WO2007010598A1 - Process for producing stent and powder sintering apparatus - Google Patents

Process for producing stent and powder sintering apparatus Download PDF

Info

Publication number
WO2007010598A1
WO2007010598A1 PCT/JP2005/013266 JP2005013266W WO2007010598A1 WO 2007010598 A1 WO2007010598 A1 WO 2007010598A1 JP 2005013266 W JP2005013266 W JP 2005013266W WO 2007010598 A1 WO2007010598 A1 WO 2007010598A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
stent
powder sintering
sintering
layer
Prior art date
Application number
PCT/JP2005/013266
Other languages
French (fr)
Japanese (ja)
Inventor
Kenichi Shimodaira
Chiaki Abe
Akira Shinjo
Original Assignee
Homs Engineering Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Homs Engineering Inc. filed Critical Homs Engineering Inc.
Priority to PCT/JP2005/013266 priority Critical patent/WO2007010598A1/en
Publication of WO2007010598A1 publication Critical patent/WO2007010598A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/38Housings, e.g. machine housings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/70Gas flow means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a method for manufacturing a stent and a powder sintering apparatus.
  • FIG. 22 is a view for explaining a conventional stent manufacturing method.
  • FIG. 22 (a) is a schematic view showing the main part of the laser device 900
  • FIG. 22 (b) is an external view of the manufactured stent 940.
  • FIG. 22 (a) is a schematic view showing the main part of the laser device 900
  • FIG. 22 (b) is an external view of the manufactured stent 940.
  • the laser irradiation apparatus 910 scans the surface of the metal tube 930 with the laser beam L, and processes the surface of the metal tube 930 into a mesh shape, thereby manufacturing the stent 940 (see, for example, Patent Documents 1 and 2). ) 0
  • a stent 940 having a predetermined mesh shape can be manufactured.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-095610
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-219286
  • a stent having a relatively complicated shape at a treatment site using coronary artery interpension For example, when a stent is used for a blood vessel that has a shape that gradually decreases in the inner diameter along the axial direction, the shape in which the outer diameter gradually decreases in the axial direction (tapered). There is a need to use a stent having a shape. In addition, when a stent is used at a blood vessel bifurcation, there is a need to use a stent having a bifurcation.
  • the strut thickness is thicker at the axially central portion (see reference numeral 942 in FIG. 22 (b)), and at both axial end portions (see reference numeral 944 in FIG. 22 (b)).
  • a thinly constructed stent is conceivable.
  • the present invention has been made to solve the above-described problems, and provides a method for manufacturing a stent capable of easily manufacturing a stent having a relatively complicated shape. With the goal. Also, a powder sintered calorie device having a relatively complicated shape and suitable for producing a high-purity product such as a stent having such a relatively complicated shape is provided. With the goal.
  • an energy beam is selectively applied to the powder layer after the powder layer is formed on the powder sintered table using the powder layer forming apparatus.
  • the sintered layer is stacked by sequentially repeating a sintered layer forming step of forming a sintered layer by irradiation and a powder sintering processing table lowering step of lowering the powder sintering processing table by a predetermined amount. It includes a powder sintering process for forming a layered structure having a desired three-dimensional shape.
  • a structure having a desired three-dimensional shape by laminating a sintered layer formed by selectively irradiating a powder layer with an energy beam Therefore, it is possible to easily manufacture a stent having a relatively complicated shape.
  • the stent manufacturing method of the present invention it is possible to manufacture a stent having a desired composition by setting the composition of the powder contained in the powder layer to a desired composition. Become. In this case, a stent having a desired composition distribution can be manufactured by appropriately changing the composition of the powder contained in the powder layer.
  • the method of irradiation with the energy beam is changed, the heat treatment of the structure is performed unevenly after the structure is formed, or the composition of the powder contained in the powder layer is appropriately changed. This makes it possible to produce a stent having a desired density distribution.
  • the powder in the portion of the powder layer that has not been subjected to sintering can be reused after collection, so that the yield of the material can be increased. High manufacturing method.
  • Examples of the powder include a powder made of austenitic stainless steel (for example, SUS316), a powder having Ni-Ti alloy power, a powder having Co-Cr alloy power, a powder having Au-Cu alloy power, Au —
  • a powder made of austenitic stainless steel for example, SUS316
  • Ni-Ti alloy power for example, Ni-Ti alloy power
  • Co-Cr alloy power for example, Ni-Ti alloy power
  • a powder having Au-Cu alloy power Au
  • Au a powder made of austenitic stainless steel
  • a powder having Ni-Ti alloy power for example, a powder having Ni-Ti alloy power, a powder having Co-Cr alloy power, a powder having Au-Cu alloy power, Au —
  • Various metal powders such as powders made of Pt—Pd alloy, and various ceramic powders such as powders made of aluminum oxide and powders made of silicon oxide can be used.
  • the powder a powder having an average particle diameter in the range of 0.05 / ⁇
  • the energy beam a laser beam, an electron beam, or an ion beam that can increase the energy density and can also increase the resolution can be preferably used.
  • a structure with a relatively short time and high shape accuracy for example, several m or less.
  • a structure with a relatively short time and high shape accuracy for example, several / zm or less.
  • Stents can be manufactured.
  • the energy beam it is preferable to use an energy beam having a beam diameter of 10 to 70 ⁇ m.
  • the powder sintering table one having a descending pitch in the range of 1 to 40 ⁇ m can be preferably used.
  • the structure is formed in an airtight chamber.
  • the stent is used in a harsh environment such as being placed in a blood vessel for a long period of time and exposed to pulsation or blood, it is preferable that the stent is a high-purity stent with very little contamination of impurities.
  • the stent manufacturing method of the present invention by using the method as described above, contamination of impurities such as moisture, oxygen, nitrogen, organic matter, and metal impurities from the outside is suppressed, and a high-purity stent is manufactured. It becomes possible.
  • the powder sintering process is performed in a state where the hermetic chamber is evacuated or an inert gas or a predetermined reducing gas is introduced into the hermetic chamber. It is preferable to do so.
  • the energy beam is an electron beam or an ion beam
  • the powder sintering process is preferably performed in a state where the hermetic chamber is evacuated.
  • the energy beam is a laser beam
  • the powder layer is formed from a laser beam irradiation device installed outside the hermetic chamber. It is preferable to irradiate with a laser beam.
  • a stent can be manufactured.
  • the powder is produced using a powder sintering processing table drive device installed outside the hermetic chamber. It is preferable to raise and lower the sintering table.
  • the powder layer forming apparatus driving device installed outside the hermetic chamber is used. It is preferable to drive the powder layer forming apparatus.
  • the powder layer forming apparatus is preferably driven using a magnet or a linear motor.
  • the structure is heated while being heated using a heating device installed outside the hermetic chamber. It is preferable to form
  • the temperature difference inside the structure during the formation of the structure can be reduced by forming the structure while heating, so that distortion in the structure can be reduced. Can do.
  • a heating device installed outside the hermetic chamber moisture, oxygen, nitrogen, organic matter, and metal Impurities such as pure substances are prevented from being mixed, and it becomes possible to manufacture a high-purity stent.
  • the heating device a heater, an infrared heating device, a high-frequency heating device, or the like can be preferably used.
  • the infrared heating apparatus which can heat the site
  • heating conditions it is preferable to heat the structure in a range of 60 to 300 ° C.
  • the sintered body is integrally formed by heat-treating the structure after the structure is formed. Because it becomes possible to alloy, stents of various compositions can be manufactured. For example, when the sintered layer is formed while gradually changing the components, a stent having a composition distribution in which the composition gradually changes (for example, a gradient alloy) is manufactured. It becomes possible.
  • a stent having a stepped composition distribution can be manufactured.
  • a stent which is hard at the center in the axial direction and has high flexibility at both ends in the axial direction that is, the stent can be supported with force after placement of the stent, which hardly damages the blood vessel when inserting the stent.
  • Possible stents can be manufactured.
  • the first method for increasing the sintered density of the structure after the powder sintering step It is preferable to further include a heat treatment step.
  • the sintered density of the structure can be increased, so that a stent having predetermined physical properties (for example, hardness, flexibility, density, porosity, etc.) is obtained. It can be manufactured.
  • predetermined physical properties for example, hardness, flexibility, density, porosity, etc.
  • the density ratio was 70-80% of the true metal density.
  • each sintering is performed by this heat treatment. Because the layers can be alloyed together, stents of various compositions can be manufactured.
  • a stent made of a Co—Cr alloy cover is produced from Co powder and Cr powder
  • a stent having Au—Pt—Pd alloy strength is manufactured from Au powder
  • Pt powder and Pd powder for example, heat treatment may be performed under the conditions of 880 to 1050 ° C. and 30 to 90 minutes. preferable.
  • metal powders with different metal component strengths instead of using metal powders with different metal component strengths as powder, alloy powders with different components can be used as powder, and alloy powder and single metal component strength can be used as powder. It is also possible to use a metal powder.
  • the second heat treatment for example, when manufacturing a stent having austenitic stainless steel (for example, SUS316) force, rapid cooling is performed after heat treatment at 950 to 1250 ° C for 30 to 90 minutes. It is preferable to perform a heat treatment such as performing. In addition, for example, when manufacturing a stent made of Co—Cr alloy, heat treatment such as rapid cooling after heat treatment at 1100 to 1300 ° C. for 30 to 90 minutes is performed. It is preferable. For example, when a stent having an Au-Pt-Pd alloy strength is manufactured, a heat treatment may be performed in which quenching is performed after heat treatment is performed at 1000 to 1050 ° C. for 30 to 90 minutes. preferable.
  • the method further includes a third heat treatment step for performing an age hardening treatment of the structure.
  • the structure is made of a metal material having age-hardening properties
  • the structure has a predetermined hardness' elasticity.
  • a stent can be manufactured.
  • the first heat treatment step and the second heat treatment step can be used together, and the first heat treatment step, the second heat treatment step, and the third heat treatment step can be performed continuously.
  • the method for manufacturing a stent according to any one of (1) to (10) further includes a surface polishing step of polishing the surface of the structure.
  • a structure formed by powder sintering is generally formed in a form in which a large number of powders adhere to the surface.
  • the powder adhering to the surface can be removed, so that the surface of the stent can be made smooth.
  • the surface polishing step it is preferable to perform puff polishing, barrel polishing (wet or dry), electrolytic polishing or chemical polishing.
  • the stent manufacturing method according to any one of (1) to (11) preferably further includes a drug impregnation step of impregnating the structure with a drug.
  • DE S Drug-Eluting Stent
  • the characteristics as DES for example, chemical agent
  • Carrier characteristics, drug release characteristics, etc. can be made desired.
  • a growth inhibitor As the drug, a growth inhibitor, a growth inhibitory and immunosuppressant, an immunosuppressant, an extracellular matrix modifier, an endothelial repair promoter, or a drug appropriately combined with these can be preferably used.
  • a powder layer made of a metal powder coated with a resin is formed on a powder solidification table using a powder layer forming apparatus.
  • a powder solidified layer forming step for selectively irradiating the powder layer with an energy beam to melt the resin to form a powder solidified layer, and a powder for lowering the powder solidified table by a predetermined amount It is characterized by including a powder solidifying step of forming a structure having a desired three-dimensional shape by laminating the powder solidified layers by sequentially repeating a solidifying table lowering step.
  • a powder solidified layer formed by selectively irradiating a powder layer with an energy beam is laminated to have a desired three-dimensional shape. Since the structure is formed, a stent having a relatively complicated shape can be easily manufactured as in the case of the stent manufacturing method of the present invention.
  • the powder layer forming apparatus is used to form a powder layer made of a resin powder and a metal powder on a powder solidifying table.
  • a powder solidified layer formed by selectively irradiating a powder layer with an energy beam is laminated to obtain a desired three-dimensional shape.
  • a stent having a relatively complicated shape is easily manufactured. It becomes possible.
  • a stent having a relatively complicated shape, such as a thick stent formed at both ends in the axial direction, is also thin. It can be easily manufactured.
  • the porosity of the structure can be adjusted.
  • a powder sintering apparatus of the present invention includes an airtight chamber having a light-transmitting window, a powder sintering processing table disposed inside the airtight chamber and capable of moving up and down, and the air sintering chamber.
  • a powder layer forming device which is disposed inside a closed chamber and forms a powder layer on the powder sintering processing table; and a powder layer forming device which is disposed outside the hermetic chamber and passes through the translucent window.
  • a laser beam irradiation device for irradiating the layer with a laser beam.
  • a product having a relatively complicated shape can be manufactured by performing powder sintering, By performing the powder sintering process, it is possible to manufacture high-purity products with less contamination of impurities such as moisture, oxygen, nitrogen, organic matter, and metal impurities. Therefore, according to the powder sintering apparatus of the present invention, it is suitable for producing a high-purity product having a relatively complicated shape such as a stent having a relatively complicated shape.
  • the powder sintering apparatus of the present invention is not limited to a stent manufacturing method, but has a relatively complicated shape and requires high purity, for example, a custom-made artificial It can be suitably used in methods for producing joints, dental crowns and the like.
  • the laser beam irradiation device is preferably a UV laser beam irradiation device.
  • an Nd-YAG wavelength conversion (fourth harmonic) laser can be preferably used.
  • the translucent window Preferably has a curved surface portion.
  • the powder layer forming apparatus supplies the powder onto the powder sintering table. It is also preferable that the power of the powder supply device with the function of
  • the powder layer can be formed using the powder as it is, a special pretreatment for forming the powder layer (for example, production of a powder sheet, powder Etc.), and the manufacturing process can be simplified.
  • the powder in the powder layer that has not been sintered can be reused after collection.
  • the powder supply apparatus includes a plurality of powder supply apparatuses.
  • the sintered body is integrally alloyed by heat-treating the structure after the structure is formed. This makes it possible to produce products with various compositions.
  • the sintered layer is formed while gradually changing the components, it is possible to manufacture a product having a composition distribution in which the composition gradually changes (for example, made of a gradient alloy). It becomes possible.
  • the sintered layer is formed by changing the components stepwise during the process, a product having a stepwise composition distribution can be manufactured.
  • the powder sintering apparatus according to the above (19) or (20) further includes a vibration supply means for applying vibration to the powder on the powder sintering table. preferable.
  • the powder in the powder supply device or on the powder sintering processing table Therefore, it is possible to form a uniform powder layer with a high powder filling rate on the powder sintering table.
  • the vibration supply means an ultrasonic oscillator can be preferably used.
  • the powder layer forming apparatus uses a powder sheet on which powder is fixed as the powder. It is preferable that one or a plurality of powder sheet supply devices be supplied to the sintering table.
  • a powder sheet supply apparatus for supplying a powder sheet to a powder sintering processing table by feeding a roll-shaped powder sheet can be preferably used.
  • a new powder sheet is supplied onto the powder sintering process table, and then this powder sheet is cut and the powder sintering process table is cut.
  • a powder layer may be formed on the top, but before lowering the powder sintering table, a new powder sheet is supplied onto the powder sintering table and laser beam irradiation is performed as it is. After that, the powder sheet may be cut and the powder sintering table may be lowered.
  • the powder sheet may be cut with a dedicated cutting device or with a laser beam irradiation device for forming a sintered layer.
  • the powder sheet is fed into a powder sintering processing table by feeding out a sheet-like powder sheet that has been calendered according to the shape of the powder sintering processing table.
  • a powder sheet supply device for supplying to the bull can be preferably used.
  • the powder layer forming apparatus supplies a liquid containing powder to the powder sintering processing table. It is also preferable that one or more powder feeders supply to the power.
  • a sintered layer by supplying a liquid containing powder to the powder sintering table and then removing the liquid component and then irradiating with a laser beam.
  • the gas sintering It is preferable to further include a powder sintering table driving device that is disposed outside the closed chamber and moves the powder sintering table up and down.
  • the powder is disposed outside the hermetic chamber and drives the powder layer forming apparatus. It is preferable to further include a body layer forming device driving device.
  • the heating device a heater, an infrared heating device, a high-frequency heating device, or the like can be preferably used.
  • the infrared heating apparatus which can heat the site
  • the powder sintering apparatus is disposed between the powder sintering process table and the translucent window, It is preferable to further include shielding means for shielding the spray of powder from the powder layer and the evaporated substance of the powder.
  • the shielding means is blown against the light-transmitting window and a gas supply device that blows gas onto the light-transmitting window. It is preferable to have a gas suction device for sucking gas.
  • the shielding means introduces a gas flow between the powder sintering process table and the translucent window. It is also preferable to have a gas flow supply device and a gas flow absorption device I that absorbs the gas flow from the gas flow supply device.
  • the shielding means is intermittently or continuously between the powder sintering table and the translucent window. It is also preferable to have a transparent film supply device that feeds the transparent film into.
  • FIG. 1 is a flowchart shown for explaining a stent manufacturing method according to Embodiment 1.
  • FIG. 2 is a flowchart shown for explaining the stent manufacturing method according to the first embodiment.
  • FIG. 3 is a view for explaining a powder sintering apparatus 100 according to Embodiment 1.
  • FIG. 4 is a view for explaining a powder sintering table 132 in the powder sintering apparatus 100.
  • FIG. 5 is a process diagram shown for explaining a powder sintering process (step S200).
  • FIG. 6 is a perspective view schematically showing the structure 10 during the sintering process.
  • FIG. 7 is a flowchart for explaining a post-processing step (step S300) in the stent manufacturing method according to the first embodiment.
  • FIG. 8 is a view for explaining a powder sintering apparatus 100a according to Modification 1.
  • FIG. 9 is a view for explaining a powder sintering apparatus 100b according to Modification 2.
  • FIG. 10 is a view for explaining a powder sintering apparatus 100c according to Modification 3.
  • FIG. 11 is a view for explaining a powder sintering apparatus lOOd according to modification example 4.
  • FIG. 12 is a view for explaining a powder sintering apparatus 100e according to Modification 5.
  • FIG. 13 is a view for explaining a powder sintering apparatus lOOf according to Modification 6.
  • FIG. 14 is a view shown for explaining a powder sintering apparatus 100g according to Modification 7.
  • FIG. 15 is a view for explaining a powder sintering apparatus 100 h according to Modification 8.
  • FIG. 16 is a view for explaining a powder sintering apparatus 100i according to Modification 9.
  • FIG. 17 is a view for explaining a powder sintering apparatus 100j according to Modification 10;
  • FIG. 18 is a flowchart shown for explaining a stent manufacturing method according to the second embodiment.
  • FIG. 19 is a flowchart shown for explaining the stent manufacturing method according to the third embodiment.
  • FIG. 20 is a flowchart for explaining the stent manufacturing method according to the fourth embodiment.
  • FIG. 21 is a view for explaining the structure of the stent 20 manufactured by the stent manufacturing method according to Embodiment 4.
  • FIG. 22 is a view for explaining a conventional stent manufacturing method.
  • FIG. 1 and FIG. 2 are flowcharts for explaining the stent manufacturing method according to the first embodiment.
  • the stent manufacturing method according to Embodiment 1 includes a powder preparation step (Step S100) for preparing powder used for powder sintering, and a third step by performing powder sintering.
  • the powder sintering process is a powder layer forming process in which a powder layer is formed on a powder sintering process table using a powder layer forming apparatus ( Step S212), a sintering layer forming step (Step S214) for selectively irradiating the powder layer with an energy beam to form a sintered layer, and a powder sintering for lowering the powder sintering processing table by a predetermined amount. Bonding process And a table lowering process (step S216). Then, by repeating these steps in sequence, a sintered body is laminated to form a structure having a desired three-dimensional shape.
  • step S200 The powder sintering process (step S200) is performed using a dedicated powder sintering apparatus.
  • FIG. 3 is a view for explaining the powder sintering apparatus 100 according to the first embodiment.
  • Fig. 3 (a) is a plan view of the hermetic chamber 110 in the powder sintering cabinet apparatus 100
  • Fig. 3 (b) is an A-A diagram in Fig. 3 (a) in the powder sintering cabinet apparatus 100. It is sectional drawing.
  • FIG. 4 is a view for explaining the powder sintering table 132 in the powder sintering apparatus 100.
  • the powder sintering apparatus 100 includes an airtight chamber 110 having a translucent window 112 and a powder sintering processing table 132 that is disposed inside the airtight chamber 110 and can be moved up and down.
  • the powder layer M is disposed inside the hermetic chamber 110 and placed on the powder sintering table 132 (see FIG. 5 (d)).
  • Powder supply devices 150a, 150b, 150c as powder layer forming devices, and a laser beam to the powder layer M through the light-transmitting window 112.
  • a laser beam irradiation device 170 for irradiation And a laser beam irradiation device 170 for irradiation.
  • the powder sintering apparatus 100 includes a vacuum pump 116 and an exhaust valve 114 for exhausting the hermetic chamber 110, an Ar gas cylinder 120 for storing a gas to be introduced into the hermetic chamber 110, and an H gas.
  • a cylinder 120a, other (for example, ammonia decomposition gas) gas cylinder 120b, an introduction valve 118, and a heater 180 as a heating device for heating the structure are further provided.
  • the three powder supply devices 150a, 150b, and 150c are powder supply devices having a function of supplying the powder M onto the powder sintering table 132 as shown in FIG. 3 (a). , Respectively, shafts 152a, 152b, 152c, arms 154a, 1 54b, 154c rotatable around the shafts 152a, 152b, 152c, and powder inner yarns provided at the ends of the arms 154a, 154b, 154c. 156a, 156b, 156c and magnet parts 158a, 158b, 158c.
  • the force that the powder M is supplied only to the powder supply device 150a is supplied to the other powder supply devices 150b and 150c.
  • Body M is supplied.
  • the lower surface of the hermetic chamber 110 is made of permalloy, which is a magnetically permeable material.
  • the powder sintering apparatus 100 vibrates the powder in the powder storage units 156a, 156b, and 156c and the powder on the sintering apparatus powder sintering table 132.
  • An ultrasonic oscillator (not shown) as a vibration supply device is further provided.
  • the laser beam irradiation device 170 is a UV laser beam irradiation device.
  • the laser beam irradiation power is an Nd-YAG wavelength conversion (fourth harmonic) laser power that emits a UV laser beam.
  • the oscillator 172, a two-dimensional scanning mirror 174 that reflects the UV laser beam, a condenser lens 176 that condenses the UV laser beam, and a control unit 178 that controls these operations are included.
  • the powder sintering cache table 132 has a shaft portion 134 extending downward, and is freely rotatable in a lower portion of the powder sintering processing table storage portion 130. It is supported by the arranged powder sintering table support part 136. A magnet portion 138 is disposed below the powder sintering processing table support portion 136.
  • the powder sintering processing table driving device 140 has a rotating body 142 having a magnet portion 142 disposed on the upper surface and configured to be rotatable by the rotation of the motor 146, and the powder sintering process is performed by the rotation of the rotating body 142.
  • the rotation of the caulking table support 136 is controlled.
  • the powder sintering table storage section 130 has a permalloy force that is a magnetically permeable material.
  • the powder sintering apparatus 100 is further provided with a heater 160 as a heating device that is disposed outside the hermetic chamber 110 and heats the structure.
  • FIG. 5 is a process diagram shown for explaining the powder sintering cache process (step S 200).
  • FIG. 6 is a perspective view schematically showing the structure during the sintering process. In FIG. 6, the illustration of the powder M existing around the structure 10 is omitted.
  • the powder sintering table 132 at a predetermined position is lowered by a predetermined amount as shown in FIG. 5 (b). .
  • the powder supply device 150a is rotated in a state where the powder M is in the powder storage unit 156a, and the powder sintering processing table is turned on. Powder layer M on top of 132
  • the powder layer M is transferred from the laser beam irradiation device 170.
  • a laser beam is irradiated to form the sintered layer M.
  • the powder sintering table 132 is lowered by a predetermined amount as shown in FIG. 5 (g), and the powder supply device 150a is moved as shown in FIGS. 5 (h) to 5 (i).
  • the powder layer M is formed on the powder sintering processing table 132 by rotating again.
  • the powder layer forming process, the sintered layer forming process, and the powder sintering process table lowering process are sequentially repeated to perform sintering.
  • the layers are stacked to form a structure having the desired three-dimensional shape.
  • a structure 10 having a three-dimensional structure as shown in FIG. 6 can be formed.
  • the stent manufacturing method according to Embodiment 1 is performed by performing the powder sintering process using the powder sintering apparatus 100.
  • the laser beam is applied to the powder layer M.
  • Sintered layers M formed by selectively irradiating the film are laminated to form a structure having a desired three-dimensional shape, so that a stent having a relatively complicated shape can be easily manufactured.
  • composition of the powder M contained in the powder layer M is appropriately changed.
  • a stent having a desired density can be manufactured.
  • the energy beam irradiation method is changed, the heat treatment of the structure is unevenly performed after the structure is formed, or the powder M contained in the powder layer M is
  • Examples of the powder include powder made of austenitic stainless steel (for example, SUS316), powder having Ni-Ti alloy power, powder having Co-Cr alloy power, powder having Au-Cu alloy power, Au — Pt— Pd alloy power Various metal powders including various powders and various ceramic powders can be used. In this case, when ceramic powder is used as the powder, it is possible to use the ceramic powder alone, but it is preferable to use the ceramic powder together with the metal powder.
  • the shape accuracy is relatively short (for example, number: zm or less). It is possible to form a structure, and as a result, it is possible to manufacture a stent in a relatively short period of time and with high shape accuracy (for example, several / zm or less).
  • the structure is formed in the airtight chamber 110, moisture, oxygen, nitrogen, organic matter, metal impurities, etc. from the outside are used. It is possible to manufacture a high-purity stent. In this case, it is preferable to perform the powder sintering process in a state where the hermetic chamber 110 is evacuated or an inert gas or a predetermined reducing gas is introduced into the hermetic chamber 110.
  • the laser beam irradiation device 170 installed outside the hermetic chamber 110 is placed on the powder layer M.
  • impurities such as moisture, oxygen, nitrogen, organic matter, and metal impurities are prevented from entering the hermetic chamber 110 due to the laser beam irradiation, and a high-purity stent Can be manufactured.
  • the powder sintering table 132 is moved up and down using the powder sintering table driving device 140 installed outside the hermetic chamber 110.
  • impurities such as moisture, oxygen, nitrogen, organic matter, and metal impurities from entering the hermetic chamber 110 due to the raising and lowering of the powder sintering cabinet table 132, and to manufacture high-purity stents. It becomes possible to do.
  • the powder supply devices 150a, 150b, and 150c are used by using the powder supply device driving devices 160a, 160b, and 160c installed outside the hermetic chamber 110. Therefore, it is possible to prevent impurities such as moisture, oxygen, nitrogen, organic matter, and metal impurities from entering the hermetic chamber 110 due to the driving of the powder supply devices 150a, 150b, and 150c. It becomes possible to produce a high-purity stent.
  • the temperature difference inside the structure 10 during the structure formation can be reduced. Distortion in the structure 10 can be reduced.
  • the heater 180 installed outside the hermetic chamber 110 moisture, oxygen, nitrogen, organic matter, metal impurities, etc. in the hermetic chamber 110 due to the heating of the structure 10. It is possible to manufacture a high-purity stent.
  • FIG. 7 is a flowchart for explaining the post-processing step (step S300) in the stent manufacturing method according to the first embodiment.
  • the post-processing step (step S300) in the stent manufacturing method according to Embodiment 1 includes the first heat treatment step (step S312) for increasing the sintered density of the structure, and the melt of the structure.
  • a second heat treatment step (step S314) for performing a heat treatment for performing a heat treatment
  • the stent manufacturing method according to Embodiment 1 further includes a first heat treatment step for increasing the sintered density of the structure after the powder sintering step.
  • a first heat treatment step for increasing the sintered density of the body, it becomes possible to produce a stent having predetermined physical properties (for example, hardness, flexibility, density, porosity, etc.).
  • the density ratio of 70 to 80% of the true metal density before the first heat treatment step is set to 97 to the LOO% density ratio of the true metal density after the first heat treatment step. be able to.
  • each sintering is performed by the first heat treatment step. Since the tie layers can be alloyed together, stents of various compositions can be manufactured.
  • a stent made of a Co—Cr alloy cover is produced from Co powder and Cr powder
  • a stent having Au—Pt—Pd alloy strength is manufactured from Au powder
  • Pt powder and Pd powder for example, heat treatment may be performed under the conditions of 880 to 1050 ° C. and 30 to 90 minutes. preferable.
  • metal powders with different metal component strengths instead of using metal powders with different metal component strengths as powder, alloy powders with different components can be used as powder, and alloy powder and single metal component strength can be used as powder. It is also possible to use a metal powder.
  • the stent manufacturing method according to Embodiment 1 further includes a second heat treatment step of performing a melt treatment of the structure after the first heat treatment step, and the structure is made of age-hardened metal.
  • the structure since the structure further includes a third heat treatment step for performing age hardening treatment of the structure, it becomes possible to manufacture a stent having a predetermined hardness and elasticity.
  • the second heat treatment for example, in the case of manufacturing a stent having austenitic stainless steel (for example, SUS316) strength, rapid cooling is performed after heat treatment at 950 to 1250 ° C for 30 to 90 minutes. It is preferable to perform a heat treatment such as performing.
  • heat treatment such as rapid cooling after heat treatment at 1100 to 1300 ° C. for 30 to 90 minutes is performed. It is preferable.
  • a heat treatment may be performed in which quenching is performed after heat treatment is performed at 1000 to 1050 ° C. for 30 to 90 minutes. preferable.
  • the third heat treatment for example, when manufacturing a stent having Co—Cr alloy strength, it is preferable to perform the heat treatment under conditions of 700 to 850 ° C. for 30 to 180 minutes.
  • the heat treatment under conditions of 800 to 960 ° C. and 30 to 180 minutes.
  • first heat treatment step and the second heat treatment step can be used together, and the first heat treatment step, the second heat treatment step, and the third heat treatment step can be performed continuously.
  • the stent manufacturing method according to Embodiment 1 further includes a surface polishing step of polishing the surface of the structure. For this reason, since the powder adhering to the surface of the structure can be removed, the surface of the stent can be made smooth. In this surface polishing process, it is preferable to perform puff polishing, barrel polishing (wet or dry), electrolytic polishing or chemical polishing.
  • FIG. 8 is a view for explaining the powder sintering apparatus 100a according to the first modification.
  • FIG. 9 is a view for explaining the powder sintering apparatus 100b according to the second modification.
  • FIG. 10 is a diagram for explaining a powder sintering apparatus 100c according to Modification 3. In FIGS. 8 to 10, the illustration of the laser beam irradiation device 170 is omitted.
  • the powder sintering apparatus 100a, 100b, 100c according to the modified examples 1 to 3 basically has the same configuration as the powder sintering apparatus 100 according to the first embodiment. However, the powder sintering apparatus 100a, 100b, 100c according to the modified examples 1 to 3 is used for the powder droplets from the powder layer M and the powder particles.
  • the powder sintering apparatus 100 further includes a shielding means for shielding the evaporated material! [0131]
  • a shielding means for shielding the evaporated material!
  • a gas supply apparatus 190a that constantly blows fresh gas to the translucent window 112.
  • a gas suction device 190b for sucking the gas blown to the translucent window 112.
  • a fresh gas is always provided between the powder sintering table 132 and the translucent window 112 as a shielding means.
  • a gas flow supply device 192a for introducing a flow and a gas flow suction device 192b for sucking a gas flow from the gas flow supply device 192a are provided.
  • the shielding means is intermittently or continuously between the powder sintering table 132 and the translucent window 112.
  • a transparent film supply device 194 for feeding the transparent film is provided.
  • the powder droplets from the powder layer M and the evaporated powder adhere to the translucent window 112 and are translucent.
  • Deterioration of the light transmittance of the window 112 can be suppressed. For this reason, it is possible to always irradiate the laser beam under a certain condition during the formation of the structure, and the quality of the stent can be further improved.
  • FIG. 11 is a view for explaining a powder sintering apparatus 100d according to Modification 4.
  • FIG. 11 (a) is a sectional view of the powder sintering apparatus 100d
  • FIG. 11 (b) is a plan view of the powder sintering apparatus 100d.
  • the illustration of the laser beam irradiation device 170 is omitted.
  • the powder sintering apparatus 100d according to Modification 4 basically has a configuration similar to that of the powder sintering apparatus 100 according to Embodiment 1, but Embodiment 1
  • the structure of the powder layer forming apparatus is different from the powder sintering apparatus 100 according to FIG.
  • the powder layer forming apparatus performs powder sintering processing on the powder sheet M on which the powder M is fixed.
  • the powder sheet supply device 200 to be supplied to the And a cutting device 202 for cutting.
  • the powder sheet M on which the powder M is fixed can be supplied to the powder sintered casing table 132.
  • powder sintered casing table 132 powder
  • FIG. 12 is a view for explaining a powder sintering apparatus 100e according to Modification 5.
  • the illustration of the laser beam irradiation device 170 is omitted.
  • the powder sintering apparatus 100e according to Modification 5 basically has a configuration similar to that of the powder sintering apparatus lOOd according to Modification 4, but the modification The means for cutting the powder sheet M is different from the powder sintering apparatus lOOd according to 4.
  • the used portion of the powder sheet M is replaced with a laser beam irradiation apparatus 170 (not shown).
  • powder sheet M M
  • the means for cutting the powder sheet M2 is different from the powder sintering apparatus lOOd according to the modification 4.
  • the powder sheet M on which the powder M is fixed can be supplied to the powder sintering carriage table 132.
  • FIG. 13 is a view for explaining a powder sintering apparatus 100f according to Modification 6.
  • FIG. 13 (a) is a plan view of the powder sintering apparatus 100f
  • FIG. 13 (b) is a cross-sectional view taken along line AA in FIG. 13 (a) of the powder sintering apparatus 100f. is there.
  • the powder sintering apparatus 100f according to Modification 6 basically has a configuration similar to that of the powder sintering apparatus lOOd according to Modification 4, Powder sintering machine 1 The structure of the powder layer forming device is different from OOd.
  • the powder layer forming apparatus has a powder sheet having a shape corresponding to the shape of the powder sintering processing table.
  • the powder sintering apparatus 100f according to the modified example 6 differs from the powder sintering apparatus lOOd according to the modified example 4 in the configuration of the powder layer forming apparatus, but the powder M is Since it is possible to supply the fixed powder sheet M to the powder sintering carriage table 132, the modification 4
  • FIG. 14 is a view for explaining a powder sintering apparatus 100g according to Modification 7.
  • FIG. 14 (a) is a plan view of the powder sintering apparatus lOOd
  • FIGS. 14 (b) and 14 (c) are cross-sectional views of the powder sintering apparatus lOOd.
  • 14B is a cross-sectional view when the powder supply device 230 is on the powder sintering table 132
  • FIG. FIG. 12 is a cross-sectional view when on the carpentry table 132.
  • the illustration of the laser beam irradiation device 170 is omitted.
  • the powder sintering apparatus 100g according to Modification 7 basically has a configuration similar to that of the powder sintering apparatus 100 according to Embodiment 1, but Embodiment 1
  • the structure of the powder layer forming apparatus is different from the powder sintering apparatus 100 according to FIG.
  • the powder layer forming apparatus supplies the liquid M containing powder to the powder sintering processing table 132.
  • It consists of a powder supply device 230 and a flattening device 250 for flattening liquid M containing powder.
  • the powder supply apparatus 230 includes a shaft 232, an arm 234 rotatable around the shaft 232, a powder storage portion 236 provided at the tip of the arm 234, and a magnet portion 238.
  • the flattening device 250 includes a shaft 252, an arm 254 that is rotatable about the shaft 252, a flattening processing unit 256 that is provided at the tip of the arm 254 and can move up and down, and a magnet unit 258. . And flat By moving the carrier processing unit 256 up and down, the liquid M containing the powder supplied to the powder sintering table 132 is flattened.
  • the powder supply device 230 and the flattening device 250 are driven by a powder supply device driving device 240 and a flat plate device driving device 260 installed outside the hermetic chamber 110.
  • the powder sintering apparatus lOOg according to the modified example 7 differs from the powder sintering apparatus 100 according to the first embodiment in the configuration of the powder layer forming apparatus, but in the first embodiment.
  • FIG. 15 is a view for explaining a powder sintering apparatus 100h according to Modification 8.
  • FIG. 15 (a) is a sectional view of the powder sintering apparatus 100h
  • FIG. 15 (b) is a plan view of the powder sintering apparatus 100h.
  • the powder sintering apparatus 100h according to Modification 8 basically has a configuration similar to that of the powder sintering apparatus 100 according to Embodiment 1, but Embodiment 1
  • the structure of the heating apparatus is different from the powder sintering apparatus 100 according to the above.
  • the part where the structure is disposed is efficiently and locally heated.
  • Two infrared heating devices 182 are provided.
  • the powder sintering apparatus 100h according to the modified example 8 has a different structure of the heating device.
  • the structure is being heated.
  • an infrared heating device 182 installed outside the hermetic chamber 110, moisture, oxygen, nitrogen, organic matter, and metal impurities are added to the hermetic chamber 110 due to the heating of the structure. It is possible to manufacture a high-purity stent.
  • FIG. 16 is a view for explaining the powder sintering apparatus lOOi according to the ninth modification.
  • the powder sintering apparatus 100i (not shown) according to Modification 9 basically has a configuration that is very similar to the powder sintering apparatus 100h according to Modification 8.
  • the powder sintering process table drive device for controlling the lifting and lowering of the powder sintering process table uses a drive device using a linear motor, and therefore the powder according to Modification 8 is used. It differs from the case of body sintering machine 100h.
  • the powder sintering table 270 is provided with a magnet portion 272, and around the powder sintering processing table storage portion 130, there is an electromagnet portion supporting portion.
  • An electromagnet portion 274 supported by 276 is provided. Then, by controlling the voltage applied to the electromagnet unit 274, the lifting / lowering operation of the powder sintering table 270 is controlled.
  • the modification example is that the driving apparatus using the linear motor is used as the powder sintering process table drive apparatus.
  • the force different from the case of the powder sintering apparatus 100h according to 8 is modified.
  • the external force can also raise and lower the powder sintering table 270. It is possible to suppress the entry of moisture, oxygen, nitrogen, organic matter, metal impurities and other impurities into the hermetic chamber 110 due to the lifting and lowering of the powder sintering table 270 and high purity. Can be manufactured.
  • FIG. 17 is a view for explaining a powder sintering apparatus 100j according to Modification 10.
  • the illustration of the laser beam irradiation apparatus 170 is omitted.
  • the powder sintering apparatus 100j according to Modification 10 basically has a configuration similar to that of the powder sintering apparatus 100 according to Embodiment 1, but Embodiment 1
  • the structure of the heating apparatus is different from the powder sintering apparatus 100 according to the above.
  • the powder sintering apparatus 100j according to the modified example 10 includes a high-frequency heating device 184 as a heating device, as shown in FIG.
  • the powder sintering apparatus 100j according to the modified example 10 includes the high-frequency heating apparatus 184 instead of the heater 180 as a heating apparatus, and thus the powder sintering apparatus 1 according to the first embodiment.
  • FIG. 18 is a flow chart shown for explaining the manufacturing method of the stent according to the second embodiment.
  • the manufacturing method of the stent according to Embodiment 2 is performed after the surface polishing step.
  • the method further includes a drug impregnation step of impregnating the structure with the drug.
  • DES Drug—Eluting Stent (drug-eluting stent) in which a necessary drug is impregnated in the pores of the structure body
  • the characteristics as DES for example, drug carrying characteristics, drug Release characteristics etc.
  • DES drug carrying characteristics, drug Release characteristics etc.
  • a growth inhibitor a growth inhibitory and immunosuppressant, an immunosuppressant, an extracellular matrix modifier, an endothelial repair promoter, or a drug appropriately combined with these can be preferably used.
  • FIG. 19 is a flowchart for explaining the stent manufacturing method according to the third embodiment.
  • the stent manufacturing method according to Embodiment 3 is a stent manufacturing method in which the sintered layer is formed while changing the composition for each layer in the powder sintering process.
  • the component is changed by selecting a desired powder (either power of powder A or powder B) in the powder selection step (step S222) in FIG.
  • FIG. 20 is a flow chart for explaining the stent manufacturing method according to the fourth embodiment.
  • FIG. 21 is a view for explaining the structure of the stent manufactured by the stent manufacturing method according to the fourth embodiment.
  • the stent manufacturing method according to Embodiment 4 is a stent manufacturing method in which the sintered layers are formed by changing the components during the powder sintering process. is there.
  • the component is changed by selecting a desired powder (any one of powder A, powder B, and powder C) in the powder selection step (step S232) in FIG.
  • the sintered layer is formed by gradually changing the components during the process, it is possible to manufacture a stent having a thread and component fabric that changes smoothly.
  • a sintered layer is formed by changing the components in a stepped manner during the process, a stent having a stepped composition distribution can be manufactured.
  • the force using a UV laser beam irradiation apparatus as the energy beam irradiation apparatus is not limited to this.
  • a laser beam irradiation device in the visible region or the infrared region can be used, and an electron beam irradiation device or an ion beam irradiation device can also be used.
  • the force using a flat quartz glass substrate as the translucent window is not limited to this.
  • a curved quartz glass substrate or other substrate can be used as the translucent window.
  • the force for forming the structure along the axial direction of the stent is not limited to this.
  • a structure can be formed along the diameter direction of the stent.
  • the structure is formed using metal powder, but the present invention is not limited to this.
  • the structure may be formed using metal powder coated with resin! However, it is also possible to form a structure using both powdered resin powder and metal powder.
  • the force for forming the structure using the metal powder is not limited to this.
  • a structure may be formed using a ceramic powder. In this case, it is possible to use ceramic powder alone. It is preferable to use ceramic powder together with metal powder.
  • Powder storage unit 158a, 158b, 158c, 218a, 218b, 218c, 238 ... Magnet unit, 160a, 22 Oa, 240 ... Powder feeder drive unit, 162a, 222a, 242, 262 ⁇ axis, 164a, 224a, 244, 264 ⁇ arm, 166a, 226a, 246, 266 ⁇ motor, 168a, 228a, 248, 268 ... magnet part, 170 ... laser beam irradiation device, 172 ... Laser oscillator, 174 ... Two-dimensional scanning mirror, 176 ... Condensing lens, 178 ... Control 180 Heater 182 Infrared heating device 1 84 High frequency heating device 190a ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Thermal Sciences (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

A process for producing a stent, characterized by including the powder sintering step of sequentially repeating the sintered layer forming step of providing a powder layer on a powder sintering table with the use of a powder layer forming unit and subsequently carrying out selective irradiation of the powder layer with energy beams to thereby form a sintered layer and the powder sintering table descending step of moving the powder sintering table downward by a given extent so as to effect of superimposing of sintered layers, thereby producing a structure of desired three-dimensional morphology. This stent producing process enables easy production of a stent with relatively complex morphology.

Description

明 細 書  Specification
ステントの製造方法及び粉体焼結加工装置  Stent manufacturing method and powder sintering apparatus
技術分野  Technical field
[0001] 本発明は、ステントの製造方法及び粉体焼結加工装置に関する。  The present invention relates to a method for manufacturing a stent and a powder sintering apparatus.
背景技術  Background art
[0002] 図 22は、従来のステントの製造方法を説明するために示す図である。図 22 (a)はレ 一ザカ卩ェ装置 900の要部を示す模式図であり、図 22 (b)は製造されるステント 940 の外観図である。  FIG. 22 is a view for explaining a conventional stent manufacturing method. FIG. 22 (a) is a schematic view showing the main part of the laser device 900, and FIG. 22 (b) is an external view of the manufactured stent 940. FIG.
[0003] 従来のステントの製造方法においては、図 22に示すように、レーザ加工装置 900 における可動チャック 920により金属管 930を回転させたり軸方向に移動させたりし ながら、レーザカ卩ェ装置 900におけるレーザ照射装置 910により金属管 930の表面 にレーザビーム Lを走査して、金属管 930の表面を網目形状に加工することにより、 ステント 940を製造している(例えば、特許文献 1及び 2参照。 )0 In the conventional stent manufacturing method, as shown in FIG. 22, while the metal tube 930 is rotated or moved in the axial direction by the movable chuck 920 in the laser processing apparatus 900, The laser irradiation apparatus 910 scans the surface of the metal tube 930 with the laser beam L, and processes the surface of the metal tube 930 into a mesh shape, thereby manufacturing the stent 940 (see, for example, Patent Documents 1 and 2). ) 0
このため、従来のステントの製造方法によれば、所定の金属管 930を準備すれば、 所定の網目形状を有するステント 940を製造することができる。  Therefore, according to the conventional stent manufacturing method, if a predetermined metal tube 930 is prepared, a stent 940 having a predetermined mesh shape can be manufactured.
[0004] 特許文献 1:特開 2005— 095610号公報  [0004] Patent Document 1: Japanese Patent Laid-Open No. 2005-095610
特許文献 2 :特開 2001— 219286号公報  Patent Document 2: Japanese Patent Laid-Open No. 2001-219286
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] ところで、冠動脈インターペンション (PCI)を用いた治療現場にぉ 、ては、比較的 複雑な形状を有するステントを使用したいというニーズがある。例えば、軸方向に沿つ て内径が徐々に細くなつていくような形状を有する血管にステントを使用する場合に は、軸方向に沿って外径が徐々に細くなつていくような形状 (テーパー形状)を有す るステントを用いたいというニーズがある。また、血管分岐部にステントを使用する場 合には、分岐部を有するステントを用いた ヽと 、うニーズがある。  [0005] By the way, there is a need to use a stent having a relatively complicated shape at a treatment site using coronary artery interpension (PCI). For example, when a stent is used for a blood vessel that has a shape that gradually decreases in the inner diameter along the axial direction, the shape in which the outer diameter gradually decreases in the axial direction (tapered). There is a need to use a stent having a shape. In addition, when a stent is used at a blood vessel bifurcation, there is a need to use a stent having a bifurcation.
[0006] また、ステント挿入時には血管に傷をつけにくぐステント留置後には血管をしつ力り 支持することが可能なステントを用いた 、と 、うニーズがある。このようなニーズを満た すステントとしては、例えば、ストラットの肉厚が軸方向中央部(図 22 (b)の符号 942 参照。)においては厚ぐ軸方向両端部(図 22 (b)の符号 944参照。)においては薄く 構成されたステントが考えられる。 [0006] Further, there is a need to use a stent that can support and support the blood vessel after placement of the stent, which is difficult to damage the blood vessel when the stent is inserted. Meet these needs As the stent, for example, the strut thickness is thicker at the axially central portion (see reference numeral 942 in FIG. 22 (b)), and at both axial end portions (see reference numeral 944 in FIG. 22 (b)). A thinly constructed stent is conceivable.
このように、 PCIを用いた治療現場においては、様々な理由により比較的複雑な形 状を有するステントを使用した 、と 、うニーズがある。  Thus, there is a need in the field of treatment using PCI that a stent having a relatively complicated shape is used for various reasons.
[0007] し力しながら、従来のステントの製造方法にぉ 、ては、金属管を出発原料として用[0007] However, in the conventional stent manufacturing method, a metal tube is used as a starting material.
V、て 、るため、上記のように比較的複雑な形状を有するステントを製造することが容 易ではな!/、と!/、う問題がある。 Therefore, there is a problem that it is not easy to manufacture a stent having a relatively complicated shape as described above! /, And! /.
[0008] そこで、本発明は、上記のような問題を解決するためになされたもので、比較的複 雑な形状を有するステントを容易に製造することが可能なステントの製造方法を提供 することを目的とする。また、このような比較的複雑な形状を有するステントのように、 比較的複雑な形状を有し、かつ、高純度の製品を製造するのに好適な粉体焼結カロ ェ装置を提供することを目的とする。 [0008] Therefore, the present invention has been made to solve the above-described problems, and provides a method for manufacturing a stent capable of easily manufacturing a stent having a relatively complicated shape. With the goal. Also, a powder sintered calorie device having a relatively complicated shape and suitable for producing a high-purity product such as a stent having such a relatively complicated shape is provided. With the goal.
課題を解決するための手段  Means for solving the problem
[0009] (1)本発明のステントの製造方法は、粉体層形成装置を用いて粉体焼結加工テープ ル上に粉体層を形成した後に前記粉体層にエネルギービームを選択的に照射して 焼結層を形成する焼結層形成工程と、前記粉体焼結加工テーブルを所定量下降さ せる粉体焼結加工テーブル下降工程とを順次繰り返すことにより、前記焼結層を積 層して所望の三次元形状を有する構造体を形成する粉体焼結加工工程を含むこと を特徴とする。 [0009] (1) In the stent manufacturing method of the present invention, an energy beam is selectively applied to the powder layer after the powder layer is formed on the powder sintered table using the powder layer forming apparatus. The sintered layer is stacked by sequentially repeating a sintered layer forming step of forming a sintered layer by irradiation and a powder sintering processing table lowering step of lowering the powder sintering processing table by a predetermined amount. It includes a powder sintering process for forming a layered structure having a desired three-dimensional shape.
[0010] このため、本発明のステントの製造方法によれば、粉体層にエネルギービームを選 択的に照射して形成される焼結層を積層して所望の三次元形状を有する構造体を 形成することとして!/、るため、比較的複雑な形状を有するステントを容易に製造する ことが可能となる。その結果、例えば、軸方向に沿って外径が徐々に細くなつていくよ うな形状 (テーパー形状)を有するステント、分岐部を有するステント、さらには、ストラ ットの肉厚が軸方向中央部においては厚く軸方向両端部においては薄く構成された ステントなどのような比較的複雑な形状を有するステントをも容易に製造することが可 能となる。 [0011] ところで、従来のステントの製造方法においては、金属管を出発原料として用いて V、るため、金属管の組成とは異なる組成を有するステントを製造することは困難であ る。 Therefore, according to the stent manufacturing method of the present invention, a structure having a desired three-dimensional shape by laminating a sintered layer formed by selectively irradiating a powder layer with an energy beam. Therefore, it is possible to easily manufacture a stent having a relatively complicated shape. As a result, for example, a stent having a shape (tapered shape) that gradually decreases in outer diameter along the axial direction, a stent having a bifurcated portion, and the thickness of the strut at the central portion in the axial direction. It is possible to easily manufacture a stent having a relatively complicated shape, such as a stent that is thick and thin at both axial ends. [0011] By the way, in the conventional stent manufacturing method, since a metal tube is used as a starting material, V, it is difficult to manufacture a stent having a composition different from the composition of the metal tube.
これに対して、本発明のステントの製造方法によれば、粉体層に含まれる粉体の組 成を所望の組成とすることによって、所望の組成を有するステントを製造することが可 能となる。また、この場合、粉体層に含まれる粉体の組成を適宜変更していくことによ り、所望の組成分布を有するステントを製造することも可能となる。  On the other hand, according to the stent manufacturing method of the present invention, it is possible to manufacture a stent having a desired composition by setting the composition of the powder contained in the powder layer to a desired composition. Become. In this case, a stent having a desired composition distribution can be manufactured by appropriately changing the composition of the powder contained in the powder layer.
[0012] ところで、従来のステントの製造方法においては、金属管を出発原料として用いて いるため、金属管の密度とは異なる密度を有するステントを製造することも困難である これに対して、本発明のステントの製造方法によれば、粉体焼結の条件 (例えば、 粉体層に用いる粉体の種類をどうするか、エネルギービーム照射をどうするカゝなど。 ) や構造体形成後における構造体の熱処理の条件 (例えば、強い熱処理を行うか、弱 い熱処理を行うかなど。)により、所望の密度を有するステントを製造することが可能と なる。また、この場合、エネルギービーム照射の仕方を変化させたり、構造体形成後 における構造体の熱処理を不均一に行ったり、粉体層に含まれる粉体の組成を適宜 変更していったりすることにより、所望の密度分布を有するステントを製造することも可 能となる。  [0012] By the way, in the conventional method for manufacturing a stent, since a metal tube is used as a starting material, it is difficult to manufacture a stent having a density different from the density of the metal tube. According to the method for manufacturing a stent of the invention, conditions for powder sintering (for example, what kind of powder is used in the powder layer, what is the energy beam irradiation, etc.) and the structure after the structure is formed According to the heat treatment conditions (for example, whether a strong heat treatment or a weak heat treatment is performed), a stent having a desired density can be manufactured. In this case, the method of irradiation with the energy beam is changed, the heat treatment of the structure is performed unevenly after the structure is formed, or the composition of the powder contained in the powder layer is appropriately changed. This makes it possible to produce a stent having a desired density distribution.
[0013] また、本発明のステントの製造方法によれば、粉体層のうち焼結が行われな力つた 部分の粉体は、回収後に再使用することが可能であるため、材料歩留まりの高い製 造方法となる。  [0013] Further, according to the stent manufacturing method of the present invention, the powder in the portion of the powder layer that has not been subjected to sintering can be reused after collection, so that the yield of the material can be increased. High manufacturing method.
[0014] 粉体としては、例えば、オーステナイト系ステンレス (例えば SUS316)からなる粉体 、 Ni— Ti合金力もなる粉体、 Co— Cr合金力もなる粉体、 Au— Cu合金力もなる粉体 、 Au— Pt— Pd合金カゝらなる粉体などの種々の金属粉体及び酸化アルミニウムから なる粉体、酸ィ匕シリコン力 なる粉体などの種々のセラミックス粉体を用いることができ る。この場合、粉体としてセラミックス粉体を用いる場合には、セラミックス粉体を単独 で用いることも可能である力 セラミックス粉体を金属粉体とともに用いることが好まし い。粉体としては、平均粒径が 0. 05 /ζ πι〜40 /ζ πιの範囲内にある粉体を用いること が好ましい。 [0014] Examples of the powder include a powder made of austenitic stainless steel (for example, SUS316), a powder having Ni-Ti alloy power, a powder having Co-Cr alloy power, a powder having Au-Cu alloy power, Au — Various metal powders such as powders made of Pt—Pd alloy, and various ceramic powders such as powders made of aluminum oxide and powders made of silicon oxide can be used. In this case, when the ceramic powder is used as the powder, it is preferable to use the force ceramic powder together with the metal powder, which can be used alone. As the powder, a powder having an average particle diameter in the range of 0.05 / ζ πι to 40 / ζ πι should be used. Is preferred.
[0015] エネルギービームとしては、エネルギー密度を高くすることが可能で、かつ、解像度 を高くすることも可能な、レーザビーム、電子ビーム又はイオンビームを好ましく用い ることができる。これにより、比較的短時間で、かつ、形状精度の高い(例えば、数 m以下。)構造体を形成することが可能になり、その結果、比較的短時間で、かつ、 形状精度の高い(例えば、数/ z m以下。)ステントを製造することが可能になる。エネ ルギービームとしては、ビーム径が 10〜70 μ mのエネルギービームを用いることが 好ましい。  As the energy beam, a laser beam, an electron beam, or an ion beam that can increase the energy density and can also increase the resolution can be preferably used. As a result, it is possible to form a structure with a relatively short time and high shape accuracy (for example, several m or less). As a result, a structure with a relatively short time and high shape accuracy ( For example, several / zm or less.) Stents can be manufactured. As the energy beam, it is preferable to use an energy beam having a beam diameter of 10 to 70 μm.
[0016] 粉体焼結加工テーブルとしては、下降ピッチが 1〜40 μ mの範囲内にあるものを好 ましく用いることができる。  [0016] As the powder sintering table, one having a descending pitch in the range of 1 to 40 µm can be preferably used.
[0017] (2)上記(1)に記載のステントの製造方法においては、前記構造体の形成を気密室 の中で行うことが好ましい。  [0017] (2) In the stent manufacturing method according to (1) above, it is preferable that the structure is formed in an airtight chamber.
[0018] ところで、ステントは、長期間にわたって血管内に設置され拍動や血液にさらされる などの過酷な環境で使用されるため、不純物の混入の極めて少ない高純度のステン トであることが好ましい。本発明のステントの製造方法によれば、上記のような方法と することにより、外部からの水分、酸素、窒素、有機物、金属不純物などの不純物の 混入が抑制され、高純度のステントを製造することが可能になる。  [0018] By the way, since the stent is used in a harsh environment such as being placed in a blood vessel for a long period of time and exposed to pulsation or blood, it is preferable that the stent is a high-purity stent with very little contamination of impurities. . According to the stent manufacturing method of the present invention, by using the method as described above, contamination of impurities such as moisture, oxygen, nitrogen, organic matter, and metal impurities from the outside is suppressed, and a high-purity stent is manufactured. It becomes possible.
[0019] この場合、エネルギービームがレーザビームの場合には、気密室を真空にした状態 で又は気密室に不活性ガス若しくは所定の還元性ガスを導入した状態で粉体焼結 加工工程を行うようにすることが好ましい。一方、エネルギービームが電子ビーム又 はイオンビームの場合には、気密室を真空にした状態で粉体焼結加工工程を行うよ うにすることが好ましい。  [0019] In this case, when the energy beam is a laser beam, the powder sintering process is performed in a state where the hermetic chamber is evacuated or an inert gas or a predetermined reducing gas is introduced into the hermetic chamber. It is preferable to do so. On the other hand, when the energy beam is an electron beam or an ion beam, the powder sintering process is preferably performed in a state where the hermetic chamber is evacuated.
[0020] (3)上記(2)に記載のステントの製造方法にぉ 、ては、前記エネルギービームはレー ザビームであって、前記気密室の外に設置したレーザビーム照射装置から前記粉体 層にレーザビームを照射することが好ま 、。  [0020] (3) In the stent manufacturing method according to (2) above, the energy beam is a laser beam, and the powder layer is formed from a laser beam irradiation device installed outside the hermetic chamber. It is preferable to irradiate with a laser beam.
[0021] このような方法とすることにより、レーザビームの照射を行うことに起因して気密室に 水分、酸素、窒素、有機物、金属不純物などの不純物が混入することが抑制され、高 純度のステントを製造することが可能になる。 [0022] この場合、気密室には例えば石英ガラス製の透光性窓を設けておき、この透光性 窓を介してレーザビームを照射することが好まし 、。 [0021] By adopting such a method, it is possible to prevent impurities such as moisture, oxygen, nitrogen, organic matter, and metal impurities from being mixed into the hermetic chamber due to the irradiation of the laser beam. A stent can be manufactured. In this case, it is preferable to provide a light-transmitting window made of, for example, quartz glass in the hermetic chamber and irradiate the laser beam through the light-transmitting window.
[0023] レーザビームとしては、ステントとしての網目模様を精度よく再現するために、解像 度の高い UVレーザビームを用いることが好ましい。こうすることによって、数/ z m以下 の解像度を容易に達成することができる。 [0023] It is preferable to use a high-resolution UV laser beam as the laser beam in order to accurately reproduce the mesh pattern as a stent. By doing so, a resolution of several m / zm or less can be easily achieved.
[0024] (4)上記(2)又は(3)に記載のステントの製造方法にお!、ては、前記気密室の外に 設置した粉体焼結加工テーブル駆動装置を用いて前記粉体焼結加工テーブルを昇 降させることが好ましい。 (4) In the stent manufacturing method according to (2) or (3) above, the powder is produced using a powder sintering processing table drive device installed outside the hermetic chamber. It is preferable to raise and lower the sintering table.
[0025] このような方法とすることにより、粉体焼結カ卩ェテーブルを昇降させることに起因し て気密室に水分、酸素、窒素、有機物、金属不純物などの不純物が混入することが 抑制され、高純度のステントを製造することが可能になる。 [0025] By adopting such a method, it is possible to prevent impurities such as moisture, oxygen, nitrogen, organic matter, and metal impurities from entering the hermetic chamber due to the raising and lowering of the powder sintering carriage table. It becomes possible to produce a high-purity stent.
[0026] この場合、粉体焼結加工テーブルの昇降は、磁石やリニアモータを用いて行うよう にするのが好ましい。 In this case, it is preferable to raise and lower the powder sintering processing table using a magnet or a linear motor.
[0027] (5)上記(2)〜 (4)の 、ずれかに記載のステントの製造方法にぉ 、ては、前記気密 室の外に設置した粉体層形成装置駆動装置を用いて前記粉体層形成装置を駆動 することが好ましい。  [0027] (5) In the stent manufacturing method according to any one of (2) to (4) above, the powder layer forming apparatus driving device installed outside the hermetic chamber is used. It is preferable to drive the powder layer forming apparatus.
[0028] このような方法とすることにより、粉体層形成装置を駆動することに起因して気密室 に水分、酸素、窒素、有機物、金属不純物などの不純物が混入することが抑制され、 高純度のステントを製造することが可能になる。  [0028] By adopting such a method, it is possible to prevent impurities such as moisture, oxygen, nitrogen, organic matter, and metal impurities from entering the hermetic chamber due to driving of the powder layer forming apparatus. It becomes possible to produce a pure stent.
[0029] この場合、粉体層形成装置の駆動は、磁石やリニアモータを用いて行うようにする のが好ましい。  [0029] In this case, the powder layer forming apparatus is preferably driven using a magnet or a linear motor.
[0030] (6)上記(2)〜(5)の 、ずれかに記載のステントの製造方法にぉ 、ては、前記気密 室の外に設置した加熱装置を用いて加熱しながら前記構造体を形成することが好ま しい。  [0030] (6) In the stent manufacturing method according to any one of (2) to (5) above, the structure is heated while being heated using a heating device installed outside the hermetic chamber. It is preferable to form
[0031] このような方法とすることにより、加熱しながら構造体を形成することで、構造体形成 中における構造体内部の温度差を低減することができるため、構造体における歪み を低減することができる。また、気密室の外に設置した加熱装置を用いて加熱するこ とで、構造体を加熱することに起因して気密室に水分、酸素、窒素、有機物、金属不 純物などの不純物が混入することが抑制され、高純度のステントを製造することが可 會 になる。 [0031] By adopting such a method, the temperature difference inside the structure during the formation of the structure can be reduced by forming the structure while heating, so that distortion in the structure can be reduced. Can do. In addition, by heating using a heating device installed outside the hermetic chamber, moisture, oxygen, nitrogen, organic matter, and metal Impurities such as pure substances are prevented from being mixed, and it becomes possible to manufacture a high-purity stent.
[0032] 加熱装置としては、ヒータ、赤外線加熱装置、高周波加熱装置などを好ましく用い ることができる。なかでも、構造体が配置された部位を局所的に加熱することができる 赤外線加熱装置を特に好ましく用いることができる。加熱条件としては、構造体が 60 〜300°Cとなるような範囲の条件で加熱することが好ましい。  [0032] As the heating device, a heater, an infrared heating device, a high-frequency heating device, or the like can be preferably used. Especially, the infrared heating apparatus which can heat the site | part in which the structure is arrange | positioned locally can be used especially preferable. As heating conditions, it is preferable to heat the structure in a range of 60 to 300 ° C.
[0033] (7)上記(1)〜(6)のいずれかに記載のステントの製造方法においては、前記粉体 層の成分を変化させながら焼結層を形成することが好ましい。  [0033] (7) In the stent manufacturing method according to any one of (1) to (6) above, it is preferable to form a sintered layer while changing the components of the powder layer.
[0034] この場合、例えば、 1層毎に成分を変化させながら焼結層を形成することとした場合 には、構造体形成後に構造体の熱処理を行うことにより、各焼結層を一体に合金化 することが可能になるため、様々な組成のステントを製造することが可能になる。 また、例えば、徐々に成分を変化させながら焼結層を形成することとした場合には、 徐々に組成が変化するような組成分布を有する(例えば、傾斜合金カゝらなる)ステント を製造することが可能になる。  [0034] In this case, for example, when the sintered layer is formed while changing the components for each layer, the sintered body is integrally formed by heat-treating the structure after the structure is formed. Because it becomes possible to alloy, stents of various compositions can be manufactured. For example, when the sintered layer is formed while gradually changing the components, a stent having a composition distribution in which the composition gradually changes (for example, a gradient alloy) is manufactured. It becomes possible.
また、工程の途中で成分を階段状に変化させて焼結層を形成することとした場合に は、階段状の組成分布を有するステントを製造することが可能になる。この場合には 、例えば軸方向中央部で硬く軸方向両端部で柔軟性の高いステント、すなわち、ス テント挿入時には血管に傷をつけにくぐステント留置後には血管をしつ力り支持する ことが可能なステントを製造することが可能になる。  In addition, when a sintered layer is formed by changing the components in a stepped manner during the process, a stent having a stepped composition distribution can be manufactured. In this case, for example, a stent which is hard at the center in the axial direction and has high flexibility at both ends in the axial direction, that is, the stent can be supported with force after placement of the stent, which hardly damages the blood vessel when inserting the stent. Possible stents can be manufactured.
[0035] (8)上記(1)〜(7)のいずれかに記載のステントの製造方法においては、前記粉体 焼結加工工程の後に、前記構造体の焼結密度を高めるための第 1熱処理工程をさら に含むことが好ましい。  [0035] (8) In the stent manufacturing method according to any one of the above (1) to (7), the first method for increasing the sintered density of the structure after the powder sintering step It is preferable to further include a heat treatment step.
[0036] このような方法とすることにより、構造体の焼結密度を高めることができるため、所定 の物理的性質 (例えば、硬さ、柔軟性、密度、ポーラス度など。)を有するステントを製 造することが可能になる。  [0036] By adopting such a method, the sintered density of the structure can be increased, so that a stent having predetermined physical properties (for example, hardness, flexibility, density, porosity, etc.) is obtained. It can be manufactured.
この場合、オーステナイト系ステンレス (例えば SUS316)力もなるステントを製造す る場合には、例えば、 800〜: L 100°C、 30〜90分の条件で熱処理することが好まし い。これにより、第 1熱処理工程前には金属真密度の 70〜80%の密度比であつたの を、第 1熱処理工程後には金属真密度の 97〜: L00%の密度比であるようにすること ができる。 In this case, when manufacturing a stent having an austenitic stainless steel (for example, SUS316) force, it is preferable to perform heat treatment under conditions of, for example, 800 to L 100 ° C for 30 to 90 minutes. As a result, before the first heat treatment step, the density ratio was 70-80% of the true metal density. Can be made to have a density ratio of 97 to L00% of the true metal density after the first heat treatment step.
[0037] また、上記のような方法とすることにより、例えば、上記したように 1層毎に成分を変 化させながら焼結層を形成することとした場合には、この熱処理により各焼結層を一 体に合金化することが可能になるため、様々な組成のステントを製造することが可能 になる。  [0037] In addition, by adopting the above-described method, for example, when the sintered layer is formed while changing the components for each layer as described above, each sintering is performed by this heat treatment. Because the layers can be alloyed together, stents of various compositions can be manufactured.
この場合、 Co— Cr合金カゝらなるステントを Co粉体と Cr粉体とから製造する場合に は、例えば、 950〜1250°C、 30〜90分の条件で熱処理することが好ましい。また、 Au— Pt— Pd合金力 なるステントを Au粉体と Pt粉体と Pd粉体とから製造する場合 には、例えば、 880〜1050°C、 30〜90分の条件で熱処理することが好ましい。 なお、粉体として互いに異なる金属成分力 なる金属粉体を用いる代わりに、粉体 として互いに成分の異なる合金粉体を用いることもできるし、粉体として合金粉体及 び単一の金属成分力 なる金属粉体を用いることもできる。  In this case, when a stent made of a Co—Cr alloy cover is produced from Co powder and Cr powder, it is preferable to heat-treat under conditions of, for example, 950 to 1250 ° C. and 30 to 90 minutes. In addition, when a stent having Au—Pt—Pd alloy strength is manufactured from Au powder, Pt powder and Pd powder, for example, heat treatment may be performed under the conditions of 880 to 1050 ° C. and 30 to 90 minutes. preferable. Instead of using metal powders with different metal component strengths as powder, alloy powders with different components can be used as powder, and alloy powder and single metal component strength can be used as powder. It is also possible to use a metal powder.
[0038] また、上記のような方法とすることにより、例えば、上記したように徐々に成分を変化 させながら焼結層を形成することとした場合には、徐々に組成が変化するような組成 分布を有するステントを製造することが可能になる。  [0038] In addition, by adopting the method as described above, for example, when the sintered layer is formed while gradually changing the components as described above, a composition that gradually changes the composition. It becomes possible to produce a stent having a distribution.
[0039] (9)上記(8)に記載のステントの製造方法においては、前記第 1熱処理工程の後に、 前記構造体の熔体化処理を行う第 2熱処理工程を含むことが好ましい。  [0039] (9) In the stent manufacturing method according to (8) above, it is preferable that a second heat treatment step for performing a melting treatment of the structure is included after the first heat treatment step.
[0040] このような方法とすることにより、第 2熱処理としての熔体化処理を行うことにより、所 定の硬度 ·弾性度を有するステントを製造することが可能になる。  [0040] By adopting such a method, it is possible to manufacture a stent having a predetermined hardness and elasticity by performing a melt treatment as the second heat treatment.
[0041] 第 2熱処理としては、例えば、オーステナイト系ステンレス(例えば SUS316)力もな るステントを製造する場合には、 950〜1250°C、 30〜90分の条件で熱処理を行つ た後に急冷を行うというような熱処理を行うことが好ましい。また、例えば、 Co— Cr合 金力ゝらなるステントを製造する場合には、 1100〜1300°C、 30〜90分の条件で熱処 理を行った後に急冷を行うというような熱処理を行うことが好ましい。また、例えば、 A u— Pt— Pd合金力 なるステントを製造する場合には、 1000〜1050°C、 30〜90分 の条件で熱処理を行った後に急冷を行うというような熱処理を行うことが好ましい。  [0041] As the second heat treatment, for example, when manufacturing a stent having austenitic stainless steel (for example, SUS316) force, rapid cooling is performed after heat treatment at 950 to 1250 ° C for 30 to 90 minutes. It is preferable to perform a heat treatment such as performing. In addition, for example, when manufacturing a stent made of Co—Cr alloy, heat treatment such as rapid cooling after heat treatment at 1100 to 1300 ° C. for 30 to 90 minutes is performed. It is preferable. For example, when a stent having an Au-Pt-Pd alloy strength is manufactured, a heat treatment may be performed in which quenching is performed after heat treatment is performed at 1000 to 1050 ° C. for 30 to 90 minutes. preferable.
[0042] (10)上記(9)に記載のステントの製造方法においては、前記第 2熱処理工程の後に 、前記構造体の時効硬化処理を行う第 3熱処理工程をさらに含むことが好ま Uヽ。 [0042] (10) In the stent manufacturing method according to (9) above, after the second heat treatment step, It is preferable that the method further includes a third heat treatment step for performing an age hardening treatment of the structure.
[0043] 構造体が時効硬化性を有する金属材料からなる場合には、このような方法とするこ とにより、第 3熱処理としての時効硬化処理を行うことにより、所定の硬度 '弾性度を 有するステントを製造することが可能になる。 [0043] In the case where the structure is made of a metal material having age-hardening properties, by using such a method, by performing age-hardening treatment as the third heat treatment, the structure has a predetermined hardness' elasticity. A stent can be manufactured.
[0044] 第 3熱処理としては、例えば、 Co— Cr合金力もなるステントを製造する場合には、 7[0044] As the third heat treatment, for example, when manufacturing a stent having Co—Cr alloy strength, 7
00〜850°C、 30〜180分の条件で熱処理を行うことが好ましい。また、例えば、 AuIt is preferable to perform the heat treatment at 00 to 850 ° C. for 30 to 180 minutes. For example, Au
— Pt— Pd合金からなるステントを製造する場合には、 800〜960°C、 30〜180分の 条件で熱処理を行うことが好まし 、。 — When manufacturing a stent made of a Pt—Pd alloy, it is preferable to perform heat treatment at 800 to 960 ° C. for 30 to 180 minutes.
[0045] この場合、第 1熱処理工程と第 2熱処理工程とは兼用でき、第 1熱処理工程と第 2 熱処理工程と第 3熱処理工程とは連続して行うことができる。 [0045] In this case, the first heat treatment step and the second heat treatment step can be used together, and the first heat treatment step, the second heat treatment step, and the third heat treatment step can be performed continuously.
[0046] (11)上記(1)〜(10)のいずれかに記載のステントの製造方法においては、前記構 造体の表面を研磨する表面研磨工程をさらに含むことが好ましい。 [0046] (11) Preferably, the method for manufacturing a stent according to any one of (1) to (10) further includes a surface polishing step of polishing the surface of the structure.
[0047] ところで、粉体焼結加工により形成される構造体は一般的に表面に多数の粉体が 付着した形で形成される。これに対して、上記のような方法とすることにより、表面に 付着した粉体を除去することができるため、ステントの表面を平滑なものとすることが できる。 [0047] Incidentally, a structure formed by powder sintering is generally formed in a form in which a large number of powders adhere to the surface. On the other hand, by adopting the method as described above, the powder adhering to the surface can be removed, so that the surface of the stent can be made smooth.
[0048] 表面研磨工程にお!ヽては、パフ研磨、バレル研磨 (湿式若しくは乾式)、電解研磨 又は化学研磨を行うことが好まし 、。  [0048] For the surface polishing step, it is preferable to perform puff polishing, barrel polishing (wet or dry), electrolytic polishing or chemical polishing.
[0049] (12)上記(1)〜(11)のいずれかに記載のステントの製造方法においては、前記構 造体に薬剤を含浸させる薬剤含浸工程をさらに含むことが好ましい。 [0049] (12) The stent manufacturing method according to any one of (1) to (11) preferably further includes a drug impregnation step of impregnating the structure with a drug.
[0050] このような方法とすることにより、構造体の空孔内部に必要な薬剤が含浸された DE S (Drug— Eluting Stent (薬剤溶出性ステント) )を製造することができる。  [0050] By adopting such a method, it is possible to produce DE S (Drug-Eluting Stent) in which a necessary drug is impregnated inside the pores of the structure.
[0051] この場合、上記 (8)における第 1熱処理工程等で、焼結密度を所定のポーラス度と なるような焼結密度とするように調整することにより、 DESとしての特性 (例えば、薬剤 担持特性、薬剤放出特性等。)を所望のものにすることができる。  [0051] In this case, in the first heat treatment step in (8) and the like, by adjusting the sintered density so as to have a predetermined porous degree, the characteristics as DES (for example, chemical agent) Carrier characteristics, drug release characteristics, etc.) can be made desired.
[0052] 薬剤としては、増殖抑制剤、増殖抑制及び免疫抑制剤、免疫抑制剤、細胞外マトリ ックス修飾剤、内皮修復促進剤又はこれらを適宜組み合わせた薬剤を好ましく用い ることがでさる。 [0053] (13)本発明の他のステントの製造方法は、粉体層形成装置を用いて、榭脂コ一ティ ングされた金属粉体からなる粉体層を粉体固化テーブル上に形成した後に前記粉 体層にエネルギービームを選択的に照射して前記榭脂を熔融させて粉体固化層を 形成する粉体固化層形成工程と、前記粉体固化テーブルを所定量下降させる粉体 固化テーブル下降工程とを順次繰り返すことにより、前記粉体固化層を積層して所 望の三次元形状を有する構造体を形成する粉体固化工程を含むことを特徴とする。 [0052] As the drug, a growth inhibitor, a growth inhibitory and immunosuppressant, an immunosuppressant, an extracellular matrix modifier, an endothelial repair promoter, or a drug appropriately combined with these can be preferably used. [0053] (13) In another stent manufacturing method of the present invention, a powder layer made of a metal powder coated with a resin is formed on a powder solidification table using a powder layer forming apparatus. After that, a powder solidified layer forming step for selectively irradiating the powder layer with an energy beam to melt the resin to form a powder solidified layer, and a powder for lowering the powder solidified table by a predetermined amount It is characterized by including a powder solidifying step of forming a structure having a desired three-dimensional shape by laminating the powder solidified layers by sequentially repeating a solidifying table lowering step.
[0054] このため、本発明の他のステントの製造方法によれば、粉体層にエネルギービーム を選択的に照射して形成される粉体固化層を積層して所望の三次元形状を有する 構造体を形成することとしているため、本発明のステントの製造方法の場合と同様に 、比較的複雑な形状を有するステントを容易に製造することが可能となる。その結果 、例えば、軸方向に沿って外径が徐々に細くなつていくような形状 (テーパー形状)を 有するステント、分岐部を有するステント、さらには、ストラットの肉厚が軸方向中央部 においては厚く軸方向両端部においては薄く構成されたステントなどのような比較的 複雑な形状を有するステントをも容易に製造することが可能となる。  Therefore, according to another stent manufacturing method of the present invention, a powder solidified layer formed by selectively irradiating a powder layer with an energy beam is laminated to have a desired three-dimensional shape. Since the structure is formed, a stent having a relatively complicated shape can be easily manufactured as in the case of the stent manufacturing method of the present invention. As a result, for example, a stent having a shape (tapered shape) in which the outer diameter gradually decreases along the axial direction (tapered shape), a stent having a bifurcated portion, and the strut thickness at the central portion in the axial direction. It is possible to easily manufacture a stent having a relatively complicated shape such as a stent which is thick and thin at both ends in the axial direction.
[0055] (14)本発明のさらに他のステントの製造方法は、粉体層形成装置を用いて、榭脂粉 体及び金属粉体からなる粉体層を粉体固化テーブル上に形成した後に前記粉体層 にエネルギービームを選択的に照射して前記榭脂粉体を熔融させて粉体固化層を 形成する粉体固化層形成工程と、前記粉体固化テーブルを所定量下降させる粉体 固化テーブル下降工程とを順次繰り返すことにより、前記粉体固化層を積層して所 望の三次元形状を有する構造体を形成する粉体固化工程を含むことを特徴とする。  [0055] (14) In still another stent manufacturing method of the present invention, the powder layer forming apparatus is used to form a powder layer made of a resin powder and a metal powder on a powder solidifying table. A powder solidified layer forming step for selectively irradiating the powder layer with an energy beam to melt the resin powder to form a powder solidified layer, and a powder solidified table for lowering the powder solidified table by a predetermined amount It is characterized by including a powder solidifying step of forming a structure having a desired three-dimensional shape by laminating the powder solidified layer by sequentially repeating a descending step.
[0056] このため、本発明のさらに他のステントの製造方法によれば、粉体層にエネルギー ビームを選択的に照射して形成される粉体固化層を積層して所望の三次元形状を 有する構造体を形成することとしているため、本発明のステントの製造方法の場合や 本発明の他のステントの製造方法の場合と同様に、比較的複雑な形状を有するステ ントを容易に製造することが可能となる。その結果、例えば、軸方向に沿って外径が 徐々に細くなつていくような形状 (テーパー形状)を有するステント、分岐部を有する ステント、さらには、ストラットの肉厚が軸方向中央部においては厚く軸方向両端部に おいては薄く構成されたステントなどのような比較的複雑な形状を有するステントをも 容易に製造することが可能となる。 [0056] For this reason, according to still another stent manufacturing method of the present invention, a powder solidified layer formed by selectively irradiating a powder layer with an energy beam is laminated to obtain a desired three-dimensional shape. As in the case of the stent manufacturing method of the present invention and other stent manufacturing methods of the present invention, a stent having a relatively complicated shape is easily manufactured. It becomes possible. As a result, for example, a stent having a shape (tapered shape) in which the outer diameter gradually narrows along the axial direction (tapered shape), a stent having a bifurcated portion, and the strut thickness at the central portion in the axial direction. A stent having a relatively complicated shape, such as a thick stent formed at both ends in the axial direction, is also thin. It can be easily manufactured.
[0057] (15)上記(13)又は(14)に記載のステントの製造方法においては、粉体固化工程 の後に、必要に応じて構造体に含まれる榭脂成分を除去する脱脂工程を行うことも できる。  (15) In the stent manufacturing method according to the above (13) or (14), after the powder solidification step, a degreasing step for removing the scab component contained in the structure is performed as necessary. You can also.
[0058] この場合には、構造体における空孔率の調整が可能となる。  In this case, the porosity of the structure can be adjusted.
[0059] (16)本発明の粉体焼結加工装置は、透光性窓を有する気密室と、前記気密室の内 部に配置され、昇降可能な粉体焼結加工テーブルと、前記気密室の内部に配置さ れ、前記粉体焼結加工テーブル上に粉体層を形成する粉体層形成装置と、前記気 密室の外部に配置され、前記透光性窓を介して前記粉体層にレーザビームを照射 するレーザビーム照射装置とを備えることを特徴とする。 (16) A powder sintering apparatus of the present invention includes an airtight chamber having a light-transmitting window, a powder sintering processing table disposed inside the airtight chamber and capable of moving up and down, and the air sintering chamber. A powder layer forming device which is disposed inside a closed chamber and forms a powder layer on the powder sintering processing table; and a powder layer forming device which is disposed outside the hermetic chamber and passes through the translucent window. And a laser beam irradiation device for irradiating the layer with a laser beam.
[0060] このため、本発明の粉体焼結加工装置によれば、粉体焼結加工を行うことによって 比較的複雑な形状を有する製品を製造することができるのに加えて、気密室の中で 粉体焼結加工を行うことによって、水分、酸素、窒素、有機物、金属不純物などの不 純物の混入の少ない高純度の製品を製造することができる。このため、本発明の粉 体焼結加工装置によれば、比較的複雑な形状を有するステントのように、比較的複 雑な形状を有し、かつ、高純度の製品を製造するのに好適な粉体焼結加工装置とな る [0060] For this reason, according to the powder sintering apparatus of the present invention, a product having a relatively complicated shape can be manufactured by performing powder sintering, By performing the powder sintering process, it is possible to manufacture high-purity products with less contamination of impurities such as moisture, oxygen, nitrogen, organic matter, and metal impurities. Therefore, according to the powder sintering apparatus of the present invention, it is suitable for producing a high-purity product having a relatively complicated shape such as a stent having a relatively complicated shape. A simple powder sintering machine
なお、本発明の粉体焼結加工装置は、ステントの製造方法に限られず、比較的複 雑な形状を有し、かつ、高純度であることを必要とする製品、例えば、カスタムメイドの 人工関節、歯科用クラウンなどの製造方法に好適に用いることができる。  Note that the powder sintering apparatus of the present invention is not limited to a stent manufacturing method, but has a relatively complicated shape and requires high purity, for example, a custom-made artificial It can be suitably used in methods for producing joints, dental crowns and the like.
[0061] (17)上記(15)に記載の粉体焼結加工装置においては、前記レーザビーム照射装 置は、 UVレーザビーム照射装置であることが好まし 、。  [0061] (17) In the powder sintering apparatus according to (15), the laser beam irradiation device is preferably a UV laser beam irradiation device.
[0062] このように構成することにより、形状精度の高い粉体焼結加工 (例えば、数/ z m以下 。)を行うことが可能になる。このため、比較的形状精度の高い製品、例えば、比較的 形状精度の高い形状を有するステントを製造することが可能になる。  [0062] With this configuration, it is possible to perform powder sintering processing (for example, several / zm or less) with high shape accuracy. For this reason, it becomes possible to manufacture a product with relatively high shape accuracy, for example, a stent having a shape with relatively high shape accuracy.
UVレーザビーム照射装置としては、 Nd-YAG波長変換 (第 4高調波)レーザを好 ましく用いることができる。  As the UV laser beam irradiation device, an Nd-YAG wavelength conversion (fourth harmonic) laser can be preferably used.
[0063] (18)上記(16)又は(17)に記載の粉体焼結加工装置においては、前記透光性窓 は、曲面部を有することが好ましい。 [0063] (18) In the powder sintering apparatus according to (16) or (17), the translucent window Preferably has a curved surface portion.
[0064] このように構成することにより、レーザビームの集光力が高まり、さらに形状精度の高 [0064] With this configuration, the focusing power of the laser beam is increased, and the shape accuracy is high.
V、粉体焼結加工を行うことが可能になる。 V, powder sintering can be performed.
[0065] (19)上記(16)〜(18)のいずれかに記載の粉体焼結加工装置においては、前記粉 体層形成装置は、前記粉体焼結加工テーブル上に粉体を供給する機能を有する粉 体供給装置力もなることが好まし 、。 (19) In the powder sintering apparatus according to any one of (16) to (18), the powder layer forming apparatus supplies the powder onto the powder sintering table. It is also preferable that the power of the powder supply device with the function of
[0066] このように構成することにより、粉体をそのまま用いて粉体層を形成することできるた め、粉体層形成のための特別の前処理 (例えば、粉体シートの製造、粉体を含む液 体の製造など。)が不要となり、製造工程を簡略ィ匕することができる。また、粉体層のう ち焼結が行われな力つた部分の粉体は、回収後に再使用することが可能となるため[0066] With this configuration, since the powder layer can be formed using the powder as it is, a special pretreatment for forming the powder layer (for example, production of a powder sheet, powder Etc.), and the manufacturing process can be simplified. In addition, since the powder in the powder layer that has not been sintered can be reused after collection.
、材料歩留まりを高めることが可能となる。 It becomes possible to increase the material yield.
[0067] (20)上記(19)に記載の粉体焼結加工装置においては、前記粉体供給装置として、 複数の粉体供給装置を有することが好まし ヽ。 [0067] (20) In the powder sintering apparatus according to (19), it is preferable that the powder supply apparatus includes a plurality of powder supply apparatuses.
[0068] このように構成することにより、複数の粉体供給装置のそれぞれに異なる成分の粉 体を入れておき、これらの粉体供給装置のうちどの粉体供給装置によって粉体を供 給するのかを適宜制御することにより、様々な組成の製品や組成分布を有する製品 を製造することが可能となる。 [0068] With this configuration, powders of different components are put in each of the plurality of powder supply devices, and the powder is supplied by any of these powder supply devices. It is possible to manufacture products having various compositions and products having a composition distribution by appropriately controlling the above.
[0069] 例えば、 1層毎に成分を変化させながら焼結層を形成することとした場合には、構 造体形成後に構造体の熱処理を行うことにより、各焼結層を一体に合金化することが 可能になるため、様々な組成の製品を製造することが可能になる。 [0069] For example, in the case where the sintered layer is formed while changing the components for each layer, the sintered body is integrally alloyed by heat-treating the structure after the structure is formed. This makes it possible to produce products with various compositions.
また、例えば、徐々に成分を変化させながら焼結層を形成することとした場合には、 徐々に組成が変化するような組成分布を有する(例えば、傾斜合金からなる)製品を 製造することが可能になる。  In addition, for example, when the sintered layer is formed while gradually changing the components, it is possible to manufacture a product having a composition distribution in which the composition gradually changes (for example, made of a gradient alloy). It becomes possible.
また、工程の途中で成分を階段状に変化させて焼結層を形成することとした場合に は、階段状の組成分布を有する製品を製造することが可能になる。  Further, when the sintered layer is formed by changing the components stepwise during the process, a product having a stepwise composition distribution can be manufactured.
[0070] (21)上記(19)又は(20)に記載の粉体焼結加工装置においては、粉体焼結加工テ 一ブル上の粉体に振動を与える振動供給手段をさらに備えることが好ましい。 [0070] (21) The powder sintering apparatus according to the above (19) or (20) further includes a vibration supply means for applying vibration to the powder on the powder sintering table. preferable.
[0071] このように構成することにより、粉体供給装置内や粉体焼結加工テーブル上の粉体 に振動を与えることが可能になるため、粉体の充填率が高ぐ層厚の均一な粉体層 を粉体焼結加工テーブル上に形成することが可能になる。振動供給手段としては、 超音波発振機を好ましく用いることができる。 With this configuration, the powder in the powder supply device or on the powder sintering processing table Therefore, it is possible to form a uniform powder layer with a high powder filling rate on the powder sintering table. As the vibration supply means, an ultrasonic oscillator can be preferably used.
[0072] (22)上記(16)〜(18)のいずれかに記載の粉体焼結加工装置においては、前記粉 体層形成装置は、粉体が固定された粉体シートを前記粉体焼結加工テーブルに供 給する 1又は複数の粉体シート供給装置力 なることが好ましい。  [0072] (22) In the powder sintering apparatus according to any one of (16) to (18), the powder layer forming apparatus uses a powder sheet on which powder is fixed as the powder. It is preferable that one or a plurality of powder sheet supply devices be supplied to the sintering table.
[0073] このように構成することによつても、粉体の充填率が高ぐ層厚の均一な粉体層を粉 体焼結加工テーブル上に形成することが可能になる。  [0073] According to this configuration as well, it is possible to form a uniform powder layer having a high layer thickness with a high powder filling rate on the powder sintering table.
[0074] 粉体シート供給装置としては、ロール状の粉体シートを繰り出すことによって粉体シ ートを粉体焼結加工テーブルに供給する粉体シート供給装置を好ましく用いることが できる。この場合には、粉体焼結加工テーブルを下降させた後に粉体焼結加工テー ブル上に新たな粉体シートを供給し、その後この粉体シートを切断して粉体焼結カロ 工テーブル上に粉体層を形成するようにしてもょ 、し、粉体焼結加工テーブルを下 降させる前に粉体焼結加工テーブル上に新たな粉体シートを供給しそのままレーザ ビーム照射を行 ヽ、その後粉体シートを切断して粉体焼結加工テーブルを下降させ るよう〖こしてもよい。この場合、粉体シートの切断は、専用の切断装置を設けて行って もよ 、し、焼結層を形成するためのレーザビーム照射装置を用いて行ってもょ 、。  [0074] As the powder sheet supply apparatus, a powder sheet supply apparatus for supplying a powder sheet to a powder sintering processing table by feeding a roll-shaped powder sheet can be preferably used. In this case, after lowering the powder sintering process table, a new powder sheet is supplied onto the powder sintering process table, and then this powder sheet is cut and the powder sintering process table is cut. A powder layer may be formed on the top, but before lowering the powder sintering table, a new powder sheet is supplied onto the powder sintering table and laser beam irradiation is performed as it is. After that, the powder sheet may be cut and the powder sintering table may be lowered. In this case, the powder sheet may be cut with a dedicated cutting device or with a laser beam irradiation device for forming a sintered layer.
[0075] また、粉体シート供給装置としては、粉体焼結加工テーブルの形状に対応してカロ ェされたシート状の粉体シートを繰り出すことによって粉体シートを粉体焼結加工テ 一ブルに供給する粉体シート供給装置を好ましく用いることができる。  [0075] In addition, as the powder sheet supply device, the powder sheet is fed into a powder sintering processing table by feeding out a sheet-like powder sheet that has been calendered according to the shape of the powder sintering processing table. A powder sheet supply device for supplying to the bull can be preferably used.
[0076] (23)上記(16)〜(18)のいずれかに記載の粉体焼結加工装置においては、前記粉 体層形成装置は、粉体を含む液体を前記粉体焼結加工テーブルに供給する 1又は 複数の粉体供給装置力もなることが好まし 、。  (23) In the powder sintering apparatus according to any one of (16) to (18), the powder layer forming apparatus supplies a liquid containing powder to the powder sintering processing table. It is also preferable that one or more powder feeders supply to the power.
[0077] このように構成することによつても、粉体の充填率が高ぐ層厚の均一な粉体層を粉 体焼結加工テーブル上に形成することが可能になる。  [0077] With this configuration as well, it is possible to form a uniform powder layer having a high layer thickness on the powder sintering table with a high powder filling rate.
[0078] この場合、粉体を含む液体を粉体焼結加工テーブルに供給した後、液体成分を除 去した後にレーザビームの照射を行って焼結層の形成を行うことが好ましい。  [0078] In this case, it is preferable to form a sintered layer by supplying a liquid containing powder to the powder sintering table and then removing the liquid component and then irradiating with a laser beam.
[0079] (24)上記(16)〜(23)のいずれかに記載の粉体焼結カ卩ェ装置においては、前記気 密室の外部に配置され、前記粉体焼結加工テーブルを昇降させる粉体焼結加工テ 一ブル駆動装置をさらに備えることが好ましい。 (24) In the powder sintering cabinet according to any one of (16) to (23), the gas sintering It is preferable to further include a powder sintering table driving device that is disposed outside the closed chamber and moves the powder sintering table up and down.
[0080] このように構成することにより、粉体焼結カ卩工テーブルを昇降させることに起因して 気密室に水分、酸素、窒素、有機物、金属不純物などの不純物が混入することが抑 制され、高純度の製品を製造することが可能になる。  [0080] With this configuration, it is possible to prevent impurities such as moisture, oxygen, nitrogen, organic matter, and metal impurities from entering the hermetic chamber due to the raising and lowering of the powder sintering table. This makes it possible to produce high-purity products.
[0081] (25)上記(16)〜(24)のいずれかに記載の粉体焼結カ卩ェ装置においては、前記気 密室の外部に配置され、前記粉体層形成装置を駆動する粉体層形成装置駆動装置 をさらに備えることが好まし 、。  (25) In the powder sintering cake apparatus according to any one of (16) to (24), the powder is disposed outside the hermetic chamber and drives the powder layer forming apparatus. It is preferable to further include a body layer forming device driving device.
[0082] このように構成することにより、粉体層形成装置を駆動することに起因して気密室に 水分、酸素、窒素、有機物、金属不純物などの不純物が混入することが抑制され、高 純度の製品を製造することが可能になる。  [0082] With this configuration, it is possible to prevent impurities such as moisture, oxygen, nitrogen, organic matter, and metal impurities from entering the hermetic chamber due to driving of the powder layer forming apparatus, and to achieve high purity. It is possible to manufacture products.
[0083] (26)上記(16)〜(25)のいずれかに記載の粉体焼結カ卩ェ装置においては、前記気 密室の外部に配置され、構造体を加熱する加熱装置をさらに備えることが好ましい。  [0083] (26) The powder sintering cabinet according to any one of (16) to (25), further comprising a heating device that is disposed outside the hermetic chamber and heats the structure. It is preferable.
[0084] このように構成することにより、加熱しながら構造体を形成することで、構造体形成 中における構造体内部の温度差を低減することができるため、構造体における歪み を低減することができる。また、気密室の外に設置した加熱装置を用いて加熱するこ とで、構造体を加熱することに起因して気密室に水分、酸素、窒素、有機物、金属不 純物などの不純物が混入することが抑制され、高純度の製品を製造することが可能 になる。  [0084] With this configuration, by forming the structure while heating, the temperature difference inside the structure during formation of the structure can be reduced, so that distortion in the structure can be reduced. it can. In addition, by heating using a heating device installed outside the hermetic chamber, impurities such as moisture, oxygen, nitrogen, organic matter, and metal impurities are mixed into the hermetic chamber due to heating of the structure. This makes it possible to manufacture high-purity products.
[0085] 加熱装置としては、ヒータ、赤外線加熱装置、高周波加熱装置などを好ましく用い ることができる。なかでも、構造体が配置された部位を局所的に加熱することができる 赤外線加熱装置を特に好ましく用いることができる。  [0085] As the heating device, a heater, an infrared heating device, a high-frequency heating device, or the like can be preferably used. Especially, the infrared heating apparatus which can heat the site | part in which the structure is arrange | positioned locally can be used especially preferable.
[0086] (27)上記(16)〜(26)のいずれかに記載の粉体焼結加工装置においては、前記粉 体焼結加工テーブルと前記透光性窓との間に配置され、前記粉体層からの粉体の 飛沫や粉体の蒸発物を遮蔽する遮蔽手段をさらに備えることが好ましい。  [0086] (27) In the powder sintering apparatus according to any one of (16) to (26), the powder sintering apparatus is disposed between the powder sintering process table and the translucent window, It is preferable to further include shielding means for shielding the spray of powder from the powder layer and the evaporated substance of the powder.
[0087] このように構成することにより、粉体層からの粉体の飛沫や粉体の蒸発物が透光性 窓に付着して透光性窓の光透過率が劣化するのを抑制することができる。このため、 構造体の形成中に常に一定の条件でレーザビームを照射することが可能になり、製 品の品質をより高めることが可能になる。 [0087] With this configuration, it is possible to suppress deterioration of the light transmittance of the light-transmitting window due to the powder droplets from the powder layer and the powder evaporation material adhering to the light-transmitting window. be able to. This makes it possible to always irradiate the laser beam under certain conditions during the formation of the structure. It becomes possible to improve the quality of the product.
[0088] (28)上記(27)に記載の粉体焼結加工装置においては 前記遮蔽手段は、前記透 光性窓にガスを吹き付けるガス供給装置と、前記透光性窓に対して吹き付けられた ガスを吸引するガス吸引装置とを有することが好ましい。  (28) In the powder sintering apparatus according to (27), the shielding means is blown against the light-transmitting window and a gas supply device that blows gas onto the light-transmitting window. It is preferable to have a gas suction device for sucking gas.
[0089] (29)上記(27)に記載の粉体焼結加工装置においては、前記遮蔽手段は、前記粉 体焼結加工テーブルと前記透光性窓との間にガスの流れを導入するガス流供給装 置と、前記ガス流供給装置からのガスの流れを吸弓 Iするガス流吸弓 I装置とを有するこ とも好ましい。  (29) In the powder sintering apparatus according to (27), the shielding means introduces a gas flow between the powder sintering process table and the translucent window. It is also preferable to have a gas flow supply device and a gas flow absorption device I that absorbs the gas flow from the gas flow supply device.
[0090] (30)上記(27)に記載の粉体焼結加工装置においては、前記遮蔽手段は、前記粉 体焼結加工テーブルと前記透光性窓との間に間欠的に又は連続的に透明フィルム を送り込む透明フィルム供給装置を有することも好まし 、。  [0090] (30) In the powder sintering apparatus according to (27), the shielding means is intermittently or continuously between the powder sintering table and the translucent window. It is also preferable to have a transparent film supply device that feeds the transparent film into.
図面の簡単な説明  Brief Description of Drawings
[0091] [図 1]実施形態 1に係るステントの製造方法を説明するために示すフローチャートであ る。  FIG. 1 is a flowchart shown for explaining a stent manufacturing method according to Embodiment 1.
[図 2]実施形態 1に係るステントの製造方法を説明するために示すフローチャートであ る。  FIG. 2 is a flowchart shown for explaining the stent manufacturing method according to the first embodiment.
[図 3]実施形態 1に係る粉体焼結加工装置 100を説明するために示す図である。  FIG. 3 is a view for explaining a powder sintering apparatus 100 according to Embodiment 1.
[図 4]粉体焼結カ卩ェ装置 100における粉体焼結カ卩工テーブル 132を説明するために 示す図である。  FIG. 4 is a view for explaining a powder sintering table 132 in the powder sintering apparatus 100.
[図 5]粉体焼結加工工程 (ステップ S200)を説明するために示す工程図である。  FIG. 5 is a process diagram shown for explaining a powder sintering process (step S200).
[図 6]焼結加工工程実施中の構造体 10を模式的に示す斜視図である。  FIG. 6 is a perspective view schematically showing the structure 10 during the sintering process.
[図 7]実施形態 1に係るステントの製造方法における後処理工程 (ステップ S300)を 説明するために示すフローチャートである。  FIG. 7 is a flowchart for explaining a post-processing step (step S300) in the stent manufacturing method according to the first embodiment.
[図 8]変形例 1に係る粉体焼結加工装置 100aを説明するために示す図である。  FIG. 8 is a view for explaining a powder sintering apparatus 100a according to Modification 1.
[図 9]変形例 2に係る粉体焼結加工装置 100bを説明するために示す図である。  FIG. 9 is a view for explaining a powder sintering apparatus 100b according to Modification 2.
[図 10]変形例 3に係る粉体焼結加工装置 100cを説明するために示す図である。  FIG. 10 is a view for explaining a powder sintering apparatus 100c according to Modification 3.
[図 11]変形例 4に係る粉体焼結加工装置 lOOdを説明するために示す図である。  FIG. 11 is a view for explaining a powder sintering apparatus lOOd according to modification example 4.
[図 12]変形例 5に係る粉体焼結加工装置 100eを説明するために示す図である。 [図 13]変形例 6に係る粉体焼結加工装置 lOOfを説明するために示す図である。 FIG. 12 is a view for explaining a powder sintering apparatus 100e according to Modification 5. FIG. 13 is a view for explaining a powder sintering apparatus lOOf according to Modification 6.
[図 14]変形例 7に係る粉体焼結加工装置 100gを説明するために示す図である。  FIG. 14 is a view shown for explaining a powder sintering apparatus 100g according to Modification 7.
[図 15]変形例 8に係る粉体焼結加工装置 100hを説明するために示す図である。  FIG. 15 is a view for explaining a powder sintering apparatus 100 h according to Modification 8.
[図 16]変形例 9に係る粉体焼結加工装置 100iを説明するために示す図である。  FIG. 16 is a view for explaining a powder sintering apparatus 100i according to Modification 9.
[図 17]変形例 10に係る粉体焼結加工装置 100jを説明するために示す図である。  FIG. 17 is a view for explaining a powder sintering apparatus 100j according to Modification 10;
[図 18]実施形態 2に係るステントの製造方法を説明するために示すフローチャートで ある。  FIG. 18 is a flowchart shown for explaining a stent manufacturing method according to the second embodiment.
[図 19]実施形態 3に係るステントの製造方法を説明するために示すフローチャートで ある。  FIG. 19 is a flowchart shown for explaining the stent manufacturing method according to the third embodiment.
[図 20]実施形態 4に係るステントの製造方法を説明するために示すフローチャートで ある。  FIG. 20 is a flowchart for explaining the stent manufacturing method according to the fourth embodiment.
[図 21]実施形態 4に係るステントの製造方法によって製造されるステント 20の構造を 説明するために示す図である。  FIG. 21 is a view for explaining the structure of the stent 20 manufactured by the stent manufacturing method according to Embodiment 4.
[図 22]従来のステントの製造方法を説明するために示す図である。  FIG. 22 is a view for explaining a conventional stent manufacturing method.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0092] 以下、本発明のステントの製造方法及び粉体焼結加工装置を、図に示す実施の形 態に基づいて説明する。 Hereinafter, a stent manufacturing method and a powder sintering apparatus according to the present invention will be described based on the embodiments shown in the drawings.
[0093] [実施形態 1] [0093] [Embodiment 1]
図 1及び図 2は、実施形態 1に係るステントの製造方法を説明するために示すフロ 一チャートである。  FIG. 1 and FIG. 2 are flowcharts for explaining the stent manufacturing method according to the first embodiment.
実施形態 1に係るステントの製造方法は、図 1に示すように、粉体焼結加工に用い る粉体を準備する粉体準備工程 (ステップ S100)と、粉体焼結加工を行って三次元 構造を有する構造体を形成する粉体焼結加工工程 (ステップ S 200)と、構造体の熱 処理などを行ってステントを製造する後処理工程 (ステップ S300)とを有して 、る。  As shown in FIG. 1, the stent manufacturing method according to Embodiment 1 includes a powder preparation step (Step S100) for preparing powder used for powder sintering, and a third step by performing powder sintering. A powder sintering process (step S200) for forming a structure having the original structure, and a post-processing process (step S300) for manufacturing the stent by performing a heat treatment or the like of the structure.
[0094] 粉体焼結加工工程 (ステップ S200)は、図 2に示すように、粉体層形成装置を用い て粉体焼結加工テーブル上に粉体層を形成する粉体層形成工程 (ステップ S212) と、粉体層にエネルギービームを選択的に照射して焼結層を形成する焼結層形成ェ 程 (ステップ S214)と、粉体焼結加工テーブルを所定量下降させる粉体焼結加工テ 一ブル下降工程 (ステップ S216)とを含んでいる。そして、これらの工程を順次繰り返 すことにより、焼結層を積層して所望の三次元形状を有する構造体を形成するもので ある。 As shown in FIG. 2, the powder sintering process (step S200) is a powder layer forming process in which a powder layer is formed on a powder sintering process table using a powder layer forming apparatus ( Step S212), a sintering layer forming step (Step S214) for selectively irradiating the powder layer with an energy beam to form a sintered layer, and a powder sintering for lowering the powder sintering processing table by a predetermined amount. Bonding process And a table lowering process (step S216). Then, by repeating these steps in sequence, a sintered body is laminated to form a structure having a desired three-dimensional shape.
[0095] 粉体焼結加工工程 (ステップ S200)は、専用の粉体焼結加工装置を用いて行う。  The powder sintering process (step S200) is performed using a dedicated powder sintering apparatus.
図 3は、実施形態 1に係る粉体焼結加工装置 100を説明するために示す図である。 図 3 (a)は粉体焼結カ卩ェ装置 100における気密室 110の平面図であり、図 3 (b)は粉 体焼結カ卩ェ装置 100における図 3 (a)の A— A断面図である。図 4は、粉体焼結加工 装置 100における粉体焼結カ卩工テーブル 132を説明するために示す図である。  FIG. 3 is a view for explaining the powder sintering apparatus 100 according to the first embodiment. Fig. 3 (a) is a plan view of the hermetic chamber 110 in the powder sintering cabinet apparatus 100, and Fig. 3 (b) is an A-A diagram in Fig. 3 (a) in the powder sintering cabinet apparatus 100. It is sectional drawing. FIG. 4 is a view for explaining the powder sintering table 132 in the powder sintering apparatus 100.
[0096] 粉体焼結加工装置 100は、図 3に示すように、透光性窓 112を有する気密室 110と 、気密室 110の内部に配置され、昇降可能な粉体焼結加工テーブル 132と、気密室 110の内部に配置され、粉体焼結カ卩工テーブル 132上に粉体層 M (図 5 (d)参照。  As shown in FIG. 3, the powder sintering apparatus 100 includes an airtight chamber 110 having a translucent window 112 and a powder sintering processing table 132 that is disposed inside the airtight chamber 110 and can be moved up and down. The powder layer M is disposed inside the hermetic chamber 110 and placed on the powder sintering table 132 (see FIG. 5 (d)).
0  0
)を形成する粉体層形成装置としての 3つの粉体供給装置 150a, 150b, 150cと、 気密室 110の外部に配置され、透光性窓 112を介して粉体層 Mにレーザビームを  3) Powder supply devices 150a, 150b, 150c as powder layer forming devices, and a laser beam to the powder layer M through the light-transmitting window 112.
0  0
照射するレーザビーム照射装置 170とを備えている。  And a laser beam irradiation device 170 for irradiation.
[0097] 粉体焼結加工装置 100は、気密室 110を排気するための真空ポンプ 116及び排 気ノ レブ 114と、気密室 110に導入するガスを格納する Arガスボンベ 120、 Hガス [0097] The powder sintering apparatus 100 includes a vacuum pump 116 and an exhaust valve 114 for exhausting the hermetic chamber 110, an Ar gas cylinder 120 for storing a gas to be introduced into the hermetic chamber 110, and an H gas.
2 ボンべ 120a、その他(例えば、アンモニア分解ガス。)のガスボンベ 120b及び導入 バルブ 118と、構造体を加熱する加熱装置としてのヒータ 180とをさらに備えて 、る。  2 A cylinder 120a, other (for example, ammonia decomposition gas) gas cylinder 120b, an introduction valve 118, and a heater 180 as a heating device for heating the structure are further provided.
[0098] 3つの粉体供給装置 150a, 150b, 150cは、図 3 (a)に示すように、粉体焼結加工 テーブル 132上に粉体 Mを供給する機能を有する粉体供給装置であり、それぞれ軸 152a, 152b, 152cと、軸 152a, 152b, 152cの回りに回転可會なアーム 154a, 1 54b, 154cと、アーム 154a, 154b, 154cの先端に設けられた粉体格糸内咅 156a, 1 56b, 156cと、磁石部 158a, 158b, 158cとを有している。  [0098] The three powder supply devices 150a, 150b, and 150c are powder supply devices having a function of supplying the powder M onto the powder sintering table 132 as shown in FIG. 3 (a). , Respectively, shafts 152a, 152b, 152c, arms 154a, 1 54b, 154c rotatable around the shafts 152a, 152b, 152c, and powder inner yarns provided at the ends of the arms 154a, 154b, 154c. 156a, 156b, 156c and magnet parts 158a, 158b, 158c.
[0099] なお、実施形態 1では、 3つの粉体供給装置 150a, 150b, 150cのうち粉体供給 装置 150aのみに粉体 Mが供給されている力 他の粉体供給装置 150b, 150cに粉 体 Mが供給されて 、てもよ 、。  [0099] In the first embodiment, among the three powder supply devices 150a, 150b, and 150c, the force that the powder M is supplied only to the powder supply device 150a. The powder is supplied to the other powder supply devices 150b and 150c. Body M is supplied.
[0100] 気密室 110下面には、 3つの粉体供給装置 150a, 150b, 150cの回転動作を制 御するための 3つの粉体供給装置駆動装置 160a, 160b, 160c (粉体供給装置駆 動装置 160aのみ図 3 (b)に図示。)が設置されている。これら 3つの粉体供給装置駆 動装置 160a, 160b, 160cは、それぞれ軸 162a, 162b, 162cと、軸 162a, 162b , 162cの回りに回転可能なアーム 164a, 164b, 164cと、アームを回転させるため のモータ 166a, 166b, 166cと、アーム 164a, 164b, 164cの先端に設けられた磁 石部 168a, 168b, 168cとを有している。気密室 110の下面は、透磁性材料である パーマロイからなって 、る。 [0100] On the lower surface of the hermetic chamber 110, there are three powder supply device driving devices 160a, 160b, 160c (powder supply device driver) for controlling the rotational operation of the three powder supply devices 150a, 150b, 150c. Only moving device 160a is shown in Fig. 3 (b). ) Is installed. These three powder feeding device driving devices 160a, 160b, 160c respectively rotate the shafts 162a, 162b, 162c and the arms 164a, 164b, 164c, which can rotate around the shafts 162a, 162b, 162c, respectively. Motors 166a, 166b, 166c for the purpose, and magnet parts 168a, 168b, 168c provided at the tips of the arms 164a, 164b, 164c. The lower surface of the hermetic chamber 110 is made of permalloy, which is a magnetically permeable material.
[0101] 粉体焼結カ卩ェ装置 100は、粉体格納部 156a, 156b, 156cの内部にある粉体及 び焼結加工装置粉体焼結加工テーブル 132上の粉体に振動を与える振動供給装 置としての超音波発振機(図示せず。)をさらに備えている。  [0101] The powder sintering apparatus 100 vibrates the powder in the powder storage units 156a, 156b, and 156c and the powder on the sintering apparatus powder sintering table 132. An ultrasonic oscillator (not shown) as a vibration supply device is further provided.
[0102] レーザビーム照射装置 170は、 UVレーザビーム照射装置であり、図 3 (b)に示すよ うに、 UVレーザビームを射出する Nd-YAG波長変換 (第 4高調波)レーザ力もなるレ 一ザ発振機 172と、 UVレーザビームを反射する 2次元走査ミラー 174と、 UVレーザ ビームを集光する集光レンズ 176と、これらの動作を制御する制御部 178とを有して いる。  [0102] The laser beam irradiation device 170 is a UV laser beam irradiation device. As shown in Fig. 3 (b), the laser beam irradiation power is an Nd-YAG wavelength conversion (fourth harmonic) laser power that emits a UV laser beam. The oscillator 172, a two-dimensional scanning mirror 174 that reflects the UV laser beam, a condenser lens 176 that condenses the UV laser beam, and a control unit 178 that controls these operations are included.
[0103] 粉体焼結カ卩ェテーブル 132は、図 4に示すように、下方に延在する軸部 134を有し ており、粉体焼結加工テーブル格納部 130の下方部分に回転自在に配置された粉 体焼結加工テーブル支持部 136に支持されて ヽる。粉体焼結加工テーブル支持部 136の下部には、磁石部 138が配設されている。  [0103] As shown in FIG. 4, the powder sintering cache table 132 has a shaft portion 134 extending downward, and is freely rotatable in a lower portion of the powder sintering processing table storage portion 130. It is supported by the arranged powder sintering table support part 136. A magnet portion 138 is disposed below the powder sintering processing table support portion 136.
[0104] 粉体焼結加工テーブル格納部 130の下方には、粉体焼結加工テーブル駆動装置 140が設置されている。粉体焼結加工テーブル駆動装置 140は、上面に磁石部 14 2が配設されモータ 146の回転によって回転可能に構成された回転体 142を有し、こ の回転体 142の回転によって粉体焼結カ卩ェテーブル支持部 136の回転が制御され る。ここで、図 4に示すように、軸部 134及び粉体焼結カ卩ェテーブル支持部 136には ネジカ卩ェが施されているため、粉体焼結カ卩工テーブル支持部 136の回転によって粉 体焼結加工テーブル 132の昇降動作が制御される。粉体焼結加工テーブル格納部 130は、透磁性材料であるパーマロイ力 なっている。  [0104] Below the powder sintering process table storage unit 130, a powder sintering process table drive device 140 is installed. The powder sintering processing table driving device 140 has a rotating body 142 having a magnet portion 142 disposed on the upper surface and configured to be rotatable by the rotation of the motor 146, and the powder sintering process is performed by the rotation of the rotating body 142. The rotation of the caulking table support 136 is controlled. Here, as shown in FIG. 4, since the shaft portion 134 and the powder sintering carriage table support portion 136 are threaded, the rotation of the powder sintering carriage table support portion 136 causes the rotation. The lifting / lowering operation of the powder sintering table 132 is controlled. The powder sintering table storage section 130 has a permalloy force that is a magnetically permeable material.
[0105] 粉体焼結加工装置 100は、図 3 (b)に示すように、気密室 110の外部に配置され、 構造体を加熱する加熱装置としてのヒータ 160をさらに備えている。 [0106] 図 5は、粉体焼結カ卩ェ工程 (ステップ S 200)を説明するために示す工程図である。 図 6は、焼結加工工程実施中の構造体を模式的に示す斜視図である。図 6において は、構造体 10の周囲に存在する粉体 Mは図示を省略している。 As shown in FIG. 3 (b), the powder sintering apparatus 100 is further provided with a heater 160 as a heating device that is disposed outside the hermetic chamber 110 and heats the structure. FIG. 5 is a process diagram shown for explaining the powder sintering cache process (step S 200). FIG. 6 is a perspective view schematically showing the structure during the sintering process. In FIG. 6, the illustration of the powder M existing around the structure 10 is omitted.
粉体焼結加工工程においては、まず、図 5 (a)に示すように所定位置にある粉体焼 結カ卩工テーブル 132を、図 5 (b)に示すように、所定量だけ下降させる。  In the powder sintering process, first, as shown in FIG. 5 (a), the powder sintering table 132 at a predetermined position is lowered by a predetermined amount as shown in FIG. 5 (b). .
次に、図 5 (c)〜図 5 (d)に示すように、粉体格納部 156aに粉体 Mが入った状態で 粉体供給装置 150aを回動させて、粉体焼結加工テーブル 132の上部に粉体層 M  Next, as shown in FIG. 5 (c) to FIG. 5 (d), the powder supply device 150a is rotated in a state where the powder M is in the powder storage unit 156a, and the powder sintering processing table is turned on. Powder layer M on top of 132
0 を形成する。  Form 0.
[0107] 次に、図 5 (e)〜図 5 (f)に示すように、レーザビーム照射装置 170から粉体層 Mに  [0107] Next, as shown in FIGS. 5 (e) to 5 (f), the powder layer M is transferred from the laser beam irradiation device 170.
0 レーザビームを照射して、焼結層 Mを形成する。  0 A laser beam is irradiated to form the sintered layer M.
次に、粉体焼結加工テーブル 132を、図 5 (g)に示すように、所定量だけ下降させ、 図 5 (h)〜図 5 (i)に示すように、粉体供給装置 150aを再度回動させて、粉体焼結加 工テーブル 132の上部に粉体層 Mを形成する。  Next, the powder sintering table 132 is lowered by a predetermined amount as shown in FIG. 5 (g), and the powder supply device 150a is moved as shown in FIGS. 5 (h) to 5 (i). The powder layer M is formed on the powder sintering processing table 132 by rotating again.
0  0
粉体焼結カ卩ェ工程においては、以下、このような工程を順次繰り返すことになる。  In the powder sintering cache process, such processes are sequentially repeated below.
[0108] このように、粉体焼結加工工程にぉ 、ては、粉体層形成工程と、焼結層形成工程と 、粉体焼結加工テーブル下降工程とを順次繰り返すことにより、焼結層を積層して所 望の三次元形状を有する構造体を形成する。その結果、図 6に示すような三次元構 造を有する構造体 10を形成することができる。  As described above, during the powder sintering process, the powder layer forming process, the sintered layer forming process, and the powder sintering process table lowering process are sequentially repeated to perform sintering. The layers are stacked to form a structure having the desired three-dimensional shape. As a result, a structure 10 having a three-dimensional structure as shown in FIG. 6 can be formed.
[0109] 以上のように、実施形態 1に係るステントの製造方法は、粉体焼結加工装置 100を 用いて粉体焼結加工工程を行うこととして 、る。  [0109] As described above, the stent manufacturing method according to Embodiment 1 is performed by performing the powder sintering process using the powder sintering apparatus 100.
[0110] このため、実施形態 1に係るステントの製造方法によれば、粉体層 Mにレーザビー  [0110] For this reason, according to the stent manufacturing method of Embodiment 1, the laser beam is applied to the powder layer M.
0  0
ムを選択的に照射して形成される焼結層 Mを積層して所望の三次元形状を有する 構造体を形成することとしているため、比較的複雑な形状を有するステントを容易に 製造することが可能となる。その結果、例えば、軸方向に沿って外径が徐々に細くな つていくような形状 (テーパー形状)を有するステント、分岐部を有するステント、さら には、ストラットの肉厚が軸方向中央部においては厚く軸方向両端部においては薄く 構成されたステントなどのような比較的複雑な形状を有するステントをも容易に製造 することが可能となる。 [0111] また、実施形態 1に係るステントの製造方法によれば、粉体層 Mに含まれる粉体の Sintered layers M formed by selectively irradiating the film are laminated to form a structure having a desired three-dimensional shape, so that a stent having a relatively complicated shape can be easily manufactured. Is possible. As a result, for example, a stent having a shape (tapered shape) in which the outer diameter gradually decreases along the axial direction (tapered shape), a stent having a bifurcated portion, and the strut thickness at the central portion in the axial direction. It is possible to easily manufacture a stent having a relatively complicated shape, such as a stent that is thick and thin at both axial ends. [0111] Furthermore, according to the method for manufacturing a stent according to Embodiment 1, the powder contained in the powder layer M
0  0
組成を所望の組成とすることによって、所望の組成を有するステントを製造することが 可能となる。また、この場合、粉体層 Mに含まれる粉体 Mの組成を適宜変更していく  By setting the composition to a desired composition, a stent having the desired composition can be manufactured. In this case, the composition of the powder M contained in the powder layer M is appropriately changed.
0  0
ことにより、所望の組成分布を有するステントを製造することも可能となる。  This makes it possible to manufacture a stent having a desired composition distribution.
[0112] また、実施形態 1に係るステントの製造方法によれば、粉体焼結の条件 (例えば、粉 体層 Mに用いる粉体 Mの種類をどうする力 エネルギービーム照射をどうするかな [0112] In addition, according to the stent manufacturing method according to Embodiment 1, conditions for powder sintering (for example, what is the type of the powder M used for the powder layer M, what is the energy beam irradiation?
0 0
ど。)や構造体形成後における構造体の熱処理の条件 (例えば、強い熱処理を行う 力 弱い熱処理を行うかなど。 )により、所望の密度を有するステントを製造することが 可能となる。また、この場合、エネルギービーム照射の仕方を変化させたり、構造体 形成後における構造体の熱処理を不均一に行ったり、粉体層 Mに含まれる粉体 M  Do. ) And conditions for heat treatment of the structure after formation of the structure (for example, whether a strong heat treatment is performed or a weak heat treatment is performed), a stent having a desired density can be manufactured. In this case, the energy beam irradiation method is changed, the heat treatment of the structure is unevenly performed after the structure is formed, or the powder M contained in the powder layer M is
0  0
の組成を適宜変更していったりすることにより、所望の密度分布を有するステントを製 造することも可能となる。  By appropriately changing the composition, it is possible to produce a stent having a desired density distribution.
[0113] また、実施形態 1に係るステントの製造方法によれば、粉体層 Mのうち焼結が行わ  [0113] In addition, according to the stent manufacturing method of Embodiment 1, sintering is performed in the powder layer M.
0  0
れな力つた部分の粉体 Mは、回収後に再使用することが可能であるため、材料歩留 まりの高い製造方法となる。  Since the powder M, which has been devastated, can be reused after collection, it is a manufacturing method with a high material yield.
[0114] 粉体としては、例えば、オーステナイト系ステンレス (例えば SUS316)からなる粉体 、 Ni— Ti合金力もなる粉体、 Co— Cr合金力もなる粉体、 Au— Cu合金力もなる粉体 、 Au— Pt— Pd合金力 なる粉体をはじめとする種々の金属粉体及び種々のセラミツ タス粉体を用いることができる。この場合、粉体として、セラミックス粉体を用いる場合 には、セラミックス粉体を単独で用いることも可能であるが、セラミックス粉体を金属粉 体とともに用いることが好まし 、。  [0114] Examples of the powder include powder made of austenitic stainless steel (for example, SUS316), powder having Ni-Ti alloy power, powder having Co-Cr alloy power, powder having Au-Cu alloy power, Au — Pt— Pd alloy power Various metal powders including various powders and various ceramic powders can be used. In this case, when ceramic powder is used as the powder, it is possible to use the ceramic powder alone, but it is preferable to use the ceramic powder together with the metal powder.
[0115] また、実施形態 1に係るステントの製造方法によれば、エネルギービームとして UV レーザビームを用いているため、比較的短時間で、かつ、形状精度の高い(例えば、 数; z m以下。)構造体を形成することが可能になり、その結果、比較的短時間で、か つ、形状精度の高い (例えば、数/ z m以下。)ステントを製造することが可能になる。  [0115] Further, according to the stent manufacturing method according to Embodiment 1, since a UV laser beam is used as the energy beam, the shape accuracy is relatively short (for example, number: zm or less). It is possible to form a structure, and as a result, it is possible to manufacture a stent in a relatively short period of time and with high shape accuracy (for example, several / zm or less).
[0116] また、実施形態 1に係るステントの製造方法においては、構造体の形成を気密室 1 10の中で行うこととしているため、外部からの水分、酸素、窒素、有機物、金属不純 物などの不純物の混入が抑制され、高純度のステントを製造することが可能になる。 この場合、気密室 110を真空にした状態で又は気密室 110に不活性ガス若しくは所 定の還元性ガスを導入した状態で粉体焼結加工工程を行うようにすることが好ま Uヽ [0116] Further, in the stent manufacturing method according to Embodiment 1, since the structure is formed in the airtight chamber 110, moisture, oxygen, nitrogen, organic matter, metal impurities, etc. from the outside are used. It is possible to manufacture a high-purity stent. In this case, it is preferable to perform the powder sintering process in a state where the hermetic chamber 110 is evacuated or an inert gas or a predetermined reducing gas is introduced into the hermetic chamber 110.
[0117] また、実施形態 1に係るステントの製造方法においては、粉体焼結加工工程におい ては、気密室 110の外に設置したレーザビーム照射装置 170から粉体層 Mにレー [0117] In the stent manufacturing method according to Embodiment 1, in the powder sintering process, the laser beam irradiation device 170 installed outside the hermetic chamber 110 is placed on the powder layer M.
0 ザビームを照射することとしているため、レーザビームの照射を行うことに起因して気 密室 110に水分、酸素、窒素、有機物、金属不純物などの不純物が混入することが 抑制され、高純度のステントを製造することが可能になる。  0 Because it is supposed to be irradiated with the beam, impurities such as moisture, oxygen, nitrogen, organic matter, and metal impurities are prevented from entering the hermetic chamber 110 due to the laser beam irradiation, and a high-purity stent Can be manufactured.
[0118] また、実施形態 1に係るステントの製造方法においては、気密室 110の外に設置し た粉体焼結加工テーブル駆動装置 140を用いて粉体焼結加工テーブル 132を昇降 させることとしているため、粉体焼結カ卩ェテーブル 132を昇降させることに起因して気 密室 110に水分、酸素、窒素、有機物、金属不純物などの不純物が混入することが 抑制され、高純度のステントを製造することが可能になる。  [0118] In the stent manufacturing method according to Embodiment 1, the powder sintering table 132 is moved up and down using the powder sintering table driving device 140 installed outside the hermetic chamber 110. As a result, it is possible to prevent impurities such as moisture, oxygen, nitrogen, organic matter, and metal impurities from entering the hermetic chamber 110 due to the raising and lowering of the powder sintering cabinet table 132, and to manufacture high-purity stents. It becomes possible to do.
[0119] また、実施形態 1に係るステントの製造方法においては、気密室 110の外に設置し た粉体供給装置駆動装置 160a, 160b, 160cを用いて粉体供給装置 150a, 150b , 150cを駆動することとしているため、粉体供給装置 150a, 150b, 150cを駆動す ることに起因して気密室 110に水分、酸素、窒素、有機物、金属不純物などの不純 物が混入することが抑制され、高純度のステントを製造することが可能になる。  [0119] Also, in the stent manufacturing method according to Embodiment 1, the powder supply devices 150a, 150b, and 150c are used by using the powder supply device driving devices 160a, 160b, and 160c installed outside the hermetic chamber 110. Therefore, it is possible to prevent impurities such as moisture, oxygen, nitrogen, organic matter, and metal impurities from entering the hermetic chamber 110 due to the driving of the powder supply devices 150a, 150b, and 150c. It becomes possible to produce a high-purity stent.
[0120] また、実施形態 1に係るステントの製造方法においては、加熱しながら構造体 10を 形成することで、構造体形成中における構造体 10内部の温度差を低減することがで きるため、構造体 10における歪みを低減することができる。また、気密室 110の外に 設置したヒータ 180を用いて構造体を加熱することで、構造体 10を加熱することに起 因して気密室 110に水分、酸素、窒素、有機物、金属不純物などの不純物が混入す ることが抑制され、高純度のステントを製造することが可能になる。  [0120] In addition, in the stent manufacturing method according to Embodiment 1, by forming the structure 10 while heating, the temperature difference inside the structure 10 during the structure formation can be reduced. Distortion in the structure 10 can be reduced. In addition, by heating the structure using the heater 180 installed outside the hermetic chamber 110, moisture, oxygen, nitrogen, organic matter, metal impurities, etc. in the hermetic chamber 110 due to the heating of the structure 10. It is possible to manufacture a high-purity stent.
[0121] 図 7は、実施形態 1に係るステントの製造方法における後処理工程 (ステップ S300 )を説明するために示すフローチャートである。  FIG. 7 is a flowchart for explaining the post-processing step (step S300) in the stent manufacturing method according to the first embodiment.
実施形態 1に係るステントの製造方法における後処理工程 (ステップ S300)は、構 造体の焼結密度を高めるための第 1熱処理工程 (ステップ S312)と、構造体の熔体 化処理を行う第 2熱処理工程 (ステップ S314)と、構造体の時効硬化処理を行う第 3 熱処理工程 (ステップ S316)と、構造体の表面を研磨する表面研磨工程 (ステップ S 318)とを含む。 The post-processing step (step S300) in the stent manufacturing method according to Embodiment 1 includes the first heat treatment step (step S312) for increasing the sintered density of the structure, and the melt of the structure. A second heat treatment step (step S314) for performing a heat treatment, a third heat treatment step (step S316) for subjecting the structure to age hardening, and a surface polishing step (step S318) for polishing the surface of the structure. .
[0122] このため、実施形態 1に係るステントの製造方法においては、粉体焼結加工工程の 後に、構造体の焼結密度を高めるための第 1熱処理工程をさらに含むこととしている ため、構造体の焼結密度を高めることにより、所定の物理的性質 (例えば、硬さ、柔 軟性、密度、ポーラス度など)を有するステントを製造することが可能になる。  [0122] For this reason, the stent manufacturing method according to Embodiment 1 further includes a first heat treatment step for increasing the sintered density of the structure after the powder sintering step. By increasing the sintered density of the body, it becomes possible to produce a stent having predetermined physical properties (for example, hardness, flexibility, density, porosity, etc.).
この場合、オーステナイト系ステンレス (例えば SUS316)力もなるステントを製造す る場合には、例えば、 800〜: L 100°C、 30〜90分の条件で熱処理することが好まし い。これにより、第 1熱処理工程前には金属真密度の 70〜80%の密度比であつたの を、第 1熱処理工程後には金属真密度の 97〜: LOO%の密度比であるようにすること ができる。  In this case, when manufacturing a stent having an austenitic stainless steel (for example, SUS316) force, it is preferable to perform heat treatment under conditions of, for example, 800 to L 100 ° C for 30 to 90 minutes. As a result, the density ratio of 70 to 80% of the true metal density before the first heat treatment step is set to 97 to the LOO% density ratio of the true metal density after the first heat treatment step. be able to.
[0123] また、実施形態 1に係るステントの製造方法において、例えば、 1層毎に成分を変 ィ匕させながら焼結層を形成することとした場合には、この第 1熱処理工程により各焼 結層を一体に合金化することが可能になるため、様々な組成のステントを製造するこ とが可能になる。  [0123] In addition, in the stent manufacturing method according to Embodiment 1, for example, when the sintered layer is formed while changing the components for each layer, each sintering is performed by the first heat treatment step. Since the tie layers can be alloyed together, stents of various compositions can be manufactured.
この場合、 Co— Cr合金カゝらなるステントを Co粉体と Cr粉体とから製造する場合に は、例えば、 950〜1250°C、 30〜90分の条件で熱処理することが好ましい。また、 Au— Pt— Pd合金力 なるステントを Au粉体と Pt粉体と Pd粉体とから製造する場合 には、例えば、 880〜1050°C、 30〜90分の条件で熱処理することが好ましい。 なお、粉体として互いに異なる金属成分力 なる金属粉体を用いる代わりに、粉体 として互いに成分の異なる合金粉体を用いることもできるし、粉体として合金粉体及 び単一の金属成分力 なる金属粉体を用いることもできる。  In this case, when a stent made of a Co—Cr alloy cover is produced from Co powder and Cr powder, it is preferable to heat-treat under conditions of, for example, 950 to 1250 ° C. and 30 to 90 minutes. In addition, when a stent having Au—Pt—Pd alloy strength is manufactured from Au powder, Pt powder and Pd powder, for example, heat treatment may be performed under the conditions of 880 to 1050 ° C. and 30 to 90 minutes. preferable. Instead of using metal powders with different metal component strengths as powder, alloy powders with different components can be used as powder, and alloy powder and single metal component strength can be used as powder. It is also possible to use a metal powder.
[0124] また、実施形態 1に係るステントの製造方法においては、第 1熱処理工程の後に、 構造体の熔体化処理を行う第 2熱処理工程をさらに含み、構造体が時効硬化系金 属からなる場合には、構造体の時効硬化処理を行う第 3熱処理工程とをさらに含むこ ととしているため、所定の硬度 ·弾性度を有するステントを製造することが可能になる [0125] 第 2熱処理としては、例えば、オーステナイト系ステンレス(例えば SUS316)力もな るステントを製造する場合には、 950〜1250°C、 30〜90分の条件で熱処理を行つ た後に急冷を行うというような熱処理を行うことが好ましい。また、例えば、 Co— Cr合 金力ゝらなるステントを製造する場合には、 1100〜1300°C、 30〜90分の条件で熱処 理を行った後に急冷を行うというような熱処理を行うことが好ましい。また、例えば、 A u— Pt— Pd合金力 なるステントを製造する場合には、 1000〜1050°C、 30〜90分 の条件で熱処理を行った後に急冷を行うというような熱処理を行うことが好ましい。 [0124] In addition, the stent manufacturing method according to Embodiment 1 further includes a second heat treatment step of performing a melt treatment of the structure after the first heat treatment step, and the structure is made of age-hardened metal. In this case, since the structure further includes a third heat treatment step for performing age hardening treatment of the structure, it becomes possible to manufacture a stent having a predetermined hardness and elasticity. [0125] As the second heat treatment, for example, in the case of manufacturing a stent having austenitic stainless steel (for example, SUS316) strength, rapid cooling is performed after heat treatment at 950 to 1250 ° C for 30 to 90 minutes. It is preferable to perform a heat treatment such as performing. In addition, for example, when manufacturing a stent made of Co—Cr alloy, heat treatment such as rapid cooling after heat treatment at 1100 to 1300 ° C. for 30 to 90 minutes is performed. It is preferable. For example, when a stent having an Au-Pt-Pd alloy strength is manufactured, a heat treatment may be performed in which quenching is performed after heat treatment is performed at 1000 to 1050 ° C. for 30 to 90 minutes. preferable.
[0126] 第 3熱処理としては、例えば、 Co— Cr合金力 なるステントを製造する場合には、 7 00〜850°C、 30〜180分の条件で熱処理を行うことが好ましい。また、例えば、 Au — Pt— Pd合金からなるステントを製造する場合には、 800〜960°C、 30〜180分の 条件で熱処理を行うことが好まし 、。  [0126] As the third heat treatment, for example, when manufacturing a stent having Co—Cr alloy strength, it is preferable to perform the heat treatment under conditions of 700 to 850 ° C. for 30 to 180 minutes. For example, when manufacturing a stent made of an Au—Pt—Pd alloy, it is preferable to perform heat treatment under conditions of 800 to 960 ° C. and 30 to 180 minutes.
[0127] この場合、第 1熱処理工程と第 2熱処理工程とは兼用でき、第 1熱処理工程と第 2 熱処理工程と第 3熱処理工程とは連続して行うことができる。  In this case, the first heat treatment step and the second heat treatment step can be used together, and the first heat treatment step, the second heat treatment step, and the third heat treatment step can be performed continuously.
[0128] また、実施形態 1に係るステントの製造方法においては、構造体の表面を研磨する 表面研磨工程をさらに含むこととしている。このため、構造体の表面に付着した粉体 を除去することができるため、ステントの表面を平滑なものとすることができる。この表 面研磨工程においては、パフ研磨、バレル研磨 (湿式若しくは乾式)、電解研磨又は 化学研磨を行うことが好まし 、。  [0128] The stent manufacturing method according to Embodiment 1 further includes a surface polishing step of polishing the surface of the structure. For this reason, since the powder adhering to the surface of the structure can be removed, the surface of the stent can be made smooth. In this surface polishing process, it is preferable to perform puff polishing, barrel polishing (wet or dry), electrolytic polishing or chemical polishing.
[0129] [変形例 1〜3]  [0129] [Variations 1-3]
図 8は、変形例 1に係る粉体焼結加工装置 100aを説明するために示す図である。 図 9は、変形例 2に係る粉体焼結加工装置 100bを説明するために示す図である。図 10は、変形例 3に係る粉体焼結加工装置 100cを説明するために示す図である。な お、図 8〜図 10においては、レーザビーム照射装置 170の図示を省略している。  FIG. 8 is a view for explaining the powder sintering apparatus 100a according to the first modification. FIG. 9 is a view for explaining the powder sintering apparatus 100b according to the second modification. FIG. 10 is a diagram for explaining a powder sintering apparatus 100c according to Modification 3. In FIGS. 8 to 10, the illustration of the laser beam irradiation device 170 is omitted.
[0130] 変形例 1〜3に係る粉体焼結カ卩ェ装置 100a, 100b, 100cは、基本的には、実施 形態 1に係る粉体焼結加ェ装置 100と同様の構成を有して 、るが、変形例 1〜 3に係 る粉体焼結加工装置 100a, 100b, 100cは、粉体層 Mからの粉体の飛沫や粉体の  [0130] The powder sintering apparatus 100a, 100b, 100c according to the modified examples 1 to 3 basically has the same configuration as the powder sintering apparatus 100 according to the first embodiment. However, the powder sintering apparatus 100a, 100b, 100c according to the modified examples 1 to 3 is used for the powder droplets from the powder layer M and the powder particles.
0  0
蒸発物を遮蔽する遮蔽手段をさらに備えた点で、実施形態 1に係る粉体焼結加工装 置 100の場合とは異なって!/、る。 [0131] このうち、変形例 1に係る粉体焼結カ卩ェ装置 100aにおいては、図 8に示すように、 遮蔽手段として、透光性窓 112に常に新鮮なガスを吹き付けるガス供給装置 190aと 、透光性窓 112に対して吹き付けられたガスを吸弓 Iするガス吸入装置 190bとを備え ている。 This is different from the case of the powder sintering apparatus 100 according to the first embodiment in that it further includes a shielding means for shielding the evaporated material! [0131] Among them, in the powder sintering cake apparatus 100a according to the modified example 1, as shown in Fig. 8, as a shielding means, a gas supply apparatus 190a that constantly blows fresh gas to the translucent window 112. And a gas suction device 190b for sucking the gas blown to the translucent window 112.
変形例 2に係る粉体焼結加工装置 100bにおいては、図 9に示すように、遮蔽手段 として、粉体焼結カ卩工テーブル 132と透光性窓 112との間に常に新鮮なガスの流れ を導入するガス流供給装置 192aと、ガス流供給装置 192aからのガスの流れを吸引 するガス流吸引装置 192bとを備えている。  In the powder sintering apparatus 100b according to the modified example 2, as shown in FIG. 9, a fresh gas is always provided between the powder sintering table 132 and the translucent window 112 as a shielding means. A gas flow supply device 192a for introducing a flow and a gas flow suction device 192b for sucking a gas flow from the gas flow supply device 192a are provided.
変形例 3に係る粉体焼結加工装置 100cにおいては、図 10に示すように、遮蔽手 段は粉体焼結加工テーブル 132と透光性窓 112との間に間欠的に又は連続的に透 明フィルムを送り込む透明フィルム供給装置 194を備えている。  In the powder sintering apparatus 100c according to Modification 3, as shown in FIG. 10, the shielding means is intermittently or continuously between the powder sintering table 132 and the translucent window 112. A transparent film supply device 194 for feeding the transparent film is provided.
[0132] このように、変形例 1〜3に係る粉体焼結カ卩ェ装置 100a, 100b, 100cによれば、 粉体層 Mからの粉体の飛沫や粉体の蒸発物を遮蔽する遮蔽手段を備えて!/、るため [0132] Thus, according to the powder sintering apparatus 100a, 100b, 100c according to the modified examples 1 to 3, the powder droplets from the powder layer M and the powder evaporation are shielded. With shielding means!
0  0
、粉体層 Mからの粉体の飛沫や粉体の蒸発物が透光性窓 112に付着して透光性  The powder droplets from the powder layer M and the evaporated powder adhere to the translucent window 112 and are translucent.
0  0
窓 112の光透過率が劣化するのを抑制することができる。このため、構造体の形成中 に常に一定の条件でレーザビームを照射することが可能になり、ステントの品質をより 高めることが可能になる。  Deterioration of the light transmittance of the window 112 can be suppressed. For this reason, it is possible to always irradiate the laser beam under a certain condition during the formation of the structure, and the quality of the stent can be further improved.
[0133] [変形例 4] [0133] [Variation 4]
図 11は、変形例 4に係る粉体焼結加工装置 100dを説明するために示す図である 。図 11 (a)は粉体焼結加工装置 100dの断面図であり、図 11 (b)は粉体焼結加工装 置 100dの平面図である。なお、図 11においては、レーザビーム照射装置 170の図 示を省略している。  FIG. 11 is a view for explaining a powder sintering apparatus 100d according to Modification 4. FIG. 11 (a) is a sectional view of the powder sintering apparatus 100d, and FIG. 11 (b) is a plan view of the powder sintering apparatus 100d. In FIG. 11, the illustration of the laser beam irradiation device 170 is omitted.
[0134] 変形例 4に係る粉体焼結加工装置 100dは、基本的には、実施形態 1に係る粉体 焼結加工装置 100とよく似た構成を有して ヽるが、実施形態 1に係る粉体焼結加工 装置 100とは粉体層形成装置の構成が異なっている。  [0134] The powder sintering apparatus 100d according to Modification 4 basically has a configuration similar to that of the powder sintering apparatus 100 according to Embodiment 1, but Embodiment 1 The structure of the powder layer forming apparatus is different from the powder sintering apparatus 100 according to FIG.
すなわち、変形例 4に係る粉体焼結カ卩ェ装置 100dにおいては、図 11に示すように 、粉体層形成装置は、粉体 Mが固定された粉体シート Mを粉体焼結加工テーブル  That is, in the powder sintering cake apparatus 100d according to Modification 4, as shown in FIG. 11, the powder layer forming apparatus performs powder sintering processing on the powder sheet M on which the powder M is fixed. table
2  2
132に供給する粉体シート供給装置 200と、粉体シート Mにおける使用済み部分を 切断する切断装置 202とからなる。 The powder sheet supply device 200 to be supplied to the And a cutting device 202 for cutting.
[0135] このように、変形例 4に係る粉体焼結カ卩ェ装置 lOOdによれば、粉体 Mが固定され た粉体シート Mを粉体焼結カ卩ェテーブル 132に供給することが可能になるため、粉 As described above, according to the powder sintered casing device lOOd according to the modified example 4, the powder sheet M on which the powder M is fixed can be supplied to the powder sintered casing table 132. To be possible, powder
2  2
体 Mの充填率が高ぐ層厚の均一な粉体層 Mを粉体焼結加工テーブル 132上に形  Form a uniform powder layer M with a high layer M filling rate on the powder sintering table 132
0  0
成することが可能になる。  Can be achieved.
[0136] [変形例 5]  [Variation 5]
図 12は、変形例 5に係る粉体焼結加工装置 100eを説明するために示す図である 。なお、図 11においては、レーザビーム照射装置 170の図示を省略している。  FIG. 12 is a view for explaining a powder sintering apparatus 100e according to Modification 5. In FIG. 11, the illustration of the laser beam irradiation device 170 is omitted.
[0137] 変形例 5に係る粉体焼結加工装置 100eにおいては、基本的には、変形例 4に係る 粉体焼結加工装置 lOOdとよく似た構成を有して 、るが、変形例 4に係る粉体焼結加 ェ装置 lOOdとは粉体シート Mを切断する手段が異なっている。 [0137] The powder sintering apparatus 100e according to Modification 5 basically has a configuration similar to that of the powder sintering apparatus lOOd according to Modification 4, but the modification The means for cutting the powder sheet M is different from the powder sintering apparatus lOOd according to 4.
2  2
すなわち、変形例 5に係る粉体焼結カ卩ェ装置 100eにおいては、図 12に示すように 、粉体シート Mにおける使用済み部分をレーザビーム照射装置 170 (図示せず。)を  In other words, in the powder sintering cage apparatus 100e according to the modified example 5, as shown in FIG. 12, the used portion of the powder sheet M is replaced with a laser beam irradiation apparatus 170 (not shown).
2  2
用いて切断することとしている。この場合、粉体シート M  We are going to cut using. In this case, powder sheet M
2における使用済み部分を切 断する場合には、焼結層を形成する場合よりも出力を高めてレーザビームの照射を 行うようにするのが好ましい。  When cutting the used part in 2, it is preferable to irradiate the laser beam with a higher output than when the sintered layer is formed.
[0138] このように、変形例 5に係る粉体焼結加工装置 100eにおいては、変形例 4に係る粉 体焼結加工装置 lOOdの場合とは粉体シート M2を切断する手段が異なっている力 変形例 4に係る粉体焼結加工装置 lOOdの場合と同様に、粉体 Mが固定された粉体 シート Mを粉体焼結カ卩ェテーブル 132に供給することが可能になるため、粉体 Mの[0138] Thus, in the powder sintering apparatus 100e according to the modification 5, the means for cutting the powder sheet M2 is different from the powder sintering apparatus lOOd according to the modification 4. As in the case of the powder sintering apparatus lOOd according to the modified example 4, the powder sheet M on which the powder M is fixed can be supplied to the powder sintering carriage table 132. Body M
2 2
充填率が高ぐ層厚の均一な粉体層 Mを粉体焼結加工テーブル 132上に形成する  Form a uniform powder layer M with a high packing ratio on the powder sintering table 132.
0  0
ことが可能になる。  It becomes possible.
[0139] [変形例 6]  [0139] [Variation 6]
図 13は、変形例 6に係る粉体焼結加工装置 100fを説明するために示す図である。 なお、図 13 (a)は粉体焼結カ卩ェ装置 100fの平面図であり、図 13 (b)は粉体焼結カロ ェ装置 100fにおける図 13 (a)の A— A断面図である。  FIG. 13 is a view for explaining a powder sintering apparatus 100f according to Modification 6. FIG. 13 (a) is a plan view of the powder sintering apparatus 100f, and FIG. 13 (b) is a cross-sectional view taken along line AA in FIG. 13 (a) of the powder sintering apparatus 100f. is there.
[0140] 変形例 6に係る粉体焼結加工装置 100fは、基本的には、変形例 4に係る粉体焼結 加工装置 lOOdとよく似た構成を有しているが、変形例 4に係る粉体焼結加工装置 1 OOdとは粉体層形成装置の構成が異なって ヽる。 [0140] The powder sintering apparatus 100f according to Modification 6 basically has a configuration similar to that of the powder sintering apparatus lOOd according to Modification 4, Powder sintering machine 1 The structure of the powder layer forming device is different from OOd.
すなわち、変形例 6に係る粉体焼結カ卩ェ装置 100fにおいては、図 13に示すように 、粉体層形成装置は、粉体焼結加工テーブルの形状に対応した形状を有する粉体 シート Mを粉体焼結加工テーブル 132に供給する粉体シート供給装置 210a, 210 That is, in the powder sintering cake apparatus 100f according to the modified example 6, as shown in FIG. 13, the powder layer forming apparatus has a powder sheet having a shape corresponding to the shape of the powder sintering processing table. Powder sheet supply device 210a, 210 that supplies M to powder sintering table 132
3 Three
b, 210c力もなる。  b, 210c force also becomes.
[0141] このように、変形例 6に係る粉体焼結加工装置 100fは、変形例 4に係る粉体焼結 加工装置 lOOdとは粉体層形成装置の構成が異なるが、粉体 Mが固定された粉体シ ート Mを粉体焼結カ卩ェテーブル 132に供給することが可能になるため、変形例 4に [0141] As described above, the powder sintering apparatus 100f according to the modified example 6 differs from the powder sintering apparatus lOOd according to the modified example 4 in the configuration of the powder layer forming apparatus, but the powder M is Since it is possible to supply the fixed powder sheet M to the powder sintering carriage table 132, the modification 4
3 Three
係る粉体焼結加工装置 lOOdの場合と同様に、粉体 Mの充填率が高ぐ層厚の均一 な粉体層 Mを粉体焼結加工テーブル 132上に形成することが可能になる。  As in the case of the powder sintering apparatus lOOd, it is possible to form a uniform powder layer M with a layer thickness with a high filling rate of the powder M on the powder sintering processing table 132.
0  0
[0142] [変形例 7]  [0142] [Variation 7]
図 14は、変形例 7に係る粉体焼結加工装置 100gを説明するために示す図である 。図 14 (a)は粉体焼結加工装置 lOOdの平面図であり、図 14 (b)及び図 14 (c)は粉 体焼結加工装置 lOOdの断面図である。なお、図 14 (b)は粉体供給装置 230が粉体 焼結カ卩工テーブル 132上にあるときの断面図であり、図 14 (c)は平坦ィ匕装置 250が 粉体焼結カ卩工テーブル 132上にあるときの断面図である。また、図 14においては、レ 一ザビーム照射装置 170の図示を省略して 、る。  FIG. 14 is a view for explaining a powder sintering apparatus 100g according to Modification 7. FIG. 14 (a) is a plan view of the powder sintering apparatus lOOd, and FIGS. 14 (b) and 14 (c) are cross-sectional views of the powder sintering apparatus lOOd. 14B is a cross-sectional view when the powder supply device 230 is on the powder sintering table 132, and FIG. FIG. 12 is a cross-sectional view when on the carpentry table 132. Further, in FIG. 14, the illustration of the laser beam irradiation device 170 is omitted.
[0143] 変形例 7に係る粉体焼結加工装置 100gは、基本的には、実施形態 1に係る粉体 焼結加工装置 100とよく似た構成を有して ヽるが、実施形態 1に係る粉体焼結加工 装置 100とは粉体層形成装置の構成が異なっている。 [0143] The powder sintering apparatus 100g according to Modification 7 basically has a configuration similar to that of the powder sintering apparatus 100 according to Embodiment 1, but Embodiment 1 The structure of the powder layer forming apparatus is different from the powder sintering apparatus 100 according to FIG.
すなわち、変形例 7に係る粉体焼結加工装置 100gにおいては、図 14に示すように 、粉体層形成装置は、粉体を含む液体 Mを粉体焼結加工テーブル 132に供給する  That is, in the powder sintering apparatus 100g according to the modified example 7, as shown in FIG. 14, the powder layer forming apparatus supplies the liquid M containing powder to the powder sintering processing table 132.
4  Four
粉体供給装置 230と、粉体を含む液体 Mを平坦化する平坦化装置 250とからなつ  It consists of a powder supply device 230 and a flattening device 250 for flattening liquid M containing powder.
4  Four
ている。  ing.
[0144] 粉体供給装置 230は、軸 232と、軸 232の回りに回転可能なアーム 234と、アーム 234の先端に設けられた粉体格納部 236と、磁石部 238とを有している。平坦化装 置 250は、軸 252と、軸 252の回りに回転可會なアーム 254と、アーム 254の先端に 設けられ上下動可能な平坦化処理部 256と、磁石部 258とを有している。そして、平 坦ィ匕処理部 256が上下に動くことにより、粉体焼結カ卩工テーブル 132に供給された 粉体を含む液体 Mが平坦化されるように構成されている。 [0144] The powder supply apparatus 230 includes a shaft 232, an arm 234 rotatable around the shaft 232, a powder storage portion 236 provided at the tip of the arm 234, and a magnet portion 238. . The flattening device 250 includes a shaft 252, an arm 254 that is rotatable about the shaft 252, a flattening processing unit 256 that is provided at the tip of the arm 254 and can move up and down, and a magnet unit 258. . And flat By moving the carrier processing unit 256 up and down, the liquid M containing the powder supplied to the powder sintering table 132 is flattened.
4  Four
粉体供給装置 230及び平坦化装置 250は、気密室 110の外に設置された粉体供 給装置駆動装置 240及び平坦ィ匕装置駆動装置 260によって駆動される。  The powder supply device 230 and the flattening device 250 are driven by a powder supply device driving device 240 and a flat plate device driving device 260 installed outside the hermetic chamber 110.
[0145] このように、変形例 7に係る粉体焼結加工装置 lOOgは、実施形態 1に係る粉体焼 結加工装置 100とは粉体層形成装置の構成が異なるが、実施形態 1に係る粉体焼 結カ卩ェ装置 100の場合と同様に、粉体 Mの充填率が高ぐ層厚の均一な粉体層 M [0145] Thus, the powder sintering apparatus lOOg according to the modified example 7 differs from the powder sintering apparatus 100 according to the first embodiment in the configuration of the powder layer forming apparatus, but in the first embodiment. As in the case of the powder sintering apparatus 100, a uniform powder layer M with a high layer thickness and a high packing ratio of the powder M
0 を粉体焼結加工テーブル 132上に形成することが可能になる。  0 can be formed on the powder sintering table 132.
[0146] この場合、粉体を含む液体 Mを粉体焼結加工テーブルに供給した後、液体成分 [0146] In this case, after supplying the liquid M containing powder to the powder sintering processing table, the liquid component
4  Four
を除去した後にレーザビームの照射を行って焼結層の形成を行うことが好ましい。  It is preferable to form a sintered layer by irradiating a laser beam after removing.
[0147] [変形例 8] [Variation 8]
図 15は、変形例 8に係る粉体焼結加工装置 100hを説明するために示す図である 。図 15 (a)は粉体焼結加工装置 100hの断面図であり、図 15 (b)は粉体焼結加工装 置 100hの平面図である。  FIG. 15 is a view for explaining a powder sintering apparatus 100h according to Modification 8. FIG. 15 (a) is a sectional view of the powder sintering apparatus 100h, and FIG. 15 (b) is a plan view of the powder sintering apparatus 100h.
[0148] 変形例 8に係る粉体焼結加工装置 100hは、基本的には、実施形態 1に係る粉体 焼結加工装置 100とよく似た構成を有して ヽるが、実施形態 1に係る粉体焼結加工 装置 100とは加熱装置の構成が異なって 、る。  [0148] The powder sintering apparatus 100h according to Modification 8 basically has a configuration similar to that of the powder sintering apparatus 100 according to Embodiment 1, but Embodiment 1 The structure of the heating apparatus is different from the powder sintering apparatus 100 according to the above.
すなわち、変形例 8に係る粉体焼結カ卩ェ装置 100hにおいては、図 15に示すように 、加熱装置として、構造体が配置された部位を効率よぐかつ、局所的に加熱するこ とができる 2つの赤外線加熱装置 182を備えている。  That is, in the powder sintering cake apparatus 100h according to the modified example 8, as shown in FIG. 15, as the heating apparatus, the part where the structure is disposed is efficiently and locally heated. Two infrared heating devices 182 are provided.
[0149] このように、変形例 8に係る粉体焼結加工装置 100hは、加熱装置の構成が異なる 力 実施形態 1に係る粉体焼結加工装置 100の場合と同様に、加熱しながら構造体 を形成することで、構造体形成中における構造体内部の温度差を低減することが可 能となるため、構造体における歪みを低減することができる。また、気密室 110の外 に設置した赤外線加熱装置 182を用いて構造体を加熱することで、構造体を加熱す ることに起因して気密室 110に水分、酸素、窒素、有機物、金属不純物などの不純 物が混入することが抑制され、高純度のステントを製造することが可能になる。  As described above, the powder sintering apparatus 100h according to the modified example 8 has a different structure of the heating device. As in the case of the powder sintering apparatus 100 according to the first embodiment, the structure is being heated. By forming the body, it becomes possible to reduce the temperature difference inside the structure during the formation of the structure, so that distortion in the structure can be reduced. In addition, by heating the structure using an infrared heating device 182 installed outside the hermetic chamber 110, moisture, oxygen, nitrogen, organic matter, and metal impurities are added to the hermetic chamber 110 due to the heating of the structure. It is possible to manufacture a high-purity stent.
[0150] [変形例 9] 図 16は、変形例 9に係る粉体焼結加工装置 lOOiを説明するために示す図である。 変形例 9に係る粉体焼結加工装置 100i (図示せず。)は、基本的には、変形例 8に 係る粉体焼結加工装置 100hとよく似た構成を有しているが、図 16に示すように、粉 体焼結加工テーブルの昇降を制御するための粉体焼結加工テーブル駆動装置とし て、リニアモータを用いた駆動装置を用いている点で、変形例 8に係る粉体焼結加工 装置 100hの場合とは異なる。 [0150] [Variation 9] FIG. 16 is a view for explaining the powder sintering apparatus lOOi according to the ninth modification. The powder sintering apparatus 100i (not shown) according to Modification 9 basically has a configuration that is very similar to the powder sintering apparatus 100h according to Modification 8. As shown in Fig. 16, the powder sintering process table drive device for controlling the lifting and lowering of the powder sintering process table uses a drive device using a linear motor, and therefore the powder according to Modification 8 is used. It differs from the case of body sintering machine 100h.
[0151] 粉体焼結カ卩工テーブル 270には、図 16に示すように、磁石部 272が設けられてお り、粉体焼結加工テーブル格納部 130の周囲には、電磁石部支持部 276に支持さ れた電磁石部 274が設けられている。そして、電磁石部 274に与える電圧を制御す ることにより、粉体焼結加工テーブル 270の昇降動作を制御するように構成されてい る。 [0151] As shown in FIG. 16, the powder sintering table 270 is provided with a magnet portion 272, and around the powder sintering processing table storage portion 130, there is an electromagnet portion supporting portion. An electromagnet portion 274 supported by 276 is provided. Then, by controlling the voltage applied to the electromagnet unit 274, the lifting / lowering operation of the powder sintering table 270 is controlled.
[0152] このように、変形例 9に係る粉体焼結加工装置 lOOiにおいては、粉体焼結加工テ 一ブル駆動装置として、リニアモータを用いた駆動装置を用いている点で、変形例 8 に係る粉体焼結加工装置 100hの場合とは異なる力 変形例 8に係る粉体焼結加工 装置 100hの場合と同様に、外部力も粉体焼結カ卩工テーブル 270を昇降させることが 可能であるため、粉体焼結カ卩工テーブル 270を昇降させることに起因して気密室 11 0に水分、酸素、窒素、有機物、金属不純物などの不純物が混入することが抑制され 、高純度のステントを製造することが可能になる。  [0152] Thus, in the powder sintering apparatus lOOi according to Modification Example 9, the modification example is that the driving apparatus using the linear motor is used as the powder sintering process table drive apparatus. The force different from the case of the powder sintering apparatus 100h according to 8 is modified. As in the case of the powder sintering apparatus 100h according to the modified example 8, the external force can also raise and lower the powder sintering table 270. It is possible to suppress the entry of moisture, oxygen, nitrogen, organic matter, metal impurities and other impurities into the hermetic chamber 110 due to the lifting and lowering of the powder sintering table 270 and high purity. Can be manufactured.
[0153] [変形例 10]  [Variation 10]
図 17は、変形例 10に係る粉体焼結加工装置 100jを説明するために示す図である 。なお、図 17においては、レーザビーム照射装置 170の図示を省略している。  FIG. 17 is a view for explaining a powder sintering apparatus 100j according to Modification 10. In FIG. 17, the illustration of the laser beam irradiation apparatus 170 is omitted.
[0154] 変形例 10に係る粉体焼結加工装置 100jは、基本的には、実施形態 1に係る粉体 焼結加工装置 100とよく似た構成を有して ヽるが、実施形態 1に係る粉体焼結加工 装置 100とは加熱装置の構成が異なって 、る。  [0154] The powder sintering apparatus 100j according to Modification 10 basically has a configuration similar to that of the powder sintering apparatus 100 according to Embodiment 1, but Embodiment 1 The structure of the heating apparatus is different from the powder sintering apparatus 100 according to the above.
すなわち、変形例 10に係る粉体焼結加工装置 100jは、図 17に示すように、加熱 装置として、高周波加熱装置 184を備えている。  That is, the powder sintering apparatus 100j according to the modified example 10 includes a high-frequency heating device 184 as a heating device, as shown in FIG.
[0155] このように、変形例 10に係る粉体焼結加工装置 100jは、加熱装置としてヒータ 180 に代えて高周波加熱装置 184を備える点で、実施形態 1に係る粉体焼結加工装置 1 00の場合と異なる力 気密室 110の外に設置した高周波加熱装置 184を用いて構 造体を加熱することで、実施形態 1に係る粉体焼結加工装置 100の場合と同様に、 構造体を加熱することに起因して気密室 110に水分、酸素、窒素、有機物、金属不 純物などの不純物が混入することが抑制され、高純度のステントを製造することが可 會 になる。 Thus, the powder sintering apparatus 100j according to the modified example 10 includes the high-frequency heating apparatus 184 instead of the heater 180 as a heating apparatus, and thus the powder sintering apparatus 1 according to the first embodiment. Force different from the case of 00 Similar to the case of the powder sintering apparatus 100 according to Embodiment 1, by heating the structure using the high-frequency heating device 184 installed outside the hermetic chamber 110, the structure Due to the heating, impurities such as moisture, oxygen, nitrogen, organic matter, and metal impurities are prevented from entering the hermetic chamber 110, and it becomes possible to manufacture a high-purity stent.
[0156] [実施形態 2] [Embodiment 2]
図 18は、実施形態 2に係るステントの製造方法を説明するために示すフローチヤ一 トである。  FIG. 18 is a flow chart shown for explaining the manufacturing method of the stent according to the second embodiment.
実施形態 2に係るステントの製造方法は、図 18に示すように、表面研磨工程の後に As shown in FIG. 18, the manufacturing method of the stent according to Embodiment 2 is performed after the surface polishing step.
、構造体に薬剤を含浸させる薬剤含浸工程をさらに含む。 The method further includes a drug impregnation step of impregnating the structure with the drug.
[0157] このため、実施形態 2に係るステントの製造方法によれば、構造体における空孔内 部に必要な薬剤が含浸された DES (Drug— Eluting Stent (薬剤溶出性ステント)[0157] Therefore, according to the stent manufacturing method of Embodiment 2, DES (Drug—Eluting Stent (drug-eluting stent) in which a necessary drug is impregnated in the pores of the structure body
)を製造することができる。 ) Can be manufactured.
[0158] この場合、第 1熱処理工程等で、焼結密度を所定のポーラス度となるような焼結密 度とするように調整することにより、 DESとしての特性 (例えば、薬剤担持特性、薬剤 放出特性等。)を所望のものにすることができる。 In this case, in the first heat treatment step or the like, the characteristics as DES (for example, drug carrying characteristics, drug Release characteristics etc.) can be made desired.
[0159] 薬剤としては、増殖抑制剤、増殖抑制及び免疫抑制剤、免疫抑制剤、細胞外マトリ ックス修飾剤、内皮修復促進剤又はこれらを適宜組み合わせた薬剤を好ましく用い ることがでさる。 [0159] As the drug, a growth inhibitor, a growth inhibitory and immunosuppressant, an immunosuppressant, an extracellular matrix modifier, an endothelial repair promoter, or a drug appropriately combined with these can be preferably used.
[0160] [実施形態 3] [Embodiment 3]
図 19は、実施形態 3に係るステントの製造方法を説明するために示すフローチヤ一 トである。  FIG. 19 is a flowchart for explaining the stent manufacturing method according to the third embodiment.
実施形態 3に係るステントの製造方法は、粉体焼結加工工程において 1層毎に成 分を変化させながら焼結層を形成することとしたステントの製造方法である。この場合 、成分の変更は、図 19の粉体選択ステップ (ステップ S222)にて所望の粉体 (粉体 A 及び粉体 Bのいずれ力 )を選択することにより行う。  The stent manufacturing method according to Embodiment 3 is a stent manufacturing method in which the sintered layer is formed while changing the composition for each layer in the powder sintering process. In this case, the component is changed by selecting a desired powder (either power of powder A or powder B) in the powder selection step (step S222) in FIG.
[0161] なお、実施形態 3に係るステントの製造方法においては、実施形態 1で説明した 3 つの粉体供給装置 150a, 150b, 150c (図示せず。)のうち 2つの粉体供給装置に 粉体 A及び粉体 Bが供給されて ヽる。 [0161] In the stent manufacturing method according to Embodiment 3, two of the three powder supply devices 150a, 150b, 150c (not shown) described in Embodiment 1 are used. Powder A and powder B are supplied.
[0162] このため、実施形態 3に係るステントの製造方法によれば、構造体形成後に構造体 の熱処理を行うことにより、各焼結層を一体に合金化することが可能になるため、様 々な組成のステント(例えば、 Co— Cr合金力 なるステント)を製造することが可能に なる。 [0162] Therefore, according to the method for manufacturing a stent according to Embodiment 3, it is possible to alloy each sintered layer integrally by heat-treating the structure after forming the structure. It becomes possible to manufacture stents of various compositions (for example, stents made of Co—Cr alloy).
[0163] [実施形態 4]  [0163] [Embodiment 4]
図 20は、実施形態 4に係るステントの製造方法を説明するために示すフローチヤ一 トである。図 21は、実施形態 4に係るステントの製造方法によって製造されるステント の構造を説明するために示す図である。  FIG. 20 is a flow chart for explaining the stent manufacturing method according to the fourth embodiment. FIG. 21 is a view for explaining the structure of the stent manufactured by the stent manufacturing method according to the fourth embodiment.
[0164] 実施形態 4に係るステントの製造方法は、図 20に示すように、粉体焼結加工工程に ぉ 、て成分を変化させて焼結層を形成することとしたステントの製造方法である。この 場合、成分の変更は、図 20の粉体選択ステップ (ステップ S232)にて所望の粉体( 粉体 A、粉体 B及び粉体 Cのいずれか)を選択することにより行う。 [0164] As shown in FIG. 20, the stent manufacturing method according to Embodiment 4 is a stent manufacturing method in which the sintered layers are formed by changing the components during the powder sintering process. is there. In this case, the component is changed by selecting a desired powder (any one of powder A, powder B, and powder C) in the powder selection step (step S232) in FIG.
[0165] なお、実施形態 4に係るステントの製造方法においては、実施形態 1で説明した 3 つの粉体供給装置 150a, 150b, 150c (図示せず。)のそれぞれに粉体 A、粉体 B 及び粉体 Cが供給されて ヽる。 [0165] Note that, in the stent manufacturing method according to Embodiment 4, powder A and powder B are respectively added to the three powder supply devices 150a, 150b, and 150c (not shown) described in Embodiment 1. And powder C is supplied.
[0166] このため、実施形態 4に係るステントの製造方法によれば、構造体形成後に構造体 の熱処理を行うことにより、各焼結層を一体に合金化することが可能になるため、様 々な組成のステント(例えば、 Au— Pt— Pd合金カゝらなるステント)を製造することが 可會 になる。 [0166] Therefore, according to the stent manufacturing method according to Embodiment 4, it is possible to alloy each sintered layer integrally by performing heat treatment of the structure after forming the structure. It becomes possible to produce stents of various compositions (for example, stents made of Au—Pt—Pd alloy).
[0167] なお、実施形態 4に係るステントの製造方法によれば、組成が変化するような組成 分布を有するステントを製造することも可能になる。  [0167] According to the method for manufacturing a stent according to Embodiment 4, it is also possible to manufacture a stent having a composition distribution in which the composition changes.
例えば、工程の途中で成分を徐々に変化させて焼結層を形成することとした場合 には、滑らかに変化するような糸且成分布を有するステントを製造することが可能になる 。また、工程の途中で成分を階段状に変化させて焼結層を形成することとした場合に は、階段状の組成分布を有するステントを製造することが可能になる。例えば、図 21 に示すように、軸方向中央部 22では、 Auと Ptと Pdの重量比が「Au: Pt: Pd= 20 :4 0 :40」の合金とし、軸方向両端部 24では、八11と1^と13(1の重量比が「八11: ?1;: ?(1=6 0 : 20 : 20」の合金とすることにより、軸方向中央部 24で硬く軸方向両端部 22で柔軟 性の高いステント 20を製造することができる。これにより、例えば、ステント挿入時に は血管に傷をつけにくぐステント留置後には血管をしつ力り支持することが可能なス テントを製造することが可能になる。 For example, when the sintered layer is formed by gradually changing the components during the process, it is possible to manufacture a stent having a thread and component fabric that changes smoothly. In addition, when a sintered layer is formed by changing the components in a stepped manner during the process, a stent having a stepped composition distribution can be manufactured. For example, as shown in FIG. 21, in the axial central portion 22, the weight ratio of Au, Pt, and Pd is an alloy of “Au: Pt: Pd = 20: 40: 40”. 811, 1 ^ and 1 3 (weight ratio of 1 is `` 811:? 1 ;:? (1 = 6 By using an alloy of “0:20:20”, it is possible to manufacture a stent 20 that is hard at the axial center portion 24 and highly flexible at both axial end portions 22. As a result, for example, it is possible to manufacture a stent that can support and support the blood vessel after placement of the stent, which hardly damages the blood vessel when inserting the stent.
[0168] 以上、本発明のステントの製造方法及び粉体焼結加工装置を上記の各実施形態 に基づいて説明したが、本発明は上記の各実施形態に限られるものではなぐその 要旨を逸脱しな 、範囲にぉ 、て種々の態様にぉ 、て実施することが可能であり、例 えば次のような変形も可能である。  [0168] The stent manufacturing method and the powder sintering apparatus according to the present invention have been described based on the above embodiments, but the present invention is not limited to the above embodiments and departs from the gist thereof. However, the present invention can be carried out in various modes within the scope, and for example, the following modifications are possible.
[0169] (1)上記各実施形態に係るステントの製造方法にぉ 、ては、エネルギービーム照射 装置として、 UVレーザビーム照射装置を用いている力 本発明はこれに限定される ものではない。例えば、可視域又は赤外域におけるレーザビーム照射装置を用いる こともできるし、電子ビーム照射装置やイオンビーム照射装置を用いることもできる。  (1) In the manufacturing method of the stent according to each of the above embodiments, the force using a UV laser beam irradiation apparatus as the energy beam irradiation apparatus is not limited to this. For example, a laser beam irradiation device in the visible region or the infrared region can be used, and an electron beam irradiation device or an ion beam irradiation device can also be used.
[0170] (2)上記各実施形態に係る粉体焼結加工装置においては、透光性窓として平面状 の石英ガラス基板を用いた力 本発明はこれに限定されるものではない。例えば、透 光性窓として、曲面状の石英ガラス基板その他の基板を用いることもできる。このよう に構成した場合には、レーザビームの集光力が高まり、さらに形状精度の高い粉体 焼結加工を行うことが可能になる。  (2) In the powder sintering apparatus according to each of the above embodiments, the force using a flat quartz glass substrate as the translucent window is not limited to this. For example, a curved quartz glass substrate or other substrate can be used as the translucent window. When configured in this manner, the focusing power of the laser beam is increased, and powder sintering with higher shape accuracy can be performed.
[0171] (3)上記各実施形態に係るステントの製造方法においては、ステントの軸方向に沿つ て構造体を形成するようにした力 本発明はこれに限定されるものではない。例えば 、ステントの直径方向に沿って構造体を形成することもできる。  (3) In the stent manufacturing method according to each of the above embodiments, the force for forming the structure along the axial direction of the stent is not limited to this. For example, a structure can be formed along the diameter direction of the stent.
[0172] (4)上記各実施形態に係るステントの製造方法においては、金属粉体を用いて構造 体を形成するようにしたが、本発明はこれに限定されるものではない。榭脂コ一ティン グされた金属粉体を用いて構造体を形成するようにしてもよ!、し、榭脂粉体及び金属 粉体の両方の粉体を用いて構造体を形成するようにしてもょ ヽ。  (4) In the stent manufacturing methods according to the above embodiments, the structure is formed using metal powder, but the present invention is not limited to this. The structure may be formed using metal powder coated with resin! However, it is also possible to form a structure using both powdered resin powder and metal powder.
[0173] (5)上記各実施形態に係るステントの製造方法においては、金属粉体を用いて構造 体を形成するようにした力 本発明はこれに限定されるものではない。セラミックス粉 体を用いて構造体を形成するようにしてもよい。この場合、セラミックス粉体を単独で 用いることも可能である力 セラミックス粉体を金属粉体とともに用いることが好ましい 符号の説明 (5) In the stent manufacturing method according to each of the embodiments described above, the force for forming the structure using the metal powder is not limited to this. A structure may be formed using a ceramic powder. In this case, it is possible to use ceramic powder alone. It is preferable to use ceramic powder together with metal powder. Explanation of symbols
10···構造体、 12···ストラット、 20···ステント、 22···中央部、 24···両端部、 100, 100 a〜100j…粉体焼結加工装置、 110…気密室、 112…透光性窓、 114···排気バル ブ、 116···真空ポンプ、 118···導入バルブ、 120··· Arガスボンベ, 120a---Hガスボ 10 ··· Structure, 12 ··· Strut, 20 ·· Stent, 22 ··· Central part, 24 ························································ Closed chamber, 112 ... Translucent window, 114 ... Exhaust valve, 116 ... Vacuum pump, 118 ... Introduction valve, 120 ... Ar gas cylinder, 120a --- H gas cylinder
2 ンべ, 120b…その他のガスボンベ、 130···粉体焼結カロェテーブル格納部、 132··· 粉体焼結加工テーブル、 134…軸部、 136…粉体焼結加工テーブル支持部、 138 …磁石部、 140…粉体焼結加工テーブル駆動装置、 142···回転体、 144…磁石部 、 146···モータ、 150a, 150b, 150c, 210a, 210b, 210c, 230···粉体供給装置、 152a, 152b, 152c, 212a, 212b, 212c, 232···軸、 154a, 154b, 154c, 214a , 214b, 214c, 234···アーム、 156a, 156b, 156c, 216a, 216b, 216c, 236··· 粉体格納部、 158a, 158b, 158c, 218a, 218b, 218c, 238···磁石部、 160a, 22 Oa, 240···粉体供給装置駆動装置、 162a, 222a, 242, 262···軸、 164a, 224a, 244, 264···アーム、 166a, 226a, 246, 266···モータ、 168a, 228a, 248, 268 …磁石部、 170…レーザビーム照射装置、 172···レーザ発振機、 174…二次元走査 ミラー、 176…集光レンズ、 178…制御部、 180···ヒータ、 182…赤外線加熱装置、 1 84···高周波加熱装置、 190a…ガス供給装置、 190b…ガス吸引装置、 192a…ガス 流供給装置、 192b…ガス流吸引装置、 194…透明シート供給装置、 200···粉体シ ート供給装置、 202…切断装置、 250…平坦化装置、 252···軸、 254···アーム、 25 6…平坦化処理部、 258…磁石部、 260…平坦化装置駆動装置、 270…粉体焼結 加工テーブル、 272···磁石部, 274···電磁石部、 900···レーザ加工装置、 910···レ 一ザ照射装置、 912···レーザ発振機、 914, 916···可動ミラー、 918…集光レンズ、 920···可動チャック、 930···金属管、 940···ステント、 942…中央部、 944···両端部 、 946···ストラット、 L…レーザビーム、 M…粉体、 M…粉体層、 M…焼結層、 M ,  2 chambers, 120b… other gas cylinders, 130 ·························································································································· ... Magnetic part, 140 ... Powder sintering processing table drive device, 142 ... Rotating body, 144 ... Magnetic part, 146 ... Motor, 150a, 150b, 150c, 210a, 210b, 210c, 230 ... Body supply device, 152a, 152b, 152c, 212a, 212b, 212c, 232 ... axis, 154a, 154b, 154c, 214a, 214b, 214c, 234 ... arm, 156a, 156b, 156c, 216a, 216b, 216c, 236 ... Powder storage unit, 158a, 158b, 158c, 218a, 218b, 218c, 238 ... Magnet unit, 160a, 22 Oa, 240 ... Powder feeder drive unit, 162a, 222a, 242, 262 ··· axis, 164a, 224a, 244, 264 ··· arm, 166a, 226a, 246, 266 ··· motor, 168a, 228a, 248, 268 ... magnet part, 170 ... laser beam irradiation device, 172 ... Laser oscillator, 174 ... Two-dimensional scanning mirror, 176 ... Condensing lens, 178 ... Control 180 Heater 182 Infrared heating device 1 84 High frequency heating device 190a ... Gas supply device 190b Gas suction device 192a Gas flow supply device 192b Gas flow suction device 194 Transparent sheet feeding device, 200 ··· Powder sheet feeding device, 202 ··· Cutting device, 250 ··· Planarizing device, 252 ··· Axis, 254 ··· arm, 25 6 ····························· 258 Magnet part, 260 ... Flater driving device, 270 ... Powder sintering processing table, 272 ... Magnet part, 274 ... Electromagnet part, 900 ... Laser processing equipment, 910 ... Laser irradiation 912 ... laser oscillator, 914, 916 ... movable mirror, 918 ... condensing lens, 920 ... movable chuck, 930 ... metal tube, 940 ... stent, 942 ... center, 944 ... Both ends, 946 ... Strut, L ... Laser beam, M ... Powder, M ... Powder layer, M ... Sintered layer, M,
0 1 2 0 1 2
M…粉体シート、 M…粉体を含む液体 M ... powder sheet, M ... liquid containing powder

Claims

請求の範囲 The scope of the claims
[1] 粉体層形成装置を用いて粉体焼結加工テーブル上に粉体層を形成した後に前記 粉体層にエネルギービームを選択的に照射して焼結層を形成する焼結層形成工程 と、前記粉体焼結加工テーブルを所定量下降させる粉体焼結加工テーブル下降ェ 程とを順次繰り返すことにより、前記焼結層を積層して所望の三次元形状を有する構 造体を形成する粉体焼結加工工程を含むことを特徴とするステントの製造方法。  [1] Sintered layer formation in which a powder layer is formed on a powder sintering process table using a powder layer forming apparatus and then the powder layer is selectively irradiated with an energy beam to form a sintered layer A structure having a desired three-dimensional shape is formed by stacking the sintered layers by sequentially repeating a process and a powder sintering processing table lowering step of lowering the powder sintering processing table by a predetermined amount. A method for manufacturing a stent, comprising a powder sintering process to be formed.
[2] 請求項 1に記載のステントの製造方法にぉ 、て、  [2] The method for producing a stent according to claim 1, wherein
前記構造体の形成を気密室の中で行うことを特徴とするステントの製造方法。  A method for manufacturing a stent, wherein the structure is formed in an airtight chamber.
[3] 請求項 2に記載のステントの製造方法において、 [3] In the stent manufacturing method according to claim 2,
前記エネルギービームはレーザビームであって、前記気密室の外に設置したレー ザビーム照射装置力 前記粉体層にレーザビームを照射することを特徴とするステン トの製造方法。  The energy beam is a laser beam, and a laser beam irradiation device installed outside the hermetic chamber is used to irradiate the powder layer with a laser beam.
[4] 請求項 2又は 3に記載のステントの製造方法において、  [4] In the method for producing a stent according to claim 2 or 3,
前記気密室の外に設置した粉体焼結加工テーブル駆動装置を用いて前記粉体焼 結加工テーブルを昇降させることを特徴とするステントの製造方法。  A method for manufacturing a stent, wherein the powder sintering table is moved up and down using a powder sintering table driving device installed outside the hermetic chamber.
[5] 請求項 2〜4の 、ずれかに記載のステントの製造方法にぉ 、て、 [5] In the method for producing a stent according to any one of claims 2 to 4,
前記気密室の外に設置した粉体層形成装置駆動装置を用いて前記粉体層形成装 置を駆動することを特徴とするステントの製造方法。  A method for manufacturing a stent, comprising: driving a powder layer forming apparatus using a powder layer forming apparatus driving device installed outside the hermetic chamber.
[6] 請求項 2〜5の 、ずれかに記載のステントの製造方法にぉ 、て、 [6] In the stent manufacturing method according to any one of claims 2 to 5,
前記気密室の外に設置した加熱装置を用いて加熱しながら前記構造体を形成す ることを特徴とするステントの製造方法。  A method of manufacturing a stent, comprising forming the structure while heating using a heating device installed outside the hermetic chamber.
[7] 請求項 1〜6のいずれかに記載のステントの製造方法において、 [7] In the method for producing a stent according to any one of claims 1 to 6,
前記粉体層の成分を変化させながら焼結層を形成することを特徴とするステントの 製造方法。  A method for producing a stent, comprising forming a sintered layer while changing the components of the powder layer.
[8] 請求項 1〜7のいずれかに記載のステントの製造方法において、  [8] In the method for producing a stent according to any one of claims 1 to 7,
前記粉体焼結加工工程の後に、  After the powder sintering process,
前記構造体の焼結密度を高めるための第 1熱処理工程をさらに含むことを特徴と するステントの製造方法。 The stent manufacturing method further comprising a first heat treatment step for increasing the sintered density of the structure.
[9] 請求項 8に記載のステントの製造方法において、 [9] The method for manufacturing a stent according to claim 8,
前記第 1熱処理工程の後に、  After the first heat treatment step,
前記構造体の熔体化処理を行う第 2熱処理工程をさらに含むことを特徴とするステ ントの製造方法。  The method for producing a stent, further comprising a second heat treatment step for performing a solution treatment of the structure.
[10] 請求項 9に記載のステントの製造方法において、 [10] The method for producing a stent according to claim 9,
前記第 2熱処理工程の後に、  After the second heat treatment step,
前記構造体の時効硬化処理を行う第 3熱処理工程をさらに含むことを特徴とするス テントの製造方法。  The method for manufacturing a stent, further comprising a third heat treatment step of performing an age hardening treatment on the structure.
[11] 請求項 1〜10のいずれかに記載のステントの製造方法において、  [11] In the method for producing a stent according to any one of claims 1 to 10,
前記構造体の表面を研磨する表面研磨工程をさらに含むことを特徴とするステント の製造方法。  A method for producing a stent, further comprising a surface polishing step of polishing the surface of the structure.
[12] 請求項 1〜: L 1の 、ずれかに記載のステントの製造方法にぉ 、て、  [12] Claims 1 to: In the method for producing a stent according to any one of L1,
前記構造体に薬剤を含浸させる薬剤含浸工程をさらに含むことを特徴とするステン トの製造方法。  A method for producing a stent, further comprising a drug impregnation step of impregnating the structure with a drug.
[13] 粉体層形成装置を用いて、榭脂コーティングされた金属粉体からなる粉体層を粉 体固化テーブル上に形成した後に前記粉体層にエネルギービームを選択的に照射 して前記榭脂を熔融させて粉体固化層を形成する粉体固化層形成工程と、前記粉 体固化テーブルを所定量下降させる粉体固化テーブル下降工程とを順次繰り返す ことにより、前記粉体固化層を積層して所望の三次元形状を有する構造体を形成す る粉体固化工程を含むことを特徴とするステントの製造方法。  [13] Using a powder layer forming apparatus, a powder layer made of a resin powder coated metal powder is formed on a powder solidification table, and then the powder layer is selectively irradiated with an energy beam. The powder solidified layer is formed by sequentially repeating a powder solidified layer forming step of melting the resin to form a powder solidified layer and a powder solidifying table lowering step of lowering the powder solidified table by a predetermined amount. A method for producing a stent, comprising a powder solidifying step of forming a structure having a desired three-dimensional shape by laminating.
[14] 粉体層形成装置を用いて、榭脂粉体及び金属粉体からなる粉体層を粉体固化テ 一ブル上に形成した後に前記粉体層にエネルギービームを選択的に照射して前記 榭脂粉体を熔融させて粉体固化層を形成する粉体固化層形成工程と、前記粉体固 化テーブルを所定量下降させる粉体固化テーブル下降工程とを順次繰り返すことに より、前記粉体固化層を積層して所望の三次元形状を有する構造体を形成する粉体 固化工程を含むことを特徴とするステントの製造方法。  [14] Using a powder layer forming apparatus, after forming a powder layer made of a resin powder and a metal powder on a powder solidification table, the powder layer is selectively irradiated with an energy beam. By repeating a powder solidified layer forming step of melting the resin powder to form a powder solidified layer and a powder solidified table lowering step of lowering the powder solidified table by a predetermined amount, the powder is repeated. A method for manufacturing a stent, comprising a powder solidification step of forming a structure having a desired three-dimensional shape by laminating body solidification layers.
[15] 請求項 13又は 14に記載のステントの製造方法において、  [15] The method for producing a stent according to claim 13 or 14,
前記粉体固化工程の後に、脱脂工程をさらに含むことを特徴とするステントの製造 方法。 Production of a stent, further comprising a degreasing step after the powder solidification step Method.
[16] 透光性窓を有する気密室と、  [16] an airtight chamber having a translucent window;
前記気密室の内部に配置され、昇降可能な粉体焼結加工テーブルと、 前記気密室の内部に配置され、前記粉体焼結加工テーブル上に粉体層を形成す る粉体層形成装置と、  A powder sintering processing table arranged inside the hermetic chamber and capable of moving up and down, and a powder layer forming device arranged inside the airtight chamber and forming a powder layer on the powder sintering processing table When,
前記気密室の外部に配置され、前記透光性窓を介して前記粉体層にレーザビーム を照射するレーザビーム照射装置とを備えることを特徴とする粉体焼結加工装置。  A powder sintering apparatus, comprising: a laser beam irradiation device that is disposed outside the hermetic chamber and irradiates the powder layer with a laser beam through the translucent window.
[17] 請求項 16に記載の粉体焼結加工装置において、 [17] In the powder sintering apparatus according to claim 16,
前記レーザビーム照射装置は、 UVレーザビーム照射装置であることを特徴とする 粉体焼結加工装置。  The laser beam irradiation apparatus is a UV laser beam irradiation apparatus.
[18] 請求項 16又は 17に記載の粉体焼結カ卩ェ装置において、 [18] The powder sintering apparatus according to claim 16 or 17,
前記透光性窓は、曲面部を有することを特徴とする粉体焼結加工装置。  The translucent window has a curved surface part, and is a powder sintering apparatus characterized by the above-mentioned.
[19] 請求項 16〜18のいずれかに記載の粉体焼結カ卩ェ装置において、 [19] In the powder sintering apparatus according to any one of claims 16 to 18,
前記粉体層形成装置は、前記粉体焼結加工テーブル上に粉体を供給する機能を 有する粉体供給装置からなることを特徴とする粉体焼結加工装置。  The powder layer forming apparatus comprises a powder supply apparatus having a function of supplying powder onto the powder sintering process table.
[20] 請求項 19に記載の粉体焼結カ卩ェ装置において、 [20] In the powder sintering apparatus according to claim 19,
前記粉体供給装置として、複数の粉体供給装置を有することを特徴とする粉体焼 結加工装置。  A powder sintering apparatus comprising a plurality of powder supply apparatuses as the powder supply apparatus.
[21] 請求項 19又は 20に記載の粉体焼結カ卩ェ装置において、  [21] In the powder sintering apparatus according to claim 19 or 20,
前記粉体に振動を与える振動供給手段をさらに備えることを特徴とする粉体焼結 加工装置。  A powder sintering apparatus, further comprising vibration supply means for applying vibration to the powder.
[22] 請求項 16〜18のいずれかに記載の粉体焼結カ卩ェ装置において、  [22] In the powder sintering apparatus according to any one of claims 16 to 18,
前記粉体層形成装置は、粉体が固定された粉体シートを前記粉体焼結加工テー ブルに供給する 1又は複数の粉体シート供給装置からなることを特徴とする粉体焼結 加工装置。  The powder layer forming apparatus comprises one or a plurality of powder sheet supply devices for supplying a powder sheet on which powder is fixed to the powder sintering table. apparatus.
[23] 請求項 16〜18のいずれかに記載の粉体焼結カ卩ェ装置において、  [23] The powder sintering apparatus according to any one of claims 16 to 18,
前記粉体層形成装置は、粉体を含む液体を前記粉体焼結加工テーブルに供給す る 1又は複数の粉体供給装置からなることを特徴とする粉体焼結加工装置。 The powder layer forming apparatus comprises one or a plurality of powder supply devices for supplying a liquid containing powder to the powder sintering processing table.
[24] 請求項 16〜23のいずれかに記載の粉体焼結カ卩ェ装置において、 前記気密室の外部に配置され、前記粉体焼結加工テーブルを昇降させる粉体焼 結加工テーブル駆動装置をさらに備えることを特徴とする粉体焼結加工装置。 24. A powder sintering table drive according to any one of claims 16 to 23, wherein the powder sintering table is disposed outside the hermetic chamber and moves up and down the powder sintering table. A powder sintering apparatus, further comprising an apparatus.
[25] 請求項 16〜24のいずれかに記載の粉体焼結カ卩ェ装置において、 [25] In the powder sintering apparatus according to any one of claims 16 to 24,
前記気密室の外部に配置され、前記粉体層形成装置を駆動する粉体層形成装置 駆動装置をさらに備えることを特徴とする粉体焼結加工装置。  A powder sintering apparatus, further comprising: a powder layer forming device driving device disposed outside the hermetic chamber and driving the powder layer forming device.
[26] 請求項 16〜25のいずれかに記載の粉体焼結カ卩ェ装置において、 [26] The powder sintering apparatus according to any one of claims 16 to 25,
前記気密室の外部に配置され、構造体を加熱する加熱装置をさらに備えることを特 徴とする粉体焼結加工装置。  A powder sintering apparatus, further comprising a heating device that is disposed outside the hermetic chamber and heats the structure.
[27] 請求項 16〜26のいずれかに記載の粉体焼結カ卩ェ装置において、 [27] In the powder sintering apparatus according to any one of claims 16 to 26,
前記粉体層からの粉体の飛沫や粉体の蒸発物を遮蔽する遮蔽手段をさらに備える ことを特徴とする粉体焼結加工装置。  A powder sintering apparatus, further comprising shielding means for shielding the powder droplets from the powder layer and the evaporated powder.
[28] 請求項 27に記載の粉体焼結加工装置にぉ 、て、 [28] In the powder sintering apparatus according to claim 27,
前記遮蔽手段は、前記透光性窓にガスを吹き付けるガス供給装置と、前記透光性 窓に対して吹き付けられたガスを吸弓 Iするガス吸弓 I装置とを有することを特徴とする 粉体焼結加工装置。  The shielding means includes a gas supply device that blows gas onto the translucent window, and a gas arch I device that absorbs gas I blown against the translucent window. Body sintering machine.
[29] 請求項 27に記載の粉体焼結加工装置にお 、て、 [29] In the powder sintering apparatus according to claim 27,
前記遮蔽手段は、前記粉体焼結加工テーブルと前記透光性窓との間にガスの流 れを導入するガス流供給装置と、前記ガス流供給装置力 のガスの流れを吸引する ガス流吸引装置とを有することを特徴とする粉体焼結加工装置。  The shielding means includes a gas flow supply device for introducing a gas flow between the powder sintering processing table and the translucent window, and a gas flow for sucking the gas flow of the gas flow supply device force. A powder sintering apparatus comprising a suction device.
[30] 請求項 27に記載の粉体焼結加工装置にお 、て、 [30] In the powder sintering apparatus according to claim 27,
前記遮蔽手段は、前記粉体焼結加工テーブルと前記透光性窓との間に連続的に 又は間欠的に透明フィルムを送り込む透明フィルム供給装置を有することを特徴とす る粉体焼結加工装置。  The shielding means has a transparent film supply device for continuously or intermittently feeding a transparent film between the powder sintering processing table and the translucent window. apparatus.
PCT/JP2005/013266 2005-07-19 2005-07-19 Process for producing stent and powder sintering apparatus WO2007010598A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/013266 WO2007010598A1 (en) 2005-07-19 2005-07-19 Process for producing stent and powder sintering apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/013266 WO2007010598A1 (en) 2005-07-19 2005-07-19 Process for producing stent and powder sintering apparatus

Publications (1)

Publication Number Publication Date
WO2007010598A1 true WO2007010598A1 (en) 2007-01-25

Family

ID=37668487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013266 WO2007010598A1 (en) 2005-07-19 2005-07-19 Process for producing stent and powder sintering apparatus

Country Status (1)

Country Link
WO (1) WO2007010598A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015081380A (en) * 2013-10-24 2015-04-27 株式会社リコー Method and apparatus for molding three-dimensional structure, and container for molding material used for apparatus for molding three-dimensional structure
WO2015128139A1 (en) * 2014-02-26 2015-09-03 Gebr. Brasseler Gmbh & Co. Kg Method for producing a medical instrument by way of an additive method
CN105026075A (en) * 2013-02-01 2015-11-04 特拉华空气喷射火箭达因公司 Additive manufacturing for elevated-temperature ductility and stress rupture life
JP2017075367A (en) * 2015-10-15 2017-04-20 セイコーエプソン株式会社 Method and apparatus for manufacturing three-dimensional molded article and three-dimensional molded article
JP2018080382A (en) * 2016-11-14 2018-05-24 ツェーエル・シュッツレヒツフェアヴァルトゥングス・ゲゼルシャフト・ミト・べシュレンクテル・ハフツング Device for additionally producing three-dimentional object
JP2018109237A (en) * 2013-10-24 2018-07-12 株式会社リコー Method and apparatus for molding a three-dimensional structure
JP2019502825A (en) * 2015-12-28 2019-01-31 マセソン トライ−ガス, インコーポレイテッド Additive manufacturing using reactive fluid and products made using it
WO2019189461A1 (en) * 2018-03-30 2019-10-03 株式会社フジクラ Irradiation device, metal molding device, metal molding system, irradiation method, and method for manufacturing metal molded object
JP2020070449A (en) * 2018-10-29 2020-05-07 トヨタ自動車株式会社 Method for manufacturing lamination-molded article
JP2020076150A (en) * 2019-10-21 2020-05-21 株式会社リコー Molding method for three-dimensional structure and molding device for three-dimensional structure
WO2020111231A1 (en) * 2018-11-29 2020-06-04 日立金属株式会社 Manufacturing method for additively manufactured body and manufacturing device for additively manufactured body
WO2024126952A1 (en) * 2022-12-14 2024-06-20 Addup Device and method for additive manufacturing with a protective gas flow for protecting an optical access window

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2620353B2 (en) * 1986-10-17 1997-06-11 ボード、オブ、リージェンツ、ザ、ユニバーシティー、オブ、テキサス、システム Method of manufacturing parts by selective sintering
JPH10211658A (en) * 1997-01-31 1998-08-11 Toyota Motor Corp Powdery particle laminate shaping method and apparatus therefor
JP2001150557A (en) * 1999-11-25 2001-06-05 Matsushita Electric Works Ltd Method for manufacturing three-dimensionally shaped object
JP2001190688A (en) * 2000-01-07 2001-07-17 Yuichi Mori Stent
JP2001522326A (en) * 1997-04-30 2001-11-13 ロートン,ジョン,エイ. A method for forming a three-dimensional object using homogenization of components
JP2004143581A (en) * 2002-08-27 2004-05-20 Matsushita Electric Works Ltd Manufacturing device of three-dimensionally shaped article
JP2004232043A (en) * 2003-01-31 2004-08-19 Media Plus Inc Layering shaping method
JP6098690B2 (en) * 2015-10-06 2017-03-22 株式会社ニコン Lens barrel and camera body

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2620353B2 (en) * 1986-10-17 1997-06-11 ボード、オブ、リージェンツ、ザ、ユニバーシティー、オブ、テキサス、システム Method of manufacturing parts by selective sintering
JPH10211658A (en) * 1997-01-31 1998-08-11 Toyota Motor Corp Powdery particle laminate shaping method and apparatus therefor
JP2001522326A (en) * 1997-04-30 2001-11-13 ロートン,ジョン,エイ. A method for forming a three-dimensional object using homogenization of components
JP2001150557A (en) * 1999-11-25 2001-06-05 Matsushita Electric Works Ltd Method for manufacturing three-dimensionally shaped object
JP2001190688A (en) * 2000-01-07 2001-07-17 Yuichi Mori Stent
JP2004143581A (en) * 2002-08-27 2004-05-20 Matsushita Electric Works Ltd Manufacturing device of three-dimensionally shaped article
JP2004232043A (en) * 2003-01-31 2004-08-19 Media Plus Inc Layering shaping method
JP6098690B2 (en) * 2015-10-06 2017-03-22 株式会社ニコン Lens barrel and camera body

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105026075A (en) * 2013-02-01 2015-11-04 特拉华空气喷射火箭达因公司 Additive manufacturing for elevated-temperature ductility and stress rupture life
JP2016509632A (en) * 2013-02-01 2016-03-31 エアロジェット ロケットダイン オブ ディーイー,インコーポレイテッド Additive manufacturing for hot ductility and stress rupture life
CN105026075B (en) * 2013-02-01 2018-04-17 特拉华空气喷射火箭达因公司 For the increasing material manufacturing of high-temperature ductility and stress breaking life
JP2015081380A (en) * 2013-10-24 2015-04-27 株式会社リコー Method and apparatus for molding three-dimensional structure, and container for molding material used for apparatus for molding three-dimensional structure
JP2018109237A (en) * 2013-10-24 2018-07-12 株式会社リコー Method and apparatus for molding a three-dimensional structure
US10464133B2 (en) 2014-02-26 2019-11-05 Gebr. Brasseler Gmbh & Co. Kg Method for producing a medical instrument by way of an additive method
WO2015128139A1 (en) * 2014-02-26 2015-09-03 Gebr. Brasseler Gmbh & Co. Kg Method for producing a medical instrument by way of an additive method
JP2017075367A (en) * 2015-10-15 2017-04-20 セイコーエプソン株式会社 Method and apparatus for manufacturing three-dimensional molded article and three-dimensional molded article
JP2019502825A (en) * 2015-12-28 2019-01-31 マセソン トライ−ガス, インコーポレイテッド Additive manufacturing using reactive fluid and products made using it
US10882113B2 (en) 2016-11-14 2021-01-05 Concept Laser Gmbh Apparatus for additive manufacturing of three-dimensional objects
JP2018080382A (en) * 2016-11-14 2018-05-24 ツェーエル・シュッツレヒツフェアヴァルトゥングス・ゲゼルシャフト・ミト・べシュレンクテル・ハフツング Device for additionally producing three-dimentional object
US11633791B2 (en) 2016-11-14 2023-04-25 Concept Laser Gmbh Apparatus for additive manufacturing of three-dimensional objects
JP2019178409A (en) * 2018-03-30 2019-10-17 株式会社フジクラ Irradiation apparatus, metal shaping apparatus, metal shaping system, irradiation method, and method for producing metal shaped article
WO2019189461A1 (en) * 2018-03-30 2019-10-03 株式会社フジクラ Irradiation device, metal molding device, metal molding system, irradiation method, and method for manufacturing metal molded object
JP2020070449A (en) * 2018-10-29 2020-05-07 トヨタ自動車株式会社 Method for manufacturing lamination-molded article
JP7031557B2 (en) 2018-10-29 2022-03-08 トヨタ自動車株式会社 Manufacturing method of laminated model
WO2020111231A1 (en) * 2018-11-29 2020-06-04 日立金属株式会社 Manufacturing method for additively manufactured body and manufacturing device for additively manufactured body
JPWO2020111231A1 (en) * 2018-11-29 2021-09-02 日立金属株式会社 Manufacturing method of additional manufacturing body and manufacturing equipment of additional manufacturing body
JP7004088B2 (en) 2018-11-29 2022-02-04 日立金属株式会社 Manufacturing method of addition manufacturing body and manufacturing equipment of addition manufacturing body
JP2020076150A (en) * 2019-10-21 2020-05-21 株式会社リコー Molding method for three-dimensional structure and molding device for three-dimensional structure
WO2024126952A1 (en) * 2022-12-14 2024-06-20 Addup Device and method for additive manufacturing with a protective gas flow for protecting an optical access window
FR3143416A1 (en) * 2022-12-14 2024-06-21 Addup Device and method for additive manufacturing with a gas flow for protecting an optical access window.

Similar Documents

Publication Publication Date Title
WO2007010598A1 (en) Process for producing stent and powder sintering apparatus
US20210114304A1 (en) Method for treatment of elements obtained by an additive manufacturing process
Choy et al. In vitro and in vivo performance of bioactive Ti6Al4V/TiC/HA implants fabricated by a rapid microwave sintering technique
Nishimura et al. Discrete deposition of hydroxyapatite nanoparticles on a titanium implant with predisposing substrate microtopography accelerated osseointegration
JP2017110294A (en) Raw material powder processing method, raw material powder processing device and manufacturing method of molding
JP2011052289A (en) Method for producing implant made of titanium alloy
US20170165748A1 (en) Method and apparatus for producing powder and method for manufacturing shaped object
Devgan et al. Surface modification of β-type titanium with multi-walled CNTs/μ-HAp powder mixed Electro Discharge Treatment process
Zhao et al. Macro-micron-nano-featured surface topography of Ti-6Al-4V alloy for biomedical applications
CN105256160B (en) A kind of 3D printing method of ceramic base nickel alloy composite
Aivazi et al. The evaluation of prepared microgroove pattern by femtosecond laser on alumina-zirconia nano-composite for endosseous dental implant application
CN106267342A (en) A kind of dentistry implant and preparation method thereof
US9074267B2 (en) Rapid fabrication of porous metal-based biomaterial by microwave sintering
CN113652576A (en) Biomedical beta titanium alloy and preparation method thereof
Um et al. Recent advances in selective laser–material interaction for biomedical device applications
JP2003253424A (en) Hydroxyapatite film coating material and manufacturing method thereof
CN112458514A (en) Method for generating nanotube array oxide film on surface of medical porous titanium or titanium alloy
Liang et al. Preparation of porous microstructures on NiTi alloy surface with femtosecond laser pulses
RU2620428C1 (en) Method of obtaining coating on implants from titanium and its alloys
US20060191781A1 (en) Apparatus and method for manufacturing nono carbon
Duan et al. Fabrication and in vitro bioactivity of robust hydroxyapatite coating on porous titanium implant
CN110551999B (en) Method for loading iodine on medical titanium alloy equipment
KR102115225B1 (en) One-step manufacturing method of laminated molding porous component
Belgin Paul et al. Extrusion based 3D-printing of bioceramic structures-A review
JPH03146603A (en) Sintering method for adding temperature gradation and device thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05766405

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP