JP2542783B2 - Method and apparatus for forming powder as a powder layer - Google Patents

Method and apparatus for forming powder as a powder layer

Info

Publication number
JP2542783B2
JP2542783B2 JP5083522A JP8352293A JP2542783B2 JP 2542783 B2 JP2542783 B2 JP 2542783B2 JP 5083522 A JP5083522 A JP 5083522A JP 8352293 A JP8352293 A JP 8352293A JP 2542783 B2 JP2542783 B2 JP 2542783B2
Authority
JP
Japan
Prior art keywords
powder
drum
area
layer
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5083522A
Other languages
Japanese (ja)
Other versions
JPH06192702A (en
Inventor
アール デッカード,カール
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Texas System
Original Assignee
University of Texas System
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26802457&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2542783(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US06/920,580 external-priority patent/US4863538A/en
Application filed by University of Texas System filed Critical University of Texas System
Publication of JPH06192702A publication Critical patent/JPH06192702A/en
Application granted granted Critical
Publication of JP2542783B2 publication Critical patent/JP2542783B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/41Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by interpolation, e.g. the computation of intermediate points between programmed end points to define the path to be followed and the rate of travel along that path
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C19/00Apparatus specially adapted for applying particulate materials to surfaces
    • B05C19/008Accessories or implements for use in connection with applying particulate materials to surfaces; not provided elsewhere in B05C19/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/10Auxiliary heating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/60Planarisation devices; Compression devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/004Filling molds with powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/12Spreading-out the material on a substrate, e.g. on the surface of a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/34Component parts, details or accessories; Auxiliary operations
    • B29C41/46Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • C23C26/02Coating not provided for in groups C23C2/00 - C23C24/00 applying molten material to the substrate
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4097Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using design data to control NC machines, e.g. CAD/CAM
    • G05B19/4099Surface or curve machining, making 3D objects, e.g. desktop manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C19/00Apparatus specially adapted for applying particulate materials to surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/49Scanners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/57Metering means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1052Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding assisted by energy absorption enhanced by the coating or powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/04Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam
    • B29C35/045Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam using gas or flames
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49013Deposit layers, cured by scanning laser, stereo lithography SLA, prototyping
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49018Laser sintering of powder in layers, selective laser sintering SLS
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Theoretical Computer Science (AREA)
  • Computing Systems (AREA)
  • Powder Metallurgy (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Laser Beam Processing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
  • Silicon Compounds (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

A method and apparatus (10) for selectively sintering a layer of powder to produce a part comprising a plurality of sintered layers. The apparatus includes a computer (40) controlling a laser (12) to direct the laser energy onto the powder to produce a sintered mass. The computer either determines or is programmed with the boundaries of the desired cross-sectional regions of the part. For each cross-section, the aim of the laser beam is scanned over a layer of powder and the beam is switched on to sinter only the powder within the boundaries of the cross-section. Powder is applied and successive layers sintered until a completed part is formed. The powder may consist of a plastic, metal, ceramic, or polymer substance. In the preferred embodiment, the aim of the laser is directed in a continuous raster scan and the laser turned on when the beam is aimed within the boundaries of the particular cross-section being formed. Preferably, the powder dispensing mechanism includes a drum which is moved horizontally across the target area and counter-rotated to smooth and distribute the powder in an even layer across the target area. A downdraft system provides controlled temperature air flow through the target area to moderate powder temperature during sintering. <IMAGE>

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、粉末を粉末層として分
与する方法及び装置に関するものである。
FIELD OF THE INVENTION The present invention relates to a method and apparatus for dispensing powder as a powder bed.

【0002】この方法及び装置は、とくに順次粉末層を
形成し、指向エネルギービームたとえばレーザビームを
粉末層の選択された位置に指向して選択的に焼結して所
望の部品を積層的に形成製造するコンピュータ支援レー
ザ装置における粉末層の分与、形成にとりわけ有用であ
る。
The method and apparatus, in particular, sequentially form powder layers and direct a directed energy beam, eg, a laser beam, at selected locations in the powder layers to selectively sinter to form the desired components in a stack. It is particularly useful for dispensing and forming powder layers in manufacturing computer assisted laser devices.

【0003】[0003]

【発明が解決しようとする課題】基礎となる表面上に平
坦な粉末層を形成しようとする場合、厚さを均一にする
ため均らし部材を使用することが往々にしてなされてい
る。しかしながら、均らし部材を使用して平坦化させる
場合に好ましくない粉末の撹乱がおこることが多く、剪
断力(shear stress)が粉末に働き、この
ため、変形、変質しやすい材料を粉末層とする場合適切
な結果が得られなかった。とくに、ポリマーたとえばナ
イロンなどの粉末の場合、熱により凝集、粘着が起こり
やすく、このような場合には応力が働くことにより塊状
化が起こることもしばしばで、塊状化部分が平坦化した
層に生成し、厚さが薄い場合その欠落による凹部が形成
されることもあり、粉末層の均質性に問題が多かった。
When attempting to form a flat powder layer on the underlying surface, it is often the case to use a leveling member to achieve a uniform thickness. However, when flattening using a leveling member, undesired disturbance of the powder often occurs, and shear force acts on the powder, so that a material that is easily deformed or deteriorated is used as the powder layer. If the proper result was not obtained. In particular, in the case of powders of polymers such as nylon, aggregation and sticking easily occur due to heat, and in such cases, agglomeration often occurs due to the action of stress, and agglomerated parts are formed in a flattened layer. However, when the thickness is thin, recesses may be formed due to the lack thereof, and there are many problems in the homogeneity of the powder layer.

【0004】とりわけ、粉末層を順次形成し、その選択
された位置にエネルギービームを指向して選択的に焼結
・融合を行わせ、この操作を反復して所望の部品を製造
する選択的・指向エネルギービーム焼結法においては、
このような問題点はぜひとも解決されなければならな
い。
In particular, the powder layer is sequentially formed, the energy beam is directed to the selected position to selectively sinter and fuse, and this operation is repeated to produce a desired part. In the directed energy beam sintering method,
Such problems must be solved by all means.

【0005】[0005]

【課題を解決するための手段】前述の問題点は大部分、
本発明の方法および装置によって解決される。本発明は
おいては、目標区域上に粉末を分与して平坦粉末層を形
成する場合、たとえばその区域の一端部にある量の粉末
を供給し、端部から粉末層に求められる必要な厚さの間
隔を保持して目標区域に沿ってドラムを上記一端部から
他端部に向けて移動させてドラム通過後に平坦層を残す
よう操作させ、このドラムを、その移動方向とは逆(c
ounter)方向に回転させること、すなわちカウン
ター・ローテーションを行うことを特徴とする。ドラム
は、逆回転されながら目標区域に沿って移動し、前面の
粉末の山と接触して粉末を前記運動方向に放出し、ドラ
ムの背後に、所望の間隔の厚さを有する粉末層を残す。
Most of the problems mentioned above are
It is solved by the method and device of the present invention. In the present invention, when the powder is dispensed onto the target area to form a flat powder layer, for example, a certain amount of powder is supplied at one end of the area and the required thickness of the powder layer is obtained from the end. The drum is moved along the target area from the one end to the other end while keeping a certain distance, and the drum is operated so as to leave a flat layer after passing through the drum.
It is characterized by rotating in the (outer) direction, that is, performing counter rotation. The drum moves along the target area while being counter-rotated and comes into contact with the pile of powder on the front surface to expel the powder in said direction of movement, leaving behind the drum a powder layer with a desired spacing thickness .

【0006】本発明の粉末を分与し、粉末層として形成
する方法及び装置は、とくに、たとえばレーザビームな
どの指向エネルギービームにより、逐次形成する粉末層
の選択された部分を選択的に焼結して積層的に所望の部
品を製造する方法に適当である。このような選択的焼結
のための装置は、部品を製造する目標区域にビームを選
択的に放出するレーザまたはその他の指向性エネルギー
源を含む。粉末分与系が目標区域上に粉末を堆積する。
目標区域上に展張された粉末層を焼結するために、レー
ザ制御機構がレーザビームの標的を移動させ、またレー
ザを変調する。制御機構は、部品の所望の層を生じるよ
うに、限定された境界内部の粉末のみを選択的に焼結す
る。制御機構によってレーザが粉末層を逐次に選択的に
焼結して、相互に焼結された複数層から成る全体部品を
形成する。各焼結区域の境界が部品のそれぞれの断面区
域に対応する。好ましくは、制御機構は、各層について
境界を特定するためのコンピュータ、例えばCAD/C
AM系を含む。すなわち、コンピュータは部品の全体寸
法と形状のデータを与えられると、各層について境界を
特定し、特定された境界に対応してレーザ制御機構を作
動する。あるいは、最初から各層の特定の境界をコンピ
ュータにプログラミング入力する事ができる。
The method and apparatus for dispensing the powder of the present invention to form a powder layer is, in particular, to selectively sinter selected portions of the powder layer to be successively formed by a directed energy beam such as a laser beam. It is suitable for a method of producing desired parts in a laminated manner. Equipment for such selective sintering includes a laser or other directional energy source that selectively emits a beam to a target area where the component is manufactured. A powder dispensing system deposits powder on the target area.
A laser control mechanism moves the target of the laser beam and also modulates the laser to sinter the powder layer spread on the target area. The control mechanism selectively sinters only the powder within the limited boundaries to produce the desired layer of the part. A control mechanism causes a laser to selectively sinter the powder layers sequentially to form an overall part made up of layers that are sintered together. The boundaries of each sintering zone correspond to a respective cross-sectional area of the part. Preferably, the control mechanism is a computer, such as CAD / C, for identifying boundaries for each layer.
Including AM system. That is, the computer, given the data of the overall size and shape of the part, specifies the boundary for each layer and operates the laser control mechanism corresponding to the specified boundary. Alternatively, the specific boundaries of each layer can be programmed into the computer from scratch.

【0007】すなわち、この選択的焼結法では、粉末の
第1部分を目標面上に堆積する段階と、目標面に沿って
指向エネルギービーム(好ましくはレーザビーム)の標
的を走査する段階と、第1粉末部分の第1層を目標面上
において焼結する段階とを含む。第1層は、部分の第1
断面区域に相当する。レーザビームの標的が第1層を画
成する境界内部にある時に指向エネルギー源を走査する
事によって粉末を焼結する。粉末の第2部分を第1焼結
層の上に堆積させ、レーザビームの標的を第1焼結層の
表面に沿って走査する。レーザビームの標的が第2粉末
部分の第2層の境界内部にある時に指向エネルギー源を
走査する事によって、第2層を焼結する。第2層の焼結
は同時に第1層と第2層を接合させ一体として結合体
(cohesive mass)を形成する。先に焼結
された層の上に逐次に粉末部分を堆積させ、各堆積層を
逐次焼結させる。1つの実施態様として、粉末を連続的
に目標区域の中に堆積させる。
That is, in the selective sintering method, a step of depositing a first portion of powder on a target surface and a step of scanning a target of a directed energy beam (preferably a laser beam) along the target surface, Sintering the first layer of the first powder portion on the target surface. The first layer is the first of the portions
Corresponds to the section area. Sintering the powder by scanning the directional energy source when the laser beam target is within the boundary defining the first layer. A second portion of the powder is deposited on the first sintered layer and a laser beam target is scanned along the surface of the first sintered layer. Sintering the second layer by scanning the directional energy source when the target of the laser beam is inside the boundary of the second layer of the second powder portion. The sintering of the second layer simultaneously joins the first and second layers to form a cohesive mass as a unit. The powder portions are sequentially deposited on the previously sintered layers and each deposited layer is sequentially sintered. In one embodiment, the powder is continuously deposited in the target area.

【0008】レーザビームの標的がそれぞれの層の境界
内部に指向されている時に粉末が焼結されるように、レ
ーザビームがラスタ走査中にオンオフ変調される。好ま
しくはレーザビームはコンピュータによって制御され
る。このコンピュータはCAD/CAM系を含み、この
場合、製造される部品の全体寸法と形状に関するデータ
をコンピュータに与え、このコンピュータが部品の各目
標区域の境界を確定する。コンピュータは、確定された
境界を使用して、部品の断面区域に対応して各層の焼結
を制御する。他の実施態様においては、コンピュータは
部品の各断面区域の境界データのみをプログラミングさ
れる。
The laser beam is modulated on and off during the raster scan so that the powder is sintered when the target of the laser beam is directed inside the boundaries of the respective layers. Preferably the laser beam is controlled by a computer. The computer includes a CAD / CAM system which provides the computer with data regarding the overall size and shape of the part to be manufactured, which computer defines the boundaries of each target area of the part. The computer uses the determined boundaries to control the sintering of each layer corresponding to the cross-sectional area of the part. In another embodiment, the computer is programmed with only boundary data for each cross sectional area of the part.

【0009】選択的・指向エネルギービーム焼結法で
は、粉末温度を調整するための下向き送気機構が配備さ
れることが好ましい。この機構は、目標区域を画成する
支持体と、目標区域に空気を送る機構と、目標区域に達
する前に空気温度を制御する機構とを含む。支持体は、
粉末を堆積させる多孔媒体と、この媒体に隣接するプレ
ナムとを含む。このようにして、温度制御された空気が
目標区域中の粉末に送られ、目標区域中の焼結粉末と非
焼結粉末の温度制御を進行させる。
In the selective and directed energy beam sintering method, it is preferable to provide a downward air feeding mechanism for adjusting the powder temperature. The mechanism includes a support defining a target area, a mechanism for delivering air to the target area, and a mechanism for controlling the air temperature before reaching the target area. The support is
It includes a porous medium for depositing the powder and a plenum adjacent to the medium. In this way, temperature-controlled air is delivered to the powder in the target area, promoting temperature control of the sintered and non-sintered powder in the target area.

【0010】図面は選択的・指向エネルギービーム焼結
法を説明するものである。図1は同方法による装置全体
の分解斜視図を示す。全体として、装置10はレーザ1
2と、粉末分与器14と、レーザ制御手段16とを含
む。さらに詳しくは、粉末分与器14は、粉末22を受
けるホッパ20を有し、このホッパは排出口24を有す
る。この排出口24は粉末を目標区域26の中に分与す
るように配向され、この区域26は図1においては全体
的に包囲構造28によって画成される。もちろん、粉末
22を分与するために他の多くの実施態様が可能であ
る。
The drawings illustrate a selective directed energy beam sintering process. FIG. 1 shows an exploded perspective view of the entire apparatus by the same method. Overall, the device 10 is a laser 1
2, powder dispenser 14, and laser control means 16. More specifically, the powder dispenser 14 has a hopper 20 for receiving the powder 22, the hopper having an outlet 24. The outlet 24 is oriented to dispense the powder into a target area 26, which area 26 is generally defined in FIG. Of course, many other embodiments are possible for dispensing the powder 22.

【0011】レーザ12の構成要素を図1において多少
略示的に示し、これはレーザヘッド30、安全シャッタ
32およびフロントミラー組立体34とを含む。使用さ
れるレーザの型は多くのファクタに依存し、特に焼結さ
れる粉末22の型に依存している。図1の実施態様にお
いては、Nd:YAGレーザ(レーザメトリックス95
00Q)を使用した。これは、連続モードの100ワッ
ト最高出力を有し、連続モードまたはパルスモードで作
動する事ができる。レーザ12のレーザビーム出力は、
赤外線に近い約1060nMの波長を有する。図1に図
示のレーザ12は、約1キロヘルツ乃至40キロヘルツ
の選択範囲と約6ナノ秒の持続時間とを有する内部パル
スレート発生器を含む。パルスモードまたは連続モード
のいずれにせよ、レーザ12は図1の矢印によって示さ
れた通路に沿って走行するレーザビームを選択的に発生
するように、オンオフ変調される事ができる。
The components of the laser 12 are shown somewhat schematically in FIG. 1, which includes a laser head 30, a safety shutter 32 and a front mirror assembly 34. The type of laser used depends on many factors, especially the type of powder 22 to be sintered. In the embodiment of FIG. 1, an Nd: YAG laser (laser metrics 95
00Q) was used. It has a maximum output of 100 watts in continuous mode and can operate in continuous mode or pulsed mode. The laser beam output of the laser 12 is
It has a wavelength of about 1060 nM, which is close to infrared light. The laser 12 illustrated in FIG. 1 includes an internal pulse rate generator having a selected range of about 1 kilohertz to 40 kilohertz and a duration of about 6 nanoseconds. In either pulsed mode or continuous mode, the laser 12 can be on-off modulated to selectively generate a laser beam traveling along the path indicated by the arrows in FIG.

【0012】レーザビームを焦点合わせするため、集束
レンズ36と38が図1に図示のようにレーザビームの
走路に沿って配置されている。集束レンズ38を使用す
るだけでは、この集束レンズ38とレーザ12との間隔
を変動する事によって真焦点の位置を容易に調節する事
ができない。レーザ12と集束レンズ38との間に配置
された集束レンズ36は、この集束レンズ36とレーザ
12との間に虚焦点を作る。集束レンズ38と虚焦点と
の間隔を変動させる事により、集束レンズ38のレーザ
12と反対側のレーザビーム走路に沿って真焦点を制御
する事ができる。近年、光学分野で多くの進歩が成さ
れ、レーザビームを一定の位置に効率的に焦点合わせす
るためのその他の多くの方法が存在する。
To focus the laser beam, focusing lenses 36 and 38 are placed along the path of the laser beam as shown in FIG. Only by using the focusing lens 38, the position of the true focal point cannot be easily adjusted by changing the distance between the focusing lens 38 and the laser 12. The focusing lens 36 arranged between the laser 12 and the focusing lens 38 creates an imaginary focal point between the focusing lens 36 and the laser 12. By varying the distance between the focusing lens 38 and the imaginary focus, the true focus can be controlled along the laser beam path of the focusing lens 38 on the side opposite to the laser 12. In recent years, many advances have been made in the optics field, and there are many other ways to efficiently focus a laser beam at a fixed location.

【0013】さらに詳しくは、レーザ制御手段16はコ
ンピュータ40と走査系42とを含む。好ましい実施態
様において、コンピュータ40はレーザ制御用マイクロ
プロセッサと、データ発生用CAD/CAMシステムを
含む。図1に図示の実施態様において、パソコンが使用
され(Commodore64)、その主アトリビュー
トはアクセシブルインターフェースポートと、ノンマス
カブル割り込みを発生するフラグラインとを含む。
More specifically, the laser control means 16 includes a computer 40 and a scanning system 42. In the preferred embodiment, computer 40 includes a laser control microprocessor and a CAD / CAM system for data generation. In the embodiment illustrated in FIG. 1, a personal computer is used (Commodore 64), the main attributes of which include an accessible interface port and a flag line which generates a non-maskable interrupt.

【0014】図1に図示のように、走査系42は、レー
ザビームの走路を方向変換するプリズム44を含む。も
ちろん装置10の具体的レイアウトが、レーザビーム走
路の操作のために単数のプリズムを必要とするか複数の
プリズム44を必要とするかを決定する際の基本的ファ
クタである。また走査系42はそれぞれの検流計48、
49によって駆動される一対の反射鏡46、47を含
む。検流計48、49は、それぞれの反射鏡46、47
を選択的に配向するようにそれぞれの反射鏡に連結され
る。検流計48、49は相互に直角に取り付けられ、従
って反射鏡46、47が相互に直角に取り付けられる。
関数発生ドライバー50が検流計48の運動を制御し
(検流計49は検流計48の運動に従属させられる)、
従ってレーザビームの標的(図1において矢印で示す)
が目標区域26の中において制御される。図1に図示の
ように、ドライバー50はコンピュータ40に対して作
動的に連結されている。走査系42として使用するた
め、他の走査法、例えば音響−光学スキャンナー、回転
多角形反射鏡、および共鳴反射鏡スキャンナーを使用す
る事ができる。
As shown in FIG. 1, the scanning system 42 includes a prism 44 that redirects the path of the laser beam. Of course, the specific layout of the apparatus 10 is a fundamental factor in determining whether a single prism or multiple prisms 44 are required for steering the laser beam path. Further, the scanning system 42 is a galvanometer 48,
It includes a pair of reflectors 46, 47 driven by 49. The galvanometers 48 and 49 are the reflecting mirrors 46 and 47, respectively.
Are connected to respective reflecting mirrors so as to selectively orient. The galvanometers 48, 49 are mounted at right angles to each other and therefore the reflectors 46, 47 are mounted at right angles to each other.
The function generating driver 50 controls the movement of the galvanometer 48 (the galvanometer 49 is subordinate to the movement of the galvanometer 48),
Therefore the target of the laser beam (indicated by the arrow in FIG. 1)
Are controlled in the target area 26. As shown in FIG. 1, the driver 50 is operably connected to the computer 40. Other scanning methods can be used for use as the scanning system 42, such as acousto-optic scanners, rotating polygon mirrors, and resonant mirror scanners.

【0015】図2は同方法によって製造される物品の一
部および目標区域に対するレーザビームのラスタパタン
を示す斜視図である。図2において、部品52の一部が
略示され、これは4層54−57から成る。レーザビー
ム64の標的はラスタ走査パタン66である。この明細
書において、「標的」は方向を示す中立的用語であっ
て、レーザ12の変調状態を意味するものではない。便
宜上、軸線68は急速走査軸線とし、軸線70は低速走
査軸線とする。軸線72は部品の形成方向である。
FIG. 2 is a perspective view showing a raster pattern of a laser beam with respect to a part of an article manufactured by the same method and a target area. In FIG. 2, a portion of component 52 is shown schematically, which consists of four layers 54-57. The target of the laser beam 64 is a raster scan pattern 66. In this specification, "target" is a directional neutral term and does not mean the modulation state of the laser 12. For convenience, axis 68 is the fast scan axis and axis 70 is the slow scan axis. The axis 72 is the forming direction of the part.

【0016】図6と図7において、選択的レーザビーム
焼結法における粉末分与器20の実施態様を示す。全体
として、支持体100が目標区域102を画成し、この
区域に対してレーザビーム64の標的が指向される(図
1)。ホッパー104が粉末106を開口108から目
標区域102に分与する。計量ローラ(図示されず)が
開口108に配置され、このローラが回転された時に、
一定量の粉末を目標区域102の末端110に線状に配
置する。
6 and 7 show an embodiment of the powder dispenser 20 in the selective laser beam sintering method. Overall, the support 100 defines a target area 102 against which the target of the laser beam 64 is directed (FIG. 1). The hopper 104 dispenses the powder 106 through the opening 108 into the target area 102. A metering roller (not shown) is placed in the opening 108 and when this roller is rotated,
A quantity of powder is linearly arranged at the end 110 of the target area 102.

【0017】ならし機構114が粉末の山106を目標
区域の他端112に向かって広げる。ならし機構114
は、外側に刻み付き面(knurled surfac
e)を備えた円筒形ドラム116を含む。バー120上
に取り付けられたモータ118が滑車122とベルト1
24を介してドラム116に連結されてこれを回転させ
る。
A leveling mechanism 114 spreads the powder pile 106 toward the other end 112 of the target area. Leveling mechanism 114
Is an outer knurled surface
e) with a cylindrical drum 116. A motor 118 mounted on the bar 120 drives the pulley 122 and the belt 1
It is connected to the drum 116 via 24 and rotates it.

【0018】またならし機構114はドラム116を目
標区域の一端110と他端112との間を移動させる機
構126を備える。機構126は、バー120を水平方
向および垂直方向に移動させるX/Yテーブル128を
含む。すなわち、このテーブル128が固定され、プレ
ート130がテーブル128に対して選択的に可動であ
る。
The leveling mechanism 114 also includes a mechanism 126 for moving the drum 116 between one end 110 and the other end 112 of the target area. The mechanism 126 includes an X / Y table 128 that moves the bar 120 horizontally and vertically. That is, the table 128 is fixed, and the plate 130 is selectively movable with respect to the table 128.

【0019】製造中の製品の温度を制御する装置を図8
に示す。レーザビームによってまだ走査されていない粒
子の温度と既に走査された粒子の温度との差異の故に、
製造中の製品の望ましくない収縮の生じる事が観察され
た。温度制御された空気の目標区域を通しての下降流が
このような望ましくない温度差を調整できる事が発見さ
れた。図8に示す温度制御された空気の下方送気装置1
32は焼結される粉末粒子の上層と空気との間の熱交換
によって前記のような収縮を低減させる。この熱交換が
焼結される粒子の上層の温度を調整し、上層の平均温度
を制御し、製造される製品から体積熱を除去する事によ
って製品が非焼結物質に成長する事を防止する。流入す
る空気の温度は、粉末の軟化点以上とするが、十分な焼
結の生じる温度以下に調節される。
FIG. 8 shows a device for controlling the temperature of the product being manufactured.
Shown in Due to the difference between the temperature of the particles not yet scanned by the laser beam and the temperature of the particles already scanned,
It has been observed that undesirable shrinkage of the product during manufacture occurs. It has been discovered that the downflow of temperature controlled air through the target area can adjust for such undesirable temperature differences. Temperature-controlled downward air supply device 1 shown in FIG.
32 reduces such shrinkage by heat exchange between the upper layer of powder particles to be sintered and air. This heat exchange regulates the temperature of the upper layer of the particles to be sintered, controls the average temperature of the upper layer, and removes volumetric heat from the manufactured product to prevent the product from growing into a non-sintered material. . The temperature of the inflowing air is not lower than the softening point of the powder, but is adjusted to be not higher than the temperature at which sufficient sintering occurs.

【0020】下方送気装置132は、目標区域136を
画成する支持体134と、空気を目標区域に向かって送
る手段と、電気抵抗142など流入空気の温度を制御す
る機構などを含む。空気を目標区域に送る手段は、支持
体134を包囲するチャンバ138と、送気ファン14
0および/または吸引ファン141とを含む。窓144
がビーム64(図1)の標的を目標区域136に対して
導入する。図1または図7に図示のような粉末分与機構
(図示されず)が少なくとも部分的にチャンバ138の
中に配置されて、粉末を目標区域136の上に分与す
る。
The lower air delivery device 132 includes a support 134 defining a target area 136, means for directing air toward the target area, a mechanism for controlling the temperature of the incoming air such as an electrical resistance 142, and the like. Means for delivering air to the target area include a chamber 138 surrounding the support 134 and an air delivery fan 14.
0 and / or suction fan 141. Window 144
Introduces the target of beam 64 (FIG. 1) to target area 136. A powder dispensing mechanism (not shown) as shown in FIG. 1 or FIG. 7 is located at least partially within the chamber 138 to dispense the powder onto the target area 136.

【0021】支持体134はハニカム状多孔質媒体14
8の上にフィルタ媒体146(細孔紙)を支持する。空
気を集めて出口152に送るためにプレナム150が配
置される。もちろん出口152は真空源141またはそ
の他の空気処理機構に接続される。
The support 134 is a honeycomb-shaped porous medium 14.
8 supports the filter medium 146 (pore paper). A plenum 150 is arranged to collect and direct air to the outlet 152. Of course, outlet 152 is connected to vacuum source 141 or other air treatment mechanism.

【0022】この方法の基本的着想は層ごとに部品を形
成するにある。すなわち部品は複数の別々の断面区域か
らなるものとみなされ、これらの区域が積層されて部品
の三次元構造を成す。それぞれの断面区域は二次元境界
によって画成され、もちろん各区域がそれぞれ独特の境
界を有する事ができる。また好ましくは各層の厚さ(軸
線72方向の寸法)は一定とする。
The basic idea of this method consists in forming the parts layer by layer. That is, the part is considered to consist of a plurality of separate cross-sectional areas, which are stacked to form the three-dimensional structure of the part. Each cross-sectional area is defined by a two-dimensional boundary, and of course each area can have its own unique boundary. Further, preferably, the thickness of each layer (dimension in the direction of the axis 72) is constant.

【0023】この方法においては粉末22の第1部分が
目標区域26の中に配置され、レーザビーム64によっ
て選択的に焼結されて、第1焼結層54を作る(図
2)。この第1焼結区域54は所望の部品の第1断面区
域に相当する。レーザビームは配置された粉末22を画
成された境界内部においてのみ選択的に焼結する。
In this method, a first portion of powder 22 is placed in target area 26 and selectively sintered by laser beam 64 to produce first sintered layer 54 (FIG. 2). This first sintering area 54 corresponds to the first cross-sectional area of the desired part. The laser beam selectively sinters the disposed powder 22 only within the defined boundaries.

【0024】もちろん、粉末22を選択的に焼結する他
の方法がある。一つの方法はレーザビームの標的を「ベ
クトル」方式で指向するにある。すなわちビームが実際
に所望の部分の各断面区域の輪郭と内部を実際にたどる
にある。あるいはビーム64の標的を反復パタンで操作
し、またレーザ12を変調させる。図2においてはラス
タ操作パタン66を使用するが、これはその実施の簡単
さの故にベクトル方式に勝っている。他の方法は、ベク
トル方式とラスタ操作方式とを組合せ、一つの層の所望
の境界をベクトル方式でたどり、境界の内部をラスタ操
作モードで照射するにある。もちろん選ばれる方法につ
いて選択の余地がある。例えばラスタモードは、ベクト
ルモードと比較して、ラスタパタン66の軸線68、7
0に対して平行でない円弧および線を近似するにすぎな
い点で不利である。場合によっては、ラスタパタンモー
ドで製造される時に部品の解像度が低下する。しかしラ
スタモードは実施の簡単さの故にベクトルモードに勝っ
ている。
Of course, there are other methods of selectively sintering the powder 22. One way is to direct the target of the laser beam in a "vector" fashion. That is, the beam actually follows the contour and interior of each cross-sectional area of the desired portion. Alternatively, the target of the beam 64 is manipulated in a repetitive pattern and the laser 12 is modulated. In FIG. 2, a raster manipulation pattern 66 is used, which is superior to the vector system because of its simplicity of implementation. Another method consists in combining the vector method and the raster operation method, tracing the desired boundary of one layer in the vector method and illuminating the inside of the boundary in the raster operation mode. Of course, there is a choice as to which method to choose. For example, in raster mode, the axes 68, 7 of the raster pattern 66 are compared to vector mode.
The disadvantage is that it only approximates arcs and lines that are not parallel to 0. In some cases, the resolution of the part is reduced when manufactured in raster pattern mode. However, raster mode is superior to vector mode because of its simplicity of implementation.

【0025】図1に戻って、目標区域26において連続
ラスタパタンでレーザビーム64の標的が走査される。
ドライバ50はラスタパタン66(図2)を生じるよう
に検流計48、49を制御する。反射鏡46の運動は急
速走査軸線68(図2)に沿ったレーザビーム64の標
的の運動を制御するのに対して、反射鏡47の運動は低
速走査軸線70に沿ったレーザビーム64の標的の運動
を制御する。
Returning to FIG. 1, the target area 26 is scanned with a laser beam 64 target in a continuous raster pattern.
The driver 50 controls the galvanometers 48, 49 to produce the raster pattern 66 (FIG. 2). The movement of the reflector 46 controls the movement of the laser beam 64 target along the fast scan axis 68 (FIG. 2), while the movement of the reflector 47 targets the laser beam 64 along the slow scan axis 70. Control the movement of.

【0026】コンピュータ40は次に作られる部品の断
面区域に関する情報を保持している。従って、バラバラ
の粉末22の一部が目標区域26の中に分与され、レー
ザビーム64の標的がその連続ラスタパタンで動かされ
る。ラスタパタン66の中において所望の間隔でレーザ
ビームを選択的に発生するように、コンピュータ40が
レーザ12を変調する。このようにして、レーザ12の
指向ビームが目標区域26の中において粉末22を選択
的に焼結して、所望の断面区域の境界を有する所望の焼
結層が得られる。このプロセスを層ごとに繰り返し、各
層を相互に焼結して、凝集部品、例えば図2の部品52
を製造する。
Computer 40 holds information about the cross-sectional area of the next part to be made. Therefore, a portion of the loose powder 22 is dispensed into the target area 26 and the target of the laser beam 64 is moved in its continuous raster pattern. Computer 40 modulates laser 12 to selectively generate a laser beam in raster pattern 66 at desired intervals. In this way, the directed beam of the laser 12 selectively sinters the powder 22 in the target area 26 to obtain the desired sintered layer with the desired cross-sectional area boundaries. This process is repeated layer by layer, sintering the layers together to form an agglomerated part, such as part 52 of FIG.
To manufacture.

【0027】図1に図示のレーザヘッド30の比較的低
い出力の故に、粉末22はこの低い出力と両立する低い
融解熱のプラスチック材料(例えばABS)から成る。
本発明の装置10によって製造された部品について、数
種の後形成処理が考えられる。例えば、このようにして
製造された部品を原型モデル、すなわち砂形鋳造あるい
はろう型鋳造の金型として使用する場合には、後形成処
理は必要ない。また他の場合には、製造された部品の一
部を緊密な公差に設計するために、ある程度の後形成加
工が実施される。あるいは、ある種の型の部品は特定の
材料特性を有する必要があり、これは部品の熱処理およ
び/または化学処理によって実施される。例えば、粉末
22の粒径は、開放気孔を有する部品を製造するように
設定する事ができ、またエポキシなどの物質を部品中に
噴射すれば、所望の噴射特性、例えば、圧縮強さ、耐摩
性、均質性などが得られる。
Due to the relatively low power output of the laser head 30 shown in FIG. 1, the powder 22 comprises a low heat of fusion plastic material (eg ABS) compatible with this low power output.
Several types of post-forming treatments are conceivable for the parts produced by the apparatus 10 of the present invention. For example, if the part produced in this way is used as a prototype model, that is, a mold for sand casting or wax casting, no post-forming treatment is necessary. In other cases, some post-forming is performed to design some of the manufactured parts to tight tolerances. Alternatively, certain types of parts need to have certain material properties, which may be performed by heat treatment and / or chemical treatment of the part. For example, the particle size of the powder 22 can be set to produce parts with open porosity, and if a substance such as epoxy is injected into the part, the desired injection characteristics, such as compressive strength, wear resistance, etc. can be achieved. The characteristics, homogeneity, etc. are obtained.

【0028】粉末22の性能を改良する2、3の特性が
確認された。第1に、カーボンブラックなどの顔料の添
加によって、粉末の吸収エネルギーを制御する事ができ
る。添剤の濃度と組成の調節によって、粉末の吸収率k
を制御する事ができる。一般にエネルギー吸収率は下記
の指数崩壊関係式によって支配される。 I(z)=Io exp(kZ) ここにI(z)は表面に対する垂直距離zにおける粉末
中の最適吸収エネルギー強さ(単位面積当たり粉末)、
IoはIの表面値(表面におけるエネルギー強さ)、ま
たkは吸収率とする。吸収率kの調節と一定量のビーム
エネルギー量を吸収する層の厚さの調節によって、この
工程中に吸収されるエネルギーを全体的に制御する事が
できる。
A few properties have been identified which improve the performance of powder 22. First, the absorption energy of the powder can be controlled by adding a pigment such as carbon black. By adjusting the concentration and composition of the additive, the absorption rate k of the powder
Can be controlled. Generally, the energy absorption rate is governed by the following exponential decay relation. I (z) = Io exp (kZ) where I (z) is the optimum absorbed energy intensity in the powder at a perpendicular distance z to the surface (powder per unit area),
Io is the surface value of I (energy intensity on the surface), and k is the absorptance. By adjusting the absorptance k and adjusting the thickness of the layer that absorbs a certain amount of beam energy, the energy absorbed during this step can be controlled entirely.

【0029】粉末の他の重要な特性は、粒子のアスペク
ト比(すなわち粒子の最大寸法と最小寸法の比)であ
る。すなわち、ある範囲のアスペクト比を有する粒子
は、部品の収縮中に湾曲する傾向がある。低いアスペク
ト比を有する粒子、すなわち殆んど球形の粒子の場合、
部品の収縮はより三次元的となり、より大きな湾曲を生
じる。高いアスペクト比を有する粒子(例えばフレーク
状またはロッド状)の粒子を使用する場合、収縮は主と
して垂直方向に生じ、部品の湾曲度を減少させまたは除
去する。高いアスペクト比の粒子はより大きな結合自由
度を有するものと考えられ、粒子間接触は優先的に水平
面に配向されて、収縮は主として垂直方向に生じる。
Another important property of the powder is the aspect ratio of the particles (ie the ratio of the maximum size to the minimum size of the particles). That is, particles having a range of aspect ratios tend to bend during the shrinking of the part. For particles with a low aspect ratio, i.e. almost spherical particles,
The shrinkage of the part becomes more three-dimensional, resulting in greater curvature. When using particles with a high aspect ratio (eg, flakes or rods), shrinkage occurs primarily in the vertical direction, reducing or eliminating the curvature of the part. High aspect ratio particles are believed to have greater bonding degrees of freedom, with interparticle contacts preferentially oriented in the horizontal plane and shrinkage predominantly in the vertical direction.

【0030】[0030]

【実施例】図6と図7に本発明の粉末を粉末層として分
与し形成する装置の例を示す。分与機構114は、製造
中の部品を乱す事なく目標区域102の中において制御
された平坦な粉末層を形成させる事を見出した。秤量さ
れた粉末量106が目標区域102の末端110に堆積
される。粉末が分与された時にドラム116を末端11
0から移動させる。図7に図示のように、粉末が山状に
分与された後、プレート130とバー120(および付
属の機構)が垂直に上昇される。プレート130がホッ
パ104の方に移動して、ドラム116を末端110に
沿った粉末の山に隣接する位置にもってくる。そこでド
ラム116を下降させて粉末の山と接触させ、目標区域
102に沿って水平方向に移動させて、粉末の山を平坦
な層状に広げる。もちろん、テーブル128に対するプ
レート130の正確な位置を制御する事ができるので、
ドラム116と目標区域102の間隔が正確に制御され
て、粉末層に所望の厚さを与える事ができる。好ましく
は、ドラム116と目標区域102との間隔は一定であ
って、平行運動を生じるが、これ以外の間隔オプション
も可能である。
EXAMPLE FIGS. 6 and 7 show an example of an apparatus for dispensing and forming the powder of the present invention as a powder layer. It has been found that the dispensing mechanism 114 forms a controlled flat powder layer in the target area 102 without disturbing the parts being manufactured. A weighed amount of powder 106 is deposited at the end 110 of the target area 102. When the powder is dispensed, the drum 116 is moved to the end 11
Move from 0. After the powder is dispensed in a pile, as shown in FIG. 7, the plate 130 and bar 120 (and associated mechanism) are raised vertically. The plate 130 moves toward the hopper 104 to bring the drum 116 into position adjacent the pile of powder along the end 110. There, the drum 116 is lowered into contact with the powder peaks and moved horizontally along the target area 102 to spread the powder peaks into a flat layer. Of course, since it is possible to control the exact position of the plate 130 with respect to the table 128,
The distance between the drum 116 and the target area 102 can be precisely controlled to give the powder layer the desired thickness. Preferably, the spacing between the drum 116 and the target area 102 is constant, resulting in a parallel movement, although other spacing options are possible.

【0031】ドラム116が目標区域102に沿って水
平に末端110から他端112まで移動される際に、モ
ータ118によって、ドラム116を逆回転させる。図
6に図示のように「逆回転(conuter−rota
tion)」とは、ドラム116が目標区域102に沿
って水平に移動する方向Mに対して逆方向Rに回転され
る事を意味する。
A motor 118 causes the drum 116 to rotate in reverse as the drum 116 is moved horizontally along the target area 102 from the distal end 110 to the other end 112. As shown in FIG. 6, "reverse rotation (computer-rota)
“Tion)” means that the drum 116 is rotated in the opposite direction R with respect to the direction M of horizontal movement along the target area 102.

【0032】さらに詳しくは、図6においてドラム11
6は粉末の山106の後端160と接触して高速で逆回
転される。粉末に対するドラムの機械的作用が粉末を運
動方向Mに放出するので、放出された粒子が粉末の山の
先端区域162に落下する。図6に図示のように、ドラ
ム116の背後に(ドラム116と末端110との間
に)平滑な平坦粉末層164が残される。
More specifically, the drum 11 in FIG.
6 contacts the rear end 160 of the powder pile 106 and is rotated in reverse at high speed. The mechanical action of the drum on the powder ejects the powder in the direction of movement M, so that the ejected particles fall into the tip area 162 of the powder pile. A smooth flat powder layer 164 is left behind the drum 116 (between the drum 116 and the end 110) as shown in FIG.

【0033】また図6は、粉末106が先に焼結された
粉末166あるいは焼結されていない粉末168を攪乱
する事なく、目標区域上に分布されうる事を示す。すな
わち、ドラム116は、先に形成された層に対して剪断
作用を加える事なくまた製造中の製品を攪乱する事な
く、目標区域に沿って移動される。このような剪断作用
がないので、焼結された粒子166と非焼結粒子168
とを含む目標区域の脆い基層上に平滑な粉末層106を
分布させる事ができる。
FIG. 6 also shows that the powder 106 can be distributed over the target area without disturbing the previously sintered powder 166 or the unsintered powder 168. That is, the drum 116 is moved along the target area without shearing the previously formed layer or disturbing the product being manufactured. Since there is no such shearing action, the sintered particles 166 and the non-sintered particles 168 are
A smooth powder layer 106 can be distributed over the fragile base layer in the target area including and.

【0034】[0034]

【作用・効果】図6から明らかなように、本発明によれ
ば、ドラムが逆方向回転を行うことから、ドラムは前面
の粉末の山106の後端160と接触して接触部分の粉
末を噴きとばし、粉末の山の先端部分162に落下させ
る。このように本発明では、ドラム前面で接触する粒子
だけが上方に持ち上げられ山の先端にとばされて放出さ
れる。ドラムと接触する粉末のみが動き、それ以外の粉
末への影響はない。とくにすでに形成された平坦粉末層
164への影響はない。したがって、形成された平坦面
へ剪断力が加えられることがない。粉末が変質、変形し
やすいものであっても問題はおこらないのである。
As is apparent from FIG. 6, according to the present invention, since the drum rotates in the reverse direction, the drum comes into contact with the rear end 160 of the powder ridge 106 on the front surface to remove the powder at the contact portion. It is blown off and dropped onto the tip portion 162 of the powder pile. Thus, in the present invention, only the particles that come into contact with the front surface of the drum are lifted upward, and are skipped and ejected at the tip of the mountain. Only the powder that comes into contact with the drum moves, and the other powders are not affected. In particular, there is no effect on the already formed flat powder layer 164. Therefore, no shearing force is applied to the formed flat surface. No problem occurs even if the powder is easily altered or deformed.

【0035】選択的レーザ焼結法の場合、ナイロンのよ
うなポリマーが使用されることが多いが、このような場
合、凝集、粘着が起こりやすい。ここで剪断力のような
力が働くと、粒子の塊状化がおこり平坦層に悪い影響を
与えることになるが、本発明ではそのような欠点は避け
られる。
In the case of the selective laser sintering method, a polymer such as nylon is often used, but in such a case, aggregation and sticking are likely to occur. When a force such as a shearing force acts here, the particles agglomerate and adversely affect the flat layer, but such defects are avoided in the present invention.

【0036】この外、本発明は、基礎体がこわれやすい
表面である場合にもすぐれた効果を奏することは明らか
であろう。
In addition to the above, it will be apparent that the present invention exerts an excellent effect even when the base body has a fragile surface.

【0037】選択的レーザ焼結法では、複雑な形状の部
品を比較的容易に製造する事ができる。当業者には明ら
かなように、図3に示す部品は通常の機械加工法によっ
て製造する事が困難である。特にこの部品が比較的小寸
法の場合、キャビティ82と柱84を工作機械によって
製造する事は不可能ではないまでも困難である。このよ
うな製造法を可能にする上で本発明はきわめて有用であ
る。
The selective laser sintering method allows relatively complicated parts to be manufactured relatively easily. Those skilled in the art will appreciate that the components shown in FIG. 3 are difficult to manufacture by conventional machining methods. It is difficult, if not impossible, to manufacture cavities 82 and posts 84 by machine tools, especially if the parts are of relatively small dimensions. The present invention is extremely useful in enabling such a manufacturing method.

【図面の簡単な説明】[Brief description of drawings]

【図1】選択的・指向エネルギービーム焼結法に使用す
る装置の分解斜視図、
FIG. 1 is an exploded perspective view of an apparatus used for a selective and directed energy beam sintering method,

【図2】選択的・指向エネルギービーム焼結法によって
製造される部品の一部および目標区域に対するレーザビ
ームのラスタパタンを示す斜視図、
FIG. 2 is a perspective view showing a laser beam raster pattern for a part and a target area of a component manufactured by a selective directed energy beam sintering method;

【図3】選択的・指向エネルギービーム焼結法によって
製造される部品の一例を示す斜視図、
FIG. 3 is a perspective view showing an example of a component manufactured by a selective and directed energy beam sintering method,

【図4】図3の部品の部分断面図、4 is a partial cross-sectional view of the component of FIG. 3,

【図5】図3の7−7線に沿ってとられた断面図、5 is a cross-sectional view taken along line 7-7 of FIG. 3,

【図6】本発明の粉末を分与する装置の図式的垂直断面
図、
FIG. 6 is a schematic vertical cross-sectional view of an apparatus for dispensing powder of the present invention,

【図7】本発明の粉末分与装置の説明的斜視図、FIG. 7 is an explanatory perspective view of the powder dispensing apparatus of the present invention,

【図8】選択的・指向エネルギービーム焼結法における
粉末温度調整装置の図式的説明図。
FIG. 8 is a schematic explanatory view of a powder temperature adjusting device in a selective directed energy beam sintering method.

フロントページの続き (72)発明者 デッカード,カール アール アメリカ合衆国テキサス州、オースチ ン、レイク、オースチン、ブールバー ド、ユー、ティー、エム、エッチ、ピ ー、ナンバー、94 (56)参考文献 特開 昭50−21906(JP,A)Front Page Continuation (72) Inventor Deckard, Carl Earl, Texas, USA, Austin, Lake, Austin, Boulevard, You, Tee, M, Etch, Pee, Number, 94 (56) References -21906 (JP, A)

Claims (16)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一つの区域の一端の粉末の山を分与し、
この区域中に粉末層として形成する装置において、 ドラム手段と、 前記の区域と前記ドラムとの間に所定の間隔をもって、
前記区域の一端から他端までドラムを移動させる手段
と、 前記区域の一端から他端までのドラムの移動方向と逆方
向に前記ドラムを回転させる手段とを含み、 前記ドラムは、逆回転されて前記一端から他端まで移動
される時に、前記粉末の山と接触して粉末を前記運動方
向に放出し、このドラム手段と前記一端の間に、近似的
に前記所望の間隔の厚さを有する粉末層を残すように成
された粉末層形成装置。
1. Dispensing a pile of powder at one end of an area,
In a device for forming a powder layer in this area, a drum means and a predetermined distance between the area and the drum,
Means for moving the drum from one end to the other end of the zone, and means for rotating the drum in a direction opposite to the direction of movement of the drum from one end to the other end of the zone, the drum being rotated in reverse When moving from the one end to the other end, it contacts the pile of powder to expel the powder in the direction of movement, and has approximately the desired spacing thickness between the drum means and the one end. A powder layer forming device configured to leave a powder layer.
【請求項2】 前記の所望の間隔が一定である請求項1
に記載の装置。
2. The desired spacing is constant.
An apparatus according to claim 1.
【請求項3】 前記区域が平らであり、前記所望の間隔
が一定であり、ドラム手段が前記区域に対して平行に移
動するようにされている請求項1に記載の装置。
3. An apparatus according to claim 1, wherein said area is flat, said desired spacing is constant and said drum means is adapted to move parallel to said area.
【請求項4】 前記ドラム手段は実質的に均一な円形断
面を有する円筒体である請求項1に記載の装置。
4. The apparatus of claim 1 wherein said drum means is a cylinder having a substantially uniform circular cross section.
【請求項5】 前記円筒体が刻み付き外部表面を有する
請求項4に記載の装置。
5. The device of claim 4, wherein the cylinder has a knurled outer surface.
【請求項6】 前記一端に近接して前記粉末の山を堆積
する手段を含む請求項1に記載の装置。
6. The apparatus of claim 1, including means for depositing the powder pile proximate the one end.
【請求項7】 表面の一区域に粉末層を形成する方法に
おいて: 前記区域に近接した位置においてある量の粉末を供給
し; 前記ある量の粉末の位置の前の位置から前記区域を横切
ってドラムを移動させ; 前記区域を横切っての前記ドラムの移動の方向とは逆方
向にドラムを回転させ;そして、 該ドラムが前記区域を横切って移動する間にある量の粉
末を逆回転ドラムと接触させて、前記移動段階がなされ
た後前記区域上に粉末層が残されるようにする各段階を
含む粉末層形成方法。
7. A method of forming a powder layer on an area of a surface, comprising: supplying a quantity of powder at a location proximate to the area; and crossing the area from a position prior to the location of the quantity of powder. Moving the drum; rotating the drum in a direction opposite to the direction of movement of the drum across the zone; and transferring a quantity of powder to the counter rotating drum during movement of the drum across the zone. A method of forming a powder layer, comprising the steps of contacting to leave a powder layer on the area after the moving step.
【請求項8】 前記移動段階の間、前記区域から所望の
間隔を保ってドラムを維持するようにする請求項7に記
載の方法。
8. The method of claim 7, wherein the drum is maintained at a desired distance from the zone during the moving step.
【請求項9】 前記所望の間隔は、前記区域から一定の
距離にあり、かつ前記区域は平らである請求項8に記載
の方法。
9. The method of claim 8, wherein the desired spacing is a constant distance from the zone and the zone is flat.
【請求項10】 前記ドラムの表面が粗い肌理を有する
請求項7に記載の方法。
10. The method of claim 7, wherein the surface of the drum has a rough texture.
【請求項11】 前記ドラムの表面が刻みが付けられた
ものである請求項7に記載の方法。
11. The method of claim 7, wherein the surface of the drum is knurled.
【請求項12】 前記供給工程が、前記区域に近接した
位置に粉末の山を堆積することから成る請求項7に記載
の方法。
12. The method of claim 7, wherein said feeding step comprises depositing a powder pile at a location proximate said area.
【請求項13】 前記粉末が焼結され得るものである請
求項7に記載の方法。
13. The method of claim 7, wherein the powder is capable of being sintered.
【請求項14】 前記粉末を含む前記表面の前記区域が
焼結された状態の部分と、非焼結状態の部分とを有する
請求項13に記載の方法。
14. The method of claim 13, wherein the area of the surface containing the powder has a portion in a sintered state and a portion in a non-sintered state.
【請求項15】 前記接触及び移動段階において、前記
ドラムと前記粉末との接触の結果として粉末が移動の方
向に射出させられる請求項7に記載の方法。
15. The method of claim 7, wherein in the contacting and moving step, powder is ejected in the direction of movement as a result of contact between the drum and the powder.
【請求項16】 前記供給段階が、前記区域に近接した
前記位置において、計量した量の粉末を供給することか
ら成る請求項7に記載の方法。
16. The method of claim 7, wherein said feeding step comprises feeding a metered amount of powder at said location proximate said area.
JP5083522A 1986-10-17 1993-04-09 Method and apparatus for forming powder as a powder layer Expired - Lifetime JP2542783B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US06/920,580 US4863538A (en) 1986-10-17 1986-10-17 Method and apparatus for producing parts by selective sintering
US920580 1986-10-17
US105316 1986-10-17
US10531687A 1987-10-05 1987-10-05

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP63500437 Division

Publications (2)

Publication Number Publication Date
JPH06192702A JPH06192702A (en) 1994-07-12
JP2542783B2 true JP2542783B2 (en) 1996-10-09

Family

ID=26802457

Family Applications (3)

Application Number Title Priority Date Filing Date
JP63500437A Expired - Lifetime JP2620353B2 (en) 1986-10-17 1987-10-14 Method of manufacturing parts by selective sintering
JP5083522A Expired - Lifetime JP2542783B2 (en) 1986-10-17 1993-04-09 Method and apparatus for forming powder as a powder layer
JP7295716A Expired - Lifetime JP2800937B2 (en) 1986-10-17 1995-11-14 Equipment for manufacturing parts by selective sintering

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP63500437A Expired - Lifetime JP2620353B2 (en) 1986-10-17 1987-10-14 Method of manufacturing parts by selective sintering

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP7295716A Expired - Lifetime JP2800937B2 (en) 1986-10-17 1995-11-14 Equipment for manufacturing parts by selective sintering

Country Status (15)

Country Link
US (5) US5132143A (en)
EP (3) EP0542729B1 (en)
JP (3) JP2620353B2 (en)
KR (1) KR960008015B1 (en)
AT (3) ATE138294T1 (en)
AU (3) AU603412B2 (en)
BG (1) BG47343A3 (en)
BR (1) BR8707510A (en)
DE (4) DE3751819T2 (en)
DK (1) DK329888A (en)
FI (1) FI84329C (en)
HK (3) HK194796A (en)
HU (1) HUT56018A (en)
MC (1) MC1931A1 (en)
WO (1) WO1988002677A2 (en)

Families Citing this family (446)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4665492A (en) * 1984-07-02 1987-05-12 Masters William E Computer automated manufacturing process and system
US5296062A (en) * 1986-10-17 1994-03-22 The Board Of Regents, The University Of Texas System Multiple material systems for selective beam sintering
EP0542729B1 (en) * 1986-10-17 1996-05-22 Board Of Regents, The University Of Texas System Method and apparatus for producing parts by selective sintering
US5155324A (en) * 1986-10-17 1992-10-13 Deckard Carl R Method for selective laser sintering with layerwise cross-scanning
US4944817A (en) * 1986-10-17 1990-07-31 Board Of Regents, The University Of Texas System Multiple material systems for selective beam sintering
US5147587A (en) * 1986-10-17 1992-09-15 Board Of Regents, The University Of Texas System Method of producing parts and molds using composite ceramic powders
US5076869A (en) * 1986-10-17 1991-12-31 Board Of Regents, The University Of Texas System Multiple material systems for selective beam sintering
IL92428A (en) * 1989-02-08 1992-12-01 Gen Electric Fabrication of components by layered deposition
US5156697A (en) * 1989-09-05 1992-10-20 Board Of Regents, The University Of Texas System Selective laser sintering of parts by compound formation of precursor powders
AU643700B2 (en) * 1989-09-05 1993-11-25 University Of Texas System, The Multiple material systems and assisted powder handling for selective beam sintering
EP0714725B1 (en) * 1989-09-05 1997-12-10 The Board Of Regents, The University Of Texas System Multiple material systems and assisted powder handling for selective beam sintering
US5182170A (en) * 1989-09-05 1993-01-26 Board Of Regents, The University Of Texas System Method of producing parts by selective beam interaction of powder with gas phase reactant
US5053090A (en) * 1989-09-05 1991-10-01 Board Of Regents, The University Of Texas System Selective laser sintering with assisted powder handling
JP2798280B2 (en) * 1989-10-31 1998-09-17 龍三 渡辺 Temperature gradient addition sintering method and apparatus
JP2798281B2 (en) * 1989-10-31 1998-09-17 龍三 渡辺 Particle array laser sintering method and apparatus
US5017317A (en) * 1989-12-04 1991-05-21 Board Of Regents, The Uni. Of Texas System Gas phase selective beam deposition
US5135695A (en) * 1989-12-04 1992-08-04 Board Of Regents The University Of Texas System Positioning, focusing and monitoring of gas phase selective beam deposition
US5387380A (en) * 1989-12-08 1995-02-07 Massachusetts Institute Of Technology Three-dimensional printing techniques
AU9065991A (en) * 1990-11-09 1992-06-11 Dtm Corporation Controlled gas flow for selective laser sintering
US5252264A (en) * 1991-11-08 1993-10-12 Dtm Corporation Apparatus and method for producing parts with multi-directional powder delivery
US5342919A (en) * 1992-11-23 1994-08-30 Dtm Corporation Sinterable semi-crystalline powder and near-fully dense article formed therewith
US5648450A (en) * 1992-11-23 1997-07-15 Dtm Corporation Sinterable semi-crystalline powder and near-fully dense article formed therein
US5304329A (en) * 1992-11-23 1994-04-19 The B. F. Goodrich Company Method of recovering recyclable unsintered powder from the part bed of a selective laser-sintering machine
US5990268A (en) * 1992-11-23 1999-11-23 Dtm Corporation Sinterable semi-crystalline powder and near-fully dense article formed therewith
US5527877A (en) * 1992-11-23 1996-06-18 Dtm Corporation Sinterable semi-crystalline powder and near-fully dense article formed therewith
US5775402A (en) * 1995-10-31 1998-07-07 Massachusetts Institute Of Technology Enhancement of thermal properties of tooling made by solid free form fabrication techniques
US5430666A (en) * 1992-12-18 1995-07-04 Dtm Corporation Automated method and apparatus for calibration of laser scanning in a selective laser sintering apparatus
US5352405A (en) * 1992-12-18 1994-10-04 Dtm Corporation Thermal control of selective laser sintering via control of the laser scan
DE4308189C2 (en) * 1993-03-15 1998-06-10 Eos Electro Optical Syst Method and device for producing a three-dimensional object
SE504560C2 (en) * 1993-05-12 1997-03-03 Ralf Larson Method and apparatus for the layered preparation of bodies from powder
DE4332982A1 (en) * 1993-09-28 1995-03-30 Eos Electro Optical Syst Method and device for producing a three-dimensional object
US5393482A (en) * 1993-10-20 1995-02-28 United Technologies Corporation Method for performing multiple beam laser sintering employing focussed and defocussed laser beams
US6209420B1 (en) 1994-03-16 2001-04-03 Baker Hughes Incorporated Method of manufacturing bits, bit components and other articles of manufacture
US6073518A (en) * 1996-09-24 2000-06-13 Baker Hughes Incorporated Bit manufacturing method
US5433280A (en) * 1994-03-16 1995-07-18 Baker Hughes Incorporated Fabrication method for rotary bits and bit components and bits and components produced thereby
US5839329A (en) * 1994-03-16 1998-11-24 Baker Hughes Incorporated Method for infiltrating preformed components and component assemblies
DE4410046C2 (en) * 1994-03-23 2000-11-30 Eos Electro Optical Syst Method and material for producing a three-dimensional object by sintering
DE4416901A1 (en) * 1994-05-13 1995-11-16 Eos Electro Optical Syst Prodn of three=dimensional objects
EP0758952B1 (en) * 1994-05-13 1998-04-08 EOS GmbH ELECTRO OPTICAL SYSTEMS Process and device for manufacturing three-dimensional objects
DE4416988A1 (en) * 1994-05-13 1995-11-16 Eos Electro Optical Syst Three=dimensional object mfr and process equipment
JP3215881B2 (en) * 1994-05-27 2001-10-09 イーオーエス ゲゼルシャフト ミット ベシュレンクテル ハフツング イレクトロ オプティカル システムズ Methods used for casting technology
US5639402A (en) * 1994-08-08 1997-06-17 Barlow; Joel W. Method for fabricating artificial bone implant green parts
SE9403165D0 (en) * 1994-09-21 1994-09-21 Electrolux Ab Ways to sinter objects
US5611883A (en) * 1995-01-09 1997-03-18 Board Of Regents, The University Of Texas System Joining ceramics and attaching fasteners to ceramics by gas phase selective beam deposition
BR9607005A (en) * 1995-02-01 1997-10-28 3D Systems Inc Fast coating of three-dimensional objects formed on a cross-sectional base
DE19514740C1 (en) * 1995-04-21 1996-04-11 Eos Electro Optical Syst Appts. for producing three-dimensional objects by laser sintering
DE19515165C2 (en) * 1995-04-25 1997-03-06 Eos Electro Optical Syst Device for producing an object using stereolithography
DE19516972C1 (en) 1995-05-09 1996-12-12 Eos Electro Optical Syst Device for producing a three-dimensional object by means of laser sintering
AUPN448995A0 (en) * 1995-07-28 1995-08-24 Commonwealth Scientific And Industrial Research Organisation Pulsed laser cladding arrangement
US5837960A (en) * 1995-08-14 1998-11-17 The Regents Of The University Of California Laser production of articles from powders
DE29513026U1 (en) * 1995-08-16 1995-10-05 Eos Electro Optical Syst Device for producing an object in layers by means of laser sintering
US5640667A (en) * 1995-11-27 1997-06-17 Board Of Regents, The University Of Texas System Laser-directed fabrication of full-density metal articles using hot isostatic processing
US5817206A (en) * 1996-02-07 1998-10-06 Dtm Corporation Selective laser sintering of polymer powder of controlled particle size distribution
US5794703A (en) * 1996-07-03 1998-08-18 Ctes, L.C. Wellbore tractor and method of moving an item through a wellbore
US6046426A (en) * 1996-07-08 2000-04-04 Sandia Corporation Method and system for producing complex-shape objects
DE69702067T2 (en) * 1996-09-03 2001-01-11 Christian Stegmann METHOD FOR DISPLAYING A 2-D DESIGN ON A 3-D OBJECT
US7332537B2 (en) 1996-09-04 2008-02-19 Z Corporation Three dimensional printing material system and method
US5902441A (en) * 1996-09-04 1999-05-11 Z Corporation Method of three dimensional printing
US5578227A (en) * 1996-11-22 1996-11-26 Rabinovich; Joshua E. Rapid prototyping system
US6007318A (en) 1996-12-20 1999-12-28 Z Corporation Method and apparatus for prototyping a three-dimensional object
US6989115B2 (en) * 1996-12-20 2006-01-24 Z Corporation Method and apparatus for prototyping a three-dimensional object
US7037382B2 (en) * 1996-12-20 2006-05-02 Z Corporation Three-dimensional printer
US6429402B1 (en) 1997-01-24 2002-08-06 The Regents Of The University Of California Controlled laser production of elongated articles from particulates
JPH10211658A (en) * 1997-01-31 1998-08-11 Toyota Motor Corp Powdery particle laminate shaping method and apparatus therefor
JP3235781B2 (en) * 1997-02-06 2001-12-04 トヨタ自動車株式会社 Spraying method and apparatus in additive manufacturing
GB9702658D0 (en) * 1997-02-10 1997-04-02 Imperial College Fabrication method and apparatus
US6110411A (en) 1997-03-18 2000-08-29 Clausen; Christian Henning Laser sinterable thermoplastic powder
DE19721595B4 (en) * 1997-05-23 2006-07-06 Eos Gmbh Electro Optical Systems Material for the direct production of metallic functional patterns
US6085122A (en) * 1997-05-30 2000-07-04 Dtm Corporation End-of-vector laser power control in a selective laser sintering system
DE19723892C1 (en) * 1997-06-06 1998-09-03 Rainer Hoechsmann Method for producing components by build-up technology
US6355086B2 (en) 1997-08-12 2002-03-12 Rolls-Royce Corporation Method and apparatus for making components by direct laser processing
US6203861B1 (en) 1998-01-12 2001-03-20 University Of Central Florida One-step rapid manufacturing of metal and composite parts
FR2774931B1 (en) 1998-02-19 2000-04-28 Arnaud Hory METHOD OF RAPID PROTOTYPING BY LASER POWDER SINTERING AND ASSOCIATED DEVICE
DE19821810C1 (en) * 1998-05-15 2000-03-09 Atz Evus Process for the production of metallic and non-metallic functional models with the help of rapid prototyping / tooling processes or other processes and alternative process gas supply
JP3446618B2 (en) * 1998-08-26 2003-09-16 松下電工株式会社 Surface finishing method for metal powder sintered parts
DE19846478C5 (en) 1998-10-09 2004-10-14 Eos Gmbh Electro Optical Systems Laser-sintering machine
US7343960B1 (en) 1998-11-20 2008-03-18 Rolls-Royce Corporation Method and apparatus for production of a cast component
US6932145B2 (en) 1998-11-20 2005-08-23 Rolls-Royce Corporation Method and apparatus for production of a cast component
DE19853814B4 (en) * 1998-11-21 2008-01-31 Ederer, Ingo, Dr. Method for producing components by application technology
DE19853834A1 (en) * 1998-11-21 2000-05-31 Ingo Ederer Production of casting molds comprises depositing particulate material on support, applying binder and hardener to form solidified structure in selected region, and removing solidified structure
DE19853978C1 (en) * 1998-11-23 2000-05-25 Fraunhofer Ges Forschung Apparatus for selective laser smelting comprises a roller that moves over the processing surface using an element to distribute powder
US6454030B1 (en) 1999-01-25 2002-09-24 Baker Hughes Incorporated Drill bits and other articles of manufacture including a layer-manufactured shell integrally secured to a cast structure and methods of fabricating same
US6200514B1 (en) 1999-02-09 2001-03-13 Baker Hughes Incorporated Process of making a bit body and mold therefor
FR2790418B1 (en) 1999-03-01 2001-05-11 Optoform Sarl Procedes De Prot RAPID PROTOTYPING PROCESS ALLOWING THE USE OF PASTY MATERIALS, AND DEVICE FOR IMPLEMENTING SAME
DE19918981A1 (en) * 1999-04-27 2000-11-02 Bayer Ag Process and material for the production of model bodies
JP3584782B2 (en) * 1999-05-21 2004-11-04 松下電工株式会社 Three-dimensional model manufacturing method
JP3551838B2 (en) * 1999-05-26 2004-08-11 松下電工株式会社 Manufacturing method of three-dimensional shaped object
DE60020725T2 (en) * 1999-10-08 2006-03-23 Rapid Design Technologies (Pty) Ltd. MANUFACTURE OF A FORM
WO2001034371A2 (en) 1999-11-05 2001-05-17 Z Corporation Material systems and methods of three-dimensional printing
JP3446694B2 (en) * 1999-11-25 2003-09-16 松下電工株式会社 Powder material for manufacturing a three-dimensional shaped object, a method for producing a three-dimensional shaped object, and a three-dimensional shaped object
US6730998B1 (en) * 2000-02-10 2004-05-04 Micron Technology, Inc. Stereolithographic method for fabricating heat sinks, stereolithographically fabricated heat sinks, and semiconductor devices including same
US20010050031A1 (en) * 2000-04-14 2001-12-13 Z Corporation Compositions for three-dimensional printing of solid objects
WO2001091924A1 (en) * 2000-06-01 2001-12-06 Board Of Regents, The University Of Texas System Direct selective laser sintering of metals
US6682688B1 (en) 2000-06-16 2004-01-27 Matsushita Electric Works, Ltd. Method of manufacturing a three-dimensional object
US6432752B1 (en) 2000-08-17 2002-08-13 Micron Technology, Inc. Stereolithographic methods for fabricating hermetic semiconductor device packages and semiconductor devices including stereolithographically fabricated hermetic packages
US20020048396A1 (en) * 2000-09-20 2002-04-25 Bewley Wilbur C. Apparatus and method for three-dimensional scanning of a subject, fabrication of a natural color model therefrom, and the model produced thereby
EP1324842B1 (en) 2000-09-25 2007-12-19 Voxeljet Technology GmbH Method for producing a part using a deposition technique
DE10047615A1 (en) * 2000-09-26 2002-04-25 Generis Gmbh Swap bodies
DE10047614C2 (en) * 2000-09-26 2003-03-27 Generis Gmbh Device for building up models in layers
JP4240823B2 (en) 2000-09-29 2009-03-18 日本冶金工業株式会社 Method for producing Fe-Ni permalloy alloy
DE10049043A1 (en) * 2000-10-04 2002-05-02 Generis Gmbh Process for unpacking molded articles embedded in unbound particulate material
JP3446733B2 (en) * 2000-10-05 2003-09-16 松下電工株式会社 Method and apparatus for manufacturing three-dimensional shaped object
TW506868B (en) 2000-10-05 2002-10-21 Matsushita Electric Works Ltd Method of and apparatus for making a three-dimensional object
CN1476362A (en) * 2000-11-27 2004-02-18 �¼��¹�����ѧ Method and apparatus for creating three-dimensional metal part using high-temp direct laser melting
US6376148B1 (en) 2001-01-17 2002-04-23 Nanotek Instruments, Inc. Layer manufacturing using electrostatic imaging and lamination
DE10108612C1 (en) * 2001-02-22 2002-06-27 Daimler Chrysler Ag Selective laser sintering of a powder used as a rapid prototyping process comprises adding the powder to an encapsulated chamber, and forming a powder cake
US20020147521A1 (en) * 2001-03-14 2002-10-10 Milling Systems And Concepts Pte Ltd. Prototype production system and method
DE10117875C1 (en) 2001-04-10 2003-01-30 Generis Gmbh Method, device for applying fluids and use of such a device
US6780368B2 (en) 2001-04-10 2004-08-24 Nanotek Instruments, Inc. Layer manufacturing of a multi-material or multi-color 3-D object using electrostatic imaging and lamination
JP3446748B2 (en) * 2001-04-24 2003-09-16 松下電工株式会社 Manufacturing method of three-dimensional shaped object and molding die
GB2378151A (en) 2001-07-31 2003-02-05 Dtm Corp Fabricating a three-dimensional article from powder
GB2378150A (en) 2001-07-31 2003-02-05 Dtm Corp Fabricating a three-dimensional article from powder
FR2830206B1 (en) * 2001-09-28 2004-07-23 Corning Inc MICROFLUIDIC DEVICE AND ITS MANUFACTURE
US6627123B2 (en) * 2002-02-28 2003-09-30 Corning Incorporated Method for selectively plugging a honeycomb
JP3405357B1 (en) * 2002-04-23 2003-05-12 松下電工株式会社 Manufacturing method of metal powder sintered parts
DE10216013B4 (en) * 2002-04-11 2006-12-28 Generis Gmbh Method and device for applying fluids
DE10222167A1 (en) * 2002-05-20 2003-12-04 Generis Gmbh Device for supplying fluids
DE10224981B4 (en) 2002-06-05 2004-08-19 Generis Gmbh Process for building models in layers
US6986654B2 (en) * 2002-07-03 2006-01-17 Therics, Inc. Apparatus, systems and methods for use in three-dimensional printing
CA2492605C (en) 2002-07-23 2009-03-24 University Of Southern California Metallic parts fabrication using selective inhibition of sintering (sis)
US20040021256A1 (en) * 2002-07-25 2004-02-05 Degrange Jeffrey E. Direct manufacture of aerospace parts
US7087109B2 (en) * 2002-09-25 2006-08-08 Z Corporation Three dimensional printing material system and method
DE10344902B4 (en) 2002-09-30 2009-02-26 Matsushita Electric Works, Ltd., Kadoma Method for producing a three-dimensional object
DE10344901B4 (en) 2002-09-30 2006-09-07 Matsushita Electric Works, Ltd., Kadoma Method for producing a three-dimensional sintered product
EP1415706B1 (en) * 2002-10-29 2017-07-12 Corning Incorporated Coated microstructure and method of manufacture
US20040084814A1 (en) * 2002-10-31 2004-05-06 Boyd Melissa D. Powder removal system for three-dimensional object fabricator
EP1418013B1 (en) 2002-11-08 2005-01-19 Howmedica Osteonics Corp. Laser-produced porous surface
US20060147332A1 (en) 2004-12-30 2006-07-06 Howmedica Osteonics Corp. Laser-produced porous structure
SE524421C2 (en) * 2002-12-19 2004-08-10 Arcam Ab Apparatus and method for making a three-dimensional product
US7342218B2 (en) * 2002-12-19 2008-03-11 Applied Materials, Israel, Ltd. Methods and systems for optical inspection of surfaces based on laser screening
SE524439C2 (en) * 2002-12-19 2004-08-10 Arcam Ab Apparatus and method for making a three-dimensional product
US20040152581A1 (en) * 2003-02-03 2004-08-05 Bardes Bruce Paul Ceramic article and method of manufacture therefor
US20040151935A1 (en) * 2003-02-03 2004-08-05 Robert Dzugan Co-continuous metal-ceramic article and method for manufacture thereof
DE112004000302B3 (en) 2003-02-25 2010-08-26 Panasonic Electric Works Co., Ltd., Kadoma-shi Method and device for producing a three-dimensional object
DE112004000301B4 (en) 2003-02-25 2010-05-20 Panasonic Electric Works Co., Ltd., Kadoma-shi Method and device for producing a three-dimensional object
JP4239652B2 (en) * 2003-03-31 2009-03-18 パナソニック電工株式会社 Surface finishing method for metal powder sintered parts
WO2004089851A1 (en) * 2003-04-04 2004-10-21 Siemens Aktiengesellschaft Method for producing ceramic objects
US6815636B2 (en) * 2003-04-09 2004-11-09 3D Systems, Inc. Sintering using thermal image feedback
JP2004330280A (en) * 2003-05-12 2004-11-25 Ishikawajima Harima Heavy Ind Co Ltd Heat-resistant ceramic core having three-dimensional shape and method for producing cast product using this core
WO2004113042A2 (en) 2003-05-21 2004-12-29 Z Corporation Thermoplastic powder material system for appearance models from 3d printing systems
WO2004106041A2 (en) * 2003-05-23 2004-12-09 Z Corporation Apparatus and methods for 3d printing
US20100174392A1 (en) * 2003-06-10 2010-07-08 Fink Jeffrey E Optimal dimensional and mechanical properties of laser sintered hardware by thermal analysis and parameter optimization
US20040254665A1 (en) * 2003-06-10 2004-12-16 Fink Jeffrey E. Optimal dimensional and mechanical properties of laser sintered hardware by thermal analysis and parameter optimization
US7807077B2 (en) * 2003-06-16 2010-10-05 Voxeljet Technology Gmbh Methods and systems for the manufacture of layered three-dimensional forms
DE10327272A1 (en) * 2003-06-17 2005-03-03 Generis Gmbh Method for the layered construction of models
GB0317387D0 (en) * 2003-07-25 2003-08-27 Univ Loughborough Method and apparatus for combining particulate material
WO2005023524A2 (en) * 2003-08-29 2005-03-17 Z Corporation Absorbent fillers for three-dimensional printing
SE527986C2 (en) 2003-09-17 2006-07-25 Particular Ab C O Norlen Metal powder blend for the production of precious metal products and products
SE527291C2 (en) * 2003-09-17 2006-02-07 Particular Ab Ways to make jewelry and other precious metal products with complex geometries
US7001672B2 (en) * 2003-12-03 2006-02-21 Medicine Lodge, Inc. Laser based metal deposition of implant structures
US7666522B2 (en) * 2003-12-03 2010-02-23 IMDS, Inc. Laser based metal deposition (LBMD) of implant structures
SE526191C2 (en) * 2003-12-19 2005-07-26 Sandvik Ab Egg-provided tools and methods for making them
DE102004008168B4 (en) 2004-02-19 2015-12-10 Voxeljet Ag Method and device for applying fluids and use of the device
DE102004012683A1 (en) * 2004-03-16 2005-10-06 Degussa Ag Laser sintering with lasers with a wavelength of 100 to 3000 nm
DE102004012682A1 (en) * 2004-03-16 2005-10-06 Degussa Ag Process for the production of three-dimensional objects by means of laser technology and application of an absorber by inkjet method
US7261542B2 (en) 2004-03-18 2007-08-28 Desktop Factory, Inc. Apparatus for three dimensional printing using image layers
US20050212694A1 (en) * 2004-03-26 2005-09-29 Chun-Ta Chen Data distribution method and system
US20050242473A1 (en) * 2004-04-28 2005-11-03 3D Systems, Inc. Uniform thermal distribution imaging
DE102004025374A1 (en) 2004-05-24 2006-02-09 Technische Universität Berlin Method and device for producing a three-dimensional article
US20050263934A1 (en) * 2004-05-28 2005-12-01 3D Systems, Inc. Single side feed parked powder wave heating with wave flattener
US20050263933A1 (en) * 2004-05-28 2005-12-01 3D Systems, Inc. Single side bi-directional feed for laser sintering
US6930278B1 (en) * 2004-08-13 2005-08-16 3D Systems, Inc. Continuous calibration of a non-contact thermal sensor for laser sintering
US7824001B2 (en) * 2004-09-21 2010-11-02 Z Corporation Apparatus and methods for servicing 3D printers
US7387359B2 (en) * 2004-09-21 2008-06-17 Z Corporation Apparatus and methods for servicing 3D printers
EP2402127B1 (en) * 2004-10-19 2018-07-18 Rolls-Royce Corporation Method associated with anisotropic shrink in sintered ceramic items
US7569174B2 (en) 2004-12-07 2009-08-04 3D Systems, Inc. Controlled densification of fusible powders in laser sintering
US7521652B2 (en) * 2004-12-07 2009-04-21 3D Systems, Inc. Controlled cooling methods and apparatus for laser sintering part-cake
JP4413851B2 (en) 2005-02-16 2010-02-10 旭有機材工業株式会社 Resin coated sand for laminated molds
US20060214335A1 (en) 2005-03-09 2006-09-28 3D Systems, Inc. Laser sintering powder recycle system
US7357629B2 (en) * 2005-03-23 2008-04-15 3D Systems, Inc. Apparatus and method for aligning a removable build chamber within a process chamber
US7296599B2 (en) * 2005-03-31 2007-11-20 3D Systems, Inc. Pneumatic powder transport system
US7790096B2 (en) * 2005-03-31 2010-09-07 3D Systems, Inc. Thermal management system for a removable build chamber for use with a laser sintering system
US7509725B2 (en) * 2005-04-22 2009-03-31 The Boeing Company Design methodology to maximize the application of direct manufactured aerospace parts
US7607225B2 (en) * 2005-04-22 2009-10-27 The Boeing Company Manufacture of flow optimized stiffener for improving rigidity of ducting
GB0511460D0 (en) 2005-06-06 2005-07-13 Univ Liverpool Process
WO2007010598A1 (en) * 2005-07-19 2007-01-25 Homs Engineering Inc. Process for producing stent and powder sintering apparatus
US20070290410A1 (en) * 2005-07-29 2007-12-20 Koo Joseph H Fire retardant polymer nanocomposites for laser sintering
KR100993923B1 (en) 2005-11-15 2010-11-11 파나소닉 전공 주식회사 Process of fabricating three-dimensional object
US7326377B2 (en) * 2005-11-30 2008-02-05 Honeywell International, Inc. Solid-free-form fabrication process and apparatus including in-process workpiece cooling
US20070126157A1 (en) * 2005-12-02 2007-06-07 Z Corporation Apparatus and methods for removing printed articles from a 3-D printer
US8728387B2 (en) * 2005-12-06 2014-05-20 Howmedica Osteonics Corp. Laser-produced porous surface
CA2572095C (en) 2005-12-30 2009-12-08 Howmedica Osteonics Corp. Laser-produced implants
US7819124B2 (en) 2006-01-31 2010-10-26 U.S. Smokeless Tobacco Company Tobacco articles and methods
US7918231B2 (en) * 2006-01-31 2011-04-05 U.S. Smokeless Tobacco Company Llc Tobacco articles and methods
US7913699B2 (en) 2006-01-31 2011-03-29 U.S. Smokeless Tobacco Company Llc Tobacco articles and methods
WO2007114895A2 (en) * 2006-04-06 2007-10-11 Z Corporation Production of three-dimensional objects by use of electromagnetic radiation
WO2007127899A2 (en) * 2006-04-28 2007-11-08 Halliburton Energy Services, Inc. Molds and methods of forming molds associated with manufacture of rotary drill bits and other downhole tools
EP2450177B1 (en) 2006-05-26 2013-05-08 3D Systems, Inc. Apparatus and methods for handling materials in a 3-d printer
US20070288021A1 (en) * 2006-06-07 2007-12-13 Howmedica Osteonics Corp. Flexible joint implant
US7951412B2 (en) * 2006-06-07 2011-05-31 Medicinelodge Inc. Laser based metal deposition (LBMD) of antimicrobials to implant surfaces
US10174810B2 (en) 2006-06-21 2019-01-08 Northeastern University Curved bearing contact system
WO2014153556A1 (en) * 2013-03-22 2014-09-25 Northeastern University Curved bearing contact system
DE102006030350A1 (en) 2006-06-30 2008-01-03 Voxeljet Technology Gmbh Method for constructing a layer body
DE102006038858A1 (en) * 2006-08-20 2008-02-21 Voxeljet Technology Gmbh Self-hardening material and method for layering models
US8147861B2 (en) * 2006-08-15 2012-04-03 Howmedica Osteonics Corp. Antimicrobial implant
US7905951B2 (en) 2006-12-08 2011-03-15 Z Corporation Three dimensional printing material system and method using peroxide cure
US8167999B2 (en) 2007-01-10 2012-05-01 3D Systems, Inc. Three-dimensional printing material system with improved color, article performance, and ease of use
US7968626B2 (en) 2007-02-22 2011-06-28 Z Corporation Three dimensional printing material system and method using plasticizer-assisted sintering
DE102007009273C5 (en) * 2007-02-26 2012-01-19 Daimler Ag Method and device for producing a three-dimensional article from a solidifiable material
US8475946B1 (en) 2007-03-20 2013-07-02 Bowling Green State University Ceramic article and method of manufacture
US8568649B1 (en) * 2007-03-20 2013-10-29 Bowling Green State University Three-dimensional printer, ceramic article and method of manufacture
WO2008138370A1 (en) * 2007-05-11 2008-11-20 Grenzebach Maschinenbau Gmbh Laser cutting device, in particular for the cross-cutting of webs of paper or film, with a scanning mirror arrangement and in particular a diverging lens and a focusing mirror
WO2009002544A1 (en) * 2007-06-26 2008-12-31 Rolls-Royce Corporation Prism mount for a laser deposition device
DE102007033434A1 (en) 2007-07-18 2009-01-22 Voxeljet Technology Gmbh Method for producing three-dimensional components
US10226919B2 (en) 2007-07-18 2019-03-12 Voxeljet Ag Articles and structures prepared by three-dimensional printing method
US8142886B2 (en) * 2007-07-24 2012-03-27 Howmedica Osteonics Corp. Porous laser sintered articles
DE102007049058A1 (en) 2007-10-11 2009-04-16 Voxeljet Technology Gmbh Material system and method for modifying properties of a plastic component
DE102007050679A1 (en) * 2007-10-21 2009-04-23 Voxeljet Technology Gmbh Method and device for conveying particulate material in the layered construction of models
DE102007050953A1 (en) 2007-10-23 2009-04-30 Voxeljet Technology Gmbh Device for the layered construction of models
EP2157566A1 (en) 2008-07-04 2010-02-24 BAE Systems PLC Improvements Relating to Sonar Baffles and Backings
EP2235718A2 (en) 2007-12-04 2010-10-06 BAE Systems PLC Improvements relating to sonar baffles and backings
GB2470875B (en) * 2008-04-11 2012-03-21 Gen Electric Combustor component and method of manufacture
US9188341B2 (en) 2008-04-11 2015-11-17 General Electric Company Fuel nozzle
DE102008022946B4 (en) 2008-05-09 2014-02-13 Fit Fruth Innovative Technologien Gmbh Apparatus and method for applying powders or pastes
DE102008002352A1 (en) 2008-06-11 2009-12-17 Evonik Röhm Gmbh Additive Fabrication - 3 D pressure
US8261632B2 (en) 2008-07-09 2012-09-11 Baker Hughes Incorporated Methods of forming earth-boring drill bits
GB0813241D0 (en) 2008-07-18 2008-08-27 Mcp Tooling Technologies Ltd Manufacturing apparatus and method
JP5250338B2 (en) * 2008-08-22 2013-07-31 パナソニック株式会社 Manufacturing method of three-dimensional shaped object, manufacturing apparatus thereof, and three-dimensional shaped object
JP5301217B2 (en) 2008-08-22 2013-09-25 パナソニック株式会社 Manufacturing method and manufacturing apparatus for three-dimensional shaped object
JP5186306B2 (en) 2008-08-25 2013-04-17 パナソニック株式会社 Manufacturing method of three-dimensional shaped object
US8206637B2 (en) * 2008-10-14 2012-06-26 The Boeing Company Geometry adaptive laser sintering system
DE102008058378A1 (en) * 2008-11-20 2010-05-27 Voxeljet Technology Gmbh Process for the layered construction of plastic models
DE102008058556A1 (en) * 2008-11-21 2010-05-27 Pröstler, Karl-Heinz, Dipl.-Ing. Dry coating process
US20100155985A1 (en) 2008-12-18 2010-06-24 3D Systems, Incorporated Apparatus and Method for Cooling Part Cake in Laser Sintering
CA2748604A1 (en) 2008-12-31 2010-07-08 U.S. Smokeless Tobacco Company Llc Smokeless tobacco articles
JP5555222B2 (en) 2009-02-24 2014-07-23 パナソニック株式会社 Manufacturing method of three-dimensional shaped object and three-dimensional shaped object obtained therefrom
US8981002B2 (en) 2009-03-19 2015-03-17 Stratasys, Inc. Biodegradable polymer compositions
ES2663554T5 (en) 2009-04-28 2022-05-06 Bae Systems Plc Layered additive manufacturing method
EP2260937A1 (en) 2009-06-12 2010-12-15 DSM IP Assets B.V. Device for processing and conditioning of material transported through the device
DE102009030113A1 (en) 2009-06-22 2010-12-23 Voxeljet Technology Gmbh Method and device for supplying fluids during the layering of models
US10000021B2 (en) 2009-06-23 2018-06-19 Panasonic Intellectual Property Management Co., Ltd. Method for manufacturing three-dimensional shaped object and three-dimensional shaped object obtained by the same
DE102009043597A1 (en) * 2009-09-25 2011-04-07 Siemens Aktiengesellschaft Method for producing a marked object
EP2492084B1 (en) 2009-10-21 2015-05-13 Panasonic Corporation Process for producing three-dimensionally shaped object and device for producing same
ES2390533T3 (en) * 2009-12-15 2012-11-13 Siemens Aktiengesellschaft Arrangement for depositing coating powder on a symmetrical rotating body
DE102010006939A1 (en) 2010-02-04 2011-08-04 Voxeljet Technology GmbH, 86167 Device for producing three-dimensional models
DE112011100572T5 (en) 2010-02-17 2012-11-29 Panasonic Corporation METHOD FOR PRODUCING A THREE-DIMENSIONAL FORM AND THREE-DIMENSIONAL MOLDING OBJECT
DE102010008960A1 (en) * 2010-02-23 2011-08-25 EOS GmbH Electro Optical Systems, 82152 Method and device for producing a three-dimensional object that is particularly suitable for use in microtechnology
US9573385B2 (en) 2010-03-18 2017-02-21 Koninklijke Philips N.V. Printing apparatus and method for controlling a printing apparatus
DE102010013733A1 (en) 2010-03-31 2011-10-06 Voxeljet Technology Gmbh Device for producing three-dimensional models
DE102010013732A1 (en) 2010-03-31 2011-10-06 Voxeljet Technology Gmbh Device for producing three-dimensional models
DE102010014969A1 (en) 2010-04-14 2011-10-20 Voxeljet Technology Gmbh Device for producing three-dimensional models
DE102010015451A1 (en) 2010-04-17 2011-10-20 Voxeljet Technology Gmbh Method and device for producing three-dimensional objects
US9346114B2 (en) 2010-04-28 2016-05-24 Aerojet Rocketdyne Of De, Inc. Substrate having laser sintered underplate
US8828116B2 (en) 2010-05-25 2014-09-09 Panasonic Corporation Metal powder for selective laser sintering, method for manufacturing three-dimensional shaped object by using the same, and three-dimensional shaped object obtained therefrom
JP5653657B2 (en) 2010-06-09 2015-01-14 パナソニック株式会社 Method for producing three-dimensional shaped object, three-dimensional shaped object to be obtained, and method for producing molded product
JP5584019B2 (en) 2010-06-09 2014-09-03 パナソニック株式会社 Manufacturing method of three-dimensional shaped object and three-dimensional shaped object obtained therefrom
DE102010027071A1 (en) 2010-07-13 2012-01-19 Voxeljet Technology Gmbh Device for producing three-dimensional models by means of layer application technology
US8221858B2 (en) 2010-07-22 2012-07-17 Stratasys, Inc. Three-dimensional parts having porous protective structures
JP2012031477A (en) * 2010-07-30 2012-02-16 Atect Corp Method for manufacturing hollow sintered compact
EP2415552A1 (en) 2010-08-05 2012-02-08 Siemens Aktiengesellschaft A method for manufacturing a component by selective laser melting
US8801990B2 (en) 2010-09-17 2014-08-12 Stratasys, Inc. Method for building three-dimensional models in extrusion-based additive manufacturing systems using core-shell semi-crystalline consumable filaments
US8920697B2 (en) 2010-09-17 2014-12-30 Stratasys, Inc. Method for building three-dimensional objects in extrusion-based additive manufacturing systems using core-shell consumable filaments
CH703972A1 (en) * 2010-10-29 2012-04-30 Obrist Engineering Gmbh Internal combustion engine.
RU2468920C2 (en) * 2010-12-16 2012-12-10 Государственное общеобразовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" Method of layer-by-layer fabrication of reinforced 3d articles
DE102010056346A1 (en) 2010-12-29 2012-07-05 Technische Universität München Method for the layered construction of models
DE102011007957A1 (en) 2011-01-05 2012-07-05 Voxeljet Technology Gmbh Device and method for constructing a layer body with at least one body limiting the construction field and adjustable in terms of its position
WO2012124828A1 (en) 2011-03-17 2012-09-20 パナソニック株式会社 Production method for three-dimensionally shaped object and three-dimensionally shaped object
US8568124B2 (en) 2011-04-21 2013-10-29 The Ex One Company Powder spreader
WO2012151494A2 (en) 2011-05-05 2012-11-08 Interfacial Solutions Ip, Llc Radiation curable polymers
CN102785453B (en) * 2011-05-18 2015-03-11 宸鸿科技(厦门)有限公司 Transparent multilayer board pasting device and method thereof for preventing liquid glue from overflowing
DE112012002221T5 (en) 2011-05-23 2014-02-20 Panasonic Corp. Method for generating a three-dimensional shape object
DE102011080187A1 (en) * 2011-08-01 2013-02-07 Siemens Aktiengesellschaft A method of producing a blade for a turbomachine and blade for a turbomachine
US8968061B2 (en) 2011-08-01 2015-03-03 Chrysler Group Llc Containment hood
DE102011111498A1 (en) 2011-08-31 2013-02-28 Voxeljet Technology Gmbh Device for the layered construction of models
US9457521B2 (en) * 2011-09-01 2016-10-04 The Boeing Company Method, apparatus and material mixture for direct digital manufacturing of fiber reinforced parts
TWI472427B (en) 2012-01-20 2015-02-11 財團法人工業技術研究院 Device and method for powder distribution and additive manufacturing method using the same
US9364896B2 (en) 2012-02-07 2016-06-14 Medical Modeling Inc. Fabrication of hybrid solid-porous medical implantable devices with electron beam melting technology
DE102012004213A1 (en) 2012-03-06 2013-09-12 Voxeljet Technology Gmbh Method and device for producing three-dimensional models
CN104159724B (en) 2012-03-09 2016-08-17 松下知识产权经营株式会社 The manufacture method of three dimensional structure
WO2013138204A1 (en) 2012-03-13 2013-09-19 Mikulak James Materials for powder-based additive manufacturing processes
US9180010B2 (en) 2012-04-06 2015-11-10 Howmedica Osteonics Corp. Surface modified unit cell lattice structures for optimized secure freeform fabrication
US9135374B2 (en) 2012-04-06 2015-09-15 Howmedica Osteonics Corp. Surface modified unit cell lattice structures for optimized secure freeform fabrication
US9421536B2 (en) 2012-04-18 2016-08-23 Dsm Ip Assets B.V Device useful for hydrogenation reactions (II)
WO2013156501A1 (en) 2012-04-18 2013-10-24 Dsm Ip Assets B.V. Device useful for hydrogenation reactions (iii)
US9381489B2 (en) 2012-04-18 2016-07-05 Dsm Ip Assets B.V. Device useful for hydrogenation reactions (I)
DE102012010272A1 (en) 2012-05-25 2013-11-28 Voxeljet Technology Gmbh Method for producing three-dimensional models with special construction platforms and drive systems
DE102012012363A1 (en) 2012-06-22 2013-12-24 Voxeljet Technology Gmbh Apparatus for building up a layer body with a storage or filling container movable along the discharge container
US9708457B2 (en) 2012-06-28 2017-07-18 Stratasys, Inc. Moisture scavenger composition
DE112013003448T5 (en) 2012-07-09 2015-04-16 Panasonic Intellectual Property Management Co., Ltd. A method of manufacturing a three-dimensional molded article
DE102012109262A1 (en) * 2012-09-28 2014-04-03 Bundesrepublik Deutschland, vertreten durch das Bundesministerium für Wirtschaft und Technologie, dieses vertreten durch den Präsidenten der BAM, Bundesanstalt für Materialforschung und -prüfung Method for stabilizing a powder bed by means of negative pressure for additive manufacturing
DE102012020000A1 (en) 2012-10-12 2014-04-17 Voxeljet Ag 3D multi-stage process
DE102013004940A1 (en) 2012-10-15 2014-04-17 Voxeljet Ag Method and device for producing three-dimensional models with tempered printhead
US9925714B2 (en) 2012-11-21 2018-03-27 Stratasys, Inc. Method for printing three-dimensional items wtih semi-crystalline build materials
US9527242B2 (en) 2012-11-21 2016-12-27 Stratasys, Inc. Method for printing three-dimensional parts wtih crystallization kinetics control
US10144828B2 (en) 2012-11-21 2018-12-04 Stratasys, Inc. Semi-crystalline build materials
US9592530B2 (en) 2012-11-21 2017-03-14 Stratasys, Inc. Additive manufacturing with polyamide consumable materials
US10023739B2 (en) 2012-11-21 2018-07-17 Stratasys, Inc. Semi-crystalline build materials
US9744722B2 (en) 2012-11-21 2017-08-29 Stratasys, Inc. Additive manufacturing with polyamide consumable materials
DE102012022859A1 (en) 2012-11-25 2014-05-28 Voxeljet Ag Construction of a 3D printing device for the production of components
WO2014082169A1 (en) 2012-11-30 2014-06-05 Husky Injection Molding Systems Ltd. Component of a molding system
EP2737965A1 (en) * 2012-12-01 2014-06-04 Alstom Technology Ltd Method for manufacturing a metallic component by additive laser manufacturing
US20140170012A1 (en) * 2012-12-18 2014-06-19 United Technologies Corporation Additive manufacturing using partially sintered layers
CN108515182B (en) 2013-02-14 2021-05-25 瑞尼斯豪公司 Selective laser curing apparatus and method
DE102013003303A1 (en) 2013-02-28 2014-08-28 FluidSolids AG Process for producing a molded part with a water-soluble casting mold and material system for its production
US9308583B2 (en) * 2013-03-05 2016-04-12 Lawrence Livermore National Security, Llc System and method for high power diode based additive manufacturing
US9669583B2 (en) 2013-03-15 2017-06-06 Renishaw Plc Selective laser solidification apparatus and method
US20140271326A1 (en) 2013-03-15 2014-09-18 3D Systems, Inc. Powder Distribution for Laser Sintering Systems
WO2014176536A1 (en) 2013-04-26 2014-10-30 United Technologies Corporation Selective laser melting system
JP6334682B2 (en) * 2013-04-29 2018-05-30 ヌブル インク Apparatus, system and method for three-dimensional printing
GB201310398D0 (en) 2013-06-11 2013-07-24 Renishaw Plc Additive manufacturing apparatus and method
EP3007879B1 (en) * 2013-06-10 2019-02-13 Renishaw Plc. Selective laser solidification apparatus and method
JP5599921B1 (en) 2013-07-10 2014-10-01 パナソニック株式会社 Manufacturing method of three-dimensional shaped object
JP5612735B1 (en) 2013-07-10 2014-10-22 パナソニック株式会社 Manufacturing method and manufacturing apparatus for three-dimensional shaped object
US9523934B2 (en) 2013-07-17 2016-12-20 Stratasys, Inc. Engineering-grade consumable materials for electrophotography-based additive manufacturing
US9714318B2 (en) 2013-07-26 2017-07-25 Stratasys, Inc. Polyglycolic acid support material for additive manufacturing systems
JP2015038237A (en) * 2013-08-19 2015-02-26 独立行政法人産業技術総合研究所 Laminated molding, powder laminate molding apparatus, and powder laminate molding method
DE102013109162A1 (en) * 2013-08-23 2015-02-26 Fit Fruth Innovative Technologien Gmbh Device for producing three-dimensional objects
US20150064047A1 (en) * 2013-08-28 2015-03-05 Elwha Llc Systems and methods for additive manufacturing of three dimensional structures
EP2868422A1 (en) * 2013-10-29 2015-05-06 Siemens Aktiengesellschaft Method for manufacturing a component and optical irradiation device
DE102013018182A1 (en) 2013-10-30 2015-04-30 Voxeljet Ag Method and device for producing three-dimensional models with binder system
WO2015077162A1 (en) * 2013-11-19 2015-05-28 United Technologies Corporation Method for fabricating a metal-ceramic composite article
EP3074160B1 (en) 2013-11-25 2024-07-10 RTX Corporation Method of manufacturing a hybrid cylindrical structure
DE102013018031A1 (en) 2013-12-02 2015-06-03 Voxeljet Ag Swap body with movable side wall
DE102013020491A1 (en) 2013-12-11 2015-06-11 Voxeljet Ag 3D infiltration process
GB2521191B (en) * 2013-12-12 2016-09-21 Exmet Ab Magnetic materials and methods for their manufacture
EP2886307A1 (en) 2013-12-20 2015-06-24 Voxeljet AG Device, special paper and method for the production of moulded components
CN111777735B (en) 2014-01-17 2022-06-14 路博润先进材料公司 Methods of using thermoplastic polyurethanes in selective laser sintering and systems, and articles thereof
EP4253003A3 (en) 2014-01-24 2024-07-10 Verrana, Llc Article and method making use of 3d printing for anticounterfeiting
CN106061718B (en) 2014-03-05 2018-01-02 松下知识产权经营株式会社 The manufacture method of three dimensional structure
CN106061717B (en) 2014-03-05 2018-08-03 松下知识产权经营株式会社 The manufacturing method of three dimensional structure
DE102014004692A1 (en) 2014-03-31 2015-10-15 Voxeljet Ag Method and apparatus for 3D printing with conditioned process control
JP5795657B1 (en) * 2014-04-04 2015-10-14 株式会社松浦機械製作所 Additive manufacturing apparatus and additive manufacturing method
DE102014106178A1 (en) 2014-05-02 2015-11-05 Ask Chemicals Gmbh Process for the layered construction of bodies comprising refractory base molding material and resoles and molds or cores produced by this process
US10675853B2 (en) 2014-05-16 2020-06-09 Stratasys, Inc. High-temperature soluble support material for additive manufacturing
DE102014007584A1 (en) 2014-05-26 2015-11-26 Voxeljet Ag 3D reverse printing method and apparatus
US9643361B2 (en) 2014-05-27 2017-05-09 Jian Liu Method and apparatus for three-dimensional additive manufacturing with a high energy high power ultrafast laser
HUE032444T2 (en) * 2014-06-04 2017-09-28 Carl Aug Picard Gmbh Screw feed element and method for the additive manufacture of screw feed elements
US9439568B2 (en) 2014-07-03 2016-09-13 Align Technology, Inc. Apparatus and method for measuring surface topography optically
US9261358B2 (en) 2014-07-03 2016-02-16 Align Technology, Inc. Chromatic confocal system
JP6531954B2 (en) 2014-07-30 2019-06-19 パナソニックIpマネジメント株式会社 Method of manufacturing three-dimensional shaped object and three-dimensional shaped object
US10946556B2 (en) 2014-08-02 2021-03-16 Voxeljet Ag Method and casting mold, in particular for use in cold casting methods
WO2016033343A1 (en) 2014-08-27 2016-03-03 Nuburu, Inc. Applications, methods and systems for materials processing with visible raman laser
EP3204223A4 (en) 2014-10-05 2018-12-19 EOS GmbH Electro Optical Systems 3d printers and feedstocks for 3d printers
EP3206858B1 (en) 2014-10-16 2020-04-22 Dow Global Technologies Llc Method for additive manufacturing
JP5878604B1 (en) 2014-10-21 2016-03-08 アドバンスト・リサーチ・フォー・マニュファクチャリング・システムズ・リミテッド・ライアビリティ・カンパニーAdvanced Research For Manufacturing Systems, Llc Manufacturing method of composite material
TWI529055B (en) 2014-10-27 2016-04-11 財團法人工業技術研究院 Additive manufacturing system and additive manufacturing method
DE102014222129A1 (en) 2014-10-29 2016-05-04 Eos Gmbh Electro Optical Systems Method, apparatus and coating module for producing a three-dimensional object
US10059053B2 (en) 2014-11-04 2018-08-28 Stratasys, Inc. Break-away support material for additive manufacturing
WO2016094329A1 (en) 2014-12-08 2016-06-16 Tethon Corporation Three-dimensional (3d) printing
CN111618300B (en) 2014-12-12 2022-08-05 美题隆公司 Article and method of forming the same
EP3034159B1 (en) * 2014-12-18 2020-11-04 The Procter and Gamble Company Static mixer and method of mixing fluids
DE102015006533A1 (en) 2014-12-22 2016-06-23 Voxeljet Ag Method and device for producing 3D molded parts with layer construction technique
US20170341143A1 (en) 2014-12-26 2017-11-30 Panasonic Intellectual Property Management Co., Ltd. Method for manufacturing three-dimensional shaped object
US9907670B2 (en) 2015-01-21 2018-03-06 Warsaw Orthopedic, Inc. Unitarily formed expandable spinal implant and method of manufacturing and implanting same
EP3059074A1 (en) 2015-02-18 2016-08-24 Technische Universität München Method and device for generating a three-dimensional object
DE102015003372A1 (en) 2015-03-17 2016-09-22 Voxeljet Ag Method and device for producing 3D molded parts with double recoater
GB201505458D0 (en) 2015-03-30 2015-05-13 Renishaw Plc Additive manufacturing apparatus and methods
US9617394B2 (en) 2015-04-15 2017-04-11 Aeonclad Coatings, Llc Coated particles for forming of continuous polymeric or metallic layers
JP5888826B1 (en) * 2015-04-27 2016-03-22 株式会社ソディック Additive manufacturing equipment
PL228001B1 (en) 2015-05-19 2018-02-28 Tomasz Bloch System for deflection of optical radiation beam and the device containing this system
DE102015006363A1 (en) 2015-05-20 2016-12-15 Voxeljet Ag Phenolic resin method
US10729600B2 (en) 2015-06-30 2020-08-04 The Procter & Gamble Company Absorbent structure
CN104988497B (en) * 2015-07-24 2018-02-06 新疆汇翔激光科技有限公司 Towards the laser melting coating method for planning track on complex revolving body surface
CN107849309B (en) 2015-07-27 2021-05-14 陶氏环球技术有限责任公司 Method of additive manufacturing of biocompatible materials and articles made therefrom
JP6471975B2 (en) 2015-07-31 2019-02-20 パナソニックIpマネジメント株式会社 Manufacturing method of three-dimensional shaped object and three-dimensional shaped object
JP6628024B2 (en) 2015-07-31 2020-01-08 パナソニックIpマネジメント株式会社 Method for manufacturing three-dimensionally shaped object and three-dimensionally shaped object
JP6512407B2 (en) 2015-07-31 2019-05-15 パナソニックIpマネジメント株式会社 Method of manufacturing three-dimensional shaped object
DE102015216583A1 (en) 2015-08-31 2017-03-02 Nanoscribe Gmbh Method for producing a three-dimensional structure and device for this purpose
DE102015011503A1 (en) 2015-09-09 2017-03-09 Voxeljet Ag Method for applying fluids
DE102015011790A1 (en) 2015-09-16 2017-03-16 Voxeljet Ag Device and method for producing three-dimensional molded parts
US20200247041A1 (en) 2015-10-22 2020-08-06 Dow Global Technologies Llc Selective sintering additive manufacturing method and powder used therein
WO2017079599A1 (en) 2015-11-04 2017-05-11 The Procter & Gamble Company Absorbent structure
US11376168B2 (en) 2015-11-04 2022-07-05 The Procter & Gamble Company Absorbent article with absorbent structure having anisotropic rigidity
DE102015015353A1 (en) 2015-12-01 2017-06-01 Voxeljet Ag Method and device for producing three-dimensional components by means of an excess quantity sensor
WO2017095658A1 (en) 2015-12-02 2017-06-08 Dow Global Technologies Llc Additive manufactured carbon michael addition articles and method to make them
US10596660B2 (en) * 2015-12-15 2020-03-24 Howmedica Osteonics Corp. Porous structures produced by additive layer manufacturing
US11278988B2 (en) 2015-12-17 2022-03-22 Eos Of North America, Inc. Additive manufacturing method using large and small beam sizes
US10583529B2 (en) 2015-12-17 2020-03-10 Eos Of North America, Inc. Additive manufacturing method using a plurality of synchronized laser beams
WO2017112723A1 (en) 2015-12-22 2017-06-29 Structured Polymers, Inc. Systems and methods for producing consumable powder
US10457833B2 (en) 2015-12-22 2019-10-29 Stratasys, Inc. Materials containing fluoropolymers for additive manufacturing applications
FR3046094A1 (en) 2015-12-23 2017-06-30 Michelin & Cie PROCESS FOR THE ADDITIVE MANUFACTURE OF A PIECE BY TOTAL OR PARTIAL SELECTIVE FUSION OF A POWDER AND MACHINE SUITABLE FOR THE IMPLEMENTATION OF SUCH A METHOD
FR3046095B1 (en) 2015-12-23 2018-01-26 Addup ADDITIVE MANUFACTURING MACHINE AND ADDITIVE MANUFACTURING METHOD USING SUCH A MACHINE
US11045997B2 (en) 2015-12-24 2021-06-29 Stratasys, Inc. Water soluble support materials for high temperature additive manufacturing applications
US10953595B2 (en) 2015-12-24 2021-03-23 Stratasys, Inc. Water soluble support materials for high temperature additive manufacturing applications
JP6778883B2 (en) 2016-01-29 2020-11-04 パナソニックIpマネジメント株式会社 Manufacturing method of 3D shaped object
JP6643631B2 (en) 2016-03-09 2020-02-12 パナソニックIpマネジメント株式会社 Manufacturing method of three-dimensional shaped object
DE102016002777A1 (en) 2016-03-09 2017-09-14 Voxeljet Ag Method and device for producing 3D molded parts with construction field tools
US9908977B2 (en) 2016-04-13 2018-03-06 Xerox Corporation Styrenic-based polymer coated silver nanoparticle-sulfonated polyester composite powders and methods of making the same
JP6264622B2 (en) 2016-04-18 2018-01-24 株式会社ソディック Additive manufacturing equipment
FR3050956B1 (en) 2016-05-04 2018-05-25 Addup ADDITIVE MANUFACTURING MACHINE COMPRISING AN EXTRACTION SYSTEM AND ADDITIVE MANUFACTURING METHOD BY CARRYING OUT SUCH A MACHINE
US10087332B2 (en) 2016-05-13 2018-10-02 NanoCore Technologies Sinterable metal paste for use in additive manufacturing
JP6854465B2 (en) 2016-05-30 2021-04-07 パナソニックIpマネジメント株式会社 Manufacturing method of three-dimensional shaped object
WO2018005349A1 (en) 2016-06-28 2018-01-04 Dow Global Technologies Llc Thermoset additive manufactured articles incorporating a phase change material and method to make them
DE102016008759A1 (en) 2016-07-18 2018-01-18 Giang Do Additive manufactured celluare components as adjustable static mixers
DE102016009272A1 (en) 2016-07-18 2018-01-18 Giang Do Electrophoretic coating of additively fabricated cellular structures for use as switchable catalyst systems
US11613076B2 (en) 2016-07-26 2023-03-28 Ppg Industries Ohio, Inc. Three-dimensional printing processes using 1,1-di-activated vinyl compounds
US11346611B2 (en) * 2016-08-16 2022-05-31 Hamilton Sundstrand Corporation Heat exchangers with multiple flow channels
US10773456B2 (en) 2016-09-22 2020-09-15 Freshmade 3D, LLC Process for strengthening porous 3D printed objects
DE102016221219A1 (en) 2016-10-27 2018-05-03 Schaeffler Technologies AG & Co. KG Method and plant for producing a friction lining made of sintered metal
DE102016013610A1 (en) 2016-11-15 2018-05-17 Voxeljet Ag Intra-head printhead maintenance station for powder bed-based 3D printing
JP6188103B1 (en) 2016-11-16 2017-08-30 株式会社ソディック Additive manufacturing equipment
US10399179B2 (en) 2016-12-14 2019-09-03 General Electric Company Additive manufacturing systems and methods
US10919286B2 (en) * 2017-01-13 2021-02-16 GM Global Technology Operations LLC Powder bed fusion system with point and area scanning laser beams
US10695865B2 (en) 2017-03-03 2020-06-30 General Electric Company Systems and methods for fabricating a component with at least one laser device
JP6415004B2 (en) 2017-03-14 2018-10-31 株式会社ソディック Additive manufacturing equipment
JP7043865B2 (en) 2017-03-14 2022-03-30 株式会社リコー Equipment for manufacturing resin powder for 3D modeling and 3D modeling
EP3375608B1 (en) 2017-03-17 2021-05-05 Ricoh Company, Ltd. Resin powder for solid freeform fabrication and device for solid freeform fabrication object
US11104041B2 (en) 2017-03-20 2021-08-31 Stratasys, Inc. Consumable feedstock for 3D printing and method of use
RU185513U1 (en) * 2017-04-24 2018-12-07 Дмитрий Сергеевич Колчанов Installation for growing products by selective laser melting
US11007713B2 (en) * 2017-04-26 2021-05-18 GM Global Technology Operations LLC High throughput additive manufacturing system
US11014063B2 (en) 2017-05-01 2021-05-25 Dsm Ip Assets B.V. Device for processing and conditioning of material transported through the device
US11298747B2 (en) 2017-05-18 2022-04-12 Howmedica Osteonics Corp. High fatigue strength porous structure
US11628517B2 (en) 2017-06-15 2023-04-18 Howmedica Osteonics Corp. Porous structures produced by additive layer manufacturing
US11407034B2 (en) 2017-07-06 2022-08-09 OmniTek Technology Ltda. Selective laser melting system and method of using same
DE102017006860A1 (en) 2017-07-21 2019-01-24 Voxeljet Ag Method and device for producing 3D molded parts with spectrum converter
US11148355B2 (en) 2017-09-12 2021-10-19 Kaijo Corporation Three-dimensional shaped object production device and three-dimensional shaped object production method
JP7366529B2 (en) 2017-10-27 2023-10-23 キヤノン株式会社 Manufacturing method and modeled object
WO2019083040A1 (en) 2017-10-27 2019-05-02 キヤノン株式会社 Molded object production method and molded object
AU2018256556B2 (en) 2017-11-03 2024-04-04 Howmedica Osteonics Corp. Flexible construct for femoral reconstruction
EP3482900B1 (en) 2017-11-09 2021-06-09 Ricoh Company, Ltd. Particle for solid freeform fabrication
JP7081350B2 (en) 2017-11-09 2022-06-07 株式会社リコー Resin powder for three-dimensional modeling, manufacturing equipment for three-dimensional modeling, manufacturing method for three-dimensional modeling, and manufacturing method for resin powder for three-dimensional modeling
EP3524430B1 (en) 2018-02-07 2021-12-15 Ricoh Company, Ltd. Powder for solid freeform fabrication, and method of manufacturing solid freeform fabrication object
DE102018002401C5 (en) 2018-03-22 2023-04-27 Luxyours Gmbh Process and device for the chemical smoothing of plastic parts
US10449718B1 (en) * 2018-05-29 2019-10-22 The Exone Company Powder-layer three-dimensional printer with smoothing device
JP6667972B2 (en) 2018-07-20 2020-03-18 株式会社ソディック Molding method of molded object
US11167375B2 (en) 2018-08-10 2021-11-09 The Research Foundation For The State University Of New York Additive manufacturing processes and additively manufactured products
DE102018006473A1 (en) 2018-08-16 2020-02-20 Voxeljet Ag Method and device for the production of 3D molded parts by means of layer construction technology by means of a closure device
KR20230142818A (en) * 2018-08-24 2023-10-11 누부루 인크. Blue laser metal additive manufacturing system
WO2020043754A1 (en) 2018-08-28 2020-03-05 Jlz Customisable bags
FR3085254A1 (en) 2018-08-28 2020-03-06 Jlz CUSTOMIZABLE BAGS
US20200070269A1 (en) * 2018-08-30 2020-03-05 GM Global Technology Operations LLC Laser-induced anti-corrosion micro-anchor structural layer for metal-polymeric composite joint and methods of manufacturing thereof
EP3620283B1 (en) 2018-09-07 2022-03-30 Ricoh Company, Ltd. Resin powder, as well as method of and device for manufacturing a solid freeform object using said powder
JP7114147B2 (en) 2018-10-02 2022-08-08 エルジー・ケム・リミテッド Molding apparatus and molded product manufacturing method
WO2020077127A1 (en) 2018-10-10 2020-04-16 Stratasys, Inc. Water dispersible sulfonated thermoplastic copolymer for use in additive manufacturing
JP2020059051A (en) * 2018-10-11 2020-04-16 株式会社 畑中製作所 Sand-lamination molding machine
JP7172463B2 (en) * 2018-11-07 2022-11-16 株式会社リコー Resin powder for three-dimensional modeling, modeling apparatus, and modeling method
US11885000B2 (en) * 2018-12-21 2024-01-30 Divergent Technologies, Inc. In situ thermal treatment for PBF systems
DE102019000796A1 (en) 2019-02-05 2020-08-06 Voxeljet Ag Exchangeable process unit
US11911877B2 (en) 2019-03-08 2024-02-27 Canon Kabushiki Kaisha Article including inorganic compound and method of manufacturing article including inorganic compound
JP6714269B1 (en) * 2019-10-21 2020-06-24 技術研究組合次世代3D積層造形技術総合開発機構 3D modeling method and 3D modeling apparatus
JP6713672B1 (en) * 2019-10-21 2020-06-24 株式会社松浦機械製作所 3D modeling method and 3D modeling apparatus
DE102019007595A1 (en) 2019-11-01 2021-05-06 Voxeljet Ag 3D PRINTING PROCESS AND MOLDED PART MANUFACTURED WITH LIGNINE SULPHATE
US11661521B2 (en) 2019-12-17 2023-05-30 Ticona Llc Three-dimensional printing system employing a thermotropic liquid crystalline polymer
CN115943078A (en) 2020-02-26 2023-04-07 捷普有限公司 Method of improving intra-and inter-layer adhesion of additive manufactured articles
US20230073429A1 (en) * 2020-02-28 2023-03-09 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Methods to create structures with engineered internal features, pores, and/or connected channels utilizing cold spray particle deposition
US11504879B2 (en) 2020-04-17 2022-11-22 Beehive Industries, LLC Powder spreading apparatus and system
CN112207429B (en) * 2020-10-23 2022-09-23 广东镭奔激光科技有限公司 Composite laser additive manufacturing method and device based on three light beams
WO2022173587A1 (en) 2021-02-10 2022-08-18 Jabil Inc. Semicrystalline pulverulent polyarylethersulfones and method to make them
EP4305090B1 (en) 2021-05-17 2024-07-03 Jabil Inc. Polyketone powder for laser sintering
US20220388238A1 (en) 2021-06-08 2022-12-08 Jabil Inc. Amorphous thermoplastic additive manufactured articles and method to make them
CN113664222B (en) * 2021-08-23 2024-03-26 华南理工大学 Composite laser device and method for directional energy deposition equipment
US20230183429A1 (en) 2021-12-14 2023-06-15 Jabil Inc. Thermoplastic polymers and method to make them
TWI803154B (en) * 2022-01-18 2023-05-21 台鋼航太積層製造股份有限公司 Method for manufacturing a target material
US20230340211A1 (en) 2022-04-25 2023-10-26 Jabil Inc. Spherical particles for additive manufacturing
WO2024044062A1 (en) 2022-08-22 2024-02-29 Jabil Inc. Thermoplastic particulates and method to make them
WO2024076464A1 (en) 2022-10-03 2024-04-11 Jabil Inc. Additive manufactured article comprising a grafted aliphatic polyketone, filament and powder

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE137951C (en) *
US2076952A (en) * 1934-06-08 1937-04-13 Kratky Anton Production of hard metal alloys
US2435273A (en) * 1941-07-31 1948-02-03 Hatfield Henry Stafford Method of coating with tungsten carbide
US2599947A (en) * 1950-01-21 1952-06-10 Staley Mfg Co A E Paper coating apparatus
US2918896A (en) * 1955-06-17 1959-12-29 Nat Steel Corp Leveling rollers for leveling and making paint or enamel coatings uniform
US2961336A (en) * 1955-06-17 1960-11-22 Nat Steel Corp Method of hot coating strip materials with paints or enamels
DE1146652B (en) * 1957-06-29 1963-04-04 Varta Ag Device for applying a layer of very fine powder
US2933417A (en) * 1958-03-12 1960-04-19 Du Pont One-side film coating process
US3063407A (en) * 1959-10-20 1962-11-13 Bergstein Packaging Trust Self-cleaning adhesive doctoring device
US3186861A (en) * 1960-06-08 1965-06-01 Mead Corp Process for producing pressure sensitive record paper
US3279424A (en) * 1960-11-02 1966-10-18 Champion Papers Inc Apparatus for coating webs with polymerizable materials
US3243317A (en) * 1963-04-19 1966-03-29 Coil Anodizers Inc Method of pickling without mottling due to gas bubble retention
US3312191A (en) * 1966-05-13 1967-04-04 Lowe Paper Co Doctor roll with spiral grooves
GB1215184A (en) * 1968-07-02 1970-12-09 Chelton Forming Ltd Improvements in or relating to the making of hollow articles by metal spraying
US3718117A (en) * 1971-04-26 1973-02-27 Armstrong Cork Co Grooved rod coater
SE357692B (en) * 1971-11-08 1973-07-09 Goetaverken Ab
FR2166526A5 (en) * 1971-12-28 1973-08-17 Boudet Jean Concentrated beam particle melting - at focal point of several beams
US3985995A (en) * 1973-04-19 1976-10-12 August Thyssen-Hutte Aktienges. Method of making large structural one-piece parts of metal, particularly one-piece shafts
JPS5431444B2 (en) * 1973-06-29 1979-10-06
US4117302A (en) * 1974-03-04 1978-09-26 Caterpillar Tractor Co. Method for fusibly bonding a coating material to a metal article
US3911174A (en) * 1974-05-16 1975-10-07 Anglo American Clays Corp Method of coating flexible sheet material
US4074616A (en) * 1975-09-02 1978-02-21 Caterpillar Tractor Co. Aluminum piston with steel reinforced piston ring grooves
GB1499602A (en) * 1975-12-22 1978-02-01 Caterpillar Tractor Co Method of applying a wear-resistant composite coating to an article
JPS537383A (en) * 1976-07-09 1978-01-23 Kubota Ltd Speed detector for belt conveyor scale
US4135902A (en) * 1978-03-03 1979-01-23 Western Electric Co., Inc. Method and apparatus for drawing optical fibers
DD137951A1 (en) * 1978-07-21 1979-10-03 Banke Karl Heinz METHOD FOR DIRECTING TEXTILE STRUCTURES
FR2450683A1 (en) * 1979-03-06 1980-10-03 Thomson Brandt METHOD AND APPARATUS FOR MAKING VIDEO DISC
GB2052566B (en) * 1979-03-30 1982-12-15 Rolls Royce Laser aplication of hard surface alloy
US4270675A (en) * 1979-10-29 1981-06-02 United Technologies Corporation Powder feed apparatus
US4323756A (en) * 1979-10-29 1982-04-06 United Technologies Corporation Method for fabricating articles by sequential layer deposition
US4247508B1 (en) * 1979-12-03 1996-10-01 Dtm Corp Molding process
US4375441A (en) * 1980-12-18 1983-03-01 The Standard Oil Company Method for producing sintered porous polymeric articles
JPS57160975A (en) * 1981-03-27 1982-10-04 Katsuya Okabe Ceramics sintering method
US4469529A (en) * 1981-12-04 1984-09-04 Ushio Denki Kabushiki Kaisha Method for heating semiconductor wafer by means of application of radiated light with supplemental circumferential heating
JPS5945089A (en) * 1982-09-09 1984-03-13 Toshiba Corp Build-up welding method
JPS5976689A (en) * 1982-10-22 1984-05-01 Fujitsu Ltd Airtight sealing method of aluminum package
IL67599A (en) * 1982-12-31 1986-09-30 Laser Ind Ltd Control apparatus particularly useful for controlling a laser
US4474861A (en) * 1983-03-09 1984-10-02 Smith International, Inc. Composite bearing structure of alternating hard and soft metal, and process for making the same
US4503096A (en) * 1983-09-08 1985-03-05 Ytong Ag Method and device for the continuous application of a reinforcement layer onto a porous mineral building board
US4540867A (en) * 1984-06-25 1985-09-10 Motorola, Inc. Linearized scanning system and method for an energy beam
US4575330A (en) * 1984-08-08 1986-03-11 Uvp, Inc. Apparatus for production of three-dimensional objects by stereolithography
JPS6152373A (en) * 1984-08-17 1986-03-15 Sentan Kako Kikai Gijutsu Shinko Kyokai Method for processing by using laser beam and device therefor
IT1179061B (en) * 1984-08-20 1987-09-16 Fiat Auto Spa PROCEDURE FOR CARRYING OUT A TREATMENT ON METAL PIECES WITH THE ADDITION OF A VALUE MATERIAL AND WITH THE USE OF A POWER LASER
US4743733A (en) * 1984-10-01 1988-05-10 General Electric Company Method and apparatus for repairing metal in an article
JPS6216894A (en) * 1985-07-17 1987-01-26 Toyota Motor Corp Padding method for aluminum base metal
JPS6221465A (en) * 1985-07-18 1987-01-29 Toyota Motor Corp Double layer padding method to aluminum base metal
US4944808A (en) * 1985-09-12 1990-07-31 Fuji Photo Film Co., Ltd. Method of removing particles from a flexible support, and apparatus for practicing same
US4752352A (en) * 1986-06-06 1988-06-21 Michael Feygin Apparatus and method for forming an integral object from laminations
JPS634077A (en) * 1986-06-23 1988-01-09 Brother Ind Ltd Method for joining sintered hard alloy
US4818454A (en) * 1986-09-16 1989-04-04 Lanxide Technology Company, Lp Method of making ceramic composite articles by inverse shape replication of an expendable pattern
US5076869A (en) * 1986-10-17 1991-12-31 Board Of Regents, The University Of Texas System Multiple material systems for selective beam sintering
US4863538A (en) * 1986-10-17 1989-09-05 Board Of Regents, The University Of Texas System Method and apparatus for producing parts by selective sintering
US5017753A (en) * 1986-10-17 1991-05-21 Board Of Regents, The University Of Texas System Method and apparatus for producing parts by selective sintering
EP0542729B1 (en) * 1986-10-17 1996-05-22 Board Of Regents, The University Of Texas System Method and apparatus for producing parts by selective sintering
US4944817A (en) * 1986-10-17 1990-07-31 Board Of Regents, The University Of Texas System Multiple material systems for selective beam sintering
US4927992A (en) * 1987-03-04 1990-05-22 Westinghouse Electric Corp. Energy beam casting of metal articles
US4818562A (en) * 1987-03-04 1989-04-04 Westinghouse Electric Corp. Casting shapes
US5053090A (en) * 1989-09-05 1991-10-01 Board Of Regents, The University Of Texas System Selective laser sintering with assisted powder handling
US5284695A (en) * 1989-09-05 1994-02-08 Board Of Regents, The University Of Texas System Method of producing high-temperature parts by way of low-temperature sintering

Also Published As

Publication number Publication date
US5597589A (en) 1997-01-28
FI84329C (en) 1991-11-25
JPH01502890A (en) 1989-10-05
HK194796A (en) 1996-11-01
AU1046688A (en) 1988-05-06
DK329888D0 (en) 1988-06-16
HU202932B (en) 1991-04-29
HUT56018A (en) 1991-07-29
JPH06192702A (en) 1994-07-12
DE287657T1 (en) 1994-08-18
DE3751819D1 (en) 1996-06-27
EP0542729B1 (en) 1996-05-22
ATE138293T1 (en) 1996-06-15
BR8707510A (en) 1989-02-21
KR960008015B1 (en) 1996-06-19
EP0538244B1 (en) 1996-05-22
FI84329B (en) 1991-08-15
FI882881A0 (en) 1988-06-16
DE3751819T2 (en) 1996-09-26
DK329888A (en) 1988-08-15
EP0287657A1 (en) 1988-10-26
EP0287657B2 (en) 1999-08-11
DE3750931D1 (en) 1995-02-09
DE3750931T2 (en) 1995-05-11
US5616294A (en) 1997-04-01
AU659289B2 (en) 1995-05-11
JP2800937B2 (en) 1998-09-21
AU6834690A (en) 1991-03-14
DE3751818D1 (en) 1996-06-27
US5316580A (en) 1994-05-31
JPH08260163A (en) 1996-10-08
FI882881A (en) 1988-06-16
EP0538244A2 (en) 1993-04-21
KR880701611A (en) 1988-11-04
EP0542729A3 (en) 1993-09-15
EP0287657B1 (en) 1994-12-28
BG47343A3 (en) 1990-06-15
DE3751818T2 (en) 1996-09-26
EP0538244A3 (en) 1993-09-15
US5132143A (en) 1992-07-21
ATE138294T1 (en) 1996-06-15
AU632195B2 (en) 1992-12-17
AU603412B2 (en) 1990-11-15
WO1988002677A3 (en) 1988-07-28
US5639070A (en) 1997-06-17
HK205796A (en) 1996-11-22
ATE116179T1 (en) 1995-01-15
EP0542729A2 (en) 1993-05-19
AU3524193A (en) 1993-05-13
DE3750931T3 (en) 1999-12-02
JP2620353B2 (en) 1997-06-11
MC1931A1 (en) 1989-05-19
HK205896A (en) 1996-11-22
WO1988002677A2 (en) 1988-04-21

Similar Documents

Publication Publication Date Title
JP2542783B2 (en) Method and apparatus for forming powder as a powder layer
US5017753A (en) Method and apparatus for producing parts by selective sintering
CN107708969B (en) Multi-beam additive manufacturing
US10583529B2 (en) Additive manufacturing method using a plurality of synchronized laser beams
US11278988B2 (en) Additive manufacturing method using large and small beam sizes
EP0416852B1 (en) Multiple material systems and assisted powder handling for selective beam sintering
US20140255666A1 (en) Powder Bed Fusion Systems, Apparatus, and Processes for Multi-Material Part Production
US4938816A (en) Selective laser sintering with assisted powder handling
US5053090A (en) Selective laser sintering with assisted powder handling
US20190160539A1 (en) Additive Manufacturing with Overlapping Light Beams
CN113226628A (en) Blue laser metal additive manufacturing system
KR20170133506A (en) Method and apparatus for freeform construction of objects with improved resolution background
JP7066878B2 (en) Air knife for additional manufacturing
CN1135731A (en) Multiple beam laser sintering
CN111465466A (en) Processing device and method, marking method, modeling method, computer program, and recording medium
CN114901408A (en) Blue laser metal additive manufacturing system
EP0714725A1 (en) Multiple material systems and assisted powder handling for selective beam sintering
JP2005169878A (en) Method and apparatus for shaping three-dimensional object
RU2801454C2 (en) Metal additive manufacturing system based on blue laser

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960521

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070725

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 12