JPS6221465A - Double layer padding method to aluminum base metal - Google Patents

Double layer padding method to aluminum base metal

Info

Publication number
JPS6221465A
JPS6221465A JP60158955A JP15895585A JPS6221465A JP S6221465 A JPS6221465 A JP S6221465A JP 60158955 A JP60158955 A JP 60158955A JP 15895585 A JP15895585 A JP 15895585A JP S6221465 A JPS6221465 A JP S6221465A
Authority
JP
Japan
Prior art keywords
layer
overlay
copper
aluminum
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60158955A
Other languages
Japanese (ja)
Other versions
JPH055585B2 (en
Inventor
Kazuhiko Mori
和彦 森
Muneya Takagi
高木 宗谷
Minoru Kawasaki
稔 河崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP60158955A priority Critical patent/JPS6221465A/en
Publication of JPS6221465A publication Critical patent/JPS6221465A/en
Publication of JPH055585B2 publication Critical patent/JPH055585B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To weld a different kind material to an Al base metal with a sufficient joining strength by padding a Cu self-fluxing alloy on the surface of the Al base metal, and padding the different kind material which is excellent in thermal resistance, resistance to wear, and corrosion resistance, on this alloy layer. CONSTITUTION:A Cu self-fluxing alloy powder 2 is applied onto an Al base metal 1, and thereafter, an Ar gas is fed from a side nozzle 6 and a laser beam 3 is irradiated, and a padding layer 4 of a Cu self-fluxing alloy is formed. Subsequently, an Ni super alloy powder which is excellent in thermal resistance, resistance to wear, and corrosion resistance is applied onto the padding layer 4, and thereafter, a padding layer of an Ni compound super alloy is formed in the same way. In this way, a desired different kind material can be welded onto the Al base metal with a sufficient joining strength.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアルミニウム系母材に耐熱性、耐摩耗性、耐食
性等に優れた異種金属材料を肉盛するための2層肉盛方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a two-layer overlay method for overlaying dissimilar metal materials with excellent heat resistance, wear resistance, corrosion resistance, etc. onto an aluminum base material.

〔従来の技術〕[Conventional technology]

アルミニウム(Aβ)およびアルミニウム合金(以下、
単にアルミニウムと略称する)は、比重が鉄の約1/3
と軽量なため、一部鉄の代用として種々の分野に使用さ
れている。特に、航空機、車両等のように、重量が性能
に直に結びつく分野での用途が多い。
Aluminum (Aβ) and aluminum alloys (hereinafter referred to as
(simply abbreviated as aluminum) has a specific gravity of approximately 1/3 that of iron.
Because of its light weight, it is used in various fields as a substitute for iron. In particular, it is often used in fields where weight is directly linked to performance, such as aircraft and vehicles.

ところで、アルミニウムは軽量ではあるが、耐熱性、耐
摩耗性、耐食性等が要求される部位、例えば自動車の摺
動部材として使用する場合には必ずしも十分ではなく、
そのままでは使用できない場合がある。そこで、アルミ
ニウムの持つ軽量という特性を活かしつつ、耐熱性、耐
摩耗性、耐食性等の緒特性を具備させるため、アルミニ
ウムの表面にこれらの特性を備えた異種材料を接合する
ことが考えられる。この接合方法としては、機械的な方
法やろう付は等の方法があるが、アルミニウム系母材と
の接合強度が必ずしも十分ではない。
By the way, although aluminum is lightweight, it is not necessarily sufficient for use in parts that require heat resistance, wear resistance, corrosion resistance, etc., such as sliding parts of automobiles.
It may not be possible to use it as is. Therefore, in order to make use of aluminum's light weight properties while providing additional properties such as heat resistance, abrasion resistance, and corrosion resistance, it may be possible to bond dissimilar materials with these properties to the surface of aluminum. This joining method includes mechanical methods and brazing, but the joining strength with the aluminum base material is not necessarily sufficient.

この接合強度を上げるためには、アルミニウムと上記特
性を備えた異種材料とを冶金的に結合させることが望ま
しい。
In order to increase this bonding strength, it is desirable to metallurgically bond aluminum and a dissimilar material having the above characteristics.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、アルミニウム系母材の表面に、耐熱性、耐摩
耗性、耐食性に優れた異種材料を冶金的結合が期待でき
る肉盛により接合しようとすると、異種材料がNi系超
合金やCO系超超合金ように金属の場合には、これらの
肉盛合金の融点が高いためにアルミニウム系母材が溶け
、アルミニウムとの間に合金化層を形成してしまい肉盛
層が形成できない。このため、必要な耐熱性、耐摩耗性
、耐食性等の緒特性が得られないばかりか、アルミニウ
ムと鉄(Fe)、コバルト(CO)、ニッケル(Ni)
、クロム(Cr)、モリブデン(MO)、タングステン
(W)等の合金元素との間には硬くて脆い金属間化合物
が形成されるので、アルミニウム系母材との接合強度が
十分でなく、割れ等が発生して肉盛ができないという問
題がある。
By the way, when attempting to join dissimilar materials with excellent heat resistance, wear resistance, and corrosion resistance to the surface of an aluminum base material by overlay, which can be expected to form a metallurgical bond, the dissimilar materials may become Ni-based superalloys or CO-based superalloys. In the case of metals such as alloys, since the melting point of these build-up alloys is high, the aluminum-based base material melts and forms an alloyed layer with aluminum, making it impossible to form a build-up layer. For this reason, not only the necessary properties such as heat resistance, wear resistance, and corrosion resistance cannot be obtained, but also aluminum, iron (Fe), cobalt (CO), nickel (Ni)
Hard and brittle intermetallic compounds are formed between alloying elements such as chromium (Cr), molybdenum (MO), and tungsten (W), resulting in insufficient bonding strength with the aluminum base material and cracking. There is a problem that overlay cannot be done due to the occurrence of such problems.

このため、アルミニウム系母材に耐熱性、耐摩耗性、耐
食性等に優れた異種金属材料を強固に接合させる肉盛方
法の開発が望まれていた。
Therefore, it has been desired to develop a build-up method for firmly joining dissimilar metal materials with excellent heat resistance, wear resistance, corrosion resistance, etc. to an aluminum base material.

〔問題点を解決するための手段〕 上記問題は、次に述べる本発明のアルミニウム系母材へ
の2層肉盛方法によって解決される。
[Means for Solving the Problems] The above problems are solved by the following two-layer overlay method on an aluminum base material of the present invention.

即ち、本発明の2層肉盛方法は、アルミニウム系母材に
耐熱性、耐摩耗性等に優れた肉盛材料を肉盛するための
2層肉盛方法であって、アルミニウム系母材の表面に銅
系自溶性合金を肉盛し、この銅系自溶性合金の上に耐熱
性、耐摩耗性、耐食性に優れた肉盛合金を肉盛すること
を特徴としている。
That is, the two-layer overlay method of the present invention is a two-layer overlay method for overlaying an overlay material with excellent heat resistance, wear resistance, etc. on an aluminum base material. It is characterized by overlaying a copper-based self-fusing alloy on the surface, and overlaying an overlay alloy with excellent heat resistance, wear resistance, and corrosion resistance on the copper-based self-fluxing alloy.

本発明においては、アルミニウム系母材と肉盛合金を結
び付ける中間材料として銅系自溶性合金を使用する。こ
の銅系自溶性合金は、銅をベースとし、この銅に硼素(
B)、珪素(St)のうちの少なくとも一方を添加した
ものである。通常は両方を添加する。硼素と珪素は共に
自溶性を有する元素であり、濡れ性を向上させるために
添加する。硼素の添加量は重量%(以下、%はすべて重
量%を示す)で0.1〜5.0%、珪素の添加量は0゜
5〜5.0%が望ましい。ここで、硼素の添加量を0.
1〜5.0%としたのは、0.1%より少ないと濡れ性
を向上させる効果が十分でないからであり、5.0%を
越えると脆くなると共に、引は巣を生じ易くなるからで
ある。また、珪素の添加量を0.5〜5.0%としたの
は、0.5%より少ないと濡れ性を向上させる効果が十
分でないからであり、5.0%を越えると■危くなるか
らである。
In the present invention, a copper-based self-fluxing alloy is used as an intermediate material that connects the aluminum-based base material and the overlay alloy. This copper-based self-fusing alloy is based on copper, and this copper contains boron (
B), and at least one of silicon (St) is added. Usually both are added. Both boron and silicon are self-soluble elements, and are added to improve wettability. It is desirable that the amount of boron added is 0.1 to 5.0% by weight (hereinafter all % indicates weight %), and the amount of silicon added is 0.5 to 5.0%. Here, the amount of boron added is 0.
The reason why it is set at 1 to 5.0% is because if it is less than 0.1%, the effect of improving wettability is not sufficient, and if it exceeds 5.0%, it becomes brittle and tends to form cavities. It is. In addition, the amount of silicon added was set at 0.5 to 5.0% because if it is less than 0.5%, the effect of improving wettability is insufficient, and if it exceeds 5.0%, it is dangerous. Because it will be.

また、硼素と珪素を両方添加する場合には、硼素と珪素
の合計が1%以上、8%以下であることが望ましい。こ
れは(B+Si)が1%より少ないと、銅はアルミニウ
ム表面上で濡れることができず、接合強度が弱くなるか
らであり、8%より多くなると割れや表面荒れが激しく
なり、肉盛ができないからである。
Further, when both boron and silicon are added, it is desirable that the total amount of boron and silicon is 1% or more and 8% or less. This is because if (B+Si) is less than 1%, copper cannot wet the aluminum surface and the bonding strength becomes weak; if it is more than 8%, cracks and surface roughness become severe and overlay cannot be applied. It is from.

本発明における銅系自溶性合金は、銅ベースに硼素や珪
素が添加されたものが基本構成成分となるが、硼素の比
重が小さいため、硼素を添加する場合には他成分との混
合を可能とするため通常硼化物の形で添加する。このと
き、硼素と硼化物を形成する元素としては、ニッケル、
鉄、クロム、コバルト等がある。従って、本発明の銅系
自溶性合金には、これらの成分が不可避なものとして添
加されている。
The basic component of the copper-based self-fluxing alloy in the present invention is a copper base with boron and silicon added, but since the specific gravity of boron is small, when boron is added, it can be mixed with other components. It is usually added in the form of boride. At this time, the elements that form boron and boride include nickel,
There are iron, chromium, cobalt, etc. Therefore, these components are inevitably added to the copper-based self-fluxing alloy of the present invention.

この銅系自溶性合金の上には、耐熱性、耐摩耗性、耐食
性に優れた異種金属材料が肉盛により冶金的に接合され
る。なお、耐熱性、耐摩耗性、耐食性に優れた金属とし
ては、例えばコバルト系超合金、ニッケル系超合金、鉄
系超合金等を用いることができる。このコバルト系超合
金はステライトを基にして発展した公知の合金であり、
主としてモリブデン(Mo)、タングステン(W)の添
加による固溶強化とクロム(Cr)炭化物の分散強化に
依存している。コバルト系超合金としては、例えば、+
al  重量%(以下、単位はすべて重量%である)で
、C1,5%、Si:1.1%、Ni:1.5%、Cr
:30.0%、Mo:0.6%、W:4〜12.0%、
F e < 1.5%および残部Co、(blCl、2
5%、Si:1.1%、Ni:22.0%、Cr:26
.0%、B:0.2%、Fe〈1.5%および残部Co
等を用いることができる。
On this copper-based self-fluxing alloy, dissimilar metal materials with excellent heat resistance, wear resistance, and corrosion resistance are metallurgically joined by overlay. Note that as metals having excellent heat resistance, wear resistance, and corrosion resistance, for example, cobalt-based superalloys, nickel-based superalloys, iron-based superalloys, etc. can be used. This cobalt-based superalloy is a well-known alloy developed based on stellite.
It mainly relies on solid solution strengthening by adding molybdenum (Mo) and tungsten (W) and dispersion strengthening of chromium (Cr) carbide. Examples of cobalt-based superalloys include +
al weight% (hereinafter, all units are weight%), C1.5%, Si: 1.1%, Ni: 1.5%, Cr
: 30.0%, Mo: 0.6%, W: 4-12.0%,
Fe < 1.5% and balance Co, (blCl, 2
5%, Si: 1.1%, Ni: 22.0%, Cr: 26
.. 0%, B: 0.2%, Fe<1.5% and balance Co
etc. can be used.

また、ニッケル系超合金は20%前後のクロム(Cr)
を含有し、更に高温強度の面でアルミニウム(Aβ)、
チタン(Ti)、ニオブ(Nb)が添加された析出強化
型合金である。ニッケル系超合金としては、例えば、+
al  重量%(以下、単位はすべて重量%である)で
、Co < 1.5%、Cr:14〜23%、MO:5
〜16%、W<4.0%、F e < 5.0%、St
<0.8%、Mn<1.0%、C:0.05〜0.1%
、Ca:0.1〜2.0%および残部N i 、 (b
l  Co < 5.0%、Cr:18〜22%、MO
83〜6%、F e < 4.0%、St<1.0%、
Mn<1.0%、c:o、os 〜o、i%、Ca:0
、1〜2.0%、A # < 1.0%および残部Ni
等を用いることができる。
In addition, nickel-based superalloys contain around 20% chromium (Cr).
In addition, aluminum (Aβ) is added in terms of high-temperature strength.
It is a precipitation-strengthened alloy to which titanium (Ti) and niobium (Nb) are added. Examples of nickel-based superalloys include +
al weight% (hereinafter all units are weight%), Co < 1.5%, Cr: 14-23%, MO: 5
~16%, W<4.0%, Fe<5.0%, St
<0.8%, Mn<1.0%, C: 0.05-0.1%
, Ca: 0.1-2.0% and the balance N i , (b
lCo<5.0%, Cr:18-22%, MO
83-6%, Fe < 4.0%, St < 1.0%,
Mn<1.0%, c: o, os ~ o, i%, Ca: 0
, 1-2.0%, A # < 1.0% and balance Ni
etc. can be used.

また、鉄系超合金はNi−Cr鋼を改良したものであり
、Crで耐食性を向上させ、それに起因する脆化を防ぐ
ためにFe分を減らしNiを高めた合金であり、それに
強度面よりMOlW、An!、Ti等の固溶強化元素お
よび析出強化元素が添加されたものである。この鉄系超
合金としては、例えばM−813やI ncoly 9
01等を用いることができる。
In addition, iron-based superalloys are improved Ni-Cr steels, and are alloys with improved corrosion resistance with Cr, reduced Fe content and increased Ni content to prevent embrittlement caused by Cr, and MOLW for strength. , An! , a solid solution strengthening element such as Ti, and a precipitation strengthening element are added. Examples of this iron-based superalloy include M-813 and Incoly 9.
01 etc. can be used.

なお、本発明において、銅系自溶性合金や肉盛合金を肉
盛する際の熱源としては、レーザ、TlG1プラズマ等
の高密度エネルギ源を用いることができる。
In the present invention, a high-density energy source such as a laser or TlG1 plasma can be used as a heat source when overlaying a copper-based self-fluxing alloy or overlaying alloy.

〔作用〕[Effect]

本発明で使用する銅系自溶性合金は、アルミニウムと耐
熱性、耐摩耗性、耐食性に優れた異種材料の間の融点を
有しており、かつこの融点はアルミニウムの融点と30
0℃程度違うだけであるため、従来のようにアルミニウ
ム系母材を溶かしてしまうということがない。
The copper-based self-fluxing alloy used in the present invention has a melting point between that of aluminum and a different material with excellent heat resistance, wear resistance, and corrosion resistance, and this melting point is 30° higher than that of aluminum.
Since the difference is only about 0°C, there is no possibility of melting the aluminum base material as in the past.

また、銅系自溶性合金に含まれる硼素や珪素は自溶性を
存するため、アルミニウム系母材および耐熱性、耐摩耗
性、耐食性に優れた異種材料との濡れ性がよくなる。こ
のため、接合強度も高い。
Further, since boron and silicon contained in the copper-based self-fluxing alloy are self-fusing, they have good wettability with the aluminum-based base material and a different material with excellent heat resistance, wear resistance, and corrosion resistance. Therefore, the bonding strength is also high.

また、本発明の銅系自溶性合金は銅をベースとしており
、アルミニウム系母材と中間肉盛材料の接合時に形成さ
れる合金化層において生じる銅とアルミニウムの金属間
化合物は、他の元素の場合と異なり硬くて靭性を備えて
いる。
In addition, the copper-based self-fusing alloy of the present invention is based on copper, and the intermetallic compound of copper and aluminum that is formed in the alloyed layer formed when joining the aluminum base material and the intermediate overlay material contains other elements. Unlike other cases, it is hard and has toughness.

更に、銅系自溶性合金はビッカース硬さがHv:100
〜200と軟らかく、かつ粘いために、銅系自溶性合金
の上に肉盛する材料が硬くても割れ等を発生することな
く肉盛することができる。
Furthermore, the Vickers hardness of the copper-based self-fusing alloy is Hv: 100.
Because it is soft and sticky (~200%), even if the material to be overlaid on a copper-based self-fluxing alloy is hard, it can be overlaid without causing cracks or the like.

従って、本発明によれば、十分な接合強度を維持した上
でアルミニウム系母材に耐熱性、耐摩耗性、耐食性に優
れた異種金属材料を肉盛することができる。
Therefore, according to the present invention, a dissimilar metal material having excellent heat resistance, wear resistance, and corrosion resistance can be overlaid on an aluminum base material while maintaining sufficient bonding strength.

〔実施例〕〔Example〕

次に、本発明の実施例を図面を参考にして説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

(第1実施例) 第1実施例としてアルミニウム系母材に銅系自溶性合金
を介してニッケル系超合金を肉盛した例を示す。
(First Example) As a first example, an example will be shown in which a nickel-based superalloy is overlaid on an aluminum-based base material via a copper-based self-fluxing alloy.

ここで、第1図は本発明の第1実施例に係るアルミニウ
ム系母材への2層肉盛方法の各工程を示す概略構成図、
第2図は本発明の第1実施例で得られた肉盛層の金属組
織を示す写真(x’io>である。
Here, FIG. 1 is a schematic configuration diagram showing each step of a two-layer overlay method on an aluminum base material according to a first embodiment of the present invention,
FIG. 2 is a photograph (x'io>) showing the metal structure of the built-up layer obtained in the first example of the present invention.

アルミニウム系母材(JIS  ADCIO)からなる
30mX60nX10mの矩形の試験片1を準備し、こ
の上にNi系超合金を肉盛した。まず、この試験片1の
上に、1%B−2%5t−10%Ni−残部Cuからな
る銅系自溶性合金粉末2を3%ポリビニルアルコール水
溶液を使って厚さ1龍、幅5111長さ50wmとなる
ように塗布し、100℃で20分間乾燥させた。次に、
熱源としてレーザ光3を用いて上記銅系自溶性合金粉末
2を溶着し、第1の肉盛層4を得た。このとき、溶融プ
ール5には酸化を防ぐためサイドノズル6からシールド
ガスとしてアルゴンガス7をIOJ/分の割合で送給し
た。また、レーザ肉盛条件は、パワー密度: 200W
/in”、エネルギ密度:90J/w”、走査速度ニア
、5寵/秒とした。このときのレーザ肉盛の途中の状態
を示したのが第1図ta+である。
A rectangular test piece 1 of 30 m x 60 n x 10 m made of an aluminum base material (JIS ADCIO) was prepared, and a Ni-based superalloy was overlaid thereon. First, on this test piece 1, a copper-based self-fusing alloy powder 2 consisting of 1%B-2%5T-10%Ni-10%Cu was added using a 3% polyvinyl alcohol aqueous solution to a thickness of 1mm and a width of 511mm long. It was applied to a thickness of 50 wm and dried at 100° C. for 20 minutes. next,
The copper-based self-fluxing alloy powder 2 was welded using a laser beam 3 as a heat source to obtain a first overlay layer 4. At this time, argon gas 7 was supplied to the molten pool 5 as a shielding gas from a side nozzle 6 at a rate of IOJ/min to prevent oxidation. In addition, the laser deposition conditions are power density: 200W.
/in'', energy density: 90 J/w'', scanning speed near, 5 g/sec. FIG. 1 ta+ shows the state in the middle of laser build-up at this time.

続いて、この第1の肉盛層4の上に、熱源として銅系自
溶性合金の場合と同様にレーザ光を用いて、耐熱性、耐
摩耗性、耐食性に優れた異種金属材料として25%Cr
 −1,5%+3−1%5t−8%Mo−残部Niから
なるNi系超合金を肉盛した。即ち、第1の肉盛層4の
場合と同様に、第1の肉盛層4の上に、上記Ni基超超
合金粉末を厚さ1.5鶴、幅4.5龍、長さ501箇と
なるように塗布し、十分に乾燥させた後、シールドガス
4してアルゴンガス7を1047分の割合で送給しなか
らレーザ光3を照射した。このとき、レーザ肉盛条件は
、パワー密度: 300 W/1m”、エネルギ密度:
 120 J/111”、走査速度ニア、5NWA/秒
とした。このときのレーザ肉盛の途中の状態を示したの
が第1図(blである。この結果、第1の肉盛層4の上
に、第1の肉盛層4と溶着したNi系超合金からなる第
2の肉盛層9が形成された。
Next, on top of this first overlay layer 4, a 25% dissimilar metal material with excellent heat resistance, wear resistance, and corrosion resistance is applied using a laser beam as a heat source in the same manner as in the case of copper-based self-fluxing alloys. Cr
A Ni-based superalloy consisting of -1.5%+3-1%5t-8%Mo-balance Ni was overlaid. That is, as in the case of the first build-up layer 4, the Ni-based super-superalloy powder is placed on the first build-up layer 4 to a thickness of 1.5 mm, a width of 4.5 mm, and a length of 50 mm. After applying the film in small areas and drying it thoroughly, a laser beam 3 was irradiated while supplying a shield gas 4 and an argon gas 7 at a rate of 1047 parts. At this time, the laser deposition conditions were: power density: 300 W/1m", energy density:
120 J/111", scanning speed near, and 5 NWA/sec. The state during the laser build-up at this time is shown in Figure 1 (bl). As a result, the first build-up layer 4 A second build-up layer 9 made of a Ni-based superalloy welded to the first build-up layer 4 was formed thereon.

このときの肉盛部の断面の金属組織を第2図に写真(X
IO)で示す。第2図からも判るように、アルミニウム
系母材と第1の肉盛層および第1の肉盛層と第2の肉盛
層の溶着部には若干希釈が見られるが、その他の部分は
希釈が見られず、かつ割れ等の発生がなくほぼ完全な形
で2層の肉盛層が得られた。これは、中間肉盛材料であ
る銅系自溶性合金が、アルミニウム系母材およびNi系
超合金の両方に濡れ性が良いこと、並びにアルミニウム
系母材の融点が538℃〜593℃、Ni系超合金の融
点が1240℃〜1303℃であるのに対し、本実施例
の銅系自溶性合金の融点が略その中間の940℃〜10
30 ”Cであるためと解される。
The metal structure of the cross section of the built-up part at this time is shown in the photograph (X
IO). As can be seen from Figure 2, there is some dilution in the welded areas between the aluminum base material and the first build-up layer, and between the first build-up layer and the second build-up layer, but the other parts are Two build-up layers were obtained in almost perfect form with no dilution and no cracks. This is because the copper-based self-fluxing alloy, which is the intermediate overlay material, has good wettability with both the aluminum-based base material and the Ni-based superalloy, and the melting point of the aluminum-based base material is 538°C to 593°C, and the Ni-based While the melting point of the superalloy is 1240°C to 1303°C, the melting point of the copper-based self-fluxing alloy of this example is approximately between 940°C and 10°C.
This is interpreted to be because it is 30”C.

(第2実施例) 第2実施例としてアルミニウム系母材に銅系自溶性合金
を介してコバルト系超合金を肉盛した例を示す。
(Second Example) As a second example, an example will be shown in which a cobalt-based superalloy is overlaid on an aluminum-based base material via a copper-based self-fluxing alloy.

第3図は本発明の第2実施例で得られた肉盛層の金属組
織を示す写真(XIO)である。
FIG. 3 is a photograph (XIO) showing the metal structure of the built-up layer obtained in the second example of the present invention.

第2実施例において、第1実施例と異なる点は、アルミ
ニウム系母材としてJIS  AC4Cを用いたこと、
第2の肉盛層の材料として28%Cr−1%C−4%W
−残部CoからなるCo系超合金を用いたこと、および
第2の肉盛材料の相違により第2の肉盛層を形成するた
めのレーザ肉盛条件を、パワー密度:350W/鶴2、
エネルギ密度: 150 J /**”、走査速度ニア
、5m■/秒としたことにあり、他は実質的に第1実施
例と同様にして2層肉盛を行った。
The second embodiment differs from the first embodiment in that JIS AC4C was used as the aluminum base material;
28%Cr-1%C-4%W as the material for the second overlay layer
- Due to the use of a Co-based superalloy with the remainder being Co and the difference in the second build-up material, the laser build-up conditions for forming the second build-up layer were: power density: 350 W/Tsuru 2;
Two-layer overlay was carried out in substantially the same manner as in Example 1 except that the energy density was 150 J/**'' and the scanning speed was 5 m/sec.

このときの肉盛部の断面の金属組織を第3図に写真(X
10)で示す。第3図からも判るように、アルミニウム
系母材と第1の肉盛層および第1の肉盛層と第2の肉盛
層の溶着部には若干希釈が見られるが、その他の部分は
希釈が見られず、がつ割れ等の発生がなくほぼ完全な形
で2層の肉盛層が得られた。これは、中間肉盛材料であ
る銅系自溶性合金が、アルミニウム系母材およびCo系
超合金の両方に濡れ性が良いこと、並びにアルミニウム
系母材の融点が550℃〜610’C1Co系超合金の
融点が1260℃〜1357℃であるのに対し、本実施
例の銅系自溶性合金の融点が略その中間の940℃〜1
030℃であるためと解される。
The metal structure of the cross section of the built-up part at this time is shown in the photograph (X
10). As can be seen from Figure 3, some dilution is seen in the welded areas between the aluminum base material and the first overlay layer, and between the first overlay layer and the second overlay layer, but the other parts are Two build-up layers were obtained in almost perfect form without any dilution or cracking. This is because the copper-based self-fluxing alloy, which is the intermediate overlay material, has good wettability with both the aluminum-based base material and the Co-based superalloy, and the melting point of the aluminum-based base material is 550°C to 610°C. The melting point of the alloy is 1,260°C to 1,357°C, whereas the melting point of the copper-based self-fluxing alloy of this example is approximately in the middle, 940°C to 1,357°C.
This is understood to be because the temperature is 0.030°C.

(第3実施例) 第3実施例としてアルミニウム系母材に銅系自溶性合金
を介して鉄系超合金を肉盛した例を示す。
(Third Example) As a third example, an example will be shown in which an iron-based superalloy is overlaid on an aluminum-based base material via a copper-based self-fluxing alloy.

第4図は本発明の第3実施例で得られた肉盛層の金属&
FI織を示す写真(XIO)である。
FIG. 4 shows the metal &
This is a photograph (XIO) showing FI weave.

第3実施例において、第1実施例と異なる点は、第1の
肉盛層の材料として3%B−15%Ni −残部Cuか
らなる銅系自溶性合金を用いたこと、第2の肉盛層の材
料として1%B−3%5i−10%Ni−20%Cr−
残部FeからなるFe系超合金を用いたこと、および第
2の肉盛層を形成するためにレーザの代わりにTIGを
用い、そのT I G(7)処理条件を電流:12OA
、電圧:2゜Vとしたことにあり、他は実質的に第1実
施例と同様にして2層肉盛を行った。
The third embodiment differs from the first embodiment in that a copper-based self-fluxing alloy consisting of 3% B-15% Ni and the balance Cu is used as the material for the first build-up layer, and that the second build-up layer 1%B-3%5i-10%Ni-20%Cr-
The use of an Fe-based superalloy consisting of Fe as the remainder, and the use of TIG instead of a laser to form the second overlay layer, and the TIG (7) processing conditions were as follows: Current: 12OA
, Voltage: 2°V, otherwise two-layer overlay was carried out in substantially the same manner as in the first example.

このときの肉盛部の断面の金属組織を第4図に写真(x
lO)で示す。第4図からも判るように、アルミニウム
系母材と第1の肉盛層および第1の肉盛層と第2の肉盛
層の溶着部には若干希釈が見られるが、その他の部分は
希釈が見られず、かつ割れ等の発生がなくほぼ完全な形
で2層の肉盛層が得られた。これは、中間肉盛材料であ
る銅系自溶性合金が、アルミニウム系母材およびFe系
超合金の両方に濡れ性が良いこと、並びにアルミニラム
系母材の融点が538℃〜593℃、Fe系超合金の融
点が1350℃〜1420℃であるのに対し、本実施例
の銅系自溶性合金の融点が略その中間の980℃〜10
60℃であるためと解される。
The metal structure of the cross section of the built-up part at this time is shown in the photograph (x
1O). As can be seen from Figure 4, some dilution is seen in the welded areas between the aluminum base material and the first overlay layer, and between the first overlay layer and the second overlay layer, but other parts are Two build-up layers were obtained in almost perfect form with no dilution and no cracks. This is because the copper-based self-fluxing alloy, which is the intermediate overlay material, has good wettability with both the aluminum-based base material and the Fe-based superalloy, and the melting point of the aluminum-based base material is 538°C to 593°C, and the Fe-based While the melting point of the superalloy is 1350°C to 1420°C, the melting point of the copper-based self-fluxing alloy of this example is approximately in the middle, 980°C to 10°C.
This is understood to be because the temperature is 60°C.

(第4実施例) 第4実施例として銅系自溶性合金の肉盛時の応力緩和効
果を調べた。
(Fourth Example) As a fourth example, the stress relaxation effect during build-up of a copper-based self-fluxing alloy was investigated.

ここで、第5図は本発明の第4実施例と比較例で得られ
た2層肉盛部材の割れ発生までの繰り返し回数を示すグ
ラフである。
Here, FIG. 5 is a graph showing the number of repetitions until cracking occurs in the two-layer overlay members obtained in the fourth example of the present invention and the comparative example.

第4実施例において、第1実施例と異なる点は、ベース
材料としてアルミニウム系母材の代わりに鋼板(JIS
  545C)を用いたこと、中間肉盛材料として1%
B−2%5t−10%Ni−残部Cuからなる銅系自溶
性合金を用いたこと、第2の肉盛層の材料として30%
Cr−5%W−2゜5%C−4%St−残部Niからな
るNi系超合金を用いたことにあり、他は実質的に第1
実施例と同様にして2層肉盛を行った試験片を3個作製
した。
The fourth embodiment differs from the first embodiment in that the base material is a steel plate (JIS
545C) was used, and 1% was used as the intermediate overlay material.
B-2% 5t-10% Ni-balance Cu, using a copper-based self-fluxing alloy, 30% as the material of the second overlay layer
The reason is that a Ni-based superalloy consisting of Cr-5%W-2゜5%C-4%St-the balance Ni is used, and the rest is substantially the same as the first one.
Three test pieces were prepared using two-layer overlay in the same manner as in the example.

同様に、比較例として中間肉盛材料としての銅系自溶性
合金を用いず、ベースの鋼板に直接上記Ni系超合金を
肉盛した試験片を3個作製した。
Similarly, as a comparative example, three test pieces were prepared in which the Ni-based superalloy was directly overlaid onto a base steel plate without using the copper-based self-fluxing alloy as the intermediate overlay material.

得られた6個の試験片について、600℃の恒温槽と6
0℃の浴槽に交互に入れる作業を1サイクルとして、肉
盛したNi系超合金に割れが発生するまでの繰り返し回
数を調べた。
The six test pieces obtained were placed in a constant temperature bath at 600°C.
The number of repetitions until cracking occurred in the overlaid Ni-based superalloy was investigated, with one cycle consisting of alternately placing the samples in a bath at 0°C.

この結果を第5図に示す。第5図から明らかなように、
本実施例の試験片a ”−cは、中間肉盛材料を用いな
い従来の試験片d−fに比べ、熱疲労特性が約2倍に向
上していることが判る。
The results are shown in FIG. As is clear from Figure 5,
It can be seen that the thermal fatigue properties of the test pieces a''-c of this example are approximately twice as high as those of the conventional test pieces d-f that do not use an intermediate overlay material.

以上、本発明の特定の実施例について説明したが、本発
明は上記実施例に限定されるものではなく、特許請求の
範囲内において種々の実施態様を包含するものである。
Although specific embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, but includes various embodiments within the scope of the claims.

〔発明の効果〕〔Effect of the invention〕

以上より、本発明のアルミニウム系母材への2層肉盛方
法によれば、以下の効果を奏する。
As described above, according to the method of two-layer overlaying on an aluminum base material of the present invention, the following effects are achieved.

(イ)アルミニウム系母材に耐熱性、耐摩耗性、  C 耐食性に優れた異種材料を十分な接合強度を持って溶着
させることができる。従って、アルミニウムの軽量化と
異種材料の耐熱性、耐摩耗性、耐食性等の緒特性の両方
を具備する部品を得ることができる。
(a) Different materials with excellent heat resistance, wear resistance, and corrosion resistance can be welded to an aluminum base material with sufficient bonding strength. Therefore, it is possible to obtain a component that has both the light weight of aluminum and the heat resistance, wear resistance, corrosion resistance, etc. of a different material.

(ロ)銅系自溶性合金は軟らかく粘いために、肉盛材料
が硬くても、肉盛時の応力を緩和するために割れ等が発
生しない。また、肉盛後の肉盛材料の熱疲労特性が向上
する。
(b) Copper-based self-fluxing alloys are soft and sticky, so even if the overlay material is hard, cracks do not occur because the stress during overlay is relaxed. Furthermore, the thermal fatigue properties of the overlay material after overlaying are improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例に係るアルミニウム系母材
への2層肉盛方法の各工程を示す概略構成図、 第2図は本発明の第1実施例で得られた肉盛層の金属組
織を示す写真(XIO)、 第3図は本発明の第2実施例で得られた肉盛層の金属m
織を示す写真(xlo)、 第4図は本発明の第3実施例で得られた肉盛層の金属組
織を示す写真(x 10)、 第5図は本発明の第4実施例と比較例で得られ1 。 た2層肉盛部材の割れ発生までの繰り返し回数を示すグ
ラフである。 1−・・−アルミニウム系母材 2・−・−銅系自溶性合金 3−・−・・−レーザ光 4・・−・−第1の肉盛層 5−−−−−−一溶融プール 6・−−−一−・−・サイドノズル 7−・−・−アルゴンガス(シールドガス)8−・・・
−−−−N i系超合金粉末9−・−第2の肉盛層 出願人  トヨタ自動車株式会社 第2図 第3図 (×10) 第4図 (xlo) 第5図 省 と 填夕1     慢句・1
Fig. 1 is a schematic configuration diagram showing each step of a two-layer overlay method on an aluminum base material according to the first embodiment of the present invention, and Fig. 2 is a schematic diagram showing the overlaying method obtained in the first embodiment of the present invention. A photograph (XIO) showing the metallographic structure of the layer, Fig. 3 shows the metal m of the built-up layer obtained in the second example of the present invention.
Figure 4 is a photograph (x10) showing the metal structure of the overlay layer obtained in the third example of the present invention, Figure 5 is a comparison with the fourth example of the present invention. Obtained in example 1. It is a graph showing the number of repetitions until cracking occurs in a two-layer overlay member. 1-...-Aluminum base material 2--Copper-based self-fluxing alloy 3--Laser beam 4--First overlay layer 5--1 Molten pool 6・---1−・−・Side nozzle 7−・−・−Argon gas (shielding gas) 8−・・・・
---Ni-based superalloy powder 9--Second overlay layer applicant Toyota Motor Corporation Figure 2 Figure 3 (x10) Figure 4 (xlo) Figure 5 Ministry and filler layer 1 Arrogant phrase 1

Claims (1)

【特許請求の範囲】[Claims] (1)アルミニウム系母材に耐熱性、耐摩耗性等に優れ
た肉盛材料を肉盛するための2層肉盛方法であって、 アルミニウム系母材の表面に銅系自溶性合金を肉盛し、
この銅系自溶性合金の上に耐熱性、耐摩耗性、耐食性に
優れた肉盛合金を肉盛することを特徴とするアルミニウ
ム系母材への2層肉盛方法。
(1) A two-layer overlay method for overlaying an overlay material with excellent heat resistance, wear resistance, etc. on an aluminum base material, in which a copper-based self-fusing alloy is overlaid on the surface of the aluminum base material. Serve,
A two-layer overlay method for an aluminum base material, characterized by overlaying a overlay alloy with excellent heat resistance, wear resistance, and corrosion resistance on this copper-based self-fluxing alloy.
JP60158955A 1985-07-18 1985-07-18 Double layer padding method to aluminum base metal Granted JPS6221465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60158955A JPS6221465A (en) 1985-07-18 1985-07-18 Double layer padding method to aluminum base metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60158955A JPS6221465A (en) 1985-07-18 1985-07-18 Double layer padding method to aluminum base metal

Publications (2)

Publication Number Publication Date
JPS6221465A true JPS6221465A (en) 1987-01-29
JPH055585B2 JPH055585B2 (en) 1993-01-22

Family

ID=15682993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60158955A Granted JPS6221465A (en) 1985-07-18 1985-07-18 Double layer padding method to aluminum base metal

Country Status (1)

Country Link
JP (1) JPS6221465A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02251389A (en) * 1989-02-08 1990-10-09 General Electric Co <Ge> Parts manufacturing by lamination
JPH06199335A (en) * 1992-12-29 1994-07-19 Takeo Yoneda Tray
JPH0740458U (en) * 1992-04-08 1995-07-18 上野プラスチックス株式会社 Container that can be connected and separated
US5597589A (en) * 1986-10-17 1997-01-28 Board Of Regents, The University Of Texas System Apparatus for producing parts by selective sintering
JP2001162618A (en) * 1999-12-09 2001-06-19 Kurimoto Ltd Mixing and kneading paddle and its manufacturing method
CN102059430A (en) * 2010-12-14 2011-05-18 洛阳双瑞金属复合材料有限公司 Method for welding and repairing copper surface defect of aluminum-copper composite board transition joint
JP2018061982A (en) * 2016-10-13 2018-04-19 トヨタ自動車株式会社 Molding method for metal mold
US11446765B2 (en) 2017-03-22 2022-09-20 Toyota Jidosha Kabushiki Kaisha Method of producing clad layer and device for producing the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007020581A1 (en) 2005-08-12 2007-02-22 Arcelik Anonim Sirketi A cooling device
WO2007020585A1 (en) 2005-08-15 2007-02-22 Arcelik Anonim Sirketi A cooling device
US10835996B2 (en) * 2018-01-30 2020-11-17 Siemens Energy, Inc. Laser metal deposition with inoculation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4884750A (en) * 1972-02-15 1973-11-10
JPS5110825A (en) * 1974-07-18 1976-01-28 Ebara Mfg Hoshaseihaikibutsuno asufuarutokokahoho
JPS5110826A (en) * 1974-07-18 1976-01-28 Otani Sugio Yojuenchude kanetsusurukotoo tokuchotosuru kaishitsupitsuchioyobi tansono seizoho
JPS5849350A (en) * 1981-06-12 1983-03-23 リヒタ−・ゲデオン・ベジエセテイ・ジヤ−ル・ア−ルテ− Peptide for influencing immunological control and manufacture
JPS5945461A (en) * 1982-09-08 1984-03-14 Konishiroku Photo Ind Co Ltd Recorder
JPS5954871A (en) * 1982-09-20 1984-03-29 Mitsubishi Metal Corp Aluminum bronze valve and valve seat excellent in abrasion resistance

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4884750A (en) * 1972-02-15 1973-11-10
JPS5110825A (en) * 1974-07-18 1976-01-28 Ebara Mfg Hoshaseihaikibutsuno asufuarutokokahoho
JPS5110826A (en) * 1974-07-18 1976-01-28 Otani Sugio Yojuenchude kanetsusurukotoo tokuchotosuru kaishitsupitsuchioyobi tansono seizoho
JPS5849350A (en) * 1981-06-12 1983-03-23 リヒタ−・ゲデオン・ベジエセテイ・ジヤ−ル・ア−ルテ− Peptide for influencing immunological control and manufacture
JPS5945461A (en) * 1982-09-08 1984-03-14 Konishiroku Photo Ind Co Ltd Recorder
JPS5954871A (en) * 1982-09-20 1984-03-29 Mitsubishi Metal Corp Aluminum bronze valve and valve seat excellent in abrasion resistance

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5597589A (en) * 1986-10-17 1997-01-28 Board Of Regents, The University Of Texas System Apparatus for producing parts by selective sintering
US5616294A (en) * 1986-10-17 1997-04-01 Board Of Regents, The University Of Texas System Method for producing parts by infiltration of porous intermediate parts
US5639070A (en) * 1986-10-17 1997-06-17 Board Of Regents, The University Of Texas System Method for producing parts by selective sintering
JPH02251389A (en) * 1989-02-08 1990-10-09 General Electric Co <Ge> Parts manufacturing by lamination
JPH0740458U (en) * 1992-04-08 1995-07-18 上野プラスチックス株式会社 Container that can be connected and separated
JPH06199335A (en) * 1992-12-29 1994-07-19 Takeo Yoneda Tray
JP2001162618A (en) * 1999-12-09 2001-06-19 Kurimoto Ltd Mixing and kneading paddle and its manufacturing method
CN102059430A (en) * 2010-12-14 2011-05-18 洛阳双瑞金属复合材料有限公司 Method for welding and repairing copper surface defect of aluminum-copper composite board transition joint
JP2018061982A (en) * 2016-10-13 2018-04-19 トヨタ自動車株式会社 Molding method for metal mold
US11446765B2 (en) 2017-03-22 2022-09-20 Toyota Jidosha Kabushiki Kaisha Method of producing clad layer and device for producing the same

Also Published As

Publication number Publication date
JPH055585B2 (en) 1993-01-22

Similar Documents

Publication Publication Date Title
US3617685A (en) Method of producing crack-free electron beam welds of jet engine components
US7645493B2 (en) Composite wires for coating substrates and methods of use
CA1295096C (en) Hardsurfaced power-generating turbine components and method of hardsurfacing metal substrates using a buttering layer
US10260128B2 (en) Wear-resistant copper-base alloy
JP2011502786A (en) Workpiece joining method and material welding method having a work piece region made of titanium aluminum alloy
JPH04297536A (en) Wear resistant copper-base alloy excellent in self-lubricity
JPS6221465A (en) Double layer padding method to aluminum base metal
JP2002518982A (en) Double or multilayer coating
Ajay et al. A review on rotary and linear friction welding of Inconel alloys
US4396577A (en) Cobalt-palladium-silicon-boron brazing alloy
JP2017148820A (en) Ni-BASED ALLOY SOLID WIRE FOR WELDING AND Ni-BASED ALLOY WELD METAL
US7749614B2 (en) Method of brazing a Ti-Al alloy
KR100757322B1 (en) Steel/aluminum joined structure
JPH0647187B2 (en) Dispersion strengthened copper base alloy for overlay
JP3059333B2 (en) Manufacturing method of aluminum material with excellent wear resistance
JPS6221464A (en) Intermediate build-up material for welding of different materials
Roy et al. Advancement of brazing filler alloy: An overview
JP2001012202A (en) Different kind materials welded turbine rotor and manufacture thereof
Brandi et al. Brazeability and solderability of engineering materials
JP2014018836A (en) Ni-BASED WELDING MATERIAL AND DIFFERENT MATERIAL WELDED TURBINE ROTOR
JPH0481291A (en) Submerged arc welding wire
JPH08144703A (en) High-chromium turbine rotor and its manufacture
JPH02151378A (en) Alloy foil for liquid phase diffusion joining which can be joined in oxidation atmosphere
JPH08170132A (en) Joining member between iron alloy and nickel alloy
JPH0966389A (en) Welding material for build-up welding of 12% chromium steel and build-up welding method using this welding material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees