al,Nature Vol.388,p.756〜758)。しかし、純度としてはまだ十分でなく、より高い純度のカーボンナノチューブ合成が望まれる。
【0014】
レーザーアブレーション法は、シングルウォールカーボンナノチューブの高純度化合成が報告されている(A. Thess et.al,Nature Vol.273,p.483〜487)。しかし、レーザーアブレーション法では、少量のカーボンナノチューブしか得られず、効率が悪く、カーボンナノチューブの高コスト化に繋がる。また、純度としては70〜90%程度に留まっており、十分に高いとは言えない。
【0015】
化学気相成長法では、原料となるメタンガス等の熱分解過程で起きる化学反応に依存しているので、純度の高いナノチューブを製造することが可能である。しかし、化学気相成長法では、カーボンナノチューブの成長速度が極めて低く、効率が悪く、工業的利用は難しい。また、製造されたナノチューブの構造がアーク放電法やレーザーアブレーション法で合成されたものと比較して、欠陥等が多く、不完全である。
【0016】
【発明が解決しようとする課題】
したがって、本発明は上記従来の技術の問題点を解決することを課題とする。具体的には、アモルファスカーボンやグラファイト粒子等の不純物濃度が低い、高純度のフラーレンやカーボンナノチューブ等の炭素構造体を、工業的に効率良く低コストで合成することのできる炭素構造体の製造装置および製造方法を提供することを目的とする。
【0017】
【課題を解決するための手段】
一般に、磁場中で放電プラズマを生じさせると、放電プラズマと磁場との相互作用で、荷電粒子が磁場中に閉じ込められ、荷電粒子の平均自由行程が長くなる。したがって、荷電粒子同士の衝突確率が向上し、中性粒子等の反応に関わらない粒子の濃度が低下する。
【0018】
本発明者らは、この手法をフラーレンやカーボンナノチューブ等の炭素構造体の製造に適用することで、アモルファスカーボンやグラファイト粒子等の不純物濃度が低い、高純度の炭素構造体を、工業的に効率良く低コストで合成することができることを見出し、本発明に想到した。すなわち本発明は、
【0019】
<1>少なくとも、最先端部が対向する2つの電極と、該電極間の放電領域にアークプラズマを生成するべく前記電極間に電圧を印加する電源と、を備えるカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造装置であって、さらに、前記アークプラズマの生成領域に、多方向の磁力線を有する磁場を形成し、前記磁場により閉塞状態になる磁場空間を形成する磁界発生手段を備えることを特徴とするカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造装置である。
【0020】
<2>少なくとも、最先端部が対向する2つの電極と、該電極間の放電領域にアークプラズマを生成するべく前記電極間に電圧を印加する電源と、を備えるカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造装置であって、さらに、前記アークプラズマの生成領域に、放電電流の進行方向に対して平行な成分を有する磁場を形成し、前記磁場によってアークプラズマ中の荷電粒子の運動をその内部に規制する磁場空間を形成する磁界発生手段を備えることを特徴とするカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造装置である。
【0021】
<3>少なくとも、最先端部が対向する2つの電極と、該電極間の放電領域にアークプラズマを生成するべく前記電極間に電圧を印加する電源と、を備えるカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造装置であって、さらに、前記放電電流の進行方向に沿って前記放電領域を取り囲むように配置された複数の永久磁石および/または電磁石からなり、かつ、これら永久磁石および/または電磁石の全てが、同一の極を前記放電領域に対向させて配置された磁界発生手段を備えることを特徴とするカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造装置である。
【0022】
<4>少なくとも、最先端部が対向する2つの電極と、該電極間の放電領域にアークプラズマを生成するべく前記電極間に電圧を印加する電源と、を備えるカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造装置であって、さらに、前記放電電流の進行方向に沿って前記放電領域を取り囲むように配置された4個以上の偶数個の永久磁石および/または電磁石からなり、かつ、隣り合う永久磁石および/または電磁石が、交互に異なる極を前記放電領域に対向させて配置された磁界発生手段を備えることを特徴とするカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造装置である。
【0023】
<5>少なくとも、最先端部が対向する2つの電極と、該電極間の放電領域にアークプラズマを生成するべく前記電極間に電圧を印加する電源と、を備えるカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造装置であって、さらに、前記放電電流の進行方向を略中心軸とする1つまたは2つのコイルからなる磁界発生手段を備えることを特徴とするカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造装置である。
【0025】
>対向する2つの前記電極のうち、アークプラズマを発生させる電極の最先端部縁端における磁束密度が、10-5T以上1T以下であることを特徴とする<1>〜<>のいずれか1に記載のカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造装置である。
【0026】
アークプラズマ生成時の放電電流密度が、アークプラズマを発生させる電極の最先端部面積に対して、0.05A/mm2以上15A/mm2以下であることを特徴とする<1>〜<>のいずれか1に記載のカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造装置である。
【0027】
>前記電源により前記電極に印加する電圧が、1V以上30V以下であることを特徴とする<1>〜<>のいずれか1に記載のカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造装置である。
【0028】
>前記電源により前記電極に印加する電圧が、直流電圧であることを特徴とする<1>〜<>のいずれか1に記載のカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造装置である。
【0029】
10>対向する2つの前記電極のうち、陰極の最先端部面積が、陽極の最先端部面積以下であることを特徴とする<>に記載のカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造装置である。
【0030】
11>少なくとも、前記放電領域、および、前記電極が、密閉容器に収容されてなることを特徴とする<1>〜<10>のいずれか1に記載のカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造装置である。
【0031】
12>前記密閉容器内の雰囲気の圧力および/またはガス種を調整し得る雰囲気調整手段を備えてなることを特徴とする<11>に記載のカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造装置である。
【0032】
13>前記電極の材質が、炭素、もしくは、炭素を含みかつその電気抵抗率が0.01Ω・cm以上10Ω・cm以下の物質、であることを特徴とする<1>〜<12>のいずれか1に記載のカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造装置である。
【0033】
14>最先端部が対向する2つの電極間に電圧を印加することで、前記電極間の放電領域にアークプラズマを生成させて、カーボンナノチューブまたはカーボンナノチューブを含む構造体を製造するカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造方法であって、前記アークプラズマの生成領域に、多方向の磁力線を有する磁場を形成し、前記磁場により閉塞状態になる磁場空間を形成することを特徴とするカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造方法である。
【0034】
15>最先端部が対向する2つの電極間に電圧を印加することで、前記電極間の放電領域にアークプラズマを生成させて、カーボンナノチューブまたはカーボンナノチューブを含む構造体を製造するカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造方法であって、前記アークプラズマの生成領域に、放電電流の進行方向に対して平行な成分を有する磁場を形成し、該磁場によって前記アークプラズマ中の荷電粒子の運動をその内部に規制する磁場空間を形成することを特徴とするカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造方法である。
【0035】
16>最先端部が対向する2つの電極間に電圧を印加することで、前記電極間の放電領域にアークプラズマを生成させて、カーボンナノチューブまたはカーボンナノチューブを含む構造体を製造するカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造方法であって、前記放電電流の進行方向に沿って前記放電領域を取り囲むように、かつ、全てが同一の極を前記放電領域に対向させて、複数の永久磁石および/または電磁石を配置することで、前記アークプラズマの生成領域に磁場を形成することを特徴とするカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造方法である。
【0036】
17>最先端部が対向する2つの電極間に電圧を印加することで、前記電極間の放電領域にアークプラズマを生成させて、カーボンナノチューブまたはカーボンナノチューブを含む構造体を製造するカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造方法であって、前記放電電流の進行方向に沿って前記放電領域を取り囲むように、かつ、隣り合うもの同士が交互に異なる極を前記放電領域に対向させて、複数の永久磁石および/または電磁石を配置することで、前記アークプラズマの生成領域に磁場を形成することを特徴とするカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造方法である。
【0037】
18>最先端部が対向する2つの電極間に電圧を印加することで、前記電極間の放電領域にアークプラズマを生成させて、カーボンナノチューブまたはカーボンナノチューブを含む構造体を製造するカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造方法であって、前記放電電流の進行方向を略中心軸とする1つまたは2つのコイルを配置することで、前記アークプラズマの生成領域に磁場を形成することを特徴とするカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造方法である。
【0039】
19>対向する2つの前記電極のうち、アークプラズマを発生させる電極の最先端部縁端における磁束密度が、10-5T以上1T以下であることすることを特徴とする<14>〜<18>のいずれか1に記載のカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造方法である。
【0040】
20アークプラズマ生成時の放電電流密度が、アークプラズマを発生させる電極の最先端部面積に対して、0.05A/mm2以上15A/mm2以下であることを特徴とする<14>〜<19>のいずれか1に記載のカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造方法である。
【0041】
21>前記電極に印加する電圧が、1V以上30V以下であることを特徴とする<14>〜<20>のいずれか1に記載のカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造方法である。
【0042】
22>前記電極に印加する電圧が、直流電圧であることを特徴とする<14>〜<21>のいずれか1に記載のカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造方法である。
【0043】
23>対向する2つの前記電極のうち、陰極の最先端部面積が、陽極の最先端部面積以下であることを特徴とする<22>に記載のカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造方法である。
【0044】
24>前記電極の材質が炭素もしくは炭素を含む物質であり、その電気抵抗率が0.01Ω・cm以上10Ω・cm以下であることを特徴とする<14>〜<23>のいずれか1に記載のカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造方法である。
【0045】
25>前記放電領域の雰囲気の圧力が、0.01Pa以上510kPa以下であることを特徴とする<14>〜<24>のいずれか1に記載のカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造方法である。
26>前記放電領域の雰囲気が、空気、ヘリウム、アルゴン、キセノン、ネオン、窒素および水素から選ばれる少なくとも1のガスを含むガス雰囲気であることを特徴とする<14>〜<25>のいずれか1に記載のカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造方法である。
27>最先端部が対向する2つの電極間に電圧を印加することで、前記電極間の放電領域にアークプラズマを生成させて、カーボンナノチューブまたはカーボンナノチューブを含む構造体を製造する方法であって、前記アークプラズマの生成領域に、少なくとも、多方向の磁力線を有する磁場、または、放電電流の進行方向に対して平行な成分を有する磁場を形成し、前記放電領域の雰囲気中に、さらに含炭素物質からなるガスを含ませることを特徴とするカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造方法である。
【0046】
なお、本発明において、炭素構造体とは、アモルファスカーボンやグラファイト粒子等の不純物を除く、所定の分子構造を有する炭素の構造体のことを指し、具体的には、カーボンナノチューブ、フラーレン、およびこれらを構造体中に含むものを言う。
【0047】
【発明の実施の形態】
本発明の詳細を以下に説明する。
本発明は、最先端部が対向する2つの電極間に電圧を印加することで、前記電極間の放電領域にアークプラズマを生成させて、炭素構造体を製造する炭素構造体の製造装置および製造方法において、前記放電領域に所定の磁場を形成することを特徴とするものである。ここで、所定の磁場とは、前記アークプラズマの生成領域に、少なくとも、多方向の磁力線を有する磁場、または、放電電流の進行方向に対して平行な成分を有する磁場である。
【0048】
放電プラズマを所定の磁場中に発生させることで、CやC、Cなどのラジカルを含む放電プラズマが磁場中に閉じこめられるため、放電プラズマ中の荷電粒子の衝突確率が向上し、炭素構造体の生成効率を高めることができるようになったものと推定される。この結果、本発明によれば、不純物となるアモルファスカーボンやグラファイト粒子を低減させることが可能になる。
【0049】
図1(a)は、本発明の炭素構造体の製造装置の一例を示す模式断面図であり、図1(b)は図1(a)におけるA−A断面図である。図1に示す炭素構造体の製造装置は、密閉容器である反応容器(チャンバー)10内に配置された、最先端部が対向する2つの電極(陰極11および陽極12)と、陰極11および陽極12の間隙を調整可能に陰極11をスライドし得る可動装置13と、陰極11および陽極12の間に電圧を印加する電源18と、反応容器10内の雰囲気の圧力を減圧し得る真空ポンプ14、所望のガスを収容するガスボンベ17、ガスボンベ17−反応容器10間を連通する導入管15、および、その連通状態を開閉自在とするバルブ19からなる雰囲気調整手段と、から構成される通常の放電プラズマによる炭素構造体の製造装置に対して、さらに永久磁石20〜23を、前記放電電流の進行方向に沿って前記放電領域を取り囲むように配置したことを特徴とするものである。すなわち、陰極11および陽極12の間に電圧を印加した際に放電プラズマが生成する陰極11および陽極12の間の放電領域に対して、永久磁石20〜23により所定の磁場を形成する。
【0050】
形成される所定の磁場としては、具体的には、▲1▼多方向の磁力線により周囲が取り囲まれ、閉塞状態となる磁場空間と、▲2▼磁力線が前記放電電流の進行方向と略平行となって、放電プラズマ中の荷電粒子の運動が磁力線に規制された状態となる磁場空間が挙げられる。本例のように4つの永久磁石を用いた場合には、前者▲1▼の態様の磁場を形成することができる。
【0051】
▲1▼多方向の磁力線により周囲が取り囲まれ、閉塞状態となる磁場空間の具体例を図2に示す。図2は、図1(b)における永久磁石20〜23について、磁極を定めた場合の磁力線の状態を示す図であり、各永久磁石20〜23において、黒塗り部がS極、白抜き部がN極を示すものである。磁力線は、実線の曲線で示されている。なお、図2において示される磁力線は、想定される全ての態様が示されているものではなく、代表的なもののみが示されている。
【0052】
図2(a)は、永久磁石20〜23の全てが、S極を前記放電領域に対向させて配置させたものである。この場合、各永久磁石20〜23から前記放電領域に向けて放射される磁力線は、相互に反発し合い、Aで示される領域は、多方向の磁力線により取り囲まれた状態となる。
【0053】
図2(b)は、永久磁石20および22がS極を、永久磁石21および23がN極を、それぞれ前記放電領域に対向させて配置させたものである。つまり、隣り合う永久磁石が、交互に異なる極を前記放電領域に対向させて配置されている。この場合、各永久磁石20〜23から前記放電領域に向けて放射される磁力線は、隣り合う永久磁石に収束され、Aで示される領域は、多方向の磁力線により取り囲まれた状態となる。
【0054】
以上のように、図2(a)および図2(b)に示す態様によれば、Aで示される領域に多方向の磁界が作用し、当該領域A内で放電プラズマを生成すれば、前記放電プラズマ中の荷電粒子の運動が、陰極11−陽極12相互間の空間内に規制されるものと推定される。このようにして炭素構造体を製造すれば、不純物濃度が低い、高純度の炭素構造体を、工業的に効率良く低コストで合成することができる。
【0055】
この態様の磁場の形成は、永久磁石を複数個用いることで形成することができ、必ずしも4個に限定されるものではない。
前者の「永久磁石の全てが、同一の極を前記放電領域に対向させて配置する態様」においては、例えば3個や5個以上の平面永久磁石を用いて、前記放電領域を取り囲むように配置してもよいし、曲面状の永久磁石を用いた場合には、2個であっても双方の凹部同士を対向させて配置すればよい。また、永久磁石の個数の上限に限りは無い。さらに、図2(a)においては、S極を前記放電領域に対向させて配置する態様としたが、全てが同一極であれば問題無く、すなわち、N極を前記放電領域に対向させて配置することとしてもよい。
【0056】
後者の「隣り合う永久磁石が、交互に異なる極を前記放電領域に対向させて配置する態様」においては、隣り合う永久磁石が交互に極を変える必要があることから、偶数個であることが必須であり、また、前記放電領域を磁力線で取り囲む必要があることから、永久磁石の数は4個以上であることが必須となるが、上限に限りは無い。
【0057】
上記、所定の磁場の▲1▼の態様のその他の例としては、例えば、円筒形の永久磁石の内孔の中で放電プラズマを発生させる態様が挙げられる。
以上、永久磁石を用いて所定の磁場の▲1▼の態様について説明したが、用いる磁石は、永久磁石に限定されるものではなく、電磁石を用いても、永久磁石と電磁石の双方を用いても構わない。
【0058】
形成される所定の磁場の▲2▼の態様について説明する。▲2▼磁力線が前記放電電流の進行方向と略平行となって、放電プラズマ中の荷電粒子の運動が磁力線に規制された状態となる磁場空間の具体例を図3に示す。図3(a)は、円筒体24にコイル26を巻きつけて得られる電磁石28のコイル26に電圧を印加した際に形成される磁力線の状態を示す斜視図であり、図3(b)は、同様にして得られた電磁石28a,28bを同軸上に離間させて配置し、各円筒体24a,24bに巻きつけられたコイル26a,26bに電圧を印加した際に形成される磁力線の状態を示す斜視図である。磁力線は、実線および破線の曲線で示されている。なお、図3において示される磁力線は、想定される全ての態様が示されているものではなく代表的なもののみ、また、各磁力線についても一部のみが示されている。
【0059】
図3(a)の態様においては、磁力線が円筒体24の内部を貫通する状態となる。すなわち、円筒体24内部では、略平行の磁力線の束となっている。円筒体24の内部で放電プラズマを生成させ、かつ、円筒体24内部の磁力線の向きと、前記放電電流の進行方向をほぼ一致させることで、放電プラズマを磁場中に閉じこめることができると考えられる。
【0060】
図3(b)の態様においては、磁力線が円筒体24a,24bそれぞれの内部を貫通する状態となると同時に、両者の間隙に合成磁場が形成される。合成磁場は、円筒体24a,24bそれぞれの内部を貫通した磁力線がそのまま直進し、他方の円筒体内部を貫通し、ごく一部の磁力線は円筒体24a,24b間の空間から漏出するものの、あたかも1つのコイルを形成しているような状態となる。つまり、円筒体24a,24b間の空間においては、略平行の磁力線の束となっている。円筒体24a,24b間の空間で放電プラズマを生成させ、かつ、円筒体24a,24b間の空間の磁力線の向きと、前記放電電流の進行方向をほぼ一致させることで、放電プラズマを磁場中に閉じこめることができると考えられる。
【0061】
円筒体24内部、または、円筒体24a,24b間の空間における磁力線の向きと、前記放電電流の進行方向とは、完全に一致させる必要は無い。完全に一致させなくても、放電プラズマを磁場中に閉じこめることができるような磁場が形成されていればよい。ただし、両者の角度をあまり大きく取ると、磁界−電界−力の関係から電極を破壊してしまう可能性があるため、0°〜30°の範囲とすることが好ましく、0°〜10°の範囲とすることがより好ましい。
【0062】
また、前記放電電流の進行方向が前記磁場の中心軸と完全に重ならなくても、放電プラズマを磁場中に閉じこめることができればよい。ただし、磁場の中心軸からあまりに隔たったところで放電プラズマを生成させると、放電プラズマの直進性が損なわれるため、磁場の中心軸から「円筒体24内面」または「円筒体24a,24b内面の延長」までの距離に対して、20%以内の位置に放電電流の進行方向の軸が来ることが望ましい。なお、電極最先端部が平面である場合、その平面内の任意の箇所を基点として放電プラズマが生成するため、放電電流の進行方向は本来一定しないが、本発明においては、対向する2つの電極の最先端部の中心同士を結ぶ線を、放電電流の進行方向の軸とみなす。
【0063】
上記、所定の磁場の▲2▼の態様のその他の例としては、例えば、トロイダル型の電磁石を用い、該電磁石の内孔の中で放電プラズマを発生させる態様が挙げられる。
【0064】
放電プラズマの種類としては、アークプラズマ、グロープラズマ等が挙げられるが、効率良くフラーレンやカーボンナノチューブ等の炭素構造体を製造するためには、アークプラズマとすることが好ましい。また、前記密閉容器内の雰囲気の圧力等の各種条件を制御することにより、フラーレンやカーボンナノチューブを選択的に製造することができるが、以下の説明においては、主としてカーボンナノチューブを製造する例について説明する。
【0065】
次に、図1に示す炭素構造体の製造装置による炭素構造体の製造例について説明する。
反応容器(チャンバー)10は、円筒形(図面上、左右に円筒の両底面が来るように配置)の密閉容器であり、その材質としては、金属、なかでもステンレスが望ましいが、アルミニウム合金や石英等も好適である。また、形状も円筒形に限定されるものではなく、箱型等所望の形状で構わない。さらに、放電領域の雰囲気を、大気圧かつ空気の雰囲気とし、陰極11の最先端部周辺に炭素構造体を付着させる場合には、反応容器10は必須で無い、あるいは、反応容器10は密閉容器である必要は無い。
【0066】
反応容器10中には、最先端部が対向する2つの電極である陰極11および陽極12が配置される。このとき、反応容器10の材質が金属等導電性を有する場合には、反応容器10と陰極11および陽極12とは、電気的に絶縁された状態で固定される。なお、2つの電極11,12の配置としては、図1(a)に示すように両者の軸を一致させて、完全に対向している状態とするほか、2つの電極11,12の軸に所定の角度を持たせて、最先端部同士を近接させる状態としても構わない。本発明において「最先端部が対向する」といった場合には、この後者の場合も含む概念とする。勿論、図1(a)に示される前者の態様とすることが望ましい。
【0067】
電極11,12の配置は、陰極11と陽極12の対向面が平行となるようにすることが、安定なアーク放電等の放電が実現でき、効率よい炭素構造体の合成ができる。
2つの電極11,12の材質としては、炭素が望ましいが、炭素を含みかつその電気抵抗率が0.01Ω・cm以上10Ω・cm以下(好ましくは、0.01Ω・cm以上1Ω・cm以下)の物質であれば好適に利用できる。
【0068】
2つの電極11,12の形状としては、特に制限されるものではなく、円筒形、角筒形、載頭円錐形等が挙げられるが、円筒形が望ましい。また、2つの電極11,12の最先端部の直径(最先端部が円形で無い場合には、同一面積の円相当径)としては、特に制限されるものではないが、1mm以上100mm以下が望ましい。
【0069】
対向する2つの電極11,12のうち、陰極11の最先端部面積が、陽極12の最先端部面積以下であることが望ましい。陰極11の最先端部面積を陽極12の最先端部面積以下とすることで、得られる炭素構造体の純度がより一層向上する。両者の面積比(陰極11の最先端部面積/陽極12の最先端部面積)としては、0.1〜0.9とすることが好ましく、0.2〜0.5とすることがより好ましい。
【0070】
放電を安定させるために、電極11,12を水冷し、電極温度の上昇を抑えることも好ましい。電極11,12を水冷したい場合には、電極11,12の支持部(不図示)には、熱伝導率の高い金属、特に銅を用いることが望ましい。
【0071】
真空ポンプ14、ガスボンベ17、導入管15およびバルブ19からなる雰囲気調整手段により、反応容器10内の雰囲気を適宜調整することで、放電領域の雰囲気を所望の状態とする。具体的には、真空ポンプ14により反応容器10内を減圧または加圧することができ、真空ポンプ14により反応容器10内を減圧した後、バルブ19を開放して、所望のガスを収容するガスボンベ17から導入管15を介して反応容器10内に送り込むことで、所望のガス雰囲気とすることができる。勿論、大気圧かつ空気の雰囲気とする場合には、かかる雰囲気調整操作は必要でない。
【0072】
真空ポンプ14としては、ロータリーポンプ、拡散ポンプ、あるいはターボ分子ポンプ等が挙げられる。
【0073】
反応容器10内の雰囲気(すなわち、放電領域の雰囲気。以下同様。)の圧力としては、0.01Pa以上510kPa以下であればよいが、0.1Pa以上105kPa以下であることが好ましく、13Pa以上70kPa以下であることがより好ましい。かかる圧力とすれば、高純度のカーボンナノチューブを製造することができる。また、上記圧力範囲よりも低い圧力を選択すれば、高純度のフラーレンを生成することができる。
【0074】
反応容器10内の雰囲気ガスは、特に制限されないが、空気、ヘリウム、アルゴン、キセノン、ネオン、窒素および水素、もしくはこれらの混合ガスが望ましい。所望のガスを導入する場合には、真空ポンプ14で反応容器10内部を排気し、その後、所定の圧力まで所望のガスを収容するガスボンベ17からガスを導入すればよい。
【0075】
本発明においては、反応容器10内の雰囲気中に、さらに含炭素物質からなるガスを含ませることもできる。この場合、含炭素物質からなるガスのみの雰囲気としてもよいし、上記各種ガス雰囲気中に含炭素物質からなるガスを導入してもよい。雰囲気中に含炭素物質からなるガスを含ませることで、後述の実施例5にて製造されるような、特異な構造の炭素構造体を製造することができる。この炭素構造体は、カーボンナノチューブを中心軸とし、周りに炭素の構造体が成長したものである。
【0076】
使用可能な含炭素物質としては、限定されるものではないが、エタン、メタン、プロパン、ヘキサン等の炭化水素類;エタノール、メタノール、プロパノール等のアルコール類;アセトン等のケトン類;石油類;ガソリン類;一酸化炭素、二酸化炭素等の無機物;等が挙げられ、なかでもアセトン、エタノール、ヘキサンが好ましい。
【0077】
磁界発生手段としての永久磁石20〜23は、磁力を生じ得るものであれば如何なるものも用いることができる。既述のように永久磁石に代えて、電磁石を用いても構わない。形成する所定の磁場としては、既述のように図2および図3に示す形状が挙げられる。図1の装置においては、図2の(a)および(b)の2種類の磁場を選択することができる。
【0078】
また、形成する所定の磁場においては、前記放電領域における磁力線中に、電極11,12の軸(すなわち、電極11,12間に形成される放電電流の進行方向)と略平行な成分をより多く含むことが、カーボンナノチューブを製造する場合、純度の高いものを得ることができ、望ましい。すなわち、図2で言えば、(b)よりも(a)に示す磁場の方が好ましい。本例においては、図2(a)の配置とした。
【0079】
以上のように条件が設定された図1の炭素構造体の製造装置において、電源18により電極11,12間に電圧を印加することで、両電極11,12間に放電プラズマを生成させる。アーク放電を行う場合には、アーク放電に先立ち、コンタクトアーク処理を行ってもよい。コンタクトアーク処理とは、電極11,12同士を接触させておき、電圧を印加してから、可動装置13により一定の電極間距離まで電極11,12を離して、放電プラズマを発生させる処理をいう。かかる処理により、安定した放電プラズマが容易、かつ、迅速に得られる。
【0080】
電極11,12間に印加する電圧は、直流でも交流でもかまわないが、得られる炭素構造体のより一層の純度向上を望む上で、直流の方が好ましい。なお、交流を印加する場合には、電極11,12に陽極・陰極の区別は無い。
【0081】
放電プラズマ生成時の放電電流密度が、放電プラズマを発生させる電極の最先端部面積に対して、0.05A/mm以上15A/mm以下であることが好ましく、1A/mm以上5A/mm以下であることがより好ましい。ここで、「放電プラズマを発生させる電極」とは、印加する電圧が直流である場合には陰極を指し、印加する電圧が交流である場合には最先端部面積の小さい方の電極を指す(本発明において、他の規定についても同様。)。
【0082】
電源18により電極11,12に印加する電圧としては、1V以上30V以下であることが好ましく、15V以上25V以下であることがより好ましい。放電により、電極12の先端部が消費されていくので、放電中に電極11,12間距離が変化する。こうした電極11,12間距離の変化を可動装置13により適宜調節することにより、電極11,12間電圧が一定になるように制御することが望ましい。
【0083】
電圧の印加時間としては、3秒以上180秒以下とすることが好ましく、5秒以上60秒以下とすることがより好ましい。3秒未満では、印加電圧が安定せず、得られる炭素構造体の純度が低下する場合があり、180秒を越えると、放電プラズマの放射熱により永久磁石20〜23の磁場強度が低下する、あるいは、消失してしまう場合があるため、それぞれ好ましくない。
【0084】
所定の磁場における磁束密度としては、対向する2つの電極11,12のうち、放電プラズマを発生させる電極の最先端部縁端において、10−5T以上1T以下であることが好ましい。磁束密度が10−5T未満では、有効な磁場を形成することが困難であり、1Tを超えると、装置内部に磁界を発生させる永久磁石20〜23を放電プラズマの生成領域に対して近接させて配置するのが困難となる場合があるため、それぞれ好ましくない。かかる磁束密度としては、10−4T以上10−2T以下とすることで、安定な放電が起きるため、効率的に炭素構造体(特には、カーボンナノチューブ)を生成することができる。
【0085】
以上のように電極11,12間に放電プラズマを生成させると、電極11表面から炭素が離脱し、これが反応してフラーレンやカーボンナノチューブ等の炭素構造体が生成される。生じた炭素構造体は、陰極11の最先端部表面もしくはその周辺、さらには反応容器10内壁に堆積する。
【0086】
図4に陰極11の最先端部表面に堆積したカーボンナノチューブについて、走査型電子顕微鏡で観察した断面撮影写真を示す(倍率5000倍)。この断面撮影写真は、後述の実施例1において撮影した表面撮影写真(図5)における断面を撮影したものである。なお、写真の倍率は、写真の引き伸ばしの程度により、多少の誤差が生じている(以下、各種走査型電子顕微鏡写真において同様)。図4の写真においては、下が陰極11の最先端部(撮影画面外)であり、上方向にカーボンナノチューブを含む堆積物が堆積している。図4の写真において、細い線状に写っているのがカーボンナノチューブである。
【0087】
本発明の炭素構造体の製造装置ないし製造方法で得られるカーボンナノチューブは、図4の写真でわかるように最表層近傍に集中している。最表層近傍のカーボンナノチューブの下に見える塊状の物体は、アモルファスカーボン等の不純物と推察される。したがって、最終的に高純度のカーボンナノチューブを得るためには、最表層近傍のカーボンナノチューブを物理的に擦り取ればよい。
【0088】
以上のように本発明によれば、製造が容易でかつ低コストなアーク放電等の放電プラズマ法を用いつつ、極めて高純度の炭素構造体を製造することができる。特にカーボンナノチューブを得る場合には、条件により、その純度を95%以上のものとすることができる。
【0089】
【実施例】
以下、本発明を実施例により具体的に説明するが、本発明はこれら実施例に制限されるものではない。
(実施例1)
実施例1においては、図1に示す炭素構造体の製造装置を用いて、カーボンナノチューブを製造した。
具体的な各構成の条件は、以下の通りである。
【0090】
・反応容器10: ステンレス製の円筒容器チャンバー。直径210mm、長さ380mm。
・陰極11: 外径5mmの円筒形グラファイト棒(純度99.9%以上)
・陽極12: 外径15mmの円筒形グラファイト棒(純度99.9%以上)
・可動装置13: ステッピングモーターにより陰極11を可動可能としたもの。また、プラズマ放電時電極11,12距離を一定に保つように調整。
・電源18: 溶接用電源
・永久磁石20〜23: 縦100mm、横100mm、厚さ8mm、フェライト製永久磁石4つを、図2(a)に示すように配置。対向する永久磁石同士の最短距離は108mm。陰極11の最先端部縁端における磁束密度は7mT。
【0091】
以上の製造装置を用いて、カーボンナノチューブを製造した。反応容器10内は減圧せず、101.325kPa(1気圧)の空気で操作を行った。電極11,12間にアーク放電を行うため、はじめはコンタクトアーク処理を行い、放電開始後、電極11,12間を0.5mm〜3mm程度離した。電源18により印加した電圧は、18Vの直流電圧とした。以上の条件下で、約1分間アーク放電を行った。電流値は40Aであり、陰極11の最先端部面積に対する放電電流密度は、2.0A/mmであった。
【0092】
放電後、陰極11を取り出し、その最先端部を走査型電子顕微鏡で観察した。走査型電子顕微鏡観察には、日立製作所製走査型電子顕微鏡S−4500を使用した(他の走査型電子顕微鏡観察において同様)。走査型電子顕微鏡観察により、約3mm×3mmもの極めて広い領域に、高純度のカーボンナノチューブが生成していた。
【0093】
陰極11の最先端部表面における、上記カーボンナノチューブが生成している領域の走査型電子顕微鏡撮影写真を、図5に示す(倍率20000倍)。図5の走査型電子顕微鏡撮影写真から、本発明により製造したカーボンナノチューブは、不純物の含有量が極めて少なく、極めて高純度であることがわかる。図5の走査型電子顕微鏡撮影写真から、その純度を見積もると、99%以上であることがわかった。なお、既述の如く、このときの断面撮影写真は、図4に示す通りである。
【0094】
(比較例1)
実施例1において、永久磁石20〜23を配置せず、磁場を形成しなかったこと以外は、実施例1と全て同様の装置を用い、同様の条件で放電し、カーボンナノチューブの製造を行った。
【0095】
放電後、実施例1と同様にして、陰極11を取り出し、その最先端部を走査型電子顕微鏡で観察したところ、カーボンナノチューブは極めて局所的にしか形成されていなかった。
【0096】
陰極11の最先端部表面における、上記カーボンナノチューブが生成している局所的な領域の走査型電子顕微鏡撮影写真を、図6に示す(倍率20000倍)。図6の走査型電子顕微鏡撮影写真からわかるように、カーボンナノチューブが生成している領域においても不純物が共に堆積しており、実施例1に比べ大幅に純度および収量が劣るものであった。
【0097】
(実施例2)
実施例1において、永久磁石20〜23の配置を図2(b)に示すようにしたこと以外は、実施例1と全て同様の装置を用い、同様の条件で放電し、カーボンナノチューブの製造を行った。このとき、陰極11の最先端部縁端における磁束密度は7mTであった。
【0098】
放電後、実施例1と同様にして、陰極11を取り出し、その最先端部を走査型電子顕微鏡で観察したところ、実施例1に比べると狭い領域ながらも、約10μm四方の領域に、高純度のカーボンナノチューブが生成していた。
【0099】
陰極11の最先端部表面における、上記カーボンナノチューブが生成している領域の走査型電子顕微鏡撮影写真を、図7に示す(倍率20000倍)。図7の走査型電子顕微鏡撮影写真から、カーボンナノチューブが生成している領域においては、不純物の含有量が少なく、高純度のカーボンナノチューブであることがわかる。
【0100】
(実施例3)
実施例1において、真空ポンプ14で反応容器10内を53kPaまで減圧したこと以外は、実施例1と全て同様の装置を用い、同様の条件で放電し、カーボンナノチューブの製造を行った。
【0101】
放電後、実施例1と同様にして、陰極11を取り出し、その最先端部を走査型電子顕微鏡で観察したところ、約2mm四方もの広い領域に、高純度のカーボンナノチューブが生成していた。
【0102】
陰極11の最先端部表面における、上記カーボンナノチューブが生成している領域の走査型電子顕微鏡撮影写真を、図8に示す(倍率20000倍)。図8の走査型電子顕微鏡撮影写真から、カーボンナノチューブが生成している領域においては、不純物の含有量が少なく、高純度のカーボンナノチューブであることがわかる。
【0103】
(実施例4)
実施例1において、真空ポンプ14で反応容器10内の空気を排気し、ガスボンベ17から窒素を導入して、圧力51kPaの窒素雰囲気としたこと以外は、実施例1と全て同様の装置を用い、同様の条件で放電し、カーボンナノチューブの製造を行った。
【0104】
放電後、実施例1と同様にして、陰極11を取り出し、その最先端部を走査型電子顕微鏡で観察したところ、約2mm四方もの広い領域に、高純度のカーボンナノチューブが生成していた。
【0105】
陰極11の最先端部表面における、上記カーボンナノチューブが生成している領域の走査型電子顕微鏡撮影写真を、図9に示す(倍率20000倍)。図9の走査型電子顕微鏡撮影写真から、カーボンナノチューブが生成している領域においては、不純物の含有量が少なく、高純度のカーボンナノチューブであることがわかる。
【0106】
(実施例5)
実施例1において、真空ポンプ14で反応容器10内の空気を排気し、ガスボンベ17からアセトンを導入して、圧力40kPaのアセトン雰囲気としたこと以外は、実施例1と全て同様の装置を用い、同様の条件で放電し、炭素構造体の製造を行った。
【0107】
放電後、実施例1と同様にして、陰極11を取り出し、その最先端部を走査型電子顕微鏡で観察したところ、約3mm四方もの極めて広い領域に、高純度の炭素構造体が生成していた。この炭素構造体は、カーボンナノチューブを中心軸とし、周りに炭素の構造体が成長したものである。
【0108】
陰極11の最先端部表面における、上記炭素構造体が生成している領域の走査型電子顕微鏡撮影写真を、図10に示す(倍率10000倍)。図10の走査型電子顕微鏡撮影写真から、炭素構造体が生成している領域においては、不純物の含有量が少なく、高純度の炭素構造体であることがわかる。
【0109】
(実施例6)
実施例1において、永久磁石20〜23の代わりに、図3(b)に示す形状に類似した円筒形の永久磁石2つを、それぞれ電極11,12の周りに、電極11,12と同軸に配して磁場を形成したこと以外は、実施例1と全て同様の装置を用い、同様の条件で放電し、炭素構造体の製造を行った。このとき、陰極11の最先端部縁端における磁束密度は18mTであった。
【0110】
放電後、実施例1と同様にして、陰極11を取り出し、その最先端部を走査型電子顕微鏡で観察したところ、1.2mm×300μmの領域に、高純度のカーボンナノチューブが生成していた。
【0111】
陰極11の最先端部表面における、上記カーボンナノチューブが生成している領域の走査型電子顕微鏡撮影写真を、図11に示す(倍率10000倍)。図11の走査型電子顕微鏡撮影写真から、カーボンナノチューブが生成している領域においては、不純物の含有量が少なく、極めて高純度のカーボンナノチューブであることがわかる。
【0112】
【発明の効果】
以上説明したように、本発明によれば、アモルファスカーボンやグラファイト粒子等の不純物濃度が低い、高純度のフラーレンやカーボンナノチューブ等の炭素構造体を、工業的に効率良く低コストで合成することのできる炭素構造体の製造装置および製造方法を提供することができる。
本発明の炭素構造体の製造装置および製造方法は、その構成が簡単であるにもかかわらず極めてその効果が大きいことから、工業的有用性は極めて高い。
【図面の簡単な説明】
【図1】図1は、本発明の炭素構造体の製造装置の一例を示す図であり、(a)は模式断面図であり、(b)は(a)におけるA−A断面図である。
【図2】図2は、図1(b)における永久磁石について、磁極を定めた場合の磁力線の状態を示す図であり、(a)は永久磁石20〜23の全てが、S極を前記放電領域に対向させて配置させた状態を示す図であり、(b)は隣り合う永久磁石が、交互に異なる極を放電領域に対向させて配置させた状態を示す図である。
【図3】磁力線が前記放電電流の進行方向と略平行となって、放電プラズマ中の荷電粒子の運動を磁力線の方向に規制された状態となる磁場空間の具体例を示す図であり、(a)は電磁石のコイルに電圧を印加した際に形成される磁力線の状態を示す斜視図であり、(b)は、電磁石を同軸上に離間させて配置し、各電磁石のコイルに電圧を印加した際に形成される磁力線の状態を示す斜視図である。
【図4】実施例1において、陰極の最先端部表面に堆積したカーボンナノチューブについて、走査型電子顕微鏡で観察した断面撮影写真(倍率:5000倍)である。
【図5】実施例1において、電極の最先端部表面における、上記カーボンナノチューブが生成している領域の走査型電子顕微鏡撮影写真(倍率:20000倍)である。
【図6】比較例1において、電極の最先端部表面における、上記カーボンナノチューブが生成している領域の走査型電子顕微鏡撮影写真(倍率:20000倍)である。
【図7】実施例2において、電極の最先端部表面における、上記カーボンナノチューブが生成している領域の走査型電子顕微鏡撮影写真(倍率:20000倍)である。
【図8】実施例3において、電極の最先端部表面における、上記カーボンナノチューブが生成している領域の走査型電子顕微鏡撮影写真(倍率:20000倍)である。
【図9】実施例4において、電極の最先端部表面における、上記カーボンナノチューブが生成している領域の走査型電子顕微鏡撮影写真(倍率:20000倍)である。
【図10】実施例5において、電極の最先端部表面における、上記カーボンナノチューブが生成している領域の走査型電子顕微鏡撮影写真(倍率:10000倍)である。
【図11】実施例6において、電極の最先端部表面における、上記カーボンナノチューブが生成している領域の走査型電子顕微鏡撮影写真(倍率:20000倍)である。
【符号の説明】
10 反応容器
11 陰極(電極)
12 陽極(電極)
13 可動装置
14 真空ポンプ
15 導入管
17 ガスボンベ
18 電源
19 バルブ
20〜23 永久磁石
24、24a、24b 円筒体
26、26a、26b コイル
28、28a、28b 電磁石

Claims (27)

  1. 少なくとも、最先端部が対向する2つの電極と、該電極間の放電領域にアークプラズマを生成するべく前記電極間に電圧を印加する電源と、を備えるカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造装置であって、さらに、前記アークプラズマの生成領域に、多方向の磁力線を有する磁場を形成し、前記磁場により閉塞状態になる磁場空間を形成する磁界発生手段を備えることを特徴とするカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造装置。
  2. 少なくとも、最先端部が対向する2つの電極と、該電極間の放電領域にアークプラズマを生成するべく前記電極間に電圧を印加する電源と、を備えるカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造装置であって、さらに、前記アークプラズマの生成領域に、放電電流の進行方向に対して平行な成分を有する磁場を形成し、前記磁場によってアークプラズマ中の荷電粒子の運動をその内部に規制する磁場空間を形成する磁界発生手段を備えることを特徴とするカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造装置。
  3. 少なくとも、最先端部が対向する2つの電極と、該電極間の放電領域にアークプラズマを生成するべく前記電極間に電圧を印加する電源と、を備えるカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造装置であって、さらに、前記放電電流の進行方向に沿って前記放電領域を取り囲むように配置された複数の永久磁石および/または電磁石からなり、かつ、これら永久磁石および/または電磁石の全てが、同一の極を前記放電領域に対向させて配置された磁界発生手段を備えることを特徴とするカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造装置。
  4. 少なくとも、最先端部が対向する2つの電極と、該電極間の放電領域にアークプラズマを生成するべく前記電極間に電圧を印加する電源と、を備えるカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造装置であって、さらに、前記放電電流の進行方向に沿って前記放電領域を取り囲むように配置された4個以上の偶数個の永久磁石および/または電磁石からなり、かつ、隣り合う永久磁石および/または電磁石が、交互に異なる極を前記放電領域に対向させて配置された磁界発生手段を備えることを特徴とするカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造装置。
  5. 少なくとも、最先端部が対向する2つの電極と、該電極間の放電領域にアークプラズマを生成するべく前記電極間に電圧を印加する電源と、を備えるカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造装置であって、さらに、前記放電電流の進行方向を略中心軸とする1つまたは2つのコイルからなる磁界発生手段を備えることを特徴とするカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造装置。
  6. 対向する2つの前記電極のうち、アークプラズマを発生させる電極の最先端部縁端における磁束密度が、10-5T以上1T以下であることを特徴とする請求項1〜のいずれか1に記載のカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造装置。
  7. アークプラズマ生成時の放電電流密度が、アークプラズマを発生させる電極の最先端部面積に対して、0.05A/mm2以上15A/mm2以下であることを特徴とする請求項1〜のいずれか1に記載のカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造装置。
  8. 前記電源により前記電極に印加する電圧が、1V以上30V以下であることを特徴とする請求項1〜のいずれか1に記載のカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造装置。
  9. 前記電源により前記電極に印加する電圧が、直流電圧であることを特徴とする請求項1〜のいずれか1に記載のカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造装置。
  10. 対向する2つの前記電極のうち、陰極の最先端部面積が、陽極の最先端部面積以下であることを特徴とする請求項に記載のカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造装置。
  11. 少なくとも、前記放電領域、および、前記電極が、密閉容器に収容されてなることを特徴とする請求項1〜1のいずれか1に記載のカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造装置。
  12. 前記密閉容器内の雰囲気の圧力および/またはガス種を調整し得る雰囲気調整手段を備えてなることを特徴とする請求項1に記載のカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造装置。
  13. 前記電極の材質が、炭素、もしくは、炭素を含みかつその電気抵抗率が0.01Ω・cm以上10Ω・cm以下の物質、であることを特徴とする請求項1〜1のいずれか1に記載のカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造装置。
  14. 最先端部が対向する2つの電極間に電圧を印加することで、前記電極間の放電領域にアークプラズマを生成させて、カーボンナノチューブまたはカーボンナノチューブを含む構造体を製造するカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造方法であって、
    前記アークプラズマの生成領域に、多方向の磁力線を有する磁場を形成し、前記磁場により閉塞状態になる磁場空間を形成することを特徴とするカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造方法。
  15. 最先端部が対向する2つの電極間に電圧を印加することで、前記電極間の放電領域にアークプラズマを生成させて、カーボンナノチューブまたはカーボンナノチューブを含む構造体を製造するカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造方法であって、
    前記アークプラズマの生成領域に、放電電流の進行方向に対して平行な成分を有する磁場を形成し、前記磁場によって前記アークプラズマ中の荷電粒子の運動をその内部に規制する磁場空間を形成することを特徴とするカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造方法。
  16. 最先端部が対向する2つの電極間に電圧を印加することで、前記電極間の放電領域にアークプラズマを生成させて、カーボンナノチューブまたはカーボンナノチューブを含む構造体を製造するカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造方法であって、
    前記放電電流の進行方向に沿って前記放電領域を取り囲むように、かつ、全てが同一の極を前記放電領域に対向させて、複数の永久磁石および/または電磁石を配置することで、前記アークプラズマの生成領域に磁場を形成することを特徴とするカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造方法。
  17. 最先端部が対向する2つの電極間に電圧を印加することで、前記電極間の放電領域にアークプラズマを生成させて、カーボンナノチューブまたはカーボンナノチューブを含む構造体を製造するカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造方法であって、
    前記放電電流の進行方向に沿って前記放電領域を取り囲むように、かつ、隣り合うもの同士が交互に異なる極を前記放電領域に対向させて、複数の永久磁石および/または電磁石を配置することで、前記アークプラズマの生成領域に磁場を形成することを特徴とするカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造方法。
  18. 最先端部が対向する2つの電極間に電圧を印加することで、前記電極間の放電領域にアークプラズマを生成させて、カーボンナノチューブまたはカーボンナノチューブを含む構造体を製造するカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造方法であって、
    前記放電電流の進行方向を略中心軸とする1つまたは2つのコイルを配置することで、前記アークプラズマの生成領域に磁場を形成することを特徴とするカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造方法。
  19. 対向する2つの前記電極のうち、アークプラズマを発生させる電極の最先端部縁端における磁束密度が、10-5T以上1T以下であることすることを特徴とする請求項14〜18のいずれか1に記載のカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造方法。
  20. アークプラズマ生成時の放電電流密度が、アークプラズマを発生させる電極の最先端部面積に対して、0.05A/mm2以上15A/mm2以下であることを特徴とする請求項14〜19のいずれか1に記載のカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造方法。
  21. 前記電極に印加する電圧が、1V以上30V以下であることを特徴とする請求項14〜20のいずれか1に記載のカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造方法。
  22. 前記電極に印加する電圧が、直流電圧であることを特徴とする請求項14〜21のいずれか1に記載のカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造方法。
  23. 対向する2つの前記電極のうち、陰極の最先端部面積が、陽極の最先端部面積以下であることを特徴とする請求項22に記載のカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造方法。
  24. 前記電極の材質が炭素もしくは炭素を含む物質であり、その電気抵抗率が0.01Ω・cm以上10Ω・cm以下であることを特徴とする請求項14〜23のいずれか1に記載のカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造方法。
  25. 前記放電領域の雰囲気の圧力が、0.01Pa以上510kPa以下であることを特徴とする請求項14〜24のいずれか1に記載のカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造方法。
  26. 前記放電領域の雰囲気が、空気、ヘリウム、アルゴン、キセノン、ネオン、窒素および水素から選ばれる少なくとも1のガスを含むガス雰囲気であることを特徴とする請求項14〜25のいずれか1に記載のカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造方法。
  27. 最先端部が対向する2つの電極間に電圧を印加することで、前記電極間の放電領域にアークプラズマを生成させて、カーボンナノチューブまたはカーボンナノチューブを含む構造体を製造するカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造方法であって、
    前記アークプラズマの生成領域に、少なくとも、多方向の磁力線を有する磁場、または、放電電流の進行方向に対して平行な成分を有する磁場を形成し、
    前記放電領域の雰囲気中に、さらに含炭素物質からなるガスを含ませることを特徴とするカーボンナノチューブまたはカーボンナノチューブを含む構造体の製造方法。
JP2001167340A 2001-06-01 2001-06-01 炭素構造体の製造装置および製造方法 Expired - Fee Related JP3606232B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001167340A JP3606232B2 (ja) 2001-06-01 2001-06-01 炭素構造体の製造装置および製造方法
US10/080,701 US6902655B2 (en) 2001-06-01 2002-02-25 Producing apparatus and producing method for manufacturing carbon structure
CNB021065764A CN1197767C (zh) 2001-06-01 2002-02-28 用于制造碳纳米管和含有碳纳米管结构的生产设备和方法
US11/106,540 US7578980B2 (en) 2001-06-01 2005-04-15 Producing apparatus and producing method for manufacturing carbon structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001167340A JP3606232B2 (ja) 2001-06-01 2001-06-01 炭素構造体の製造装置および製造方法

Publications (2)

Publication Number Publication Date
JP2002356316A JP2002356316A (ja) 2002-12-13
JP3606232B2 true JP3606232B2 (ja) 2005-01-05

Family

ID=19009738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001167340A Expired - Fee Related JP3606232B2 (ja) 2001-06-01 2001-06-01 炭素構造体の製造装置および製造方法

Country Status (3)

Country Link
US (2) US6902655B2 (ja)
JP (1) JP3606232B2 (ja)
CN (1) CN1197767C (ja)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3606232B2 (ja) 2001-06-01 2005-01-05 富士ゼロックス株式会社 炭素構造体の製造装置および製造方法
JP3842159B2 (ja) * 2002-03-26 2006-11-08 株式会社半導体エネルギー研究所 ドーピング装置
JP3621928B2 (ja) * 2002-04-05 2005-02-23 浩史 滝川 カーボンナノ微粒子の製造方法,カーボンナノ微粒子の製造装置
JP3714364B2 (ja) * 2002-10-30 2005-11-09 富士ゼロックス株式会社 カーボンナノチューブの製造装置および製造方法
JP3933035B2 (ja) * 2002-11-06 2007-06-20 富士ゼロックス株式会社 カーボンナノチューブの製造装置および製造方法
JP3969324B2 (ja) * 2003-02-27 2007-09-05 富士ゼロックス株式会社 カーボンナノチューブの製造装置
JP3997930B2 (ja) 2003-02-27 2007-10-24 富士ゼロックス株式会社 カーボンナノチューブの製造装置および製造方法
WO2005090633A1 (ja) * 2004-03-23 2005-09-29 Ideal Star Inc. 材料膜の製造方法、及び、材料膜の製造装置
FR2868964B1 (fr) * 2004-04-15 2007-03-16 Robert Devidal Procede et un dispositif de traitement d'un volume de particules de charbon actif
CN100410166C (zh) * 2004-08-13 2008-08-13 清华大学 磁场诱导生长磁性一维纳米线阵列的制备方法
CN100395180C (zh) * 2004-10-28 2008-06-18 鸿富锦精密工业(深圳)有限公司 碳纳米管制备方法和其设备
DE102005003806B3 (de) * 2005-01-26 2006-07-20 Thermo Electron (Bremen) Gmbh Glimmentladungsquelle
NO326571B1 (no) * 2005-06-16 2009-01-12 Sinvent As Fremgangsmate og reaktor for fremstilling av karbon nanoror
CN100418876C (zh) * 2005-08-19 2008-09-17 清华大学 碳纳米管阵列制备装置及方法
CN100515935C (zh) * 2005-09-02 2009-07-22 鸿富锦精密工业(深圳)有限公司 碳纳米管生长装置及方法
CN100515936C (zh) * 2005-10-28 2009-07-22 鸿富锦精密工业(深圳)有限公司 碳纳米管制备装置及方法
JP2008056546A (ja) * 2006-09-01 2008-03-13 Ihi Corp 炭素構造体の製造装置及び製造方法
BRPI0605767B1 (pt) * 2006-12-21 2021-08-10 Universidade Federal Do Pará Reator e processo para obtenção de materiais carbonosos por corrente elétrica de curto-circuito
JP4875517B2 (ja) * 2007-03-05 2012-02-15 シャープ株式会社 化学物質センシング素子、化学物質センシング装置、及び化学物質センシング素子の製造方法
RU2343111C1 (ru) * 2007-04-06 2009-01-10 Общество с ограниченной ответственностью "Научно-производственная компания "НеоТекПродакт" Установка для производства фуллеренсодержащей сажи
MX356141B (es) * 2007-07-06 2018-05-16 Evaco Llc Disociacion de agua libre de carbono y produccion de energia relacionada con hidrogeno.
US20090200176A1 (en) * 2008-02-07 2009-08-13 Mccutchen Co. Radial counterflow shear electrolysis
US20130062195A1 (en) * 2010-04-25 2013-03-14 Sri Lanka Institute of Nanotechnology (Pvt) Ltd. Process for preparation of carbon nanotubes from vein graphite
CN102502576B (zh) * 2011-10-24 2013-07-10 上海交通大学 一种低压空气中电弧放电法生长多壁碳纳米管的方法
CN102502583B (zh) * 2011-11-01 2014-05-21 上海交通大学 一种直流电弧放电法制备碳纳米管的方法
CN104129775B (zh) * 2014-07-16 2015-12-30 苏州大学 一种内嵌钪氧化物团簇富勒烯的制备方法
US10537840B2 (en) 2017-07-31 2020-01-21 Vorsana Inc. Radial counterflow separation filter with focused exhaust
CA3014970A1 (en) 2017-08-18 2019-02-18 Montgomery William Childs Electrode assembly for plasma generation
CA3014940A1 (en) * 2017-08-18 2019-02-18 Montgomery William Childs Ion generator apparatus
CN108046237B (zh) * 2017-12-15 2019-12-13 中国石油大学(北京) 弧光等离子制备碳纳米材料的装置
US11112109B1 (en) 2018-02-23 2021-09-07 Aureon Energy Ltd. Plasma heating apparatus, system and method
CN110294468A (zh) * 2019-08-05 2019-10-01 广州领泰纳米材料科技有限公司 使用压缩电弧制备富勒烯的装置及方法
WO2021023179A1 (zh) * 2019-08-05 2021-02-11 北京三弧创科技术有限公司 使用压缩电弧制备富勒烯的装置及方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4219722A (en) * 1977-12-19 1980-08-26 Thermatool Corp. Methods and apparatus for heating metal parts with magnetically driven travelling electric arc
JPS58185767A (ja) 1982-04-23 1983-10-29 Hitachi Ltd 蒸着方法
JP2526408B2 (ja) 1994-01-28 1996-08-21 工業技術院長 カ―ボンナノチュ―ブの連続製造方法及び装置
JPH0848510A (ja) * 1994-08-04 1996-02-20 Satoru Mieno アーク放電によるフラーレン自動合成装置
JP2682486B2 (ja) * 1995-01-18 1997-11-26 日本電気株式会社 カーボンナノチューブの精製方法
JP3905572B2 (ja) * 1996-03-04 2007-04-18 多津男 庄司 高融点物質蒸発装置
JPH09309711A (ja) * 1996-03-18 1997-12-02 Toyo Tanso Kk 炭素クラスター、それを製造するための原料及びその炭素クラスターの製造方法
JP3073986B1 (ja) * 1999-07-09 2000-08-07 島津メクテム株式会社 フラーレン類の製造装置
JP2002069756A (ja) * 2000-09-04 2002-03-08 Shinko Seiki Co Ltd カーボン・ナノ・ファイバの生成装置及び生成方法
JP3606232B2 (ja) 2001-06-01 2005-01-05 富士ゼロックス株式会社 炭素構造体の製造装置および製造方法

Also Published As

Publication number Publication date
CN1389394A (zh) 2003-01-08
US7578980B2 (en) 2009-08-25
US6902655B2 (en) 2005-06-07
JP2002356316A (ja) 2002-12-13
US20020179428A1 (en) 2002-12-05
CN1197767C (zh) 2005-04-20
US20060057037A1 (en) 2006-03-16

Similar Documents

Publication Publication Date Title
JP3606232B2 (ja) 炭素構造体の製造装置および製造方法
JP3933035B2 (ja) カーボンナノチューブの製造装置および製造方法
JP3997930B2 (ja) カーボンナノチューブの製造装置および製造方法
US7056479B2 (en) Process for preparing carbon nanotubes
US7364709B2 (en) Manufacturing apparatus and method for carbon nanotube
US6884404B2 (en) Method of manufacturing carbon nanotubes and/or fullerenes, and manufacturing apparatus for the same
JP3969324B2 (ja) カーボンナノチューブの製造装置
Harbec et al. Carbon nanotubes from the dissociation of C2Cl4 using a dc thermal plasma torch
JP2000268741A (ja) 炭素原子クラスターイオン生成装置及び炭素原子クラスターイオンの生成方法
JP3885719B2 (ja) グラフェンシート筒の先端部の一部又は全部が破れているカーボンナノチューブの製造方法及び製造装置
JP4665113B2 (ja) 微粒子製造方法および微粒子製造装置
WO2004099072A1 (ja) 単層カーボンナノチューブの製造方法及び装置
JPH05201715A (ja) 金属内包炭素クラスター及びその製造方法
JP4657474B2 (ja) 炭素クラスターの製造用原料
Liao et al. Field emission of GaN-filled carbon nanotubes: high and stable emission current
Iordache et al. A new method to obtain C60 and higher fullerenes
Byszewski et al. Crystallization of carbon nanotubes in low temperature plasma
JP2009215121A (ja) フレーク状ナノ炭素複合体の製造方法
JP2003112912A (ja) 炭素クラスターの製造用原料

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040927

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071015

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees