JP3020553B2 - 固定床型三次元電極式電解槽 - Google Patents

固定床型三次元電極式電解槽

Info

Publication number
JP3020553B2
JP3020553B2 JP2121875A JP12187590A JP3020553B2 JP 3020553 B2 JP3020553 B2 JP 3020553B2 JP 2121875 A JP2121875 A JP 2121875A JP 12187590 A JP12187590 A JP 12187590A JP 3020553 B2 JP3020553 B2 JP 3020553B2
Authority
JP
Japan
Prior art keywords
water
electrolytic cell
dimensional electrode
carbonaceous
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2121875A
Other languages
English (en)
Other versions
JPH0418980A (ja
Inventor
伸隆 五嶋
剛 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2121875A priority Critical patent/JP3020553B2/ja
Publication of JPH0418980A publication Critical patent/JPH0418980A/ja
Application granted granted Critical
Publication of JP3020553B2 publication Critical patent/JP3020553B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、微生物を含有する各種被処理水の該微生物
に起因する各種性能劣化を抑制するためにあるいは銀イ
オンを含有する写真処理液等の被処理水から銀を回収す
るため等各種用途のために前記被処理水を電気化学的に
又は電解的に処理するための電解槽に関し、より詳細に
は発色現像処理、漂白処理、漂白定着処理、定着処理、
安定化処理及び水洗処理等の写真感光材料処理工程にお
いて使用される写真処理液、あるいはプール水、製紙洗
浄水、熱交換器冷却水、飲料水、養魚用水及び浴場水等
の微生物を含有する各種被処理水を固定床型三次元電極
電解槽を使用して電解処理することにより前記各被処理
水中の微生物の滅菌等の処理を効率良く行うための固定
床型三次元電極式電解槽に関する。
(従来技術) 従来から各種用途に多種類の水溶液や他の物質を溶解
していない単独の水が使用されている。これらの水溶液
等は溶質が適度な養分を提供し、あるいは該水溶液の液
温が繁殖に好ましい比較的高温度であると、細菌等の微
生物が繁殖して該微生物は前記水溶液等の性能劣化を起
こしたり処理装置内に浮遊したり蓄積して処理装置の機
能を損なうことが多い。
例えば写真感光材料は画像露光の後、ペーパー感光材
料処理の場合は、発色現像、漂白定着、水洗及び/又は
安定化の処理工程を経て処理され次いで乾燥される。そ
してこのような写真処理工程においては、発色現像液、
漂白液、漂白定着液、定着液、安定液、水洗水等の各種
写真処理液が使用されているが、前記感光材料はゼラチ
ン質を含有し微生物繁殖に適した環境を提供するため、
前記写真処理液中に混入した微生物が繁殖して感光材料
処理の効率を低下させるとともに得られるプリントに色
むらが生じたり黴発生等により画像が汚染するという欠
点が生じている。この微生物繁殖による写真処理液の劣
化の抑制は、従来から防黴剤の投入等により前記微生物
を滅菌して性能を賦活する方法が主流であるが、この方
法では添加する防黴剤が多量に必要となり、かつ該防黴
剤が写真処理液や前記感光材料中に残留し易くなり、感
光材料に悪影響を及ぼすことがある。又前記防黴剤の多
くは人体に対して無害とは言い難く、種々の法規制の下
に管理された状態でなければその使用が困難である。又
このように選択した防黴剤も暫くするとその防黴剤に対
する抗菌が発生することになり、再度この抗菌に対して
防黴剤を選択するという煩わしい問題が生ずる。
更に夏季スポーツとして最も一般的な水泳の人気は衰
えることなく、幅広い年齢層の人々に親しまれており、
水泳を楽しむために都市部ではプールが多く利用されて
いる。
このプールに使用されるプール水には人体に有害な細
菌類等の微生物が数多く生息し、該プール水は利用者の
眼や傷などに直接接触して疾患を生じさせることがある
ため、プール水には次亜塩素酸ソーダ等の薬剤を投入し
て事前に滅菌を行って疾患の発生を防止している。しか
しながら前記薬剤として滅菌効果の強い次亜塩素酸や液
体塩素等の塩素系試薬が使用され、該塩素系試薬はそれ
自体あるいは分解物が刺激性を有し、該試薬により殺菌
等の効果が生じても、該試薬による眼の痛みや皮膚のか
ぶれ等の副作用が発生し、特に抵抗力の弱い幼児の場合
は大きな問題となっている。又塩素系試薬は分解するた
め永続使用することか出来ず毎日のようにプール水に添
加を続ける必要があり、かつプールに使用されるプール
水の量は莫大なものであるため、使用する薬剤のコスト
も大きな負担となっている。
更に近年の情報化社会の進展により各種紙類特に高質
紙の需要が増大している。この紙類は製紙用パルプから
各種工程を経て製造されるが、この工程中に製紙前のパ
ルプを洗浄して不要な成分を洗い流す工程がある。該パ
ルプは適度な温度に維持されかつ適度な養分を含むた
め、黴や細菌等の微生物が繁殖し易くこの黴や細菌が多
量に最終製品中に残存すると、紙類の褪色等の性能の劣
化が生ずる。従ってこの洗浄工程で使用される莫大な量
の洗浄水中には、防黴剤や殺菌剤が含有され最終製品の
性能劣化を極力防止するようにしている。しかしこの方
法では、防黴剤や殺菌剤のコストが高くなるだけでなく
前記防黴剤や殺菌剤が製品中に残存して黴や細菌類に起
因する性能劣化とは別の性能劣化を来すことがあるとい
う問題点がある。
更に近年におけるマンション等の集合住宅あるいは多
数の企業が集合して形成されるビル等の建築物の増加に
伴い、該建築物等に設置される各種冷暖房設備の設置台
数も飛躍的に増加している。このような多数の冷暖房設
備が設置されているマンションやビル等では、通常該冷
暖房設備の冷却水の熱交換器用設備例えばクーリングタ
ワーがその屋上に設置されている。この熱交換器設備の
冷却水も長期間使用を継続すると黴や細菌類等の微生物
が繁殖し前記熱交換器の熱交換面に析出して熱交換性能
を悪化させたり、微生物が塊状に発生して配管等を閉塞
することもある。又多量に発生する微生物の排棄物によ
り配管や機器に腐食等の重大な問題を引き起こすことが
ある。
更に近年の家庭用浴槽の普及や温泉ブームから浴場水
の使用量が増大しているが、該浴場水は40℃前後の微生
物が最も繁殖し易い液温を有するため、入浴に使用せず
に単に放置しておくだけでも微生物が急速に繁殖して汚
染され、使用を継続出来なくなり、入浴を繰り返すと人
体の垢等が浮遊してこの傾向はより顕著になる。繁殖し
た微生物は微小であるため濾過操作では除去しにくく、
特に銭湯などではその使用量が膨大であるため、汚染さ
れた浴場水の再生を簡単な処理操作で行うことが出来れ
ば大幅なコストダウンが可能になる。
更に各種魚類資源として海や川に繁殖している天然の
魚類の他に最近では養殖場における養殖魚類が注目さ
れ、養殖魚が市場に数多く供給されている。養殖場にお
けるこれら魚類の飼育の際には、養魚用水中に含まれる
細菌や黴等の微生物が魚類を汚染し、あるいは魚類に付
着してその商品価値を低下させる等の悪影響を抑制する
ために殺菌剤や防黴剤等の全部又は大部分の微生物を死
滅させるための各種薬剤が前記養魚用水へ多量に添加さ
れ、更に前記薬剤による魚類の損傷を最小限に抑えるた
めにビタミン剤等の多量の栄養剤が魚類に投与され、そ
の上に餌が与えられる。従って養殖場等で飼育される魚
類は餌の量に比較して人工的に投与される各種薬剤、ビ
タミン剤の添加が多く、防黴剤や殺菌剤が魚類の体内に
蓄積して人体に有害な各種薬剤で汚染された魚類が市場
に供給されることになる。
又養魚用水中には通常の水と同様に約10ppm程度の溶
存酸素が存在し、魚類はこの酸素を摂取して成長してい
く。
更に飲料水は、貯水池等の水源に貯水された水を浄水
場で滅菌処理した後、各家庭や飲食店等に上水道を通し
て供給される。飲料水の前記滅菌は塩素ガスによる処理
が一般的であるが、該塩素処理によると飲料水の滅菌は
比較的良好に行われる反面、残留塩素の影響により処理
された飲料水に異物質が混和したような違和感が生じて
天然の水の有するまろやかさが損なわれるという欠点が
生ずる。
飲料水は人間の健康に直結するもので、それに含有さ
れる細菌の滅菌や黴の繁殖の防止つまり微生物の大部分
又は全部を死滅させることが不可欠であり、該滅菌等の
方法としては前述の塩素による方法が主流であるが、該
塩素法による前記欠点を解消するために塩素法以外の滅
菌方法が提案されている。
例えば前記飲料水をオゾン添加処理しあるいは活性炭
吸着処理して改質する方法が提案されているが、処理す
べき飲料水が例えば浄水場の水である場合には処理量が
莫大となる欠点がある。又浄水場で処理しても末端の蛇
口に至るまでに再度微生物が繁殖するという問題があ
り、今のところ塩素処理に優る方法はない。しかし都市
部の水道水滅菌では、その原水となる河川水や湖水等が
各種有機物等で汚染されているため、微生物の滅菌に必
要な量以上の塩素を添加することになり、有機ハロゲン
化物等を生成させるという弊害が生じている。
これらの現象を防止するために従来は防黴剤や沈澱抑
制剤等の各種薬剤を被処理水中に投入したり各種フィル
タを配管途中に設置したりしているが、前記薬剤投入は
前述の通り薬剤の残留による被処理水への悪影響や薬剤
使用のコスト面での問題点が指摘されている。更に添加
薬剤に対する抗菌が暫くすると発生し、次の薬剤を検討
する必要が生ずるという問題点を抱えている。
前述した通り、殺菌剤や防黴剤等の薬剤投入による写
真処理液、プール水、製紙洗浄水、熱交換器冷却水、飲
料水、養魚場水及び浴場水等の滅菌処理では薬剤の残存
の問題が不可避で該残存薬剤により微生物がもたらす以
外の不都合が生ずることがあり、かつ使用する薬剤も高
価なものであることが多く特に大量処理の必要があるプ
ール水、製紙洗浄水及び浴場水等では経済的観点からも
しても、より簡便かつ安価に微生物を含有する被処理水
の滅菌処理を可能にする方法の出現が望まれている。
(発明が解決しようとする問題点) 本出願人は、前述の欠点を解消し、薬剤を使用するこ
となく被処理水中の微生物を固定床型三次元電極電解槽
を使用して電気化学的に滅菌するための方法を提案した
(特願平1−326846号)。この方法に使用する電解槽に
は、安価な炭素質三次元電極を使用することが望ましい
が、該炭素質三次元電極はその電解条件により電流効率
や電解電圧に大きな影響を及ぼすことが判った。
(発明の目的) 本発明は、炭素質三次元電極を使用して被処理水に通
電して該被処理水の処理を行う際の電流効率及び電解電
圧を最適値に維持するために炭素質三次元電極の開孔径
を種々検討して本発明に到達したものである。従って本
発明は最適な電解結果を生じさせることの出来る開孔径
の炭素質三次元電極を設置した固定床型三次元電極式電
解槽を提供することを目的とする。
(問題点を解決するための手段) 本発明は、炭素質三次元電極を分極させ、該炭素質三
次元電極に微生物を含有する被処理水を接触させて該被
処理水の処理を行う電解槽において、前記炭素質三次元
電極の平均開孔径が25〜125μmであることを特徴とす
る固定床型三次元電極式電解槽である。なお本電解槽で
は電極表面で実質的な酸化還元反応のような電気化学反
応を生起していないことがあるので本発明装置は電気化
学的処理装置というべきであるが、一般呼称に従って電
解槽と称する。
以下本発明を詳細に説明する。
本発明は、写真処理液等の各種被処理水の処理に使用
される炭素質三次元電極を有する固定床型三次元電極電
解槽の前記炭素質三次元電極の開孔径を特定することに
より電流効率や電解電圧等の電解条件を最適化したこと
を特徴とする電解槽であり、特に微生物を含有する被処
理水の滅菌処理用に好適に使用出来る電解槽である。
前記被処理水のうち写真処理液は適度の塩類、ゼラチ
ン等の栄養源を有しかつ適度な温度に維持されるので、
前記写真処理液中で黴や細菌等が繁殖し易く、また製紙
洗浄水も同様に適度の養分と適度の温度を有して微生物
の繁殖に最適な環境となっている。更に家庭用浴槽や銭
湯で使用される浴場水は最も微生物の繁殖に適した35〜
45℃の温度に維持されるため僅少量の微生物が短時間で
莫大な数に繁殖する。これら写真処理液等以外の被処理
水も微生物を含む雰囲気に接触して微生物が該被処理水
内に取り込まれ繁殖して、前述した通りの不都合が生ず
ることになる。
前記被処理水を固定床型三次元電極電解槽に供給する
と、該被処理水中の微生物は液流動によって前記電解槽
の陽極や陰極あるいは後述する誘電体や固定床形成用粒
子等に接触しそれらの表面で強力な酸化還元反応を受け
たり高電位の電流に接触し、その活動が弱まったり自身
が死滅して滅菌が行われると考えられる。
従って電気化学的手法により微生物を含有する被処理
水中の該微生物が電圧の滅菌を行う際には、前記微生物
が電圧が印加された電極や誘電体や固定床形成用粒子等
の三次元電極に接触すれば充分であり、両極間に電流を
流して水素及び酸素等のガス発生を伴う実質的な電解反
応を生起させることは必須ではなく、むしろガス発生に
起因する無駄な電力消費による不経済性を回避するため
にも実質的な電解反応が生じない低い電位を電極表面に
印加することが好ましい。
特に実質的なガス発生を伴わない被処理水の処理の際
には、安価な炭素質三次元電極を使用することが経済的
にも電極活性の面からも好ましい。炭素質三次元電極を
酸素ガスを発生する電解処理に使用すると、炭素質が酸
素と反応して二酸化炭素として離脱して消耗する。従っ
て前記被処理水の処理に好適である。
炭素質三次元電極を電解槽に収容して被処理水を処理
する際には、炭素質三次元電極の性質により被処理水の
流通の容易性あるいは電解電圧等に影響が生ずる。これ
らの炭素質三次元電極の性質のうち、開孔径も比較的強
い影響を有する。炭素質三次元電極の開孔径が大きいと
該炭素質三次元電極に被処理水が接触することなく電解
槽を通過し易くなるため電流効率が低下する。逆に開孔
径が小さすぎると被処理水が前記三次元電極内を流通す
ることが出来ずに電解電圧の上昇を招いてしまう。
本発明者の検討によると、炭素質三次元電極の開孔径
が25μm未満になると電解電圧の顕著な上昇が生じ、又
125μmを越えると電流効率の顕著な減少を招き、いず
れも満足すべき電解条件を達成することが出来ない。従
って本発明の電解槽は開孔径が25〜125μmの炭素質三
次元電極を有する固定床型三次元電極式電解槽とする。
所望の開孔径を有する炭素質三次元電極は次のように
製造することが出来る。
例えば炭素系粒子を焼結して三次元電極を形成する場
合には使用する炭素系粒子の粒径を調節することによ
り、調製される三次元電極の開孔径を調節して任意の開
孔径を有する三次元電極とすることができ、焼結温度は
1000〜4000℃、好ましくは約3800℃とする。又フェルト
状の炭素質三次元電極とする場合には、成形時の圧力を
調節することで任意の開孔径を有する三次元電極とする
ことができる。これらの場合の炭素系粒子と開孔径の関
係、及び成形圧力と開孔径の関係は経験的に得ることが
できる。
本発明に係わる電解槽は、固定床型三次元電極電解槽
つまり固定床型単極式電解槽及び固定床式複極式電解槽
であり、これらの電解槽では該電解槽の三次元電極が莫
大な表面積を有するため電極表面と写真処理液等の被処
理水との接触面積を増大させることが出来、これにより
装置サイズを小さくし、かつ電気化学的処理の効率を上
げることができる点で有利である。
本発明の固定床型三次元電極電解槽における電極は一
般に三次元電極と給電用電極を含む。該三次元電極は前
述の使用する電解槽に応じた形状を有し、固定床型複極
式電解槽を使用する場合には、前記被処理水が透過可能
な多孔質材料、例えば粒状、球状、フェルト状、織布
状、多孔質ブロック状等の形状を有する活性炭、グラフ
ァイト、炭素、繊維等の炭素系材料から、あるいは同形
状を有するこれら炭素径材料にに貴金属のコーティング
を施した材料から形成された複数個の好ましくは粒状、
球状、繊維状、フェルト状、織布状、多孔質ブロック
状、スポンジ状の誘電体である三次元電極を直流又は交
流電場内に置き、両端に設置した平板状又はエキスパン
ドメッシュ状やパーフォレーティッドプレート状等の多
孔板体から成る給電用電極間に電圧を印加して前記誘電
体を分極させ該誘電体の一端及び他端にそれぞれ陽極及
び陰極を形成させて成る三次元電極を収容した固定床型
複極式電解槽とすることが可能であり、この他に単独で
陽極としてあるいは陰極として機能する炭素質三次元材
料を交互に短絡しないように設置しかつ電気的に接続し
て固定床型複極式電解槽とすることができる。
前述の通り本発明方法によりガス発生を伴う電解処理
を行う際に、前記三次元電極として活性炭、グラァフイ
ト、炭素維持等の炭素系材料を使用すると前記三次元電
極の消耗量が多くなる。これを防止するために前記三次
元電極の陽分極する側にチタン等の基材上に酸化イリジ
ウム、酸化ルテニウム等の白金族金属酸化物を被覆し通
常不溶性金属電極として使用される多孔質材料を接触状
態で設置し、酸素発生が主として該多孔質材料上で生ず
るようにすればよく、このようにすることにより炭素質
三次元電極の消耗を抑制することが出来る。
本発明における電解槽の陽極電位及び陰極電位は、そ
れぞれガス発生が生ずる、+1.2〜+2.0V(vs.SCE)及
び−1.0〜−2.0V(vs.SHE)の範囲であることが好まし
い。
又単極式固定床型電解槽を使用する場合には、前記し
た開孔径を有する炭素質三次元電極を単独で電解槽内に
設置し、同様に被処理水の処理を行うようにする。
いずれの形態の電極を使用する場合でも、処理すべき
被処理水が流れる電解槽内に液が電極や誘電体や微粒子
に接触せずに流通できる空隙があると被処理水の処理効
率が低下するため、電極等は電解槽内の被処理水の流れ
がショートパスしないように配置することが望ましい。
前記電解槽内を隔膜で区画して陽極室と陰極室を形成
しても、隔膜を使用せずにそのまま通電を行うことも出
来るが、隔膜を使用する場合には流通する被処理水の移
動を妨害しないように多孔質例えばその開口率が10%以
上95%以下好ましくは20%以上80%以下のものを使用す
ることが望ましい。隔膜を使用しない場合で三次元電極
の極間距離あるいは三次元電極と給電用電極の極間距離
を狭くする場合には短絡防止のため電気絶縁性のスペー
サとして例えば有機高分子材料で作製した網状スペーサ
等を複数の炭素質三次元電極間等に挿入することができ
る。
前記電解槽に供給される被処理水が完全な層流である
と横方向の移動が少なく炭素質三次元電極等との接触が
少なくなるため、乱流状態を形成するようにすることが
好ましく、前記被処理水はそのレイノルズ数が500以上
である乱流とすることが特に好ましい。
このような構成から成る電解槽は、例えば写真処理液
中の微生物の滅菌用あるいは銀回収用として使用する場
合には、発色現像槽、漂白槽、漂白定着槽、水洗工程槽
や安定化工程槽等の写真処理工程の一部又は全部の槽に
接続して、前記各処理槽中の写真処理液を前記電解槽に
供給し循環しながら電解槽に通電し処理を行う。これに
より最適の電流効率と電解電圧下で被処理水の処理を行
うことが可能になる。
なお、本発明に係わる電解槽では該電解槽に漏洩電流
が生じ該漏洩電流が電解槽から写真処理液等の被処理水
を通して他の部材例えば写真処理槽に流れ込み、該写真
処理槽中で好ましくない電気化学反応を誘起したり、写
真処理槽の壁面を電気化学的に腐食させ壁面構成材料を
溶出させることがあるため、電解槽内の陽陰極が相対し
ない電極背面部及び/又は前記電解槽の出入口配管内
に、前記被処理水より導電性の高い部材をその一端を接
地可能なように設置して前記漏洩電流を遮断することが
できる。
次に添付図面に基づいて本発明に使用できる電解槽の
好ましい例を説明するが、本発明方法に使用されあるい
は本発明装置を構成する電解槽は、この電解槽に限定さ
れるものではない。
第1図は、本発明方法の電解槽として使用可能は固定
床型複極式電解槽の一例を示す概略縦断面図である。
上下にフランジ1を有する円筒形の電解槽本体2の内
部上端近傍及び下端近傍にはそれぞれメッシュ状の給電
用陽極ターミナル3と給電用陰極ターミナル4が設けら
れている。電解槽本体2は、長期間の使用又は再度の使
用にも耐え得る電気絶縁材料で形成することが好まし
く、特に合成樹脂であるポリエピクロルヒドリン、ポリ
ビニルメタクリレート、ポリエチレン、ポリプロピレ
ン、ポリ塩化ビニル、ポリ塩化エチレン、フェノール−
ホルムアルデヒド樹脂等が好ましく使用出来る。正電圧
を与える前記陽極ターミナル3は、例えば炭素材(例え
ば活性炭、炭、コークス、石炭等)、グラファイト材
(例えば炭素繊維、カーボンクロス、グラファイト
等)、炭素複合材(例えば炭素に金属を粉状で混ぜ焼結
したもの等)、活性炭素繊維不織布(例えばKE−1000フ
ェルト、東洋紡株式会社)、又はこれに白金、パラジウ
ムやニッケルを担持させた材料、更に寸法安定性電極
(白金族酸化物被覆チタン材)、白金被覆チタン材、ニ
ッケル材、ステンレス材、鉄材等から選択される。又陽
極ターミナル3に対向し負電圧を与える陰極ターミナル
4は、例えば白金、ステンレス、チタン、ニッケル、
銅、ハステロイ、グラファイト、炭素材、軟鋼あるいは
白金族金属をコーティングした金属材料等から形成され
ている。
前記両電極ターミナル3、4間には複数個の図示の例
では3個のスポンジ状の固定床5が積層され、かつ該固
定床5間及び該固定床5と前記両電極ターミナル3、4
間に4枚の多孔質の隔膜あるいはスペーサー6が挟持さ
れている。各固定床5は電解槽本体2の内壁に密着し固
定床5の内部を通過せず、固定床5と電解槽本体2の側
壁との間を流れる写真処理液の漏洩流がなるべく少なく
なるように配置されている。隔膜を使用する場合には該
隔膜として織布、素焼板、粒子焼結ブラスチック、多孔
板、イオン交換膜等が用いられ、スペーサーとして電気
絶縁性材料で製作された織布、多孔板、網、棒状材等が
使用される。
このような構成から成る電解槽に下方から矢印で示す
ように例えば写真処理工程の水洗工程からの水洗水を供
給しながら通電を行うと、前記各固定床5が図示の如く
下面が正に上面が負に分極して固定床5内及び固定床5
間に電位が生じ、該電解槽内を流通する水洗水はこの電
位を有する固定床5に接触してその中に含有される黴や
細菌の滅菌等の改質処理が行われて該電解槽の上方から
取り出され、該水洗水は再度水洗工程へ循環供給され再
度水洗水として利用される。
第1図に示した電解槽は、写真処理液の改質処理の他
に、写真処理液からの電解銀回収、プール水をはじめと
する他の被処理水についても同様に使用することが出来
る。
第2図は、本発明に係わる複極型固定床式電解槽の他
の例を示すもので、該電解槽は第1図の電解槽の固定床
5の給電用陰極4に向かう側つまり陽分極する側にメッ
シュ状の不溶性金属材料7を密着状態で設置したもので
あり、他の部材は第1図と同一であるので同一符号を付
して説明を省略する。
固定床5はその両端部において最も大きく分極が生
じ、ガス発生が伴う場合には該両端部において最も激し
くガス発生が生ずる。従って最も強く陽分極するつまり
最も激しく酸素ガスが発生する固定床5の給電用陰極タ
ーミナル4に向かう端部には最も速く溶解が生じる。図
示の通りこの部分に不溶性金属材料7を設置しておく
と、該不溶性金属材料7の過電圧が固定床5を形成する
炭素系材料の過電圧より低いため殆どの酸素ガスが前記
不溶性金属材料7から発生し固定床5は殆ど酸素ガスと
接触しなくなるため、前記固定床5の溶解は効果的に抑
制される。
(実施例) 以下に本発明の電解槽を使用した被処理水処理の実施
例を記載するが、該実施例は本発明を限定するものでは
ない。
実施例1 第1図に示した電解槽及び下記組成を有する写真処理
工程の定着液を使用して銀回収を行い、炭素質三次元電
極の開孔径を変化させて、該変化の銀回収の電流効率及
び電解電圧への影響を調べた。
(定着液の組成) チオ硫酸アンモニウム 200g/l 無水重亜硫酸ナトリウム 15g/l メタ重亜硫酸ナトリウム 3g/l エチレンジアミンテトラ酢酸2ナトリウム 0.8g/l 炭酸ナトリウム 14g/l 銀イオン 0.08g/l 粒径50〜100μmの炭素粒子を使用し、該炭素粒子を
約3800℃で焼結することにより炭素質三次元電極を製造
した。前記炭素粒子の径分布を変化させることにより1
5、25、50、75、100、125及び150μmのそれぞれの平均
開孔径を有する7個の炭素質三次元電極を得た。
前記電解槽は、塩化ビニル樹脂製の高さ100mm、内径5
0mmのフランジ付円筒形であり、該円筒体の内部に前述
の開孔径を有する焼結炭素粒子から成る直径50mm、厚さ
10mmの固定床3個を、直径50mm及び厚さ1.5mmのポリエ
チレン樹脂製隔膜4枚で挟み込み、上下両端の隔膜にそ
れぞれ白金をその表面にメッキしたチタン製である直径
48mm厚さ1.0mmの1対のメッシュ状電極ターミナルを接
触させて設置した。直流電源により電解槽本体に直流電
圧を印加して被処理水を電解槽に供給しながら電解を行
い、ガス発生をさせながら処理を行った。電解電流は約
0.8〜1.1Aに維持された。
それぞれの炭素質三次元電極の開孔径と該三次元電極
を使用した場合の電流効率と電解電圧の関係を算出し
た。その結果を第1表に纏め、かつ開孔径と電流効率の
関係を第3図のグラフに、又開孔径と電解電圧の関係を
第4図のグラフに示した。
第1表から明らかなように、炭素質三次元電極の開孔
径が25μm未満であると電解電圧が大きく なりすぎ、実際の操業には適していないことが判る。又
前記開孔径が125μmを越えると電流効率の低下が顕著
になることが判る。従って25〜125μm以外の開孔径を
有する炭素質三次元電極を装着した電解槽は被処理水の
処理用として適切でなく、従って25〜125μmの開孔径
を有する炭素質三次元電極を装着した電解槽が被処理水
の処理用として適切であることが判る。
(発明の効果) 本発明に係わる固定床型三次元電極式電解槽はその炭
素質三次元電極の開孔径を25〜125μmとしている(請
求項1)。
炭素質三次元電極の開孔径の大小は電解条件、特に電
流効率と電解電圧に影響を与え、開孔径が25μm未満で
あると被処理水の流通が困難になるとともに極間抵抗が
増大して電解電圧の顕著な増大を招き、該開孔径が125
μmを越えると被処理水中の微生物等が三次元電極に接
触することなく電解槽を通過して電流効率の低下を招
く。これに対して本発明の電解槽は開孔径が25〜125μ
mの炭素質三次元電極を有し、この電解槽は適切な電解
条件、特に十分高い電流効率と十分に低い電解電圧を有
している。
そして本発明に係わる電解槽は炭素質三次元電極を使
用するが、該炭素質三次元電極は特に酸素ガス発生を伴
う電解に適用されると、該酸素ガスが前記三次元電極の
炭素質と反応して二酸化炭素して消耗する。
この場合には、該三次元電極より過電圧の低い材料か
ら成る不溶性金属材料を三次元電極に密着させて設置し
て、ガス発生が前記不溶性金属材料上で起こるようにし
て前記三次元電極の消耗を防止することが出来る(請求
項2)。
【図面の簡単な説明】
第1図及び第2図は、それぞれ本発明に係わる固定床型
三次元電極式電解槽を例示する縦断面図、第3図及び第
4図は、それぞれ実施例における開孔径と電流効率、及
び開孔径と電解電圧の関係を示すグラフである。 1…フランジ、2…電解槽本体 3…給電用陽極ターミナル 4…給電用陰極ターミナル 5…固定床、6…スペーサー 7…不溶性金属材料
フロントページの続き (56)参考文献 特開 昭53−39255(JP,A) 特開 昭52−30800(JP,A) 特開 昭49−32880(JP,A) 特開 昭49−33469(JP,A) (58)調査した分野(Int.Cl.7,DB名) C02F 1/46 - 1/48

Claims (2)

    (57)【特許請求の範囲】
  1. 【請求項1】炭素質三次元電極を分極させ、該炭素質三
    次元電極に微生物を含有する被処理水を接触させて該被
    処理水の処理を行う電解槽において、前記炭素質三次元
    電極の平均開孔径が25〜125μmであることを特徴とす
    る固定床型三次元電極式電解槽。
  2. 【請求項2】炭素質三次元電極に、不溶性金属材料を密
    着させて設置した請求項1に記載の電解槽。
JP2121875A 1990-05-12 1990-05-12 固定床型三次元電極式電解槽 Expired - Lifetime JP3020553B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2121875A JP3020553B2 (ja) 1990-05-12 1990-05-12 固定床型三次元電極式電解槽

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2121875A JP3020553B2 (ja) 1990-05-12 1990-05-12 固定床型三次元電極式電解槽

Publications (2)

Publication Number Publication Date
JPH0418980A JPH0418980A (ja) 1992-01-23
JP3020553B2 true JP3020553B2 (ja) 2000-03-15

Family

ID=14822091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2121875A Expired - Lifetime JP3020553B2 (ja) 1990-05-12 1990-05-12 固定床型三次元電極式電解槽

Country Status (1)

Country Link
JP (1) JP3020553B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10302879A (ja) * 1997-04-24 1998-11-13 Yazaki Corp 合体コネクタ
CN104276626B (zh) * 2013-07-03 2016-01-20 济南大学 一种黄金尾矿基粒子电极及其制备方法
CN107697984B (zh) * 2017-11-15 2021-07-20 广西民族大学 Sn/Sb-Mn-GAC粒子及其在三维电化学反应处理4-氯酚废水中的应用

Also Published As

Publication number Publication date
JPH0418980A (ja) 1992-01-23

Similar Documents

Publication Publication Date Title
US5256268A (en) Water treatment method and apparatus
JP3020553B2 (ja) 固定床型三次元電極式電解槽
JP3206819B2 (ja) 被処理水の電気化学的処理方法
JPH08164390A (ja) 被処理水の電気化学的処理方法
JPH11114571A (ja) 電気化学的水処理装置及び方法
JPH04118090A (ja) 被処理水の電解処理方法
JP3180319B2 (ja) 被処理水の電気化学的処理方法
JP2922255B2 (ja) 微生物を含む被処理水の電気化学的処理方法
JP2971571B2 (ja) 三次元電極式電解槽
JPH09314149A (ja) 固定床型三次元電極電解槽用ガスケット、固定床型三次元電極電解槽および水処理方法
JP3178728B2 (ja) 三次元電極式電解槽
JP3150355B2 (ja) 複極型三次元電極式電解槽
JPH09253652A (ja) 流動床型電解槽および水処理方法
JPH0416280A (ja) 微生物を含む被処理水の電気化学的処理方法
JP3220355B2 (ja) 被処理水の電気化学的処理方法
JP3056523B2 (ja) 微生物を含む被処理水の電気化学的処理方法
JP3056511B2 (ja) 被処理水の処理装置
JP3014427B2 (ja) 被処理水の処理方法
JPH1087381A (ja) 多孔性炭素質電極の処理方法、炭素質固定床型三次元電極電解槽及び水処理方法
JPH0671268A (ja) 被処理水の電気化学的処理方法
JPH0416282A (ja) 微生物を含む被処理水の電気化学的処理方法
JPH10165940A (ja) 複極式固定床型三次元電極電解槽とそれを用いる水処理方法並びに水処理装置及び浄水器
JPH09206756A (ja) 炭素質固定床型三次元電極電解槽および水処理方法
JPH09253653A (ja) 円筒型電解槽および水処理方法
JPH11197669A (ja) 電気化学的水処理用装置

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 11