JP2005169878A - Method and apparatus for shaping three-dimensional object - Google Patents

Method and apparatus for shaping three-dimensional object Download PDF

Info

Publication number
JP2005169878A
JP2005169878A JP2003414013A JP2003414013A JP2005169878A JP 2005169878 A JP2005169878 A JP 2005169878A JP 2003414013 A JP2003414013 A JP 2003414013A JP 2003414013 A JP2003414013 A JP 2003414013A JP 2005169878 A JP2005169878 A JP 2005169878A
Authority
JP
Japan
Prior art keywords
powder material
powder
dimensional object
modeling
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003414013A
Other languages
Japanese (ja)
Other versions
JP4141379B2 (en
Inventor
Kunio Miyawaki
国男 宮脇
Josuke Kawachi
襄介 河内
Kazuyoshi Kunishio
和良 國塩
Kazuyuki Sunayama
和之 砂山
Yukio Saito
幸男 斉藤
Yuji Matsumoto
祐司 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2003414013A priority Critical patent/JP4141379B2/en
Publication of JP2005169878A publication Critical patent/JP2005169878A/en
Application granted granted Critical
Publication of JP4141379B2 publication Critical patent/JP4141379B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for shaping a three-dimensional object which can obtain a uniform, beautiful deposition surface even when the fluidity of a powder material is lowered with the reduction of its particle size. <P>SOLUTION: In the apparatus, a process in which the heat melting powder material B deposited in a prescribed height corresponding to the cross-sectional shape at intervals of the prescribed height in the three-dimensional object is sintered by being irradiated with laser beams is applied to the total height of the object to obtain a product A. The apparatus is composed of a vertically moving plate 5 arranged vertically movably in a shaping space part 2, a moving body 8 set reciprocatably in a prescribed direction at a position above the shaping space part, a powder sprayer 10 which is arranged in the moving body and sprays the powder material into the shaping space part, a powder material supply apparatus 11 for supplying the powder material to the powder sprayer, and a laser beam irradiation device 12 for irradiating the deposition layer of the powder material which is sprayed from the powder sprayer and deposited in the shape of a layer with laser beams corresponding to the cross-sectional shape of the three-dimensional object. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、三次元物体の造形方法および造形装置に関するものである。   The present invention relates to a modeling method and a modeling apparatus for a three-dimensional object.

従来、例えば三次元物体のプロトタイプ(試作品)を製作(造形)する場合、三次元物体における所定高さごと(所定間隔おき)の断面形状に応じて、当該所定高さに等しい所定厚さでもって堆積された熱溶融性の粉末材料にレーザ光線を照射して焼結させる工程を、物体の全高に亘って行うようにしたものがある(特許文献1参照)。   Conventionally, for example, when a prototype (prototype) of a three-dimensional object is manufactured (modeled), according to the cross-sectional shape of the three-dimensional object at a predetermined height (every predetermined interval), the predetermined thickness is equal to the predetermined height. There is a technique in which the step of irradiating a laser beam to the heat-meltable powder material thus deposited is sintered over the entire height of the object (see Patent Document 1).

ところで、この種の製造装置は、図3に示すように、四方の鉛直壁部51により形成された造形用空間部52内に、昇降テーブル53を昇降自在に配置するとともに、この昇降テーブル53上に、熱溶融性の粉末材料Bを所定厚さでもって堆積させ、この堆積された粉末堆積層に、三次元物体の所定高さにおける断面形状の範囲内でレーザ光線を照射して焼結させるようにしたものである。勿論、上記昇降テーブル53は所定高さごとに下降されるように構成されるとともに、造形用空間部52内への粉末材料の供給については、所定方向で往復移動自在にされたリコータ54に設けられた前後一対のスクレーパ55間から供給され、そして当該スクレーパ55を移動させることにより、スクレーパ55の下面と昇降テーブル53との間の隙間に所定厚さの粉末堆積層を得るようにしていた。
特開2003−245981号公報
By the way, as shown in FIG. 3, this kind of manufacturing apparatus arranges the raising / lowering table 53 so that raising / lowering is possible in the modeling space part 52 formed of the four vertical wall parts 51, and on this raising / lowering table 53 Next, the heat-meltable powder material B is deposited with a predetermined thickness, and the deposited powder deposition layer is sintered by irradiating a laser beam within a range of a cross-sectional shape at a predetermined height of the three-dimensional object. It is what I did. Of course, the elevating table 53 is configured to be lowered at a predetermined height, and the powder material is supplied into the modeling space 52 by a recoater 54 that is reciprocally movable in a predetermined direction. By feeding the scraper 55 between the pair of front and rear scrapers 55 and moving the scraper 55, a powder accumulation layer having a predetermined thickness is obtained in the gap between the lower surface of the scraper 55 and the lifting table 53.
JP 2003-245981 A

しかし、上述した製造装置の構成によると、水平方向で往復移動されるスクレーパ55により、造形用空間部52内に所定高さでもって粉末材料Bを堆積させるようにしているが、当該粉末材料が流動性のよいものについては、均一に且つ綺麗に堆積させることができるが、粉末材料の材質と粉末形状によっては、粒径が小さく(例えば、20μm以下)なると流動性が悪くなるものがあり、この場合、粉末材料同士が引っ掛かったり、またはスクレーパに付着して、均一で且つ綺麗な堆積表面が得られないという問題があった。   However, according to the configuration of the manufacturing apparatus described above, the powder material B is deposited at a predetermined height in the modeling space 52 by the scraper 55 that is reciprocated in the horizontal direction. For those with good fluidity, they can be deposited uniformly and cleanly, but depending on the material of the powder material and the powder shape, the fluidity may deteriorate when the particle size is small (for example, 20 μm or less), In this case, there has been a problem that the powder material is caught or adhered to the scraper, and a uniform and clean deposition surface cannot be obtained.

そこで、本発明は、粉末材料が、その粒径が小さくなると流動性が悪くなるようなものである場合でも、均一に且つ綺麗な堆積表面が得られる三次元物体の造形方法および造形装置を提供することを目的とする。   Therefore, the present invention provides a method and apparatus for modeling a three-dimensional object that can provide a uniform and clean deposition surface even when the powder material is such that the fluidity becomes worse as the particle size becomes smaller. The purpose is to do.

上記課題を解決するために、本発明に係る三次元物体の造形方法は、三次元物体における所定間隔おきの断面形状に応じて、所定厚さでもって堆積された熱溶融性の粉末材料にレーザ光線を照射して焼結させる工程を、物体の全高に亘って行うことにより三次元物体を造形する際に、
粉末材料の載置面上に、当該粉末材料を吹き出すことにより所定厚さの粉末堆積層を形成する方法である。
In order to solve the above-described problems, a method for modeling a three-dimensional object according to the present invention includes a laser on a heat-meltable powder material deposited with a predetermined thickness according to a cross-sectional shape at predetermined intervals in a three-dimensional object. When forming a three-dimensional object by performing the process of irradiating and sintering the light beam over the entire height of the object,
In this method, a powder deposit layer having a predetermined thickness is formed by blowing the powder material on the surface on which the powder material is placed.

また、本発明に係る三次元物体の造形装置は、三次元物体における所定間隔おきの断面形状に応じて、所定厚さでもって堆積された熱溶融性の粉末材料にレーザ光線を照射して焼結させる工程を、物体の全高に亘って行うことにより三次元物体を造形する装置であって、
造形用空間部内に昇降自在に配置された昇降体と、造形用空間部の上方位置で所定方向に往復移動自在に設けられた移動体と、この移動体に配置されて粉末材料を上記造形用空間部内に吹き出す粉末吹付具と、この粉末吹付具に粉末材料を供給するための粉末材料供給装置と、上記粉末吹付具から吹き出されて層状に堆積された粉末堆積層に三次元物体の断面形状に応じてレーザ光線を照射するレーザ光照射器とから構成したものである。
Further, the three-dimensional object shaping apparatus according to the present invention irradiates a laser beam to a heat-meltable powder material deposited with a predetermined thickness in accordance with the cross-sectional shape of the three-dimensional object at predetermined intervals. An apparatus for modeling a three-dimensional object by performing the process of binding over the entire height of the object,
An elevating body disposed in the modeling space so as to be movable up and down, a moving body provided so as to be reciprocally movable in a predetermined direction at a position above the modeling space, and a powder material disposed on the moving body for the above modeling Cross-sectional shape of a three-dimensional object on a powder spray layer sprayed into the space, a powder material supply device for supplying a powder material to the powder spray tool, and a powder deposition layer sprayed from the powder spray tool and deposited in layers And a laser beam irradiator that irradiates a laser beam according to the above.

上記三次元物体の造形方法および造形装置の構成によると、三次元物体における所定間隔6おきに応じて粉末材料を堆積させるとともに、この粉末堆積層における上記三次元物体の断面形状と同じ範囲を焼結させる作業を、物体の全高に亘って行うことにより製品を製作する際に、上記粉末堆積層を粉末材料を吹き付けることにより得るようにしたので、例えばスクレーパを用いて所定間隔に等しい所定高さとなるようにその表面を均すものとは異なり、粉末材料の流動性が悪いものであっても、その載置面上に均一に且つ綺麗に配置することができ、したがって三次元物体と同一形状の製品を精度良く得ることができるとともに、綺麗な仕上がり表面が得られる。   According to the three-dimensional object modeling method and the configuration of the modeling apparatus, the powder material is deposited at every predetermined interval 6 in the three-dimensional object, and the same range as the cross-sectional shape of the three-dimensional object in the powder deposition layer is burned. When the product is manufactured by performing the work to be performed over the entire height of the object, the powder accumulation layer is obtained by spraying the powder material. For example, a scraper is used to obtain a predetermined height equal to the predetermined interval. Unlike the one that smoothes the surface, even if the powder material has poor fluidity, it can be placed uniformly and cleanly on its mounting surface, and therefore the same shape as the three-dimensional object Can be obtained with high accuracy, and a beautiful finished surface can be obtained.

[実施の形態]
以下、本発明の実施の形態に係る三次元物体の造形方法および造形装置を、図1および図2に基づき説明する。
[Embodiment]
Hereinafter, the modeling method and modeling apparatus of the three-dimensional object which concern on embodiment of this invention are demonstrated based on FIG. 1 and FIG.

本実施の形態においては、三次元物体のCADデータを用いて、同一形状の三次元物体[以下、製品(プロトタイプであってもよい)ともいう]を製作(造形)する場合について説明するとともに、その製作に際しては、三次元物体における所定間隔おきの、すなわち所定高さ(以下、所定厚さともいう)ごとの断面形状(三次元物体の層ごとのスライス部分のデータである)と一致するように、所定の載置面上に堆積された合成樹脂などの粉末材料(プラスチック粉末で、具体的には、ナイロン粉末が用いられる)を焼結(溶融固化)させて、三次元物体のスライス部分を成形し、この焼結により得られたスライス部分(堆積部分)を積み重ねていくことにより、製品を得るようにしたものである。なお、粉末材料の平均粒径は、例えば20μm程度のものが使用されるとともに、所定高さ(層厚)については、粉末が上下に2個積み重ねられる40μm程度とされる(勿論、40μmよりも厚くてもよい)。なお、焼結により積層するという意味で、粉末焼結積層法ともいう。   In the present embodiment, using CAD data of a three-dimensional object, a case where a three-dimensional object having the same shape [hereinafter also referred to as a product (or may be a prototype)] is manufactured (modeled), At the time of production, the cross-sectional shape (data of the slice portion for each layer of the three-dimensional object) at a predetermined interval, that is, every predetermined height (hereinafter also referred to as a predetermined thickness) in the three-dimensional object is made to coincide. Next, a powder material such as synthetic resin (plastic powder, specifically, nylon powder is used) deposited on a predetermined mounting surface is sintered (melted and solidified) to obtain a slice portion of the three-dimensional object. The product is obtained by stacking the sliced parts (deposited parts) obtained by sintering. The average particle size of the powder material is, for example, about 20 μm, and the predetermined height (layer thickness) is about 40 μm in which two powders are stacked one above the other (of course, more than 40 μm). It can be thick). In addition, it is also called a powder sintering lamination method in the meaning of lamination by sintering.

まず、三次元物体の造形装置について説明する。
この造形装置は、図1に示すように、四方に配置された鉛直壁部1により水平断面形状が矩形状にされるとともに所定深さにされてなる三次元物体と同一形状の製品Aを成形するための造形用空間部2が設けられた装置本体3と、上記造形用空間部2内に昇降用ガイド部材(例えば、ガイド棒と当該ガイド棒を案内するガイド筒とから構成されている)4を介して昇降可能に配置されるとともに上面(載置面)に造形用の粉末材料Bが所定厚さでもって堆積(載置)される昇降板体(昇降体の一例であり、プラットフォームともいう)5と、この昇降板体5の下面に連結されて当該昇降板体5を所定高さずつでもって上昇させ得る昇降用駆動手段(例えば、ボールねじ機構が用いられたもの)6と、造形用空間部2の周囲における装置本体3の上壁部3aの表面に沿って所定方向(矢印a,bにて示すとともに、以下、前後方向ともいう)で案内部材(例えば、左右一対のガイドレールにより構成されている)7にローラなどを介して(リニアガイド機構を用いてもよい)往復移動自在に設けられた移動体8と、この移動体8を前後方向で移動させる移動用駆動手段9と、上記移動体8に設けられて粉末材料を所定量ずつ造形用空間部2内の昇降板体5上に吹き出す粉末吹付具10と、この粉末吹付具10に粉末材料を供給する粉末材料供給手段11と、上記造形用空間部2の上方に配置されて昇降板体5上にレーザ光線を照射するレーザ光照射器12と、造形用空間部2の前後位置の装置本体3側に設けられて上壁部3a上に散らばった粉末材料を図示しないスクレーパなどにより回収するための回収容器13と、上記造形用空間部2を構成する鉛直壁部1の周囲に配置された保温用ヒータ14と、上記レーザ光照射器12と粉末吹付具10との間で且つ造形用空間部2の周縁部に対応する四方位置に配置された加熱用ヒータ(例えば、電熱線が用いられている)15と、造形用空間部2の上方に配置されて当該造形用空間部2における焼結面の温度を計測する温度計測器(例えば、赤外線放射温度計が用いられる)16とから構成されている。
First, a three-dimensional object modeling apparatus will be described.
As shown in FIG. 1, the modeling apparatus forms a product A having the same shape as a three-dimensional object having a horizontal cross-sectional shape made rectangular by a vertical wall portion 1 arranged in four directions and a predetermined depth. The apparatus main body 3 provided with the modeling space part 2 for performing, and the raising / lowering guide member (for example, it is comprised from the guide rod and the guide cylinder which guides the said guide bar) in the said modeling space part 2 4 is an elevating plate body (which is an example of an elevating body, which is disposed as an elevating body) and is deposited (placed) with a predetermined thickness on the upper surface (mounting surface). 5) and an elevating drive means (for example, using a ball screw mechanism) 6 connected to the lower surface of the elevating plate body 5 and capable of raising the elevating plate body 5 by a predetermined height; Device main body 3 around the space 2 for modeling A roller or the like is provided on a guide member (for example, composed of a pair of left and right guide rails) 7 in a predetermined direction (indicated by arrows a and b and hereinafter also referred to as a front-rear direction) along the surface of the upper wall portion 3a. Via a movable body 8 provided so as to be reciprocally movable (which may use a linear guide mechanism), moving drive means 9 for moving the movable body 8 in the front-rear direction, and powder provided on the movable body 8 A powder spraying tool 10 that blows the material on the lifting plate 5 in the modeling space 2 by a predetermined amount; a powder material supply means 11 that supplies the powder material to the powder spraying tool 10; and the modeling space 2 A laser beam irradiator 12 which is disposed above and irradiates a laser beam on the lifting plate 5 and a powder material which is provided on the apparatus main body 3 side at the front and rear positions of the modeling space 2 and scattered on the upper wall 3a. By a scraper (not shown) Between the collection container 13 for collection, the heater 14 for heat insulation arranged around the vertical wall 1 constituting the modeling space 2, the laser beam irradiator 12 and the powder spraying tool 10 and A heater for heating (for example, a heating wire is used) 15 disposed at four positions corresponding to the peripheral portion of the modeling space portion 2 and the modeling space portion arranged above the modeling space portion 2. 2 and a temperature measuring instrument 16 (for example, an infrared radiation thermometer is used) that measures the temperature of the sintered surface.

上記粉末吹付具10としては、エアを用いて所定範囲に亘って粉末材料を吹き出すようにした吹出ノズルが用いられる。なお、吹き出し範囲が左右に広い場合には、当該粉末吹付具(以下、吹出ノズルという)10は、前後方向と直交する左右方向で横行自在に設けられるか、または左右方向で首を振ることができるように揺動自在に構成される。勿論、吹出ノズル10が横行自在にまたは揺動自在に設けられる場合は、横行体および横行駆動用モータ、または揺動機構および揺動駆動用モータが具備される。   As said powder spraying tool 10, the blowing nozzle which blows off powder material over the predetermined range using air is used. When the blowing range is wide left and right, the powder spraying tool (hereinafter referred to as blowing nozzle) 10 may be provided so as to be able to traverse in the left-right direction orthogonal to the front-rear direction, or may swing its head in the left-right direction. It is configured to be swingable so that it can. Of course, when the blowing nozzle 10 is provided so as to be capable of traversing or swinging, a traversing body and traversing driving motor, or a swinging mechanism and swinging driving motor are provided.

また、粉末材料供給手段11としては、粉末材料Bの貯留容器21と、この貯留容器21内の粉末材料を取り出すとともに上記吹出ノズル10に供給する粉末供給管22と、この粉末供給管22の途中に介装されて当該粉末供給管22内に圧縮空気を供給して上記吹出ノズル10から粉末材料を吹き出すための圧縮空気供給機(図示せず)とから構成されている。   The powder material supply means 11 includes a storage container 21 for the powder material B, a powder supply pipe 22 for taking out the powder material in the storage container 21 and supplying the powder material to the blowing nozzle 10, and a middle of the powder supply pipe 22. And a compressed air supply machine (not shown) for supplying compressed air into the powder supply pipe 22 and blowing out the powder material from the blowing nozzle 10.

また、上記レーザ光照射器12は、照射器本体31内に配置されたレーザ発振器32と、照射器本体31のレーザ照射開口部に配置されてレーザ発振器32より放出されたレーザ光を焼結面上の任意の位置に位置決めするためのガルバノミラーユニット33と、このガルバノミラーユニット33からのレーザ光を、焼結面で高温に達するようにスポットに絞るための対物レンズとしてのf−θレンズ34と、このレンズ34の表面にNガスなどの気体を吹き付けて、レンズに焼結時に発生する煙などによる曇りが発生しないようにするための気体噴射用ノズル35とから構成されている。 The laser beam irradiator 12 includes a laser oscillator 32 disposed in the irradiator body 31 and a laser beam disposed in the laser irradiation opening of the irradiator body 31 and emitting laser light emitted from the laser oscillator 32. A galvanometer mirror unit 33 for positioning at an arbitrary upper position, and an f-θ lens 34 as an objective lens for focusing the laser beam from the galvanometer mirror unit 33 to a spot so as to reach a high temperature on the sintered surface. And a gas injection nozzle 35 for blowing a gas such as N 2 gas on the surface of the lens 34 to prevent the lens from being fogged by smoke generated during sintering.

さらに、上記移動用駆動手段9は、造形用空間部2の左右にて、それぞれ前後に設けられたスプロケット41,41同士間に無端状に巻回された無端帯状体(例えば、チェーン部材)42と、上記前後いずれか一方の左右一対のスプロケット41を回転させる回転駆動機(図示しないが、例えば電動機が用いられる)とから構成されており、上記無端帯状体42に移動体8が連結材(図示せず)を介して連結されている。   Further, the driving means 9 for movement is an endless belt (for example, a chain member) 42 wound endlessly between sprockets 41, 41 provided on the front and rear sides of the modeling space 2. And a rotational drive machine (not shown, but using, for example, an electric motor) for rotating either the left or right pair of sprockets 41, and the movable body 8 is connected to the endless belt 42 (connecting material ( (Not shown).

なお、上述したf−θレンズ34は、レンズの理想像高yが、y=f×θ(但し、fは焦点距離、θは画角を表す)となるようにわざと像歪を出して、等角速度運動を等速度運動に変換するためのものである(なお、通常のレンズの理想像高yは、焦点距離fと画角θとにより、y=f×tanθで表される)。   The f-θ lens 34 described above intentionally produces image distortion so that the ideal image height y of the lens is y = f × θ (where f is the focal length and θ represents the angle of view). This is for converting a constant angular velocity motion into a constant velocity motion (note that the ideal image height y of a normal lens is expressed as y = f × tan θ by the focal length f and the angle of view θ).

次に、上記造形装置により製品を製作する動作について説明する。
この製作に際しては、上述したように、三次元物体における所定高さ(所定間隔および所定厚さに相当する)ごとのCADデータ(スライス部分の断面形状データ)を用いて所定厚さのスライス部分を順次焼結し、これらを積み重ねることにより製品を得るようにしている。
Next, an operation for manufacturing a product using the modeling apparatus will be described.
In this production, as described above, a slice portion having a predetermined thickness is obtained using CAD data (cross-sectional shape data of the slice portion) for each predetermined height (corresponding to a predetermined interval and a predetermined thickness) in the three-dimensional object. Sintering is performed sequentially, and products are obtained by stacking them.

製作の開始に際しては、貯留容器21内には、少なくとも、1個の製品を形成するのに必要な粉末材料Bが貯留されるとともに、保温用ヒータ14および加熱用ヒータ15が作動されている。   At the start of production, at least the powder material B necessary to form one product is stored in the storage container 21, and the heat retaining heater 14 and the heating heater 15 are operated.

まず、図2(a)に示すように、造形用空間部2内の昇降板体5を、その上面(載置面)と装置本体3の上壁部3a表面との高さhが上述した所定高さ(スライス部分の一層分)となるように上昇させる。   First, as shown in FIG. 2 (a), the height h between the upper surface (mounting surface) of the elevating plate body 5 in the modeling space 2 and the surface of the upper wall portion 3a of the apparatus main body 3 has been described above. The height is raised to a predetermined height (one slice of the slice portion).

次に、移動体8を矢印方向aに移動させるとともに、粉末吹付具10から粉末材料Bを昇降板体5の表面に吹き出し、造形用空間部2の上面まで一杯となるように、すなわち所定高さ(スライス一層分の厚み)hとなるよう、粉末材料の堆積層C1を形成する。   Next, the moving body 8 is moved in the arrow direction a, and the powder material B is blown from the powder spraying tool 10 onto the surface of the elevating plate body 5 so that the upper surface of the modeling space 2 is filled, that is, a predetermined height. The deposited layer C1 of the powder material is formed so that the thickness (thickness of one slice) is h.

この堆積層C1が形成されると、レーザ光照射器12により、三次元物体の所定高さにおける断面形状(断面積)の範囲にレーザ光線が照射されて焼結が行われる。
一層分の焼結が済むと、図2(b)に示すように、昇降用駆動手段6により昇降板体5がさらに所定高さhだけ下降される。
When the deposited layer C1 is formed, the laser beam irradiator 12 irradiates a laser beam to a range of a cross-sectional shape (cross-sectional area) at a predetermined height of the three-dimensional object, and sintering is performed.
When the sintering for one layer is completed, as shown in FIG. 2B, the elevating plate body 5 is further lowered by a predetermined height h by the elevating drive means 6.

次に、粉末吹付具10が矢印bにて示すように逆方向に移動される(勿論、一層目と同様に、元の位置に戻り矢印方向aに移動させることもできる)とともに粉末材料が一層分だけ吹き出されて、二層目の堆積層C2が形成される。   Next, the powder spraying tool 10 is moved in the reverse direction as indicated by the arrow b (of course, as in the first layer, it can be returned to the original position and moved in the arrow direction a) and the powder material is further layered. The second deposition layer C <b> 2 is formed by blowing out by the amount.

この二層目の堆積層C2が形成されると、レーザ光照射器12により、三次元物体における次の所定高さに相当する断面形状の範囲に、レーザ光線が照射されて焼結が行われる。   When the second deposition layer C2 is formed, the laser beam irradiator 12 irradiates the laser beam to the range of the cross-sectional shape corresponding to the next predetermined height in the three-dimensional object and performs sintering. .

勿論、その製作時においては、加熱用ヒータ15により焼結面の温度が粉末材料の融点付近まで加熱されて、焼結部分とその周囲との温度差に起因して変形が生じるのが防止されている。なお、温度計測器16からの検出温度に基づき、加熱用ヒータ15が制御されている。   Of course, at the time of manufacture, the temperature of the sintered surface is heated to near the melting point of the powder material by the heater 15 and deformation due to the temperature difference between the sintered portion and its surroundings is prevented. ing. The heater 15 is controlled based on the detected temperature from the temperature measuring device 16.

また、保温用ヒータ14により、成形された製品の下部がある程度の高温に保たれて、上部の成形中部分との収縮量の差が抑えられるとともに、加熱用ヒータ15からの熱が逃げるのを防止している。   In addition, the heat retaining heater 14 keeps the lower part of the molded product at a certain high temperature, suppresses the difference in shrinkage from the upper molding part and prevents the heat from the heater 15 from escaping. It is preventing.

このように、三次元物体の一層分ごとの断面形状に相当する範囲における粉末材料を焼結する作業を物体の全高に亘って行うことにより、三次元物体と同一形状の製品を製作(造形)することができる。   In this way, a product having the same shape as the three-dimensional object is manufactured (modeling) by performing the operation of sintering the powder material in the range corresponding to the cross-sectional shape for each layer of the three-dimensional object over the entire height of the object. can do.

上述したように、三次元物体における所定高さごとに応じて粉末材料を堆積させるとともに、この粉末堆積層における上記三次元物体の断面形状(断面積)と同じ範囲を焼結させる作業を、物体の全高に亘って行うことにより製品を製作する際に、上記粉末堆積層を、粉末材料を吹き付けることにより得るようにしたので、例えばスクレーパを用いて所定高さとなるようにその表面を均すものとは異なり、粉末材料の流動性が悪いものであっても、焼結用の載置面(焼結面)上に均一に且つ綺麗に配置することができ、したがって三次元物体と同一形状の製品を精度良く得ることができるとともに、綺麗な仕上がり面が得られる。   As described above, the powder material is deposited according to the predetermined height in the three-dimensional object, and the work for sintering the same range as the cross-sectional shape (cross-sectional area) of the three-dimensional object in the powder deposition layer is performed. When the product is manufactured by performing over the entire height of the above, the above-mentioned powder accumulation layer is obtained by spraying the powder material. For example, the surface of the powder is leveled to a predetermined height using a scraper. Unlike the powder material having poor fluidity, it can be arranged uniformly and cleanly on the mounting surface (sintered surface) for sintering, and therefore has the same shape as the three-dimensional object. The product can be obtained with high accuracy and a beautiful finish can be obtained.

本発明の実施の形態に係る三次元物体の造形装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the modeling apparatus of the three-dimensional object which concerns on embodiment of this invention. 同三次元物体の造形方法の手順を説明する断面図である。It is sectional drawing explaining the procedure of the modeling method of the same three-dimensional object. 従来の三次元物体の製造装置の概略構成を示す要部断面図である。It is principal part sectional drawing which shows schematic structure of the manufacturing apparatus of the conventional three-dimensional object.

符号の説明Explanation of symbols

A 製品
B 粉末材料
1 鉛直壁部
2 造形用空間部
3 装置本体
4 昇降用ガイド部材
5 昇降板体
6 昇降用駆動手段
8 移動体
9 移動用駆動手段
10 粉末吹付具
11 粉末材料供給手段
12 レーザ光照射器
A Product B Powder material 1 Vertical wall part 2 Modeling space part 3 Device body 4 Lifting guide member 5 Lifting plate body 6 Lifting drive means 8 Moving body 9 Moving drive means 10 Powder spraying tool 11 Powder material supply means 12 Laser Light irradiator

Claims (2)

三次元物体における所定間隔おきの断面形状に応じて、所定厚さでもって堆積された熱溶融性の粉末材料にレーザ光線を照射して焼結させる工程を、物体の全高に亘って行うことにより三次元物体を造形する際に、
粉末材料の載置面上に、当該粉末材料を吹き出すことにより所定厚さの粉末堆積層を形成することを特徴とする三次元物体の造形方法。
According to the cross-sectional shape at predetermined intervals in the three-dimensional object, the process of irradiating and sintering the heat-meltable powder material deposited with a predetermined thickness over the entire height of the object When modeling 3D objects,
A method for forming a three-dimensional object, wherein a powder deposit layer having a predetermined thickness is formed by blowing out the powder material on a placement surface of the powder material.
三次元物体における所定間隔おきの断面形状に応じて、所定厚さでもって堆積された熱溶融性の粉末材料にレーザ光線を照射して焼結させる工程を、物体の全高に亘って行うことにより三次元物体を造形する装置であって、
造形用空間部内に昇降自在に配置された昇降体と、造形用空間部の上方位置で所定方向に往復移動自在に設けられた移動体と、この移動体に配置されて粉末材料を上記造形用空間部内に吹き出す粉末吹付具と、この粉末吹付具に粉末材料を供給するための粉末材料供給装置と、上記粉末吹付具から吹き出されて層状に堆積された粉末堆積層に三次元物体の断面形状に応じてレーザ光線を照射するレーザ光照射器とから構成したことを特徴とする三次元物体の造形装置。
According to the cross-sectional shape at predetermined intervals in the three-dimensional object, the process of irradiating and sintering the heat-meltable powder material deposited with a predetermined thickness over the entire height of the object An apparatus for modeling a three-dimensional object,
An elevating body disposed in the modeling space so as to be movable up and down, a moving body provided so as to be reciprocally movable in a predetermined direction at a position above the modeling space, and a powder material disposed on the moving body for the above modeling Cross-sectional shape of a three-dimensional object on a powder spray layer sprayed into the space, a powder material supply device for supplying a powder material to the powder spray tool, and a powder deposition layer sprayed from the powder spray tool and deposited in layers A three-dimensional object shaping apparatus comprising a laser beam irradiator that irradiates a laser beam according to the above.
JP2003414013A 2003-12-12 2003-12-12 Method and apparatus for modeling a three-dimensional object Expired - Fee Related JP4141379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003414013A JP4141379B2 (en) 2003-12-12 2003-12-12 Method and apparatus for modeling a three-dimensional object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003414013A JP4141379B2 (en) 2003-12-12 2003-12-12 Method and apparatus for modeling a three-dimensional object

Publications (2)

Publication Number Publication Date
JP2005169878A true JP2005169878A (en) 2005-06-30
JP4141379B2 JP4141379B2 (en) 2008-08-27

Family

ID=34733937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003414013A Expired - Fee Related JP4141379B2 (en) 2003-12-12 2003-12-12 Method and apparatus for modeling a three-dimensional object

Country Status (1)

Country Link
JP (1) JP4141379B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007216595A (en) * 2006-02-20 2007-08-30 Matsuura Machinery Corp Manufacturing equipment for three-dimensional product
KR100811819B1 (en) 2007-04-30 2008-03-10 한국기계연구원 Powder receipt apparauts for spot size measurement
JP2008510633A (en) * 2005-07-21 2008-04-10 イーオーエス ゲゼルシャフト ミット ベシュレンクテル ハフツング イレクトロ オプティカル システムズ Apparatus and method for manufacturing a three-dimensional object in layers
JP2009517194A (en) * 2005-11-25 2009-04-30 プロメタル アールツェーテー ゲーエムベーハー Method and apparatus for applying a flowable material to an entire surface
JP2011225994A (en) * 2010-04-17 2011-11-10 Evonik Degussa Gmbh Device for reducing lower constitutional space of laser sintering device
JP2012162077A (en) * 2011-02-03 2012-08-30 Evonik Degussa Gmbh Apparatus for more satisfactorily inactivating laser sintering equipment
CN110076341A (en) * 2019-05-27 2019-08-02 华中科技大学 A kind of increasing material manufacturing power spreading device of uniform temperature fields

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008510633A (en) * 2005-07-21 2008-04-10 イーオーエス ゲゼルシャフト ミット ベシュレンクテル ハフツング イレクトロ オプティカル システムズ Apparatus and method for manufacturing a three-dimensional object in layers
JP2009517194A (en) * 2005-11-25 2009-04-30 プロメタル アールツェーテー ゲーエムベーハー Method and apparatus for applying a flowable material to an entire surface
JP4805356B2 (en) * 2005-11-25 2011-11-02 プロメタル アールツェーテー ゲーエムベーハー Method and apparatus for applying a flowable material to an entire surface
JP2007216595A (en) * 2006-02-20 2007-08-30 Matsuura Machinery Corp Manufacturing equipment for three-dimensional product
KR100811819B1 (en) 2007-04-30 2008-03-10 한국기계연구원 Powder receipt apparauts for spot size measurement
JP2011225994A (en) * 2010-04-17 2011-11-10 Evonik Degussa Gmbh Device for reducing lower constitutional space of laser sintering device
JP2012162077A (en) * 2011-02-03 2012-08-30 Evonik Degussa Gmbh Apparatus for more satisfactorily inactivating laser sintering equipment
CN110076341A (en) * 2019-05-27 2019-08-02 华中科技大学 A kind of increasing material manufacturing power spreading device of uniform temperature fields
CN110076341B (en) * 2019-05-27 2020-11-24 华中科技大学 Powder device is spread in even vibration material disk of temperature field

Also Published As

Publication number Publication date
JP4141379B2 (en) 2008-08-27

Similar Documents

Publication Publication Date Title
US11801633B2 (en) Apparatuses for continuously refreshing a recoater blade for additive manufacturing including a blade feed unit and arm portion
JP6372725B2 (en) Manufacturing method of three-dimensional shaped object
US20170173883A1 (en) Additive manufacturing method using tilted scanners
US20170173737A1 (en) Additive manufacturing method using a plurality of synchronized laser beams
CN107553899B (en) Recoating unit, recoating method, device and method for additive manufacturing of three-dimensional objects
US9687911B2 (en) Method for manufacturing three-dimensional shaped object
CN106660123B (en) Use the increasing material manufacturing method and system of light beam
US20140263209A1 (en) Apparatus and methods for manufacturing
JP7435696B2 (en) Processing equipment, processing method, marking method, and modeling method
CN107848212B (en) Method for manufacturing three-dimensional shaped object
US20170348905A1 (en) Device and method for generatively producing a three-dimensional object
KR20160123386A (en) Method for producing three-dimensionally shaped object
US20180001559A1 (en) Recoating Unit, Recoating Method, Device and Method for Additive Manufacturing of a Three-Dimensional Object
US20190134891A1 (en) Dmlm build platform and surface flattening
US10821519B2 (en) Laser shock peening within an additive manufacturing process
JP6854465B2 (en) Manufacturing method of three-dimensional shaped object
KR102099574B1 (en) Manufacturing method of 3D shape sculpture and 3D shape sculpture
JP2020132937A (en) Production method and three-dimensional molding device
JP4141379B2 (en) Method and apparatus for modeling a three-dimensional object
JP2023085256A (en) Modeling system and modeling method
JP6192677B2 (en) Additive manufacturing method and additive manufacturing apparatus
JP2020132936A (en) Production method and three-dimensional molding device
JPWO2017221912A1 (en) Manufacturing method of three-dimensional shaped object
JP2017226882A (en) Production method for three-dimensional molded article
Payne Multiple beam laser diode additive manufacturing for metal parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080423

TRDD Decision of grant or rejection written
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080430

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080610

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees