JP2798281B2 - Particle array laser sintering method and apparatus - Google Patents

Particle array laser sintering method and apparatus

Info

Publication number
JP2798281B2
JP2798281B2 JP1284270A JP28427089A JP2798281B2 JP 2798281 B2 JP2798281 B2 JP 2798281B2 JP 1284270 A JP1284270 A JP 1284270A JP 28427089 A JP28427089 A JP 28427089A JP 2798281 B2 JP2798281 B2 JP 2798281B2
Authority
JP
Japan
Prior art keywords
sintering
laser
powder
sintered
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1284270A
Other languages
Japanese (ja)
Other versions
JPH03146606A (en
Inventor
龍三 渡辺
亮 川崎
正之 新野
正弘 結城
敏一 村山
敏夫 入沢
Original Assignee
龍三 渡辺
亮 川崎
航空宇宙技術研究所長
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 龍三 渡辺, 亮 川崎, 航空宇宙技術研究所長, 石川島播磨重工業株式会社 filed Critical 龍三 渡辺
Priority to JP1284270A priority Critical patent/JP2798281B2/en
Publication of JPH03146606A publication Critical patent/JPH03146606A/en
Application granted granted Critical
Publication of JP2798281B2 publication Critical patent/JP2798281B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Powder Metallurgy (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、セラミックスや金属などの粉末をセラミ
ックスや金属などの母材表面に配列しながらレーザーで
加熱焼結することを繰り返す粒子配列レーザー焼結方法
及びその装置に関し、セラミックスと金属のような異種
素材間に連続的に組成を変化させた中間層を配置した傾
斜機能材料などを簡単に焼結して得ることができるよう
にしたものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a particle array laser firing method that repeats heating and sintering with a laser while arranging a powder of ceramic or metal on a surface of a base material of ceramic or metal. With regard to the sintering method and the apparatus, it is possible to easily obtain a functionally graded material in which an intermediate layer having a continuously changed composition is arranged between different materials such as ceramics and metal by simply sintering. is there.

[従来の技術] 新規な材料の開発研究の進展にともない従来の単純な
張り合わせ材料と異なり、表と裏の性質が全く異なり、
しかも表から裏にいくにしたがって徐々に原子・分子レ
ベルでの性質が連続的に変化する傾斜機能材料が開発さ
れつつある。
[Prior art] With the progress of research and development of new materials, the properties of front and back are completely different from those of conventional simple laminated materials.
In addition, functionally graded materials whose properties at the atomic and molecular levels gradually change from the front to the back are being developed.

この傾斜機能材料としては、例えば、宇宙往還機ある
いは核融合炉などで使用する熱応力緩和機能を備えた超
高温材料があり、セラミックスと金属の異種材料間に連
続的に組成を変化させた中間層(傾斜組成制御層)を配
置し、熱膨張をはじめとする物性値や組織を連続的に変
化させ、セラミックスによって耐熱性を与えると同時
に、金属によって熱伝導性及び機械的強度を与えるよう
にしている。さらに、傾斜機能材料によれば、熱応力緩
和機能だけでなく、組成変化とともにヤング率、熱膨張
率、熱伝導率、電気伝導率などの特性値の変化を制御す
ることにより、求められる環境に適合した機能性を持た
せることができる。また、傾斜機能材料としては、複合
材とするものだけでなく、均一材において組織に傾斜機
能を持たせるようにするものも考えられている。
Such functionally graded materials include, for example, ultra-high-temperature materials with a thermal stress relaxation function used in spacecraft and fusion reactors, and intermediate materials in which the composition is continuously changed between different materials of ceramics and metals. A layer (gradient composition control layer) is arranged to continuously change physical properties and structure, including thermal expansion, so that heat resistance is given by ceramics and thermal conductivity and mechanical strength are given by metal. ing. Furthermore, according to the functionally graded material, not only the thermal stress relieving function, but also controlling the change of characteristic values such as Young's modulus, coefficient of thermal expansion, thermal conductivity, and electrical conductivity along with the composition change, to meet the required environment. Suitable functionality can be provided. In addition, as a functionally gradient material, not only a composite material but also a material having a functionally gradient structure in a uniform material has been considered.

このような傾斜機能材料の作製法の一つとして粉末冶
金法があり、所定の傾斜組成とした粉末成形体を作り、
これを加熱焼結することが考えられている。
Powder metallurgy is one of the methods for producing such a functionally gradient material, and a powder compact having a predetermined gradient composition is produced.
Heat sintering of this is considered.

[発明が解決しようとする課題] ところが、傾斜機能材料を焼結する場合、焼結炉等で
一定の焼結温度で加熱焼結しようとしても、例えばセラ
ミックスと金属とでは焼結温度が異なるため焼結でき
ず、セラミックスの焼結温度に保持した場合には、金属
が溶融するなどの問題があり、金属の焼結温度に保持す
る場合には、セラミックスの焼結が不十分になってしま
うという問題がある。
[Problems to be Solved by the Invention] However, when sintering a functionally graded material, even if it is attempted to heat and sinter at a constant sintering temperature in a sintering furnace or the like, for example, the sintering temperature differs between ceramics and metal. When sintering is not possible, if the temperature is maintained at the sintering temperature of the ceramic, there is a problem such as melting of the metal.If the temperature is maintained at the sintering temperature of the metal, the sintering of the ceramic becomes insufficient. There is a problem.

この発明はかかる従来技術の課題に鑑みてなされたも
ので、傾斜機能材料など焼結温度範囲が広いものであっ
てもその組成などに応じて適正な条件で焼結することが
できる粒子配列レーザー焼結方法及びその装置を提供し
ようとするものである。
The present invention has been made in view of the problems of the related art, and has a particle array laser capable of sintering under appropriate conditions according to the composition and the like even if the sintering temperature range is wide, such as a functionally gradient material. It is intended to provide a sintering method and an apparatus therefor.

[課題を解決するための手段] 上記課題を解決するため、この発明の粒子配列レーザ
ー焼結方法は、異種素材間に連続的に組成を変化させた
中間層を配置した傾斜機能材料を焼結するに際し、母材
表面から順次異種素材となるように組成が連続して変化
する粉末を同一焼結条件で焼結可能な厚さに配列するこ
とを繰り返し、各粉末の配列ごとにその組成に対する適
正焼結条件でレーザーを照射して加熱焼結させることを
繰り返すようにしたことを特徴とするものである。
Means for Solving the Problems In order to solve the above problems, the particle array laser sintering method of the present invention sinters a functionally graded material in which an intermediate layer having a continuously changed composition is arranged between different kinds of materials. In doing so, iteratively repeatedly arranging powders whose composition changes continuously so as to become different materials sequentially from the base material surface to a thickness that can be sintered under the same sintering conditions, and for each arrangement of each powder, It is characterized in that laser sintering by irradiating a laser under appropriate sintering conditions is repeated.

また、この発明の粒子配列レーザー焼結装置は、母材
表面から順次異種素材となるように組成が連続して変化
する被焼結粉末を同一焼結条件で焼結可能な厚さに配列
することを繰り返す噴射ノズルと、この母材上の被焼結
粉末の各粉末の配列ごとにその組成に対する適正焼結条
件でレーザーを照射して加熱焼結させることを繰り返す
レーザー加熱装置とでなることを特徴とするものであ
る。
Further, the particle arrangement laser sintering apparatus of the present invention arranges powders to be sintered whose composition continuously changes so as to sequentially become different materials from the surface of the base material to a thickness that can be sintered under the same sintering conditions. An injection nozzle that repeats the above, and a laser heating device that repeats heating and sintering by irradiating a laser under the appropriate sintering conditions for each composition of each powder of the powder to be sintered on this base material It is characterized by the following.

[作 用] この粒子配列レーザー焼結方法によれば、母材表面か
ら順次異種素材となるように組成が連続して変化する粉
末を同一焼結条件で焼結可能な厚さに配列することを繰
り返し、各粉末の配列ごとにその組成に対する適正焼結
条件でレーザーを照射して加熱焼結させることを繰り返
すようにしており、各配列粉末の組成に応じた適正焼結
温度で焼結を行うようにしている。
[Operation] According to this particle arrangement laser sintering method, powders whose composition continuously changes from the base material surface to different materials sequentially are arranged in a thickness that can be sintered under the same sintering conditions. And sintering by heating and irradiating a laser under the proper sintering conditions for the composition of each powder, and sintering at an appropriate sintering temperature according to the composition of each array powder. I'm trying to do it.

したがって、セラミックスと金属などの異種材料の傾
斜機能材料や均一材料で組織に傾斜機能を与える傾斜機
能材料などであっても容易に焼結することができる。
Therefore, it is possible to easily sinter even a functionally-graded material of different materials such as ceramics and metal, or a functionally-graded material that imparts a functionally-grading function to a structure with a uniform material.

また、この粒子配列レーザー焼結装置によれば、母材
表面から噴射ノズルで順次異種素材となるように組成が
連続して変化する被焼結粉末を同一焼結条件で焼結可能
な厚さに配列することを繰り返し、この母材上の被焼結
粉末の各粉末の配列ごとにレーザー加熱装置でその組成
に対する適正焼結条件でレーザーを照射して加熱焼結さ
せることを繰り返すようにしており、これによって焼結
材を得るようにしている。
Further, according to this particle array laser sintering apparatus, the thickness capable of sintering the powder to be sintered whose composition continuously changes so as to become a different material sequentially from the base material surface to the injection nozzle in the same sintering condition. Repeatedly irradiating the laser with the laser heating device under the appropriate sintering conditions for the composition for each powder arrangement of the powder to be sintered on this base material and repeating the heating and sintering As a result, a sintered material is obtained.

したがって、セラミックスと金属などの異種材料の傾
斜機能材料や均一材料で組織に傾斜機能を与える傾斜機
能材料などであっても各配列の被焼結粉末を適正な焼結
温度にして容易に焼結することができる。
Therefore, even for functionally graded materials such as ceramics and metals, or functionally graded materials that provide a gradient function to the structure with a uniform material, the sintering powder in each arrangement can be easily sintered at the appropriate sintering temperature. can do.

[実施例] 以下、この発明の一実施例を図面に基づき詳細に説明
する。
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

第1図はこの発明の粒子配列レーザー焼結方法の一実
施例にかかる概略工程図である。
FIG. 1 is a schematic process drawing according to an embodiment of the particle arrangement laser sintering method of the present invention.

この粒子配列レーザー焼結方法では、例えば表面がセ
ラミックス11で裏面が金属12で、中間層がこれらの組成
が連続的に変化する中間層で構成される傾斜機能材料が
作られる。
In this particle array laser sintering method, a functionally graded material is produced, for example, in which the front surface is ceramics 11, the back surface is metal 12, and the intermediate layer is an intermediate layer whose composition changes continuously.

まず、裏面となる金属12の母材13を用意する。この金
属母材13としては、金属粉末14を後で分離することがで
きるセラミックス材などの表面にノズル15などで薄く配
列し、この金属粉末14にレーザー16を照射して加熱し、
金属粉末14の適正焼結温度で加熱焼結し、この金属粉末
14の焼結部分の上にさらに金属粉末14をノズル15などで
配列することを繰り返して所定の厚さにした金属100%
の組成のものなどが使用される。
First, a base material 13 of metal 12 to be the back surface is prepared. As the metal base material 13, the metal powder 14 is thinly arranged on a surface of a ceramic material or the like that can be separated later by a nozzle 15 or the like, and the metal powder 14 is heated by irradiating a laser 16 to the metal powder 14,
Heat sintering at an appropriate sintering temperature of the metal powder 14
Repeatedly arrange the metal powder 14 on the sintered part 14 with a nozzle 15 etc. to achieve a predetermined thickness of 100% metal
And the like.

次に、このような金属12が100%の母材13上には、金
属粉末14とセラミックス11の粉末17とが混合された粉末
が、ノズル15などから母材13表面に配列される。そし
て、この金属粉末14とセラミックス11の粉末17との混合
された粉末を配列する場合には、金属粉末14に僅かにセ
ラミックスの粉末17が混合された粉末を金属母材13上に
配列し、レーザーを照射して混合金属の適正焼結温度ま
で加熱して焼結する。
Next, a powder in which metal powder 14 and powder 17 of ceramics 11 are mixed is arranged on a surface of base material 13 from nozzle 15 or the like on base material 13 having 100% metal 12. When arranging a mixed powder of the metal powder 14 and the powder 17 of the ceramics 11, a powder in which the ceramic powder 17 is slightly mixed with the metal powder 14 is arranged on the metal base material 13, The mixed metal is heated to an appropriate sintering temperature by irradiating a laser and sintered.

そして、この混合粉末の焼結体上に、金属粉末14にさ
らにセラミックス11の粉末17を加えてセラミックスの組
成を多くした混合粉末が配列され、再びレーザーが照射
されてこの混合粉末の適正焼結温度まで加熱されて焼結
される。
Then, on the sintered body of the mixed powder, a mixed powder having a ceramic composition increased by adding the powder 17 of the ceramic 11 to the metal powder 14 is arranged, and the laser is again irradiated to properly sinter the mixed powder. Heated to temperature and sintered.

こうして混合粉末の組成が次第にセラミックス100%
に近付くように変化され、混合粉末の配列とレーザー照
射が繰り返されて所定の組成の傾斜機能材料が作られ
る。
In this way, the composition of the mixed powder gradually becomes 100% ceramic
, And the arrangement of the mixed powder and the laser irradiation are repeated to produce a functionally gradient material having a predetermined composition.

したがって、セラミックス11と金属12とで適正な焼結
温度が異なる場合であっても、これらの混合粉末を配列
し、これを直ちにレーザー照射によって加熱焼結するよ
うにしているので、レーザーによる加熱量のコントロー
ルだけで、混合粉末の適正焼結温度に加熱することがで
き、傾斜機能材料を容易に焼結することができる。
Therefore, even when the proper sintering temperature is different between the ceramics 11 and the metal 12, these mixed powders are arranged and immediately heated and sintered by laser irradiation. Can be heated to an appropriate sintering temperature of the mixed powder, and the functionally gradient material can be easily sintered.

次に、このような粒子配列レーザー焼結方法を実施す
るための装置の一実施例について、第2図により説明す
る。
Next, an embodiment of an apparatus for performing such a particle array laser sintering method will be described with reference to FIG.

この粒子配列レーザー焼結装置20では、耐圧気密構造
の焼結チャンバー21を備えている。
The particle array laser sintering device 20 includes a sintering chamber 21 having a pressure-resistant airtight structure.

この焼結チャンバー21には、内部を所定の焼結雰囲気
にするため、真空吸引口22が設けられ、図示しない真空
吸引装置に接続されるとともに、雰囲気ガス供給口23が
設けられて図示しないアルゴンガスなどの雰囲気ガス供
給装置に接続されている。
The sintering chamber 21 is provided with a vacuum suction port 22 for connecting the inside thereof to a predetermined sintering atmosphere, and is connected to a vacuum suction device (not shown). It is connected to an atmosphere gas supply device such as gas.

また、この焼結チャンバー21内には、被焼結体24をX,
Y,Z軸の直交する3軸方向に駆動される可動台25が設け
られている。
Further, in the sintering chamber 21, the sintering target 24 is placed at X,
A movable base 25 driven in three directions orthogonal to the Y and Z axes is provided.

この可動台25の上部には、セラミックスと金属の混合
粉末などの被焼結粉末26を母材27上に配列するための噴
射ノズル28の先端部が配置され、噴射ノズル28の中間部
が焼結チャンバー21にノズル位置調節装置29を介して取
付けられ先端位置を調整できるようになっている。
At the upper part of the movable table 25, the tip of an injection nozzle 28 for arranging a powder 26 to be sintered such as a mixed powder of ceramic and metal on a base material 27 is arranged, and an intermediate portion of the injection nozzle 28 is sintered. It is attached to the sintering chamber 21 via a nozzle position adjusting device 29 so that the tip position can be adjusted.

また、この噴射ノズル28の焼結チャンバー21の外部に
は、被焼結粉末の供給機30が設けられ、コントローラ31
によって噴射ノズル28の位置とともにセラミックスと金
属の組成などが制御される。
Outside the sintering chamber 21 of the injection nozzle 28, a sintering powder feeder 30 is provided, and a controller 31 is provided.
Accordingly, the composition of ceramics and metal, etc., as well as the position of the injection nozzle 28 are controlled.

このような噴射ノズル28の先端に向けてレーザーを照
射して被焼結粉末を加熱焼結するため、可動台25の上部
の焼結チャンバー21にレーザー照射窓32が形成され、焼
結チャンバー21外部にミラー33及びレーザー装置34が設
置されており、ミラー33はミラー駆動装置で動かすこと
ができるとともに、レーザー装置34はコントローラ31に
よってその照射量などが制御されるようになっている。
In order to heat and sinter the powder to be sintered by irradiating a laser toward the tip of such an injection nozzle 28, a laser irradiation window 32 is formed in the sintering chamber 21 above the movable table 25, and the sintering chamber 21 is formed. A mirror 33 and a laser device 34 are provided outside. The mirror 33 can be moved by a mirror driving device, and the irradiation amount of the laser device 34 is controlled by a controller 31.

このように構成された粒子配列レーザー焼結装置20で
は、まず、焼結チャンバー21内が真空吸引口22によって
真空状態とされた後、雰囲気ガス供給口23から雰囲気ガ
スが供給されて所定の雰囲気に調整される。
In the particle array laser sintering apparatus 20 configured as described above, first, after the inside of the sintering chamber 21 is evacuated by the vacuum suction port 22, an atmosphere gas is supplied from the atmosphere gas supply port 23 and a predetermined atmosphere is supplied. It is adjusted to.

この後、可動台25を駆動装置によってX−Y方向に動
かしながら母材27の表面の一端から他端に向けて噴射ノ
ズル28から、まず金属100%の被焼結粉末26を配列す
る。この被焼結粉末26の配列に際しては、粉末の飛散な
どを防止するため粉末にバインダーを加えるようにする
ことが好ましい。
Thereafter, while the movable table 25 is moved in the X and Y directions by the driving device, the powder to be sintered 26 of 100% metal is first arranged from the injection nozzle 28 from one end of the surface of the base material 27 to the other end. In arranging the powder 26 to be sintered, it is preferable to add a binder to the powder in order to prevent scattering of the powder.

こうして配列された被焼結粉末26上には、レーザー装
置34からミラー33及びレーザー照射窓32を介してレーザ
ーが照射され、焼結温度まで加熱されて焼結される。こ
のレーザーによる加熱焼結は、被焼結粉末26の配列直後
にレーザーを照射するようにて点毎としたり、母材27の
表面全体への被焼結粉末26の配列が終了した後、レーザ
ーの照射を開始するようにして面毎に行なう。
A laser is irradiated from the laser device 34 through the mirror 33 and the laser irradiation window 32 onto the sintering powder 26 arranged in this manner, and is heated to the sintering temperature and sintered. The heat sintering by the laser is performed by irradiating the laser immediately after the arrangement of the powders 26 to be sintered, and the laser sintering is performed after the arrangement of the powders 26 on the entire surface of the base material 27 is completed. Irradiation is started for each surface.

こうして母材27表面に薄く金属100%の被焼結体24が
形成された後、金属にわずかなセラミックスが混合され
た被焼結粉末26を噴射ノズル28から被焼結体24の表面に
積層するように配列し、レーザーを照射して加熱焼結す
る。
After the sintered body 24 of 100% metal is thinly formed on the surface of the base material 27 in this manner, the sintered powder 26 in which a small amount of ceramic is mixed with the metal is laminated on the surface of the sintered body 24 from the injection nozzle 28. It is heated and sintered by irradiating a laser.

このような組成の連続的に変化した被焼結粉末26を既
に焼結された被焼結体24の表面に積層するようにするこ
とを繰返し、最も上の表面がセラミックス100%となる
ようにして焼結が完了する。
The step of continuously laminating the powder 26 having such a composition, which has been continuously changed, on the surface of the sintered body 24 which has been already sintered is repeated so that the uppermost surface is made of 100% ceramics. The sintering is completed.

このような粒子配列レーザー焼結装置20によれば、傾
斜機能材料のように表面と裏面とで組成がことなるため
焼結温度が異なる場合にも、被焼結粉末を薄く配列し、
これをレーザーで加熱焼結するようにしているので、各
層の被焼結粉末を適正焼結温度で焼結することができ
る。
According to such a particle array laser sintering device 20, even when the sintering temperature is different because the composition is different between the front surface and the back surface, such as a functionally gradient material, the powder to be sintered is thinly arrayed,
Since this is heated and sintered by laser, the powder to be sintered of each layer can be sintered at an appropriate sintering temperature.

また、加熱量の調整もレーザー装置で行うようにして
いるので、簡単に制御できる。
Further, since the adjustment of the heating amount is also performed by the laser device, it can be easily controlled.

尚、この実施例では、被焼結粉末の噴射ノズルを焼結
チャンバー内に設けて被焼結粉末の配列直後のレーザー
による加熱焼結をも可能としているが、焼結チャンバー
の外部に噴射ノズルを設け、レーザー照射の都度焼結チ
ャンバー内入れるようにすることも可能である。
In this embodiment, the injection nozzle for the powder to be sintered is provided in the sintering chamber to enable heat sintering by laser immediately after the arrangement of the powder to be sintered. It is also possible to provide in the sintering chamber each time laser irradiation is performed.

また、表裏で材料の異なる傾斜機能材料の場合に限ら
ず、単一組成の材料の場合で焼結温度を連続的に変える
ようにして物理的性質に傾斜機能を持たせるようにする
場合にも適用でき、レーザーによる照射量などをコント
ロールするようにすれば良い。
Not only in the case of a functionally graded material with different materials on the front and back, but also in the case of a material with a single composition, where the sintering temperature is continuously changed so that the physical properties have a gradient function. It can be applied, and the amount of irradiation by the laser may be controlled.

さらに、この発明の要旨を変更しない範囲で各構成要
素に変更を加えても良いことは言うまでもない。
Further, it goes without saying that changes may be made to the components without changing the gist of the present invention.

[発明の効果] 以上、実施例とともに具体的に説明したようにこの発
明の粒子配列レーザー焼結方法によれば、母材表面から
順次異種素材となるように組成が連続して変化する粉末
を同一焼結条件で焼結可能な厚さに配列することを繰り
返し、各粉末の配列ごとにその組成に対する適正焼結条
件でレーザーを照射して加熱焼結させることを繰り返す
ようにしたので、各配列粉末の組成に応じた適正焼結温
度で焼結を行うことができる。
[Effects of the Invention] As described above in detail with the examples, according to the particle array laser sintering method of the present invention, a powder whose composition continuously changes from the base material surface to a different material sequentially from the base material surface is obtained. It was repeated to arrange the thickness to be sinterable under the same sintering conditions, and to repeat the heating and sintering by irradiating laser under the appropriate sintering conditions for each composition of each powder, Sintering can be performed at an appropriate sintering temperature according to the composition of the arrayed powder.

したがって、セラミックスと金属などの異種材料の傾
斜機能材料や均一材料で組織に傾斜機能を与える傾斜機
能材料などであっても容易に焼結することができる。
Therefore, it is possible to easily sinter even a functionally-graded material of different materials such as ceramics and metal, or a functionally-graded material that imparts a functionally-grading function to a structure with a uniform material.

また、この発明の粒子配列レーザー焼結装置によれ
ば、被焼結粉末を配列する噴射ノズルとレーザー加熱装
置を備えたので、母材表面から噴射ノズルで順次異種素
材となるように組成が連続して変化する被焼結粉末を同
一焼結条件で焼結可能な厚さに配列することを繰り返す
ことができるとともに、この母材上の被焼結粉末の各粉
末の配列ごとにレーザー加熱装置でその組成に対する適
正焼結条件でレーザーを照射して加熱焼結させることを
繰り返すことができ、これによって簡単に焼結材を得る
ことができる。
Further, according to the particle array laser sintering apparatus of the present invention, since the injection nozzle and the laser heating apparatus for arranging the powder to be sintered are provided, the composition is continuously changed so that the injection nozzle sequentially becomes a different material from the base material surface. It is possible to repeatedly arrange the powders to be sintered to a thickness that allows sintering under the same sintering conditions, and to change the arrangement of the powders to be sintered on the base material by a laser heating device. Thus, it is possible to repeat heating and sintering by irradiating a laser under the appropriate sintering conditions for the composition, thereby easily obtaining a sintered material.

したがって、セラミックスと金属などの異種材料の傾
斜機能材料や均一材料で組織に傾斜機能を与える傾斜機
能材料などであっても各配列の被焼結粉末を適正な焼結
温度にして容易に焼結することができる。
Therefore, even for functionally graded materials such as ceramics and metals, or functionally graded materials that provide a gradient function to the structure with a uniform material, the sintering powder in each arrangement can be easily sintered at the appropriate sintering temperature. can do.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の粒子配列レーザー焼結方法の一実施
例にかかる概略工程図である。 第2図はこの発明の粒子配列レーザー焼結装置の一実施
例にかかる概略構成図である。 11:セラミックス、12:金属、13:母材、14:金属粉末、1
5:ノズル、16:レーザー、17:セラミックス粉末、 20:粒子配列レーザー焼結装置、21:焼結チャンバー、2
2:真空吸引口、23:雰囲気ガス供給口、24:被焼結体、2
5:可動台、26:被焼結粉末、27:母材、28:噴射ノズル、2
9:ノズル位置調節装置、30:供給機、31:コントローラ、
32:レーザー照射窓、33:ミラー、34:レーザー装置。
FIG. 1 is a schematic process drawing according to an embodiment of the particle arrangement laser sintering method of the present invention. FIG. 2 is a schematic configuration diagram according to one embodiment of the particle arrangement laser sintering apparatus of the present invention. 11: Ceramics, 12: Metal, 13: Base material, 14: Metal powder, 1
5: Nozzle, 16: Laser, 17: Ceramic powder, 20: Particle array laser sintering device, 21: Sintering chamber, 2
2: Vacuum suction port, 23: Atmosphere gas supply port, 24: Sintered body, 2
5: movable table, 26: powder to be sintered, 27: base material, 28: injection nozzle, 2
9: Nozzle position adjustment device, 30: Feeder, 31: Controller,
32: laser irradiation window, 33: mirror, 34: laser device.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡辺 龍三 宮城県仙台市青葉区荒巻字青葉(番地な し) 東北大学工学部材料加工学科 (72)発明者 川崎 亮 宮城県仙台市青葉区荒巻字青葉(番地な し) 東北大学工学部材料加工学科 (72)発明者 新野 正之 宮城県仙台市若林区南小泉1―3―7 (72)発明者 結城 正弘 神奈川県横浜市磯子区新中原町1番地 石川島播磨重工業株式会社技術研究所内 (72)発明者 村山 敏一 神奈川県横浜市磯子区新中原町1番地 石川島播磨重工業株式会社技術研究所内 (72)発明者 入沢 敏夫 神奈川県横浜市磯子区新中原町1番地 石川島播磨重工業株式会社技術研究所内 (56)参考文献 特開 平1−127630(JP,A) 特開 平1−152284(JP,A) 特開 昭63−4077(JP,A) 特開 昭63−230802(JP,A) 特表 平1−502890(JP,A) (58)調査した分野(Int.Cl.6,DB名) B22F 7/00 - 7/08,3/105 C04B 35/64 C23C 24/10,26/00──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Ryuzo Watanabe Aoba-maki Aoba, Aoba-ku, Aoba-ku, Sendai City, Miyagi Prefecture (72) Department of Materials Processing, Tohoku University (72) Inventor Ryo Kawasaki Aoba-maki Aoba, Aoba-ku, Aoba-ku, Miyagi Prefecture (No address) Department of Materials Processing, Faculty of Engineering, Tohoku University (72) Inventor Masayuki Shinno 1-3-7, Minamikoizumi, Wakabayashi-ku, Sendai, Miyagi Prefecture Harima Heavy Industries Co., Ltd. (72) Inventor Toshikazu Murayama 1 Kanagawa Prefecture, Yokohama-shi Isogo-ku, Shin-Nakahara-cho Ishikawajima Harima Heavy Industries Co., Ltd. (72) Inventor Toshio Irisawa, Kanagawa Prefecture No. 1 Ishikawajima-Harima Heavy Industries, Ltd. Technical Research Institute (56) References JP-A-1-127630 (JP, A) JP-A JP-A-152284 (JP, A) JP-A-63-4077 (JP, A) JP-A-63-230802 (JP, A) JP-A-1-502890 (JP, A) (58) Fields investigated (Int. . 6, DB name) B22F 7/00 - 7 / 08,3 / 105 C04B 35/64 C23C 24 / 10,26 / 00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】異種素材間に連続的に組成を変化させた中
間層を配置した傾斜機能材料を焼結するに際し、母材表
面から順次異種素材となるように組成が連続して変化す
る粉末を同一焼結条件で焼結可能な厚さに配列すること
を繰り返し、各粉末の配列ごとにその組成に対する適正
焼結条件でレーザーを照射して加熱焼結させることを繰
り返すようにしたことを特徴とする粒子配列レーザー焼
結方法。
When sintering a functionally graded material in which an intermediate layer having a continuously changed composition is arranged between different kinds of materials, a powder whose composition changes continuously from the surface of the base material so as to become different kinds of materials sequentially. Are repeatedly arranged in a thickness that allows sintering under the same sintering conditions, and heating and sintering by irradiating a laser under the appropriate sintering conditions for each composition of each powder is repeated. Characterized particle array laser sintering method.
【請求項2】母材表面から順次異種素材となるように組
成が連続して変化する被焼結粉末を同一焼結条件で焼結
可能な厚さに配列することを繰り返す噴射ノズルと、こ
の母材上の被焼結粉末の各粉末の配列ごとにその組成に
対する適正焼結条件でレーザーを照射して加熱焼結させ
ることを繰り返すレーザー加熱装置とでなることを特徴
とする粒子配列レーザー焼結装置。
2. An injection nozzle which repeatedly arranges powder to be sintered whose composition continuously changes so as to become a different material sequentially from the surface of the base material to a thickness sinterable under the same sintering conditions. A laser heating device which repeats laser irradiation and heating and sintering by irradiating a laser under an appropriate sintering condition for each composition of the powders to be sintered on the base material, characterized in that the laser arrangement is characterized by Tying device.
JP1284270A 1989-10-31 1989-10-31 Particle array laser sintering method and apparatus Expired - Lifetime JP2798281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1284270A JP2798281B2 (en) 1989-10-31 1989-10-31 Particle array laser sintering method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1284270A JP2798281B2 (en) 1989-10-31 1989-10-31 Particle array laser sintering method and apparatus

Publications (2)

Publication Number Publication Date
JPH03146606A JPH03146606A (en) 1991-06-21
JP2798281B2 true JP2798281B2 (en) 1998-09-17

Family

ID=17676355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1284270A Expired - Lifetime JP2798281B2 (en) 1989-10-31 1989-10-31 Particle array laser sintering method and apparatus

Country Status (1)

Country Link
JP (1) JP2798281B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011526976A (en) * 2008-04-11 2011-10-20 ゼネラル・エレクトリック・カンパニイ Combustor mixer and manufacturing method
US9350037B2 (en) 2011-04-21 2016-05-24 Airbus Operations Gmbh Method for manufacturing a solid oxide fuel cell element by layer-wise buildup and solid oxide fuel cell element
US9541001B2 (en) 2011-04-21 2017-01-10 Airbus Operations Gmbh Drive unit, method for providing power, and use of a drive unit
DE102017206001A1 (en) 2016-04-14 2017-10-19 Fanuc Corporation An additive manufacturing processing method and additive manufacturing processing device for performing additive manufacturing by moving a processing element that emits a laser while supplying metal powder
US10190774B2 (en) 2013-12-23 2019-01-29 General Electric Company Fuel nozzle with flexible support structures
US10288293B2 (en) 2013-11-27 2019-05-14 General Electric Company Fuel nozzle with fluid lock and purge apparatus
US10451282B2 (en) 2013-12-23 2019-10-22 General Electric Company Fuel nozzle structure for air assist injection

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5316720A (en) * 1992-11-20 1994-05-31 Rockwell International Corporation Laser shock and sintering method for particulate densification
US20130307201A1 (en) * 2012-05-18 2013-11-21 Bryan William McEnerney Ceramic article and additive processing method therefor
US9646729B2 (en) * 2013-01-18 2017-05-09 Westinghouse Electric Company Llc Laser sintering systems and methods for remote manufacture of high density pellets containing highly radioactive elements
JP6916749B2 (en) * 2013-10-24 2021-08-11 株式会社リコー Modeling method for three-dimensional structures, modeling equipment for three-dimensional structures
WO2015077162A1 (en) * 2013-11-19 2015-05-28 United Technologies Corporation Method for fabricating a metal-ceramic composite article
JP6258739B2 (en) * 2014-03-26 2018-01-10 日本電子株式会社 Three-dimensional additive manufacturing apparatus and three-dimensional additive manufacturing method
JP6338422B2 (en) 2014-03-31 2018-06-06 三菱重工業株式会社 3D laminating equipment
JP6687887B2 (en) * 2016-02-18 2020-04-28 セイコーエプソン株式会社 Ceramic parts and three-dimensional manufacturing method of ceramic parts
CN107973607B (en) * 2016-10-21 2020-02-07 南京理工大学 Selective laser melting/sintering forming method for ceramic slurry without binder
JP6535785B2 (en) * 2018-05-08 2019-06-26 三菱重工業株式会社 Three-dimensional stacking device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634077A (en) * 1986-06-23 1988-01-09 Brother Ind Ltd Method for joining sintered hard alloy
HUT56018A (en) * 1986-10-17 1991-07-29 Univ Texas Method and apparatus for producing workpieces by selective sintering
JPH0730362B2 (en) * 1987-03-20 1995-04-05 株式会社日立製作所 Electronic component and manufacturing method thereof
JPH01127630A (en) * 1987-11-10 1989-05-19 Sumitomo Electric Ind Ltd Production of hard alloy
JPH01152284A (en) * 1987-12-10 1989-06-14 Toshiba Corp Formation of ceramic layer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011526976A (en) * 2008-04-11 2011-10-20 ゼネラル・エレクトリック・カンパニイ Combustor mixer and manufacturing method
JP2011526974A (en) * 2008-04-11 2011-10-20 ゼネラル・エレクトリック・カンパニイ Unit conduit for transporting fluid and method of manufacturing
US9350037B2 (en) 2011-04-21 2016-05-24 Airbus Operations Gmbh Method for manufacturing a solid oxide fuel cell element by layer-wise buildup and solid oxide fuel cell element
US9541001B2 (en) 2011-04-21 2017-01-10 Airbus Operations Gmbh Drive unit, method for providing power, and use of a drive unit
US10288293B2 (en) 2013-11-27 2019-05-14 General Electric Company Fuel nozzle with fluid lock and purge apparatus
US10190774B2 (en) 2013-12-23 2019-01-29 General Electric Company Fuel nozzle with flexible support structures
US10451282B2 (en) 2013-12-23 2019-10-22 General Electric Company Fuel nozzle structure for air assist injection
DE102017206001A1 (en) 2016-04-14 2017-10-19 Fanuc Corporation An additive manufacturing processing method and additive manufacturing processing device for performing additive manufacturing by moving a processing element that emits a laser while supplying metal powder

Also Published As

Publication number Publication date
JPH03146606A (en) 1991-06-21

Similar Documents

Publication Publication Date Title
JP2798281B2 (en) Particle array laser sintering method and apparatus
Lores et al. A review on recent developments in binder jetting metal additive manufacturing: materials and process characteristics
JP6717573B2 (en) Additive manufacturing method using fiber reinforcement
CN105026076B (en) Apparatus and method for producing the workpiece with customization microstructure
JP5330656B2 (en) Mass production of 3D products made of intermetallic compounds
CA2178884A1 (en) Free form fabrication of metallic components
Cramer et al. Shape retention and infiltration height in complex WC-Co parts made via binder jet of WC with subsequent Co melt infiltration
Zhang et al. Al2O3 ceramics preparation by LOM (laminated object manufacturing)
EP1613566B1 (en) Method for producing ceramic molds and the molds formed by the method
JP6635227B1 (en) Manufacturing method of three-dimensional shaped object
Lu et al. The combined influence of elevated pre-sintering and subsequent bronze infiltration on the microstructures and mechanical properties of 420 stainless steel additively manufactured via binder jet printing
EP3670031A1 (en) Method and system for generating a three-dimensional workpiece
Subramanian et al. Selective laser sintering of alumina using aluminum binder
Spiller et al. Mechanical behavior of Material Extrusion Additive Manufactured components: an overview
CN115703153A (en) Method for optimizing nickel-titanium alloy performance based on selective laser melting method
RU2292988C1 (en) Method for producing molybdenum-copper composition material
Mahamood et al. Additive manufacturing of funtionally graded materials
Čelko et al. Spark plasma extrusion and the thermal barrier concept
EP0219319A2 (en) Method of producing ceramic articles
EP3670030A1 (en) Method and system for generating a three-dimensional workpiece
JP2798280B2 (en) Temperature gradient addition sintering method and apparatus
JPH06340477A (en) Preparation of metal and/or ceramic composite article
JP2798279B2 (en) End joining structure of material and end joining method
JP2008069052A (en) Functionally gradient material and method of manufacturing the same
JPH0770610A (en) Method for sintering injection-molded product

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term