JP3180319B2 - 被処理水の電気化学的処理方法 - Google Patents

被処理水の電気化学的処理方法

Info

Publication number
JP3180319B2
JP3180319B2 JP23225491A JP23225491A JP3180319B2 JP 3180319 B2 JP3180319 B2 JP 3180319B2 JP 23225491 A JP23225491 A JP 23225491A JP 23225491 A JP23225491 A JP 23225491A JP 3180319 B2 JP3180319 B2 JP 3180319B2
Authority
JP
Japan
Prior art keywords
water
treated
electrolytic cell
electrode
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23225491A
Other languages
English (en)
Other versions
JPH0686982A (ja
Inventor
伸隆 五嶋
美奈 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP23225491A priority Critical patent/JP3180319B2/ja
Publication of JPH0686982A publication Critical patent/JPH0686982A/ja
Application granted granted Critical
Publication of JP3180319B2 publication Critical patent/JP3180319B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、微生物を含有する被処
理水を電気化学的に処理することにより前記微生物の滅
菌等を行う際に電極面に付着するカルシウムやマグネシ
ウム等のアルカリ土類金属の水酸化物あるいは炭酸塩を
除去しながら前記被処理水の電気化学的処理を行う方法
に関し、より詳細には電解槽内の前記被処理水に通電し
て電気化学的処理を行うことにより該電解槽の陰極面上
に付着生成するカルシウムイオンやマグネシウムイオン
の水酸化物等を、電極等の損傷を生じさせることなく該
電極の極性を逆転させることによりつまり前記水酸化物
等の付着面を陽分極させることによりカルシウムイオン
及びマグネシウムイオンとして被処理水中に再溶解させ
て電極から除去しながら、前記被処理水の電気化学的処
理を行うための方法に関する。
【0002】
【従来技術】従来から各種用途に多種類の水溶液や他の
物質を溶解していない単独の水が使用されている。これ
らの水溶液等は溶質が適度な養分を提供し、あるいは該
水溶液の液温が繁殖に好ましい比較的高温度であると、
細菌等の微生物が繁殖して該微生物は前記水溶液等に必
要な本来の性能の劣化を起こしたり処理装置内に浮遊し
たり蓄積したりして処理装置の機能を損なうことが多
い。
【0003】例えば写真感光材料は画像露光の後、ペー
パー感光材料処理の場合は、発色現像、漂白定着、水洗
及び/又は安定化の処理工程を経て処理され次いで乾燥
される。そしてこのような写真処理工程においては、発
色現像液、漂白液、漂白定着液、定着液、安定液、水洗
水等の各種写真処理液が使用されているが、前記感光材
料はゼラチン質や各種無機塩類を含有し微生物繁殖に適
した環境を提供するため、前記写真処理液中に混入した
微生物が繁殖して感光材料処理の効率を低下させるとと
もに得られるプリントに色むらが生じたり黴発生等によ
り画像が汚染するという欠点が生じている。この微生物
繁殖による写真処理液の劣化の抑制は、従来から殺菌剤
や防黴剤の投入等により前記微生物を滅菌して性能を賦
活する方法が主流であるが、この方法では添加する防黴
剤が多量に必要となり、かつ該防黴剤が写真処理液や前
記感光材料中に残留し易くなり、感光材料に悪影響を及
ぼすことがある。又前記防黴剤の多くは人体に対して無
害とは言い難く、種々の法規制の下に管理された状態で
なければその使用が困難である。又このように選択した
防黴剤も暫くするとその防黴剤に対する抗菌が発生する
ことになり、再度この抗菌に対して防黴剤を選択すると
いう煩わしい問題が生ずる。
【0004】更に夏季スポーツとして最も一般的な水泳
の人気は衰えることなく、幅広い年齢層の人々に親しま
れており、水泳を楽しむために都市部ではプールが多く
利用されている。このプールに使用されるプール水には
人体に有害な大腸菌や細菌類等の微生物が数多く生息
し、該プール水は利用者の眼や傷などに直接接触して疾
患を生じさせることがあるため、プール水には次亜塩素
酸ソーダ等の薬剤を投入して事前に滅菌を行って疾患の
発生を防止している。しかしながら前記薬剤として滅菌
効果の強い次亜塩素酸や液体塩素等の塩素系試薬が使用
され、該塩素系試薬はそれ自体あるいは分解物が刺激性
を有し、該試薬により殺菌等の効果が生じても、該試薬
による眼の痛みや皮膚のかぶれ等の副作用が発生し、特
に抵抗力の弱い幼児の場合は大きな問題となっている。
又塩素系試薬は分解するため永続使用することができず
毎日のようにプール水に添加を続ける必要があり、かつ
プールに使用されるプール水の量は莫大なものであるた
め、使用する薬剤のコストも大きな負担となっている。
【0005】更に近年の情報化社会の進展により各種紙
類特に高質紙の需要が増大している。この紙類は製紙用
パルプから各種工程を経て製造されるが、この工程中に
製紙前のパルプを洗浄して不要な成分を洗い流す工程が
ある。該パルプは適度な温度に維持されかつ適度な養分
を含むため、黴や細菌等の微生物が繁殖し易くこの黴や
細菌が多量に最終製品中に残存すると、紙類の褪色等の
性能の劣化が生ずる。従ってこの洗浄工程で使用される
莫大な量の洗浄水中には、防黴剤や殺菌剤が含有され最
終製品の性能劣化を極力防止するようにしている。しか
しこの方法では、防黴剤や殺菌剤のコストが高くなるだ
けでなく前記防黴剤や殺菌剤が製品中に残存して黴や細
菌類に起因する性能劣化とは別の性能劣化を来すことが
あるという問題点がある。更に近年におけるマンション
等の集合住宅あるいは多数の企業が集合して形成される
ビル等の建築物の増加に伴い、該建築物等に設置される
各種冷暖房設備の設置台数も飛躍的に増加している。こ
のような多数の冷暖房設備が設置されているマンション
やビル等では、通常該冷暖房設備の冷却水の熱交換器用
設備例えばクーリングタワーがその屋上に設置されてい
る。この熱交換器設備の冷却水も長期間使用を継続する
と黴や細菌類等の微生物が繁殖し前記熱交換器の熱交換
面に析出して熱交換性能を悪化させたり、微生物が塊状
に発生して配管等を閉塞したり熱交換能力を低下させる
こともある。又多量に発生する微生物の排棄物により配
管や機器に腐食等の重大な問題を引き起こすことがあ
る。
【0006】更に近年の家庭用浴槽の普及や温泉ブーム
から浴場水の使用量が増大しているが、該浴場水は40℃
前後の微生物が最も繁殖し易い液温を有するため、入浴
に使用せずに単に放置しておくだけでも微生物が急速に
繁殖して汚染され、使用を継続できなくなり、入浴を繰
り返すと人体の垢等が浮遊してこの傾向はより顕著にな
る。繁殖した微生物は微小であるため濾過操作では除去
しにくく、特に銭湯などではその使用量が膨大であるた
め、汚染された浴場水の再生を簡単な処理操作で行うこ
とができれば大幅なコストダウンが可能になる。更に各
種魚類資源として海や川に繁殖している天然の魚類の他
に最近では養殖場における養殖魚類が注目され、養殖魚
が市場に数多く供給されている。養殖場におけるこれら
魚類の飼育の際には、養魚用水中に含まれる細菌や黴等
の微生物が魚類を汚染し、あるいは魚類に付着してその
商品価値を低下させる等の悪影響を抑制するために殺菌
剤や防黴剤等の全部又は大部分の微生物を死滅させるた
めの各種薬剤が前記養魚用水へ多量に添加され、更に前
記薬剤による魚類の損傷を最小限に抑えるためにビタミ
ン剤等の多量の栄養剤が魚類に投与され、その上に餌が
与えられる。従って養殖場等で飼育される魚類は餌の量
に比較して人工的に投与される各種薬剤、ビタミン剤の
添加が多く、防黴剤や殺菌剤が魚類の体内に蓄積して人
体に有害な各種薬剤で汚染された魚類が市場に供給され
ることになる。
【0007】更に飲料水は、貯水池等の水源に貯水され
た水を浄水場で滅菌処理した後、各家庭や飲食店等に上
水道を通して供給される。飲料水の前記滅菌は塩素ガス
による処理が一般的であるが、該塩素処理によると飲料
水の滅菌は比較的良好に行われる反面、残留塩素の影響
により処理された飲料水に異物質が混和したような違和
感が生じて天然の水の有するまろやかさが損なわれると
いう欠点が生ずる。飲料水は人間の健康に直結するもの
で、それに含有される細菌の殺菌や黴の繁殖の防止つま
り微生物の死滅除去は不可欠であり、該殺菌や防黴の方
法としては前述の塩素による方法が主流である。しかし
都市部の水道滅菌はその原水となる河川水、湖水等が各
種有機物等で汚染され微生物の死滅に必要な量以上の塩
素を添加するため、有機ハロゲン化物、次亜塩素酸イオ
ン及び残留塩素等の有効塩素成分を生起するという弊害
を生じている。該塩素法による前記欠点を解消するため
に、塩素法以外の殺菌方法が提案されている。例えば前
記飲料水をオゾン添加処理や活性炭吸着処理することに
より改質する方法が提案されているが、処理すべき飲料
水が例えば浄水場の水である場合には処理量が莫大であ
ると同時に残留するオゾンは人体にとって不快な臭気と
なる。又浄水場で処理しても水道管末端の蛇口に至るま
でに再度微生物が繁殖するという問題がある。
【0008】前述の各種被処理水中の微生物を除去する
ために被処理水を高表面積の三次元電極を収容した電解
槽に供給し該被処理水中の微生物を電解槽内の前記三次
元電極と接触させることにより死滅させて前記被処理水
の電気化学的処理を行う方法が提案されているが、被処
理水が水道水等のカルシウムイオンやマグネシウムイオ
ン等のアルカリ土類金属イオンを含有した水であると、
該イオンが前記電解槽内の三次元陰極表面にそれらの水
酸化物や炭酸塩として析出することが多い。この析出物
は多孔質三次元電極の陰極側の目詰まりを生じさせるこ
とがある。本出願人は、電極の陰分極する側に析出する
これらの水酸化物等を前記陰分極する側を陽分極させる
ことにより、つまり前記電極の極性を反転させながら前
記被処理水を電気化学的に処理することにより、析出し
た前記水酸化物等を再度対応するカルシウムイオンやマ
グネシウムイオン等として溶解させ、水酸化カルシウム
等の析出物を電極上に蓄積させることなく被処理水の処
理を行うための方法を提案した。
【0009】
【発明が解決しようとする問題点】しかし通常の電解槽
に通電を行うと該電解槽が一種のコンデンサーとして機
能し電気エネルギーが電解槽内に蓄積される。そして電
極の極性を反転させる際、つまり電流の方向を反転させ
る際に蓄えられた電気エネルギーが一度に過大な電流と
して電源部に流れ易い。この過大な電流は極性の反転時
ごとに流れて電極や直流電源の損傷を生じさせることが
ある。
【発明の目的】本発明は、微生物とアルカリ土類金属を
含有する被処理水の電気化学的処理を行う際に生ずるこ
とのある三次元電極の陰極側の目詰まりを他の電解槽部
材の損傷を生じさせることなく防止して、長期間に亘り
高い処理効率で被処理水の処理を行うことのできる方法
を提供することを目的とする。
【0010】
【問題点を解決するための手段】本発明は、微生物と、
アルカリ土類金属イオンを含有する被処理水を、固定床
型三次元電極を有する三次元電極式電解槽に供給し、前
記三次元電極の極性を反転変化させながら前記被処理水
を電気化学的に処理する方法において、極性反転時に電
流回路を開くことを特徴とする被処理水の電気化学的処
理方法である。以下本発明を詳細に説明する。本発明
は、熱交換器用冷却水や滅菌処理前の飲料水等のカルシ
ウムやマグネシウム等のアルカリ土類金属イオンと微生
物を含む被処理水を三次元電極式電解槽に供給し、該電
解槽に直流又は交流電圧を印加して前記被処理水を処理
して前記被処理水の滅菌処理を行う際に、前記三次元電
極の陰極側に析出する前記カルシウムやマグネシウムの
水酸化物あるいは炭酸塩を、前記三次元電極の極性を反
転させることにより除去し、陰極の目詰まりによる被処
理水の流通阻害等を生じさせることなく前記被処理水の
電気化学的処理を行い、かつ前記極性反転時に一時的に
電流の流れを遮断してつまり電解槽に蓄積された電気エ
ネルギーを放電させるために十分な時間通電を停止して
電極等の損傷に繋がり易い過大な電流を流すことなく前
記被処理水の処理を行うことを特徴とするものである。
本発明方法は実質的に処理を継続しながらかつ電極等を
損傷することなく電極表面からカルシウムやマグネシウ
ムの水酸化物あるいは炭酸塩を除去することが可能であ
るため非常に有効である。
【0011】例えば水道水にはカルシウムイオンやマグ
ネシウムイオンが含有され水道水の配管の内壁へのこれ
らのイオンの析出による配管の閉塞は大きな問題となっ
ているが、多くの場合水道水を水源として使用する熱交
換器用冷却水中にもカルシウムイオンやマグネシウムイ
オンが含有され、該イオンは熱交換器の熱交換面に付着
し易く付着すると冷却水と被冷却水間の熱交換効率を低
下させる。このように熱交換器の性能を低下させる熱交
換器用冷却水中のカルシウムイオン及びマグネシウムイ
オンは、該冷却水を電気化学的に処理すると三次元電極
式電解槽の三次元陰極上で還元されて水酸化マグネシウ
ムや炭酸カルシウム等として該陰極面上へ析出して冷却
水から除去され前記熱交換面に析出して熱交換効率を低
下させることがなくなる。そしてこの処理により生ずる
三次元電極の陰極側の目詰まりを該三次元電極の極性を
変えることにより、つまり電流の方向を反転させて、反
転前に陽極として機能していた側を陰極に、又反転前に
陰極として機能していた側を陽極に変化させかつ反転時
に一時的に電流を遮断つまり電解電流回路を開くことに
より、反転前の陰極表面に析出している水酸化物等をイ
オン状にして溶解させ電極面から除去するとともに前記
電流遮断時に電解槽に蓄積された電気エネルギーを放電
させて直流電源や電解槽の部材例えば電極の損傷を防止
しようとするものである。過大な電流が流れると例えば
過度の酸素発生が生じ三次元電極として炭素系材料電極
を使用している場合には該炭素系材料電極を構成する炭
素系材料の過度の溶出が生じ損傷が大きくなり易く、又
直流電源にも極性の異なる電気エネルギーが流れ込む
が、本発明方法による処理では前記直流電源の損傷や前
記電極の溶出等が防止できる。
【0012】前記被処理水を固定床型三次元電極電解槽
に供給すると、該被処理水中の微生物は液流動によって
前記電解槽の陽極や陰極あるいは後述する誘電体や固定
床形成用粒子等に接触しそれらの表面で強力な酸化還元
反応を受けたり高電位の電流に接触し、その活動が弱ま
ったり自身が死滅して滅菌が行われると考えられる。そ
して微生物の滅菌と同時に被処理水中の前記カルシウム
及びマグネシウムイオンが陰極に接触して水酸化物ある
いは炭酸塩として陰極表面に析出する。該析出は被処理
水中から該カルシウム及びマグネシウムイオンを除去す
るという効果を有する反面、前述の通り陰極側に目詰ま
りを生じさせ円滑な液流通を阻害するといった問題が生
ずる。そして前記固定床型三次元電極の極性を反転させ
ると、つまり電流の方向を逆にすると、前記水酸化物等
が析出した側が陽極となり該陽極面の有するpH=0の
効果により前記水酸化物等が再度イオンに解離されて被
処理水中に溶解して電極表面から除去される。
【0013】極性を反転させるタイミングつまり正方向
及び逆方向への通電の時間的割合は水酸化物等を溶解さ
せることができる範囲で適宜選択されるが、前記水酸化
物等は一回の極性反転で全てが再溶解する必要はなく、
又全ての水酸化物を再溶解させた後も極性反転を継続し
てもよく、極性反転の状態でも特別の支障なく被処理水
の滅菌処理が行われる。通常は極性を正方向とする通電
と極性を逆方向と(反転)する通電の時間的割合を1:
1から10:1の範囲で行うことが望ましく、同一方向の
通電は一般に10分から24時間程度とする。極性を反転直
後に電解槽から取り出される処理済の被処理水にはカル
シウムイオンやマグネシウムイオンが含有されている。
これらのイオンを含むことが望ましくない被処理水の場
合、例えば熱交換器用冷却水や飲料水の場合には極性反
転運転(逆方向)の時間をなるべく短くしたり、極性反
転時に取り出される被処理水は廃棄するようにすること
が望ましい。
【0014】該反転時の好ましい電流遮断(通電停止)
時間は、電解槽に蓄積される電気エネルギー量に応じ変
化するが、通常は1〜300 秒間電流を遮断つまり回路を
開けば十分である。本発明方法に使用する電解槽は固定
床式三次元電極電解槽とし、該三次元電極電解槽には、
複極式三次元電極電解槽及び単極式三次元電極電解槽が
含まれ、複極式三次元電極電解槽を使用することが好ま
しい。本発明による熱交換器用冷却水や飲料水等の被処
理水の処理では、処理される該被処理水が電極あるいは
後述する誘電体あるいは粒子等と接触する機会が多いほ
ど処理効率が上昇して効率良く微生物が滅菌されて被処
理水の処理が行われる。従って電極等の表面積が大きい
複極式固定床三次元電極電解槽を使用すると他の電解槽
を使用する場合よりも処理効率を上昇させることがで
き、これにより同一の処理効率を達成するために必要な
装置サイズを他の電解槽よりも小さくできる点で有利で
ある。
【0015】本発明の三次元電極電解槽における三次元
電極は、前記被処理水が透過可能な多孔質材料、例えば
粒状、球状、フェルト状、織布状、多孔質ブロック状、
多数の貫通孔を形成した中実体等の形状を有する活性
炭、グラファイト、炭素繊維等の炭素系材料から、ある
いは同形状を有するニッケル、銅、ステンレス、鉄、チ
タン等の金属材料、更にそれら金属材料に貴金属のコー
ティングを施した材料から形成された複数個の誘電体か
ら成ることが好ましく、該三次元電極は直流電場内に置
かれ、両端に設置した平板状又はエキスパンドメッシュ
状やパーフォレーティッドプレート状等の多孔板体から
成る給電用陽陰極間に直流電圧を印加して前記誘電体を
分極させ該誘電体の一端及び他端にそれぞれ正及び負の
電荷が形成されて分極する。この他に給電用陽極及び陰
極とは別個に、単独で陽極としてあるいは陰極として機
能する三次元材料を交互に短絡しないように設置しかつ
電気的に接続して複極型固定床式電解槽とすることがで
きる。なお前述の多数の貫通孔を形成した中実体を三次
元電極として使用する場合には、流通する冷却水の移動
を妨害しないようにその開口率を10%以上95%以下好ま
しくは20%以上80%以下とし、貫通孔の開孔径は被処理
水が透過できる程度の孔径の微細孔とすることが好まし
い。単極式三次元電極電解槽の場合には、陽極及び陰極
の少なくとも一方を前記三次元電極により構成し、他方
は板状あるいは棒状の電極としてもよい。
【0016】前記誘電体として活性炭、グラファイト、
炭素繊維等の炭素系材料を使用しかつ陽極から酸素ガス
を発生させながら被処理水を処理する場合には、前記誘
電体が酸素ガスにより酸化され炭酸ガスとして溶解し易
くなる。これを防止するためには前記誘電体の陽分極す
る側にチタン等の基材上に酸化イリジウム、酸化ルテニ
ウム等の白金族金属酸化物を被覆し通常不溶性金属電極
として使用される多孔質金属材料を接触状態で設置し、
酸素発生が主として該多孔質材料上で生ずるようにすれ
ばよい。そしてこの場合には極性反転はなるべく短時間
に抑えることが望ましい。この金属材料を使用すると炭
素系材料電極の溶出をかなり抑制することができるが依
然として溶出が生じるため、本発明方法により極性反転
時に瞬時的に生ずる過大電流の発生を防止することが望
ましい。前記誘電体又は給電用陽陰極以外の陽極及び陰
極を接近させて電圧の低下を意図する際には、短絡防止
のため電気絶縁性のスペーサとして例えば有機高分子材
料で作製した網状スペーサ等を挿入することが好まし
い。処理すべき被処理水が流れる電解槽内に該被処理水
が前記誘電体や陽極又は陰極にに接触せずに流通できる
比較的大きな空隙があると被処理水の処理効率が低下す
るため、前記誘電体等は電解槽内の被処理水の流れがシ
ョートパスしないように配置することが望ましい。
【0017】本発明では前記したカルシウムイオン等が
対応する水酸化物あるいは炭酸塩として陰極面上に固定
されるためには十分な量の電流量が供給されれば陽陰極
間に印加される直流電圧の値は特に限定されず、又再度
水酸化物等からのイオン解離で生ずるカルシウムイオン
等の量が僅少であるので電極表面に僅かに電位が生じて
いれば処理は行われる。従って本発明方法は電流が流れ
電極表面でガス発生が生ずる電解処理でも、又電流が流
れず電極表面でガス発生が生じない処理のいずれでもよ
いが、本発明方法を実施する際には、実際に効率良く処
理が行われていることを確認するため電流を流し、僅か
のガスを発生させながら電解処理することが望ましい。
つまり本発明においては、印加電位を陽極電位が実質的
な酸素発生を伴わない+0.2 〜+1.2 V(vs.SCE)、陰極
電位が実質的に水素発生を伴わない0〜−1.0 V(vs.SC
E)となるようにすることが望ましいが、ガス発生がさほ
ど問題にならない場合は陽極電位を+2.0 V(vs.SHE)よ
り卑な電位とし、陰極電位が−2.0 V(vs.SHE)より貴な
電位とすることもできる。このような構成から成る三次
元電極電解槽は、処理すべき被処理水の種類に応じて該
被処理水の処理が必要な箇所に近接させて設置し、例え
ば熱交換器用冷却水の場合には、ビルやマンションの屋
上等に設置された熱交換器に近接して設置し、熱交換器
内の冷却水の一部を循環させて前記電解槽でカルシウム
イオン等による電極の目詰まりを防止しながらカルシウ
ムイオン等の除去を行った後に前記熱交換器に戻すよう
にして使用することができる。
【0018】又本発明の電解槽では該電解槽に漏洩電流
が生じ該漏洩電流が電解槽から処理すべき被処理水を通
して他の金属製部材例えば熱交換器に流れ込み、該部材
に溶出等の電気化学的な腐食を生じさせることがある。
そのため電解槽内の給電用陽陰極が相対しない該電極背
面部及び/又は前記電解槽の出入口配管内に、被処理水
より導電性の高い部材をその一端を接地可能なように設
置して前記漏洩電流を遮断することができる。又熱交換
器用冷却水等には配管内を流れる間に固形の不純物が混
入することがあり、上記した電気化学的処理の他に該不
純物を除去するために熱交換器の前後好ましくは前にフ
ィルターを設置することが望ましい。
【0019】次に添付図面に基づいて本発明方法に使用
できる電解槽の好ましい例を説明するが、本発明方法に
使用できる電解槽は、これらの電解槽に限定されるもの
ではない。図1は、本発明方法の電解槽として使用可能
な単極型固定床式電解槽の第1の例を示す概略縦断面
図、図2は電極の極性を反転させた状態の図1に示す電
解槽の概略縦断面図である。底板中央に被処理水供給口
1を、又天板中央に被処理水取出口2をそれぞれ有する
円筒状の電解槽本体3内の下部には、炭素質材料や金属
焼結体等から形成される短寸円柱形の多孔質固定床型陽
極4が前記本体3の内壁と僅かな間隙を形成するように
収容され、該陽極4上には若干の間隙を介して例えばメ
ッシュ状の白金族金属酸化物被覆チタン材から成る陰極
5が収容されている。前記電解槽本体3は、長期間の使
用又は再度の使用にも耐え得る電気絶縁材料で形成する
ことが好ましく、特に合成樹脂であるポリエピクロルヒ
ドリン、ポリビニルメタクリレート、ポリエチレン、ポ
リプロピレン、ポリ塩化ビニル、ポリ塩化エチレン、フ
ェノール−ホルムアルデヒド樹脂等が好ましく使用でき
る。
【0020】このような構成から成る電解槽本体3は例
えば水道配管の途中や水道の蛇口に設置され、該本体3
にその被処理水供給口1から、微生物とカルシウムイオ
ンやマグネシウムイオン等を含有する飲料水や熱交換器
用冷却水等の被処理水を供給すると、該被処理水はまず
前記多孔質陽極4の下面に接触し、更に該陽極4内を透
過しその間に十分に微生物の滅菌が行われ、更に陰極5
に接触してカルシウムイオンやマグネシウムイオンがそ
れらの水酸化物、酸化物あるいは炭酸塩として該陰極5
上に析出した後、前記被処理水取出口2から槽外へ取り
出される。なお本電解槽では液流が上向きであるため、
電解反応によって微量発生する水素ガスや酸素ガスが容
易に液流とともに電解槽外へ排出される。
【0021】そして陰極5上への水酸化物等の析出量が
増大して目詰まりが生じた場合には、一旦通電を停止し
て電解槽内に蓄積された電気エネルギーを放電させた
後、極性を逆にしてつまり通電方向を逆にして、図2に
示すように図1で陽極として作用した下側の電極を陰極
4′とし、又図1で陰極として作用した上側の電極を陽
極4′として処理を継続する。これにより蓄積された電
気エネルギーに起因する過大な電流が流れることなく、
図1の陰極5表面に析出したカルシウムやマグネシウム
の水酸化物等が図2の状態の通電により被処理水中にイ
オンとして溶解し、電極表面から除去される。この極性
反転時に取り出される被処理水中にはカルシウムイオン
やマグネシウムイオンが含有され、該イオンが含まれる
と好ましくない用途、例えば熱交換器用冷却水や飲料水
として被処理水を使用する場合には、例えば前記通電の
反転と連動させて前記被処理水取出口2に設置したコッ
ク(図示略)を作動させて該被処理水を廃棄等すればよ
い。
【0022】図3は、本発明方法の電解槽として使用可
能な単極型固定床式電解槽の第2の例を示す概略縦断面
図、図4は電極の極性を反転させた状態の図3に示す電
解槽の概略縦断面図である。上面が開口する円筒箱型の
電解槽本体11の内部中央には棒状の陰極12が設置され、
かつ該陰極12の周囲には間隙を介してドーナツ状の多孔
質陽極13が、前記本体11の内下面とOリング14を介して
接触するように収容されている。前記本体11の側面上外
端部には螺部15が形成され、該螺部15には周縁部が下向
きに折曲された円板状蓋体16の前記折曲部内面に形成さ
れた螺部が螺合されかつ前記本体11の側面上部及び蓋体
16内面間に配設されたOリング17により密封状態を形成
している。前記蓋体16の上面中央には被処理水取出口18
が又該蓋体16の該取出口18のやや円周側には被処理水供
給口19が設置され、該蓋体16下面と前記陰極13上面間に
はOリング20が配設されている。
【0023】このような構成から成る電解槽本体11にそ
の被処理水供給口19から、飲料水等の被処理水を供給す
ると、該被処理水は前記多孔質陽極13の周囲から該陽極
13を透過して滅菌等の処理が行われた後、該ドーナツ状
陽極13の内部に達し、更に陰極12に接触して該陰極12表
面にカルシウムやマグネシウムの水酸化物等を析出させ
た後、陽極13と陰極12の間の空間を上昇して前記被処理
水取出口18から槽外に取り出される。この構造の電解槽
では目詰まりが生じても被処理水の流通には殆ど影響が
ないが、一定量以上の析出物が生じた際に一旦通電を停
止した後電極の極性を逆にすると、図4に示すように図
3で陽極として作用した外側の電極が陰極13′となり、
又図3で陰極として作用した内側の電極が陽極12′とな
り処理を継続することができる。これにより図3の陰極
12表面に析出したカルシウムやマグネシウムの水酸化物
等が図4の状態の通電により被処理水中にイオンとして
溶解し、電極表面から除去される。
【0024】図5は、本発明方法の電解槽として使用可
能な固定床型複極式電解槽の一例を示す概略縦断面図、
図6は電極の極性を反転させた状態の図5に示す電解槽
の概略縦断面図である。上下にフランジ21を有する円筒
形の電解槽本体22の内部上端近傍及び下端近傍にはそれ
ぞれメッシュ状の給電用陽極23と給電用陰極24が設けら
れている。該両給電用電極23、24間には複数個の図示の
例では3個のスポンジ状の固定床25が積層され、かつ該
固定床25間及び該固定床25と前記両給電用電極23、24間
に4枚のメッシュ状隔膜又はスペーサー26が挟持されて
いる。各固定床25は電解槽本体22の内壁に密着し固定床
25の内部を通過せず、固定床25と電解槽本体22の側壁と
の間を流れる被処理水の漏洩流がなるべく少なくなるよ
うに配置されている。
【0025】このような構成から成る電解槽に下方から
矢印で示すように被処理水を供給しながら通電を行う
と、前記各固定床25が図示の如く下面が正に上面が負に
分極して各固定床25の下面及び上面にそれぞれ多孔質陽
極及び多孔質陰極が形成され、前記被処理水はこの多孔
質陽極に接触して滅菌が行われ更に多孔質陰極に接触し
て被処理水中のカルシウムイオンやマグネシウムイオン
がそれぞれの水酸化物等として前記多孔質陰極表面に析
出する。そして上側の多孔質陰極上への水酸化物等の析
出量が増大して目詰まりが生ずると被処理水の流通が阻
害される。このとき一旦通電を停止した後図6に示すよ
うに極性を逆にしてつまり図5で給電用陽極として機能
した電極を給電用陰極23′とし、かつ図5で給電用陰極
として機能した電極を給電用陽極24′とすると、前記固
定床25の分極が上下反転して前記水酸化物等が析出した
上側が陽分極して前記水酸化物等の溶解が促進されて目
詰まりが解消し、所定時間経過後、再度極性を反転させ
て通常運転に戻すことにより処理を継続することができ
る。
【0026】次に本発明方法により被処理水の電気化学
的処理の実施例を例示するが、該実施例は本発明を限定
するものではない。
【実施例1】透明な硬質ポリ塩化ビニル樹脂製の高さ50
mm、内径50mmの図5に示した電解槽を使用して試験
用被処理水の処理を行った。該電解槽内には、炭素繊維
から成る開孔率60%で直径49mm、厚さ10mmの固定床
3個(平均重量10.3g/個)を収容した。これらの固定
床を、開孔率85%で直径50mm、厚さ1mmのポリエチ
レン樹脂製スペーサ4枚で挟み込んだ。なお図5に示し
た補助電極は使用しなかった。水道水に細菌を添加して
細菌数を750 個/ミリリットルになるように調製し、か
つ塩化カルシウム及び塩化マグネシウムを溶解してカル
シウムイオン濃度及びマグネシウムイオン濃度がそれぞ
れ50mg/リットル及び30mg/リットルとした試験用
被処理水を準備した。この被処理水の供給量を2.5 リッ
トル/分に、初期電圧値を20.0Vに、電流値を60mAに
それぞれ固定し、50分間は図5の状態で通電し、次の9
分40秒間は図6のように極性を反転させ、かつ反転時に
それぞれ10秒間ずつ通電を停止しながら計5日間、前記
電解条件下で被処理水の循環処理を行い、表1の時間が
経過した時点で通電を停止し、その時点における循環被
処理水中の細菌数及び3個の固定床の平均重量を測定し
た。その結果を表1に示した。
【0027】
【比較例1】実施例1における図6の状態での通電時間
を10分間とし、通電停止時間を設けなかったこと以外は
実施例1と同様にして被処理水の処理を行い、循環被処
理水中の細菌数及び3個の固定床の平均重量を測定し
た。その結果を表1に示した。又本比較試験の過程で直
流電源の過電流防止保護回路が動作して電源が度々遮断
された。
【0028】
【表1】
【0029】
【実施例2】実施例1で使用した電解槽及び電解条件を
用いて電解電流の反転前に電流回路を開いて電解槽内の
電気エネルギーを放電させ、その後反転させる操作にお
ける電流回路を開く時間の長短の電気エネルギー放電へ
の影響を検討した。実施例1における正方向及び逆方向
の運転時間を一定にしたまま電流回路を開く時間を5秒
から360 秒まで変化させて所定時間経過後の陽陰極端子
間電圧を測定し、その結果を表2に纏めた。表7から電
流回路を開く時間は1秒以上、好ましくは30秒以上、更
に好ましくは300 秒以上であることが判る。しかし実際
に直流電源に若干でも影響を与える時間は0〜60秒であ
った。
【0030】
【表2】
【0031】
【発明の効果】本発明は、微生物と、アルカリ土類金属
イオンを含有する被処理水を、固定床型三次元電極を有
する三次元電極式電解槽に供給し、前記三次元電極の極
性を反転変化させながら前記被処理水を電気化学的に処
理する方法において、極性反転時に電流回路を開くこと
を特徴とする被処理水の電気化学的処理方法である(請
求項1)。水道水に含まれるカルシウムイオンやマグネ
シウムイオン等の配管の内壁への水酸化物、酸化物ある
いは炭酸塩としての析出による配管の閉塞は大きな問題
となっているが、本発明方法によると微生物の他に前記
カルシウムイオンを含有する被処理水を莫大な表面積を
有する分極した三次元電極式電解槽に供給すると、該電
解槽の三次元電極に接触することにより微生物の滅菌が
行われ、更に前記イオンは分極した三次元電極上で還元
されて水酸化カルウシムや酸化カルシウムあるいは炭酸
カルシウムとして該陰極面上へ析出して被処理水から除
去される。
【0032】該析出物量の増加により電極の目詰まり等
の不都合が生ずることがあるが、電極の極性を逆にする
ことによりそして該極性逆転時に一時的に通電を停止す
ることにより陰極上に析出した水酸化物等は被処理水中
に再溶解して電極表面から除去され、電流反転時に生じ
電極等の損傷を招き易い過大電流を生じさせることなく
前記水酸化物等の析出による不都合を回避することがで
きる。しかも電極の極性反転及び通電停止は電気化学的
処理を実質的に停止することなく行うこともできるた
め、処理効率を低下させることなく前記析出物の除去を
行うことができ、長期間安定した操業を可能にする。本
発明方法では前述の通り莫大な表面積を有する三次元電
極を使用するためカルシウムやマグネシウムの水酸化物
等の蓄積を抑制しつつ卓越した効率でかつ電解槽に被処
理水を供給するという比較的簡単な操作で、被処理水の
滅菌等の処理と前記カルシウムイオン及びマグネシウム
イオンの除去を行うことができる。
【0033】本発明方法における、同一方向の通電時間
は特に限定されないが通常10分〜24時間とすることが望
ましく、極性反転時の好ましい電流遮断時間は通電時に
蓄積される電気エネルギー量により変化し、前記蓄積電
気エネルギーをほぼ放電させることのできる時間つまり
1〜300 秒程度とする(請求項2)。更に本発明方法で
は三次元電極として毒性がなく安価である炭素系材料電
極を使用することができるが(請求項3)、該炭素系材
料電極は過大な電流により損傷を受け易いため本発明に
よる処理方法において好ましく使用できる。
【図面の簡単な説明】
【図1】本発明方法の電解槽として使用可能な単極型固
定床式電解槽の第1の例を示す概略縦断面図
【図2】電極の極性を反転した状態の図1に示す電解槽
の概略縦断面図
【図3】本発明方法の電解槽として使用可能な単極型固
定床式電解槽の第2の例を示す概略縦断面図
【図4】電極の極性を反転した状態の図3に示す電解槽
の概略縦断面図
【図5】本発明方法の電解槽として使用可能な固定床型
複極式電解槽の一例を示す概略縦断面図
【図6】電極の極性を反転した状態の図5に示す電解槽
の概略縦断面図
【符号の説明】
1・・被処理水供給口 2・・被処理水取出口 3・・
・電解槽本体 4・・多孔質陽極 4′・・・多孔質陰
極.5・・・陰極 5′・・・陽極 11・・・電解槽本
体 12・・・陰極 12′・・・陽極 13・・・多孔質陽
極 13′・・・多孔質陰極 18・・被処理水取出口 19
・・被処理水供給口 22・・・電解槽本体 23・・・給
電用陽極 23′、24・・・給電用陰極 24′・・・給電
用陽極 25・・・固定床
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C02F 1/46 C25B 15/02

Claims (3)

    (57)【特許請求の範囲】
  1. 【請求項1】 微生物と、アルカリ土類金属イオンを含
    有する被処理水を、固定床型三次元電極を有する三次元
    電極式電解槽に供給し、前記三次元電極の極性を反転変
    化させながら前記被処理水を電気化学的に処理する方法
    において、極性反転時に電流回路を開く時間が、1〜30
    0秒であることを特徴とする被処理水の電気化学的処理
    方法。
  2. 【請求項2】 同一方向の通電時間が10分〜24時間であ
    る請求項1に記載の方法。
  3. 【請求項3】 三次元電極が炭素系材料電極である請求
    項1又は2に記載の方法。
JP23225491A 1991-08-19 1991-08-19 被処理水の電気化学的処理方法 Expired - Fee Related JP3180319B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23225491A JP3180319B2 (ja) 1991-08-19 1991-08-19 被処理水の電気化学的処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23225491A JP3180319B2 (ja) 1991-08-19 1991-08-19 被処理水の電気化学的処理方法

Publications (2)

Publication Number Publication Date
JPH0686982A JPH0686982A (ja) 1994-03-29
JP3180319B2 true JP3180319B2 (ja) 2001-06-25

Family

ID=16936394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23225491A Expired - Fee Related JP3180319B2 (ja) 1991-08-19 1991-08-19 被処理水の電気化学的処理方法

Country Status (1)

Country Link
JP (1) JP3180319B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011162838A (ja) * 2010-02-09 2011-08-25 Mitsubishi Electric Corp 活性酸素種生成装置
CN110156146B (zh) * 2019-04-25 2021-09-07 青岛理工大学 一种同时去除水中硝酸氮和微量有机物的生物膜电化学反应器
CN115583695A (zh) * 2022-10-28 2023-01-10 北京石油化工学院 一种防短路的三维电Fenton反应器

Also Published As

Publication number Publication date
JPH0686982A (ja) 1994-03-29

Similar Documents

Publication Publication Date Title
JP3206819B2 (ja) 被処理水の電気化学的処理方法
JP3180319B2 (ja) 被処理水の電気化学的処理方法
JPH08164390A (ja) 被処理水の電気化学的処理方法
JPH11114571A (ja) 電気化学的水処理装置及び方法
JP3020553B2 (ja) 固定床型三次元電極式電解槽
JP2922255B2 (ja) 微生物を含む被処理水の電気化学的処理方法
JPH09253652A (ja) 流動床型電解槽および水処理方法
JPH04118090A (ja) 被処理水の電解処理方法
JP3178728B2 (ja) 三次元電極式電解槽
JP3150355B2 (ja) 複極型三次元電極式電解槽
JP2971571B2 (ja) 三次元電極式電解槽
JP3056523B2 (ja) 微生物を含む被処理水の電気化学的処理方法
JPH11128942A (ja) 水質浄化方法及びその機構
JPH0416280A (ja) 微生物を含む被処理水の電気化学的処理方法
JPH0671268A (ja) 被処理水の電気化学的処理方法
JPH1087381A (ja) 多孔性炭素質電極の処理方法、炭素質固定床型三次元電極電解槽及び水処理方法
JPH09314149A (ja) 固定床型三次元電極電解槽用ガスケット、固定床型三次元電極電解槽および水処理方法
JPH0416282A (ja) 微生物を含む被処理水の電気化学的処理方法
JPH10128334A (ja) 水処理装置及び方法とそれに用いる複極式固定床型電極電解槽とアース電極の設置方法
JPH10165940A (ja) 複極式固定床型三次元電極電解槽とそれを用いる水処理方法並びに水処理装置及び浄水器
JPH11197669A (ja) 電気化学的水処理用装置
JPH11114572A (ja) 電気化学的水処理方法
JPH09206756A (ja) 炭素質固定床型三次元電極電解槽および水処理方法
JPH09253653A (ja) 円筒型電解槽および水処理方法
JP3664274B2 (ja) 被処理水の電解処理方法

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080420

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090420

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees