JP2001150557A - Method for manufacturing three-dimensionally shaped object - Google Patents

Method for manufacturing three-dimensionally shaped object

Info

Publication number
JP2001150557A
JP2001150557A JP33517799A JP33517799A JP2001150557A JP 2001150557 A JP2001150557 A JP 2001150557A JP 33517799 A JP33517799 A JP 33517799A JP 33517799 A JP33517799 A JP 33517799A JP 2001150557 A JP2001150557 A JP 2001150557A
Authority
JP
Japan
Prior art keywords
modeling
powder material
transfer
supply
transfer member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33517799A
Other languages
Japanese (ja)
Other versions
JP3557970B2 (en
Inventor
Satoshi Abe
諭 阿部
Seizo Machida
精造 待田
Masataka Takenami
正孝 武南
Noboru Urata
昇 浦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP33517799A priority Critical patent/JP3557970B2/en
Publication of JP2001150557A publication Critical patent/JP2001150557A/en
Application granted granted Critical
Publication of JP3557970B2 publication Critical patent/JP3557970B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To settle the intrisic points at issue of technology and promote the operating efficiency and further, shorten the shaping time, in a method for manufacturing a three-dimensionally shaped object by laminating laser-cured layers. SOLUTION: This method for manufacturing a three-dimensionally shaped object comprises a process (a) to arrange a transfer member 30 which is movable from the outside of a shaping region 20 to a space above, at a supply initiating position outside of the shaping region 20, a process (b) to supply a powdery material P onto the transfer path of the transfer member 30 outside of the shaping region 20, a process (c) to move the transfer member 30 and transfer the powdery material P to the shaping region 20 from the outside of the shaping region 20 to accumulate the powdery material P in layers and a process (d) to irradiate the powdery material P transferred to the shaping region 20 and accumulated in layers with a light beam L and thereby form a cured layer M. In addition, the processes (a) and (b) are performed during the process (d).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、三次元形状造形物
の製造方法に関し、詳しくは、光ビームを利用して無機
質または有機質の粉末を層状に連続的に硬化させて製造
する三次元形状造形物の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a three-dimensionally shaped object, and more particularly, to a three-dimensionally shaped object manufactured by continuously curing an inorganic or organic powder in a layer using a light beam. The present invention relates to a method for manufacturing a product.

【0002】[0002]

【従来の技術】無機質粉末(金属)や有機質粉末(樹
脂)に対して光ビーム(指向性エネルギービーム、レー
ザ)を照射して硬化させ、硬化層を積層して三次元形状
造形物を製造する方法に関する従来技術が、特許第26
20353号公報に示されている。
2. Description of the Related Art An inorganic powder (metal) or an organic powder (resin) is irradiated with a light beam (directional energy beam, laser) to be cured, and a cured layer is laminated to produce a three-dimensional molded article. Prior art relating to the method is disclosed in US Pat.
No. 20,353.

【0003】通常、上記方法により製造される部品の設
計は、三次元CADによって行われる。設計された三次
元CADモデルを所望の層厚みにスライスすることによ
り生成される各層の断面形状データをもとに、各層のレ
ーザの経路が決定され、一層分の粉末が焼結(硬化)さ
れると同時に、直前の層に対しても焼結(接合)され、
連続して積み重ねることにより部品形状を製造する方法
である。
[0003] Usually, the design of a part manufactured by the above method is performed by three-dimensional CAD. Based on the cross-sectional shape data of each layer generated by slicing the designed three-dimensional CAD model to a desired layer thickness, the laser path of each layer is determined, and one layer of powder is sintered (hardened). At the same time, the previous layer is sintered (joined),
This is a method of manufacturing a component shape by continuously stacking.

【0004】この方法では、三次元CADにより設計さ
れた形状が、従来このような三次元形状造形物の製造に
使用されていたCAM装置がなくても製造可能である。
また、従来の切削加工等の工法に比べて、迅速に所望の
部品が製造できる点で大きなメリットがある。
According to this method, a shape designed by three-dimensional CAD can be manufactured without a CAM device conventionally used for manufacturing such a three-dimensionally shaped object.
In addition, there is a great advantage in that a desired part can be manufactured quickly as compared with a conventional method such as cutting.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前記方
法で製造された三次元形状造形物は、硬化させたい粉末
材料をレーザビーム指向面に分与する際の材料供給機構
の運動が往復運動のみであり、造形領域上部を通過する
ことになるため、光ビーム照射中には材料供給機構は待
機しておき、照射終了後に一旦は元に位置に復帰したあ
と、粉末供給動作を行う。そのため、材料供給工程時間
が長くなり、それに伴い造形時間も長くなるという問題
がある。
However, in the three-dimensionally shaped object manufactured by the above-described method, the movement of the material supply mechanism when distributing the powder material to be hardened to the laser beam directing surface is only a reciprocating movement. Since the material supply mechanism passes through the upper part of the modeling area, the material supply mechanism is kept on standby during the light beam irradiation, and after the irradiation is completed, the material supply mechanism temporarily returns to the original position, and then performs the powder supply operation. For this reason, there is a problem that the material supply process time becomes longer, and accordingly, the molding time becomes longer.

【0006】本発明が解決しようとする課題は、前記し
たレーザ光による硬化層を積層して三次元形状造形物を
製造する方法において、従来技術が有する問題点を解消
し、作業能率を向上させて、造形時間を短縮することで
ある。
An object of the present invention is to provide a method of manufacturing a three-dimensionally shaped object by laminating a cured layer by laser light, which solves the problems of the prior art and improves work efficiency. To shorten the molding time.

【0007】[0007]

【課題を解決するための手段】本発明にかかる三次元形
状造形物の製造方法は、造形領域において、無機質もし
くは有機質の粉末材料を層状に堆積させ光ビームを照射
して硬化層を形成することを繰り返して三次元形状造形
物を製造する方法において、前記造形領域の外側から上
方へと移動する移送部材を造形領域の外側の供給開始位
置に配置させる工程(a) と、造形領域の外側で移送部材
の移動経路上に前記粉末材料を供給する工程(b) と、移
送部材を移動させ、前記粉末材料を造形領域の外側から
造形領域へと移送して層状に堆積させる工程(c) と、造
形領域に移送され層状に堆積した粉末材料に光ビームを
照射して硬化層を形成する工程(d) とを含み、前記工程
(a) および工程(b) が、前記工程(d) の間に行われる。
A method of manufacturing a three-dimensionally shaped object according to the present invention comprises forming a hardened layer by depositing an inorganic or organic powder material in a layered form and irradiating it with a light beam in a forming area. In the method of manufacturing a three-dimensionally shaped object by repeating the process, a step (a) of disposing a transfer member moving upward from outside the modeling region at a supply start position outside the modeling region, and outside the modeling region. (B) supplying the powder material on the movement path of the transfer member, and (c) moving the transfer member to transfer the powder material from outside the modeling region to the modeling region and deposit it in a layered manner. Forming a hardened layer by irradiating a light beam to the powder material transferred to the modeling region and deposited in a layered manner,
(a) and step (b) are performed during the step (d).

【0008】〔その他の発明〕複数の移送部材を順次用
いて、各層の粉末材料を造形領域へと移送することがで
きる。前記工程(a) が、前記移送部材を、前記工程(b)
に使用したあと、前記工程(c) における光ビームの照射
領域を通過させずに、前記供給開始位置に復帰させるこ
とができる。
[Other Inventions] The powder material of each layer can be transferred to the modeling area by using a plurality of transfer members in sequence. The step (a) is the step of transferring the transfer member to the step (b).
After having been used for the above, it is possible to return to the supply start position without passing through the irradiation area of the light beam in the step (c).

【0009】前記移送部材を、前記工程(c) における移
動面と同じ平面上でループ状に旋回移動させることがで
きる。前記移送部材を、前記造形領域の下方を通過させ
ることができる。前記移送部材の供給開始位置、前記粉
末材料の供給位置、および、前記造形領域を同じ円周上
に配置し、移送部材を上記円周に沿って旋回移動させ、
前記工程(a) が、工程(c) における移送部材の移動と同
じ方向に移送部材を旋回させて、前記供給開始位置に復
帰させることができる。
The transfer member can be turned in a loop on the same plane as the movement surface in the step (c). The transfer member can pass below the modeling area. The supply start position of the transfer member, the supply position of the powder material, and the modeling region are arranged on the same circumference, and the transfer member is swirled along the circumference,
In the step (a), the transfer member can be swung in the same direction as the movement of the transfer member in the step (c) to return to the supply start position.

【0010】前記円周上の複数個所に造形領域を配置し
ておくことができる。複数の移送部材を、同じ移動経路
上を間隔をあけて順次移動させることができる。複数の
移送部材を等間隔で配置しておくことができる。移送部
材と前記工程(c) で移送部材を直線移動させる駆動機構
とを一緒に、前記移送部材が造形領域から造形領域の側
方に後退し造形領域に沿って前記供給開始位置の側方に
移動し供給開始位置に復帰するように移動させることが
できる。
[0010] A modeling region can be arranged at a plurality of positions on the circumference. A plurality of transfer members can be sequentially moved on the same movement path at intervals. A plurality of transfer members can be arranged at equal intervals. Together with the transfer member and a drive mechanism for linearly moving the transfer member in the step (c), the transfer member retreats from the modeling region to the side of the modeling region and moves along the modeling region to the side of the supply start position. It can be moved so as to return to the supply start position.

【0011】移送部材を、前記造形領域の端部で前記工
程(c) における移送部材の移動方向と平行になるように
折り畳み、造形領域の側方に沿って前記供給開始位置の
側方まで移動させ、前記折り畳み状態から元の状態に戻
して供給開始位置に配置することができる。前記工程
(b) が、前記供給開始位置に配置された移送部材と造形
領域との間の供給面に、1層分の粉末材料を供給するこ
とができる。
The transfer member is folded at the end of the shaping area so as to be parallel to the moving direction of the transfer member in the step (c), and is moved along the side of the shaping area to the side of the supply start position. Then, it can be returned from the folded state to the original state and arranged at the supply start position. The process
(b) can supply one layer of the powder material to the supply surface between the transfer member disposed at the supply start position and the modeling region.

【0012】前記1層分の粉末材料が収容された複数台
のコンテナを、前記供給面の上方に循環移動させ、各コ
ンテナから供給面へ順次粉末材料を供給することができ
る。前記工程(b) が、前記供給開始位置に配置された移
送部材と造形領域との間の供給面に、複数層分の粉末材
料を供給し、前記工程(c) が、移送部材を造形領域から
造形領域の外側に設けられた載置面まで移動させ、造形
領域には1層分の粉末材料だけを層状に堆積させ、残り
の粉末材料を載置面に移送し、その後、移送部材を載置
面に移送された粉末材料の上方を通過させて粉末材料の
外側に移送部材を配置し、次回の工程(c) は、移送部材
を元の方向に移動させて、載置面に移送された粉末材料
を移送部材で造形領域へと移送して層状に堆積させるこ
とができる。
A plurality of containers accommodating the one layer of the powder material can be circulated and moved above the supply surface, and the powder material can be sequentially supplied from each container to the supply surface. The step (b) supplies the powder material for a plurality of layers to a supply surface between the transfer member disposed at the supply start position and the modeling region, and the step (c) includes changing the transfer member to the modeling region. To the mounting surface provided outside the modeling region, and only one layer of powder material is deposited in a layer on the modeling region, and the remaining powder material is transferred to the mounting surface. The transfer member is placed outside the powder material by passing above the powder material transferred to the mounting surface, and in the next step (c), the transfer member is moved in the original direction and transferred to the mounting surface. The transferred powder material can be transferred to the modeling area by the transfer member and deposited in a layered manner.

【0013】前記工程(a) が、前記移送部材として、造
形領域と同形状の開口部が移動方向に沿って間隔をあけ
て多数配置された移送シートを用い、移送シートの一つ
の開口部を造形領域の外側に配置し、前記工程(b) が、
造形領域の外側で移送シートの開口部内に前記粉末材料
を供給し、前記工程(c) が、前記移送シートの移動さ
せ、開口部内の粉末材料を造形領域の外側から造形領域
へと移送して層状に堆積させることができる。
[0013] In the step (a), as the transfer member, a transfer sheet having a large number of openings having the same shape as that of the modeling region is arranged at intervals along the moving direction, and one opening of the transfer sheet is closed. Placed outside the modeling area, said step (b),
Supplying the powder material into the opening of the transfer sheet outside the modeling region, and in the step (c), moving the transfer sheet and transferring the powder material in the opening from the outside of the modeling region to the modeling region; They can be deposited in layers.

【0014】前記工程(a) および工程(b) が、移送部材
として、前記粉末材料が収容され下面に造形領域と同形
状の供給口を有する移送容器を用い、移送容器を造形領
域の外側に配置された待機面上に配置し、前記工程(c)
が、移送容器を造形領域の上に移動させ、移送容器の供
給口から粉末材料を造形領域に落下させたあと、移送容
器を造形領域の外側に移動させることで、造形領域に粉
末材料を層状に堆積させることができる。
In the steps (a) and (b), a transfer container containing the powder material and having a supply port having the same shape as the modeling region is used as a transfer member, and the transfer container is disposed outside the modeling region. Placed on the placed standby surface, the step (c)
Moves the transfer container over the modeling region, drops the powder material from the supply port of the transfer container to the modeling region, and then moves the transfer container to the outside of the modeling region, thereby layering the powder material on the modeling region. Can be deposited.

【0015】[0015]

【発明の実施の形態】〔基本工程〕図1(a) 〜(d) は、
本発明の実施形態となる三次元形状造形物の製造方法を
段階的に示している。図1(a) に示すように、造形に用
いる粉末材料Pが収容されたタンク状の供給部10と、
供給部10に隣接して造形領域を構成する同様のタンク
状をなす造形部20とを備えている。供給部10および
造形部20は同じ平面形状をなしている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS [Basic Process] FIGS. 1 (a) to 1 (d)
1 shows a step-by-step method of manufacturing a three-dimensionally shaped object according to an embodiment of the present invention. As shown in FIG. 1 (a), a tank-shaped supply unit 10 containing a powder material P used for modeling is provided.
A shaping section 20 having a similar tank shape and forming a shaping area adjacent to the supply section 10; The supply unit 10 and the modeling unit 20 have the same planar shape.

【0016】供給部10の底面12は昇降自在である。
造形部20の底面24も昇降自在である。造形部20の
底面24の上には板状の造形台22が配置されており、
造形台22の上に粉末材料Pを光硬化させてなる硬化層
Mが順次積み重ねられて造形物が製造される。移送ブレ
ード30は、供給部10および造形部20の内幅よりも
長い細幅の板状をなし、供給部10の外側から供給部1
0および造形部20の上方を通過して造形部20の外側
まで水平移動する。
The bottom surface 12 of the supply unit 10 is movable up and down.
The bottom surface 24 of the modeling part 20 is also movable up and down. On the bottom surface 24 of the modeling unit 20, a plate-shaped modeling table 22 is arranged,
Cured layers M obtained by photo-curing the powder material P are sequentially stacked on the molding table 22 to produce a molded article. The transfer blade 30 has a narrow plate shape longer than the inner widths of the supply unit 10 and the modeling unit 20, and is provided from the outside of the supply unit 10 to the supply unit 1.
0, and horizontally moves to the outside of the modeling portion 20 through the upper portion of the modeling portion 20.

【0017】作業の開始時には、移送ブレード30は、
供給部10の外側に配置される。この位置が待機位置あ
るいは移動開始位置となる。造形部20では、先に形成
され積み重ねられた硬化層Mの上面を造形部20の上端
よりも少し下げている。供給部10では、供給部10の
上端よりも少し高い位置まで粉末材料Pが配置されてい
る。
At the start of the operation, the transfer blade 30
It is arranged outside the supply unit 10. This position is the standby position or the movement start position. In the modeling part 20, the upper surface of the hardened layer M formed and stacked first is slightly lower than the upper end of the modeling part 20. In the supply unit 10, the powder material P is disposed to a position slightly higher than the upper end of the supply unit 10.

【0018】この状態で、移送ブレード30を供給部1
0から造形部20のほうに水平移動させる。図1(b) に
示すように、供給部10の上端よりも高い部分の粉末材
料Pが、移送ブレード30に押し動かされて、造形部2
0の内部に移送される。移送ブレード30の下端で均さ
れるので、造形部20に供給された粉末材料Pは、薄い
層状に堆積する。造形部20に粉末材料Pを供給し終え
た移送ブレード30は、造形部20の外側まで移動す
る。
In this state, the transfer blade 30 is connected to the supply unit 1.
It is moved horizontally from 0 to the modeling part 20. As shown in FIG. 1B, a portion of the powder material P higher than the upper end of the supply unit 10 is pushed and moved by the transfer blade 30, and
0. Since the powder material P is leveled at the lower end of the transfer blade 30, the powder material P supplied to the modeling unit 20 is deposited in a thin layer. The transfer blade 30 that has finished supplying the powder material P to the modeling unit 20 moves to the outside of the modeling unit 20.

【0019】図1(c) に示すように、造形部20の上面
に光ビームLを所定のパターン状に照射することで、粉
末材料Pを硬化させ、新たな硬化層Mを形成する。この
光照射工程の間に、次回の作業に用いる移送ブレード3
0を、供給部10の外側の待機位置に用意しておく。こ
こで用意する移送ブレード30は、先に使用した移送ブ
レード30を戻してきたものであってもよいし、新たに
別の移送ブレード30を用意してもよい。先に使用した
移送ブレード30を戻す際には、移送ブレード30が、
光ビームLの照射領域に入らないようにして元の位置ま
で移動させる。
As shown in FIG. 1 (c), the powder material P is cured by irradiating the upper surface of the modeling portion 20 with a light beam L in a predetermined pattern, and a new cured layer M is formed. During this light irradiation step, the transfer blade 3 used for the next operation is
0 is prepared at a standby position outside the supply unit 10. The transfer blade 30 prepared here may be the one that has returned the previously used transfer blade 30 or another transfer blade 30 may be newly prepared. When returning the previously used transfer blade 30, the transfer blade 30
The light beam L is moved to the original position without entering the irradiation area.

【0020】供給部10では、底面12を上昇させて、
次回に造形部20に供給するための粉末材料Pを用意し
ておく。図1(d) に示すように、光ビームLの照射が完
了したあと、造形部20の底面24を下降させて、次回
に粉末材料Pが供給される空間を設けておく。上記のよ
うな工程を繰り返すことで、造形部20の成形台22の
上には、複数層の硬化層Mが積み重ねられ、所望の三次
元形状を有する造形物が得られることになる。
In the supply unit 10, the bottom surface 12 is raised,
The powder material P to be supplied to the modeling unit 20 next time is prepared. As shown in FIG. 1D, after the irradiation of the light beam L is completed, the bottom surface 24 of the modeling unit 20 is lowered to provide a space for supplying the powder material P next time. By repeating the above steps, a plurality of hardened layers M are stacked on the molding table 22 of the modeling section 20, and a molded article having a desired three-dimensional shape is obtained.

【0021】上記方法において、粉末材料Pとしては、
例えば平均粒径約20μmの球形をなす鉄粉が使用でき
る。光ビームLとしては、例えばYAGレーザが使用で
きる。硬化層Mの1層分の厚みは、例えば0.1mmとす
る。移送ブレード30には、鉄製の平板が使用される。
上記実施形態では、光照射工程の間に、移送ブレード3
0の供給開始位置への配置および次回使用する粉末材料
Pの配置が行われるので、光照射工程が完了したあと、
直ぐに移送ブレード30の移動による造形部20への粉
末材料Pの供給が開始できる。
In the above method, the powder material P is
For example, spherical iron powder having an average particle size of about 20 μm can be used. As the light beam L, for example, a YAG laser can be used. The thickness of one layer of the hardened layer M is, for example, 0.1 mm. For the transfer blade 30, a flat plate made of iron is used.
In the above embodiment, during the light irradiation step, the transfer blade 3
Since the placement of the powder material P to be used next time and the placement of the powder material P to be used next time are performed, after the light irradiation step is completed,
The supply of the powder material P to the modeling part 20 by the movement of the transfer blade 30 can be started immediately.

【0022】その結果、造形時間が短縮化され、作業が
効率化する。 〔複数の移送ブレード〕図2に示す実施形態は、前記実
施形態と基本的な製造工程は共通するが、移送ブレード
を複数用いる点が異なる。図2(a) に示すように、直方
体のタンク状をなす供給部10と造形部20とが並んで
配置されている。供給部10と造形部20の下方には、
それぞれの底面12、24〔図2(b) 参照〕を昇降作動
させるための駆動モータ16、26を備える。
As a result, the molding time is shortened, and the work becomes more efficient. [A Plurality of Transfer Blades] The embodiment shown in FIG. 2 has the same basic manufacturing steps as the previous embodiment, but differs in that a plurality of transfer blades are used. As shown in FIG. 2A, a rectangular parallelepiped tank-like supply section 10 and a modeling section 20 are arranged side by side. Below the supply unit 10 and the modeling unit 20,
Drive motors 16 and 26 are provided for raising and lowering the respective bottom surfaces 12 and 24 (see FIG. 2B).

【0023】供給部10および造形部20の上面側方に
沿って直線状のガイドレール40が設けられている。ガ
イドレール40には多数の幅板状をなす移送ブレード3
0の一端が取り付けられている。移送ブレード30は、
ガイドレール40に沿って、供給部10および造形部2
0の上方空間を平行移動する。ガイドレール40には多
数の移送ブレード30を個別に作動させる駆動機構を備
えている。
A linear guide rail 40 is provided along the upper surface of the supply unit 10 and the modeling unit 20. The guide rail 40 has a number of transfer blades 3 in the form of a wide plate.
0 is attached to one end. The transfer blade 30
Along the guide rail 40, the supply unit 10 and the modeling unit 2
0 is translated in the space above. The guide rail 40 has a drive mechanism for individually operating a number of transfer blades 30.

【0024】図2(b) にも示すように、造形作業の開始
時には、多数の移送ブレード30は全て、供給部10の
外側に待機させておく。まず、1枚の移送ブレード30
を供給部10から造形部20へと移動させ、粉末材料P
の供給を行い、1層分の硬化層Mの形成が行われる。具
体的な作業は前記実施形態と共通するので説明を省略す
る。
As shown in FIG. 2B, at the start of the molding operation, all of the plurality of transfer blades 30 are kept on standby outside the supply unit 10. First, one transfer blade 30
Is moved from the supply unit 10 to the modeling unit 20, and the powder material P
To form a hardened layer M for one layer. The specific operation is the same as that of the above embodiment, and the description is omitted.

【0025】粉末材料Pの供給を終えた移送ブレード3
0は、造形部20の外側に配置される。供給部10の外
側の待機位置には、次の移送ブレード30が待機してい
るので、直ぐに移送ブレード30の移動による粉末材料
Pの移送を開始することができる。
Transfer blade 3 after supply of powder material P
0 is arranged outside the modeling part 20. Since the next transfer blade 30 is waiting at the standby position outside the supply unit 10, the transfer of the powder material P by the movement of the transfer blade 30 can be started immediately.

【0026】この方法では、供給部10の外側に待機さ
せておく移送ブレード30の枚数分だけ連続して、上記
工程を繰り返すことができる。待機している移送ブレー
ド30が無くなれば、作業を一時的に中断して、造形部
20の外側に移動した全ての移送ブレード30を元の待
機位置に戻せばよい。この待機位置への戻し作業は、多
数の移送ブレード30をまとめて移動させるので、1枚
づつあるいは1回の硬化工程毎に移送ブレード30を待
機位置に戻す作業を行うのに比べて、全体の作業時間が
削減され、作業効率が向上し、造形時間が短くなる。
In this method, the above steps can be repeated continuously for the number of transfer blades 30 that are kept on standby outside the supply section 10. When there is no transfer blade 30 waiting, the work may be temporarily interrupted, and all the transfer blades 30 moved outside the modeling unit 20 may be returned to the original standby position. In the operation of returning to the standby position, a large number of transfer blades 30 are collectively moved. Therefore, compared with performing the operation of returning the transfer blades 30 to the standby position one by one or every one curing step, the entire operation is performed. Work time is reduced, work efficiency is improved, and modeling time is reduced.

【0027】〔移送ブレードの復帰〕図3に示す実施形
態は、1枚の移送ブレード30を繰り返し使用する。供
給部10および造形部20の側方に、長円形のループ状
をなすガイドレール40が配置されている。ガイドレー
ル40には、移送ブレード30の一端が取り付けられて
おり、移送ブレード30をガイドレール40の長円形ル
ープに沿って水平面内で旋回移動させることができる。
ガイドレール40には、駆動用のモータ42を備えてい
る。
[Return of Transfer Blade] In the embodiment shown in FIG. 3, one transfer blade 30 is used repeatedly. A guide rail 40 having an oval loop shape is arranged on the side of the supply unit 10 and the modeling unit 20. One end of the transfer blade 30 is attached to the guide rail 40, and the transfer blade 30 can be swung in a horizontal plane along an oblong loop of the guide rail 40.
The guide rail 40 includes a driving motor 42.

【0028】この実施形態では、造形部20への粉末材
料Pの供給を終えた移送ブレード30が、造形部20の
外側まで移動したあと、ガイドレール40の経路にした
がって、ループ状に移動し、造形部20および供給部1
0の側方の裏側を通って、供給部10の外側の供給開始
位置に戻る。移送ブレード30の復帰動作は、造形部2
0の上方空間を通らないので、光照射工程の邪魔になら
ない。光照射工程と同時に復帰作業を行うことができ
る。
In this embodiment, the transfer blade 30, which has finished supplying the powder material P to the modeling part 20, moves to the outside of the modeling part 20, and then moves in a loop along the path of the guide rail 40. Modeling part 20 and supply part 1
It returns to the supply start position outside the supply unit 10 through the back side on the side of 0. The return operation of the transfer blade 30 is performed by the
Since it does not pass through the space above 0, it does not hinder the light irradiation process. A return operation can be performed simultaneously with the light irradiation step.

【0029】その結果、前記同様に作業効率の向上ある
いは造形時間の短縮が達成される。上記実施形態におい
て、移送ブレード30の位置制御は、ガイドレール40
を駆動するモータ42の回転位置制御によって行うこと
ができる。また、供給開始位置に移送ブレード30が配
置されたことや、造形部20に粉末材料Pが供給された
ことなどを検知するセンサを備えておいて、センサから
の情報に基づいて、移送ブレード30の動作を制御する
こともできる。
As a result, improvement of the working efficiency or shortening of the molding time can be achieved as described above. In the above embodiment, the position of the transfer blade 30 is controlled by the guide rail 40.
Can be performed by controlling the rotational position of the motor 42 that drives the motor. Further, a sensor for detecting that the transfer blade 30 is disposed at the supply start position and that the powder material P is supplied to the modeling section 20 are provided, and based on information from the sensor, the transfer blade 30 is provided. Can also be controlled.

【0030】〔垂直ループ運動〕図4に示す実施形態
は、移送ブレード30を垂直ループ運動によって供給開
始位置に復帰させる。ガイドレール40は、供給部10
および造形部20の側方に沿って延びるとともに、造形
部20の外側で下方に湾曲し、供給部10および造形部
20の下方を逆方向に延びたあと上方に湾曲して、供給
部10の供給開始位置の側方に戻る、垂直面内に配置さ
れた長円形ループを構成している。
[Vertical Loop Motion] In the embodiment shown in FIG. 4, the transfer blade 30 is returned to the supply start position by the vertical loop motion. The guide rail 40 is connected to the supply unit 10.
And extends along the side of the shaping portion 20, curves downward outside the shaping portion 20, extends downward in the reverse direction below the supply portion 10 and the shaping portion 20, and then curves upward to form the supply portion 10. It forms an oblong loop arranged in a vertical plane, returning to the side of the supply start position.

【0031】移送ブレード30は、供給部10から造形
部20の上方を水平に移動したあと、供給部10および
造形部20の下側を通って供給部10の外側の供給開始
位置に戻ることになる。上記実施形態では、前記実施形
態の水平ループ構造に比べて、装置の設置に要する水平
面積を小さくできる。
After the transfer blade 30 horizontally moves from the supply unit 10 above the modeling unit 20, it passes through the supply unit 10 and the lower side of the modeling unit 20 to return to the supply start position outside the supply unit 10. Become. In the above embodiment, the horizontal area required for installation of the device can be reduced as compared with the horizontal loop structure of the above embodiment.

【0032】〔移送ブレード30の回転移動〕図5に示
す実施形態では、移送ブレード30を一つの中心回りに
旋回運動させる。供給部10および造形部20が同じ円
周上に配置されている。具体的には、円形面を、複数の
四分円あるいは扇形に分割して、その一つに供給部1
0、隣接する別の一つに造形部20を配置している。
[Rotary Movement of Transfer Blade 30] In the embodiment shown in FIG. 5, the transfer blade 30 is swung around one center. The supply unit 10 and the modeling unit 20 are arranged on the same circumference. Specifically, the circular surface is divided into a plurality of quadrants or sectors, and one of the
0, the modeling part 20 is arranged in another adjacent one.

【0033】移送ブレード30は、供給部10および造
形部20の中心位置に旋回自在に支持されていて、駆動
モータ34によって回転させられる。供給部10から造
形部20へと新たな粉末材料Pを供給する際は、円周方
向で供給部10の外側(図の手前側)に移送ブレード3
0を配置しておく。この位置が供給開始位置あるいは待
機位置となる。移送ブレード30を供給部10から造形
部20へと水平旋回させることで、供給部10の粉末材
料Pが造形部20へと供給される。
The transfer blade 30 is rotatably supported at the center of the supply section 10 and the modeling section 20 and is rotated by a drive motor 34. When supplying a new powder material P from the supply unit 10 to the modeling unit 20, the transfer blade 3 is provided in the circumferential direction outside the supply unit 10 (on the front side in the figure).
0 is arranged. This position is the supply start position or the standby position. By horizontally rotating the transfer blade 30 from the supply unit 10 to the modeling unit 20, the powder material P of the supply unit 10 is supplied to the modeling unit 20.

【0034】造形部20への粉末材料Pの供給が完了す
ると、移送ブレード30は、円周方向で造形部20の外
側に出る。移送ブレード30を同じ方向にそのまま旋回
させれば、移送ブレード30は前記した最初の供給開始
位置あるいは待機位置へと戻ってくる。上記実施形態で
は、移送ブレード30の移動動作が、一つの中心回りに
旋回させるだけで良いので、簡単な構造で確実な動作が
可能である。無駄な動きが少ないので、迅速な動作が可
能である。
When the supply of the powder material P to the modeling section 20 is completed, the transfer blade 30 exits the modeling section 20 in the circumferential direction. If the transfer blade 30 is turned in the same direction as it is, the transfer blade 30 returns to the above-described initial supply start position or the standby position. In the above-described embodiment, since the moving operation of the transfer blade 30 only needs to be turned around one center, reliable operation is possible with a simple structure. Since there is little useless movement, quick operation is possible.

【0035】さらに、移送ブレード30で造形部20に
粉末材料Pを供給したときに余った粉末材料Pは、移送
ブレード30の旋回によって押し動かされ再び供給部1
0に戻すことができ、粉末材料Pを有効に利用すること
ができる。図6に示す実施形態は、上記実施形態と基本
的な構造は共通するが、供給部10と造形部20とを、
円周上に2個所づつ対象的に配置している。この実施形
態では、2個所の造形部20で同時に造形物を製造する
ことができる。
Further, when the transfer blade 30 supplies the powder material P to the shaping unit 20, the surplus powder material P is pushed and moved by the rotation of the transfer blade 30 and again supplied to the supply unit 1.
The value can be returned to 0, and the powder material P can be used effectively. The embodiment shown in FIG. 6 has the same basic structure as the above embodiment, but the supply unit 10 and the modeling unit 20 are
They are arranged symmetrically at two locations on the circumference. In this embodiment, a modeled object can be manufactured simultaneously in two modeling sections 20.

【0036】〔複数の移送ブレードの循環(1)〕図7
に示す実施形態は、ガイドレールを用いて複数の移送ブ
レードを循環使用する。基本的な装置構成は、前記図3
の実施形態と共通している。ループ状のガイドレール4
0には、一定間隔毎に複数枚、この場合には4枚の移送
ブレード30が取り付けられている。
[Circulation of Plural Transfer Blades (1)] FIG.
The embodiment shown in Fig. 1 uses a plurality of transfer blades in circulation using a guide rail. The basic device configuration is shown in FIG.
This embodiment is common to the embodiments. Loop-shaped guide rail 4
At 0, a plurality of transfer blades 30 are attached at regular intervals, in this case, four transfer blades 30 are attached.

【0037】一つの移送ブレード30で供給部10から
造形部20に粉末材料Pを供給し、移送ブレード30が
造形部20の外側に来たときには、次の新たな移送ブレ
ード30が供給部10の外側の待機位置あるいは供給開
始位置に配置されている。この状態から、直ぐに、次回
の粉末材料P供給工程を開始することができる。各移送
ブレード30の配置間隔および移動速度などを適切に設
定すれば、移送ブレード30を全く停止させることな
く、継続的に移動させながら、硬化層Mの形成工程を繰
り返して造形物を製造することも可能になる。この場
合、供給部10の外側における移送ブレード30の待機
時間を実質的に無くすこともできる。
The powder material P is supplied from the supply unit 10 to the shaping unit 20 by one transfer blade 30, and when the transfer blade 30 comes outside the shaping unit 20, the next new transfer blade 30 is connected to the supply unit 10. It is located at the outside standby position or supply start position. From this state, the next powder material P supply step can be started immediately. If the arrangement interval and the moving speed of each transfer blade 30 are appropriately set, the formation process of the hardened layer M is repeated while continuously moving the transfer blade 30 without stopping at all, thereby manufacturing a molded article. Also becomes possible. In this case, the standby time of the transfer blade 30 outside the supply unit 10 can be substantially eliminated.

【0038】上記実施形態では、複数の移送ブレードを
用いることで、1枚の移送ブレードだけを使用するのに
比べて、作業効率が向上し、造形時間のさらなる短縮が
図れる。供給部10および造形部20を、ループ状ガイ
ドレール40の反対側で対象位置にも配置しておけば、
ガイドレール40の両側の直線部分でそれぞれ別の造形
物を同時に製造することができ、作業効率がさらに向上
する。
In the above embodiment, by using a plurality of transfer blades, the working efficiency is improved and the molding time can be further reduced as compared with the case where only one transfer blade is used. If the supply unit 10 and the modeling unit 20 are arranged at the target position on the opposite side of the loop-shaped guide rail 40,
Different shaped objects can be simultaneously manufactured at the straight portions on both sides of the guide rail 40, and the working efficiency is further improved.

【0039】〔複数の移送ブレードの循環(2)〕図8
に示す実施形態は、前記実施形態で説明した複数の移送
ブレードを循環使用する技術を、垂直ループ状のガイド
レール構造に適用した場合である。供給部10および造
形部20の上方から下方へと垂直ループ状に配置された
ガイドレール40に対して、間隔をあけて複数の移送ブ
レード30が取り付けられている。移送ブレード30の
枚数は6枚に設定されている。
[Circulation of Plural Transfer Blades (2)] FIG.
The embodiment shown in Fig. 1 is a case where the technique of circulating and using a plurality of transfer blades described in the above embodiment is applied to a vertical loop guide rail structure. A plurality of transfer blades 30 are attached to the guide rails 40 arranged in a vertical loop from above to below the supply unit 10 and the modeling unit 20 at intervals. The number of transfer blades 30 is set to six.

【0040】この実施形態でも、1枚の移送ブレード3
0が造形部20を通過すれば、直ぐに次の移送ブレード
30が供給部10の供給開始位置に来ているので、作業
効率を向上させて、造形時間を短縮することができる。 〔駆動機構の移動〕図9に示す実施形態は、移送ブレー
ドを支持して駆動させる駆動機構すなわちガイドレール
を移動させて、移送ブレードの復帰動作を行わせる。
Also in this embodiment, one transfer blade 3
If 0 passes through the modeling section 20, the next transfer blade 30 is immediately at the supply start position of the supply section 10, so that the working efficiency can be improved and the modeling time can be reduced. [Movement of Drive Mechanism] In the embodiment shown in FIG. 9, the drive mechanism for supporting and driving the transfer blade, that is, the guide rail is moved to perform the return operation of the transfer blade.

【0041】図9(a) に示すように、供給部10および
造形部20の側方に沿って配置され移送ブレード30を
支持するガイドレール40が、供給部10および造形部
20に対して、近づいたり遠ざかったりする方向すなわ
ち移送ブレート30の移動方向と直交する方向に平行運
動をする。供給部10の粉末材料Pを造形部20に供給
する動作〔〕を行った移送ブレード30が、造形部2
0の端部まで移動すると、ガイドレール40を供給部1
0および造形部20から遠ざかる方向に移動させる
〔〕。
As shown in FIG. 9A, guide rails 40 which are arranged along the sides of the supply unit 10 and the shaping unit 20 and support the transfer blade 30 are provided with respect to the supply unit 10 and the shaping unit 20. The parallel movement is performed in the direction of approaching or moving away, that is, in the direction orthogonal to the moving direction of the transfer plate 30. The transfer blade 30 that has performed the operation [] of supplying the powder material P from the supply unit 10 to the modeling unit 20 is moved to the modeling unit 2.
When the guide rail 40 is moved to the end of
0 and the direction away from the modeling part 20 [].

【0042】図9(b) に示すように、移送ブレード30
は、供給部10および造形部20の側方に離れて配置さ
れることになる。この状態で、ガイドレール40に沿っ
て移送ブレード30を元の方向に移動させる〔〕。移
送ブレート30は造形部20および供給部10の側方を
移動するので、造形部20で行われる光照射工程の邪魔
にはならない。
As shown in FIG. 9B, the transfer blade 30
Will be arranged apart from the supply unit 10 and the modeling unit 20. In this state, the transfer blade 30 is moved in the original direction along the guide rail 40 []. Since the transfer plate 30 moves to the side of the modeling unit 20 and the supply unit 10, it does not interfere with the light irradiation process performed in the modeling unit 20.

【0043】移送ブレード30が供給部10の外側の供
給開始位置に対応する位置まで移動したあと、ガイドレ
ール40を供給部10および造形部20に近づく方向に
移動させる〔〕。そうすると、移送ブレード30は、
供給部10の外側の供給開始位置に配置され、次の粉末
材料Pの供給作業を開始することができる。上記実施形
態は、前記した図3や図4のように移動ブレード30を
ループ状に旋回させる構造と共通する作用効果が達成さ
れる。但し、移送ブレード30のおよびガイドレール4
0の動作を直交する方向への直線運動を組み合わせてい
る点が異なる。装置構造や設置スペース等の条件に合わ
せて何れか有利なほうの構造を採用すればよい。
After the transfer blade 30 has moved to a position corresponding to the supply start position outside the supply section 10, the guide rail 40 is moved in a direction approaching the supply section 10 and the modeling section 20 []. Then, the transfer blade 30
It is arranged at a supply start position outside the supply unit 10, and the supply operation of the next powder material P can be started. The above embodiment achieves the same operation and effect as the above-described structure in which the moving blade 30 is turned in a loop as shown in FIGS. However, the transfer rail 30 and the guide rail 4
The difference is that the motion of 0 is combined with the linear motion in the direction perpendicular to the direction. Any advantageous structure may be adopted according to the conditions such as the device structure and the installation space.

【0044】〔移送ブレードの折り畳み〕図10に示す
実施形態は、移送ブレードを折り畳んで供給開始位置に
復帰させる。図10(a) に示すように、供給部10およ
び造形部20の側方に直線状のガイドレール40が設け
られている。ガイドレール40には移送ブレード30が
取り付けられている。
[Folding of Transfer Blade] In the embodiment shown in FIG. 10, the transfer blade is folded and returned to the supply start position. As shown in FIG. 10A, a linear guide rail 40 is provided on the side of the supply unit 10 and the modeling unit 20. The transfer blade 30 is attached to the guide rail 40.

【0045】但し、移送ブレード30は、ガイドレール
40に対して直交する方向で、供給部10や造形部20
の上方に延びた状態と、ガイドレール40と平行に折り
畳まれた状態とを変更自在に取り付けられている。図1
0(a) に示すように、移送ブレード30をガイドレール
40から直交する方向に延ばした状態で、供給部10か
ら造形部20の上方を移動させれば〔〕、造形部20
への粉末材料Pの供給が行える。
However, the transfer blade 30 moves in the direction orthogonal to the guide rail 40 and
And a state where it is folded in parallel with the guide rail 40 so as to be changeable. FIG.
As shown in FIG. 0 (a), if the transfer blade 30 is moved above the shaping unit 20 from the supply unit 10 with the transfer blade 30 extending in a direction orthogonal to the guide rail 40, the shaping unit 20
The powder material P can be supplied to the apparatus.

【0046】造形部20の端部まで移動した移送ブレー
ド30は、外側に旋回するようにして折り畳まれる
〔〕。この折り畳み状態で、移送ブレード30をガイ
ドレール40に沿って供給部10の方向に移動させる。
ガイドレール40と平行に折り畳まれた移送ブレード3
0は、造形部20や供給部10の上方を通過しないの
で、光照射工程の邪魔にならない。
The transfer blade 30 that has moved to the end of the modeling section 20 is folded so as to pivot outward []. In this folded state, the transfer blade 30 is moved along the guide rail 40 toward the supply unit 10.
Transfer blade 3 folded parallel to guide rail 40
Since 0 does not pass above the modeling section 20 or the supply section 10, it does not hinder the light irradiation step.

【0047】図10(b) に示すように、ガイドレール4
0を供給部10の外側まで移動した折り畳み状態の移送
ブレード30は、再びガイドレール40から直交する方
向に延びるように旋回させられる〔〕。移送ブレード
30が旋回した状態は、供給部10の外側で前記供給開
始位置あるいは待機位置に配置されることになる。上記
実施形態では、供給部10および造形部20の側方にガ
イドレール40の幅に相当するだけのスペースがあれ
ば、装置を構成することができる。前記したループ状の
ガイドレールなどに比べて、装置スペースが少なくて済
む。
As shown in FIG. 10B, the guide rail 4
The transport blade 30 in the folded state, which has moved 0 to the outside of the supply unit 10, is turned again so as to extend from the guide rail 40 in a direction orthogonal to the guide rail 40 []. The state where the transfer blade 30 is turned is located at the supply start position or the standby position outside the supply unit 10. In the above embodiment, the device can be configured as long as there is a space corresponding to the width of the guide rail 40 on the side of the supply unit 10 and the modeling unit 20. As compared with the above-described loop-shaped guide rails and the like, the device space is reduced.

【0048】〔粉末材料のノズル供給〕図11に示す実
施形態は、前記実施形態における供給部10の代わりに
供給ノズルを用いて粉末材料Pを供給する。図11(a)
に示すように、造形部20の側方には、造形部20の上
端面に続く平坦な供給面50が配置されている。造形部
20の側方に沿って、移送ブレード30を取り付けたガ
イドレール40が配置されているのは前記実施形態と共
通している。
[Nozzle Supply of Powder Material] In the embodiment shown in FIG. 11, the powder material P is supplied using a supply nozzle instead of the supply section 10 in the above embodiment. FIG. 11 (a)
As shown in (1), a flat supply surface 50 following the upper end surface of the modeling portion 20 is disposed on the side of the modeling portion 20. The guide rail 40 to which the transfer blade 30 is attached is arranged along the side of the modeling portion 20 in common with the above-described embodiment.

【0049】ガイドレール40の上部に粉末供給装置6
0が取り付けられている。粉末供給装置60は、垂直方
向に延びる垂直ガイド66および垂直ガイド66に沿っ
て昇降し、移送ブレード30と同じ方向に延びる水平ガ
イド64、水平ガイド64に沿って摺動自在に取り付け
られた供給ノズル62を有している。供給ノズル62
は、別の位置に設けられた粉末供給源からホースを介し
て粉末材料Pが供給され、供給ノズル62の先端から吐
出する。
The powder supply device 6 is provided above the guide rail 40.
0 is attached. The powder supply device 60 includes a vertical guide 66 extending in a vertical direction, a horizontal guide 64 that moves up and down along the vertical guide 66, and extends in the same direction as the transfer blade 30, and a supply nozzle slidably mounted along the horizontal guide 64. 62. Supply nozzle 62
The powder material P is supplied via a hose from a powder supply source provided at another position, and is discharged from the tip of the supply nozzle 62.

【0050】図11(b) にも示すように、造形部20の
片側の供給面50に移送ブレード30が配置された状態
で、移送ブレード30と造形部20との間で供給面50
の上方に供給ノズル62を配置する。供給ノズル62か
ら粉末材料Pを吐出しながら、供給ノズル62を移送ブ
レード30と平行な方向に移動させる。図11(a) に示
すように、造形部20の端辺と移送ブレード30に沿っ
て畝状に粉末材料Pが堆積する。
As shown in FIG. 11 (b), with the transfer blade 30 disposed on the supply surface 50 on one side of the shaping section 20, the supply surface 50 is transferred between the transfer blade 30 and the shaping section 20.
The supply nozzle 62 is arranged above the. The supply nozzle 62 is moved in a direction parallel to the transfer blade 30 while discharging the powder material P from the supply nozzle 62. As shown in FIG. 11A, the powder material P is deposited in a ridge shape along the edge of the modeling portion 20 and the transfer blade 30.

【0051】粉末材料Pの供給が終われば、供給ノズル
62を上方に退避させる。移送ブレード30を造形部2
0の上方を横断するように移動させれば、供給面50上
の粉末材料Pは造形部20に供給されて層状に堆積す
る。その後、移送ブレード30は元の方向に移動させ
て、供給面50の上に戻しておく。造形部20に堆積さ
れた層状の粉末材料Pに光ビームLを照射して硬化層M
を形成するのは、前記実施形態と同様である。このと
き、移送ブレード30は、造形部20の外側まで移動し
ているので、光照射工程の邪魔にはならない。
When the supply of the powder material P is completed, the supply nozzle 62 is retracted upward. Transfer blade 30 to modeling part 2
If the powder material P on the supply surface 50 is moved so as to cross over the zero, the powder material P on the supply surface 50 is supplied to the modeling part 20 and deposited in a layer. Thereafter, the transfer blade 30 is moved in the original direction and returned on the supply surface 50. The layered powder material P deposited on the modeling part 20 is irradiated with a light beam L to form a hardened layer M.
Is formed in the same manner as in the above embodiment. At this time, since the transfer blade 30 has moved to the outside of the modeling section 20, it does not hinder the light irradiation step.

【0052】このような工程を繰り返すことで、硬化層
Mが積み重ねられた造形物が得られることになる。上記
実施形態では、移送ブレード30は造形部20の直ぐそ
ばの供給面50まで移動させればよいので、前記した供
給部10を用いる技術で移送ブレード30を供給部10
の外側まで移動させるのに比べて、移送ブレード30の
移動距離および時間を削減できる。
By repeating such a process, a modeled product on which the cured layers M are stacked can be obtained. In the above-described embodiment, the transfer blade 30 may be moved to the supply surface 50 immediately adjacent to the shaping unit 20.
The moving distance and time of the transfer blade 30 can be reduced as compared with moving the transfer blade 30 to the outside.

【0053】図11(b) に示すように、供給ノズル62
あるいは粉末供給装置60を、造形部20の両端の外側
に配置しておけば、移送ブレード30の往復動作の何れ
の段階でも、移送ブレード30と造形部20との間に粉
末材料Pを供給して、粉末材料Pを造形部20へと移送
する作業が行える。さらに、上記2個所の供給ノズル6
2が、それぞれ別の粉末材料Pを吐出するものであれ
ば、造形部20に複数種類の粉末材料Pを送って、材質
の異なる硬化層Mが積み重ねられた造形物を製造するこ
とができる。この方法は、一つの粉末供給装置60に、
吐出する粉末材料Pが異なる複数本の供給ノズル62を
備えておくことによっても行える。
As shown in FIG. 11B, the supply nozzle 62
Alternatively, if the powder supply device 60 is arranged outside both ends of the modeling section 20, the powder material P is supplied between the transfer blade 30 and the modeling section 20 at any stage of the reciprocating operation of the transfer blade 30. Thus, the operation of transferring the powder material P to the modeling unit 20 can be performed. Further, the above two supply nozzles 6
If 2 is a device that discharges different powder materials P, a plurality of types of powder materials P can be sent to the modeling unit 20 to produce a model in which hardened layers M of different materials are stacked. In this method, one powder supply device 60 includes:
This can also be achieved by providing a plurality of supply nozzles 62 from which the powder material P to be discharged is different.

【0054】〔粉末材料のコンテナ供給〕図12に示す
実施形態は、前記実施形態における供給ノズルの代わり
に循環コンテナを用いる。図12(a) に示すように、造
形部20の側方には、造形部20の上端面に続く平坦な
供給面50が配置されている。造形部20の側方に沿っ
て、移送ブレード30を取り付けたガイドレール40が
配置されている。ガイドレール40の上部には粉末供給
装置70が配置されている。
[Container Supply of Powder Material] In the embodiment shown in FIG. 12, a circulation container is used instead of the supply nozzle in the above embodiment. As shown in FIG. 12A, a flat supply surface 50 that is continuous with the upper end surface of the modeling unit 20 is disposed on the side of the modeling unit 20. A guide rail 40 to which the transfer blade 30 is attached is arranged along the side of the modeling section 20. A powder supply device 70 is disposed above the guide rail 40.

【0055】粉末供給装置70には、複数の細長いコン
テナ容器72が上下に細長いループ状の軌跡を描いて循
環するように取り付けられている。コンテナ容器72の
循環経路の下方に供給面50が配置される。コンテナ容
器72の循環経路の上方には、下端に供給口を有する粉
末タンク74が配置されている。粉末タンク74には、
粉末材料Pが収容されている。
A plurality of elongated container containers 72 are attached to the powder supply device 70 so as to circulate in a vertically elongated loop-like trajectory. The supply surface 50 is arranged below the circulation path of the container 72. Above the circulation path of the container 72, a powder tank 74 having a supply port at the lower end is arranged. In the powder tank 74,
The powder material P is stored.

【0056】図12(b) に詳しく示すように、粉末タン
ク74から最上部のコンテナ容器72に粉末材料Pを供
給し、粉末材料Pを収容したコンテナ容器72が下方に
移動し、最下部でコンテナ容器72が転回して、収容さ
れた粉末材料Pを供給面50に落下供給する。図12
(a) に示すように、供給面50には、移送ブレード30
と造形部20との間に粉末材料Pが畝状に延びた状態で
堆積する。
As shown in detail in FIG. 12 (b), the powder material P is supplied from the powder tank 74 to the uppermost container container 72, and the container container 72 containing the powder material P moves downward, and moves downward. The container container 72 is turned to drop and supply the stored powder material P to the supply surface 50. FIG.
(a) As shown in FIG.
The powder material P is deposited in a state of extending in a ridge between the and the modeling part 20.

【0057】移送ブレード30をガイドレール40に沿
って移動させれば、供給面50に堆積した粉末材料Pが
造形部20に供給されて層状に堆積する。移送ブレード
30を元の位置に戻すと、次のコンテナ容器72が供給
面50の上方に配置されているので、直ちに供給面50
の上に前記同様の畝状の粉末材料Pが供給される。移送
ブレード30が戻るときには、造形部20における光ビ
ームLの照射を開始することができる。
When the transfer blade 30 is moved along the guide rail 40, the powder material P deposited on the supply surface 50 is supplied to the modeling unit 20 and deposited in a layer. When the transfer blade 30 is returned to the original position, the next container container 72 is disposed above the supply surface 50, so that the supply surface 50
Is supplied with a ridge-shaped powder material P similar to that described above. When the transfer blade 30 returns, the irradiation of the light beam L on the modeling part 20 can be started.

【0058】上記実施形態では、造形部20の一端側の
みに供給面50および粉末供給装置70を配置していた
が、造形部20の他端側にも供給面50や粉末供給装置
70を配置しておくことができる。この場合は、造形部
20に粉末材料Pを供給した移送ブレード30をそのま
ま造形部20の外側まで移動させれば、こちら側の供給
面50にコンテナ容器72から粉末材料Pを供給するこ
とができ、移送ブレード30を元の方向に戻す際にも、
造形部20への粉末材料Pの供給が行われる。
In the above embodiment, the supply surface 50 and the powder supply device 70 are arranged only on one end side of the shaping portion 20. However, the supply surface 50 and the powder supply device 70 are arranged on the other end side of the shaping portion 20. You can keep. In this case, if the transfer blade 30 that has supplied the powder material P to the modeling unit 20 is moved to the outside of the modeling unit 20 as it is, the powder material P can be supplied from the container container 72 to the supply surface 50 on this side. When returning the transfer blade 30 to the original direction,
The supply of the powder material P to the modeling unit 20 is performed.

【0059】さらに、粉末供給装置70を移送ブレード
30とともに移動するようにしておけば、造形部20の
両側に粉末供給装置70を設置しておく必要がない。 〔複数層分の粉末材料〕図13に示す実施形態では、移
送ブレードで複数層分の粉末材料を同時に移動させる。
Further, if the powder supply device 70 is moved together with the transfer blade 30, there is no need to install the powder supply device 70 on both sides of the modeling part 20. [Powder Material for Multiple Layers] In the embodiment shown in FIG. 13, the powder material for multiple layers is simultaneously moved by the transfer blade.

【0060】図13(a) (b) に示すように、造形部20
と造形部20の一端外側から他端外側へと移動する移送
ブレード30を備えている。造形部20の両端外側には
それぞれ平坦な供給面50および載置面52を備えてい
る。また、図示を省略しているが、造形部20の一端外
側に配置された移送ブレード30と造形部20との間に
は、粉末材料Pを供給する手段を備えている。具体的に
は、前記した供給ノズル62やコンテナ容器72を用い
た粉末供給装置60、70が利用できる。供給部10を
備えていてもよい。
As shown in FIGS. 13 (a) and 13 (b),
And a transfer blade 30 that moves from one end outside to the other end of the modeling part 20. A flat supply surface 50 and a placement surface 52 are provided on the outer sides of both ends of the modeling portion 20, respectively. Although not shown, means for supplying the powder material P is provided between the transfer blade 30 disposed outside one end of the modeling unit 20 and the modeling unit 20. Specifically, powder supply devices 60 and 70 using the supply nozzle 62 and the container 72 described above can be used. A supply unit 10 may be provided.

【0061】図13(a) に示すように、移送ブレード3
0は、造形部20の側方に沿って設けられたガイドレー
ル40に取り付けられて移動する。ガイドレール40の
うち、造形部20の端部よりも少し外側には、移送ブレ
ード30を支持したままで垂直面内で回転する回転部4
4を備えている。回転部44まで移動してきた移送ブレ
ード30が回転部44に支持されると、回転部44が外
側向きに180°回転する。図13(b) に示すように、
回転部44とともに回転する移送ブレード30は、一旦
上方側に持ち上げられた状態になり、載置面52よりも
浮き上がることになり、その後で再び元の高さ位置に戻
って載置面52と同じ位置に配置されるという動作を行
う。
As shown in FIG. 13A, the transfer blade 3
Numeral 0 is attached to a guide rail 40 provided along the side of the modeling portion 20 and moves. A part of the guide rail 40 that is slightly outside the end of the modeling part 20 is a rotating part 4 that rotates in a vertical plane while supporting the transfer blade 30.
4 is provided. When the transfer blade 30 that has moved to the rotating unit 44 is supported by the rotating unit 44, the rotating unit 44 rotates 180 ° outward. As shown in FIG.
The transfer blade 30 that rotates together with the rotating unit 44 is once lifted upward, rises above the mounting surface 52, and then returns to the original height position again and is the same as the mounting surface 52. The operation of being arranged at the position is performed.

【0062】図13(b) に示すように、造形部20に粉
末材料Pを供給する際には、まず、造形部20の供給面
50に移送ブレード30を配置する。移送ブレード30
と造形部20との間に粉末材料Pを供給する。このと
き、供給する粉末材料Pの量は、硬化層Mを1層形成す
る工程に必要な量の2倍にしておく。移送ブレード30
を造形部20のほうに移動させ、粉末材料Pを造形部2
0に供給する。1層分の粉末材料Pは、造形部20に層
状に堆積するが、残りの1層分の粉末材料Pは、移送ブ
レード30とともに造形部20の外の載置面52まで運
ばれ、載置面52の上には残った粉末材料Pが載置され
る。
As shown in FIG. 13 (b), when supplying the powder material P to the modeling part 20, first, the transfer blade 30 is arranged on the supply surface 50 of the modeling part 20. Transfer blade 30
The powder material P is supplied between and the modeling unit 20. At this time, the amount of the supplied powder material P is twice the amount required for the step of forming one hardened layer M. Transfer blade 30
Is moved to the modeling section 20 and the powder material P is transferred to the modeling section 2.
Supply 0. One layer of the powder material P is deposited in layers on the modeling part 20, but the remaining one layer of the powder material P is transported together with the transfer blade 30 to the mounting surface 52 outside the modeling part 20 and placed. The remaining powder material P is placed on the surface 52.

【0063】造形部20の外側に移動してきた移送ブレ
ード30は、前記した回転部44の作動によって、上方
に持ち上げられる。供給面50に粉末材料Pを残したま
まで、移送ブレード30は粉末材料Pの向こう側に移動
する。なお、移送ブレード30が、造形部20の外側に
出て載置面52に粉末材料Pを運び、回転部44で作動
させられている間に、造形部20では光照射工程が行わ
れる。
The transfer blade 30 that has moved to the outside of the modeling unit 20 is lifted upward by the operation of the rotating unit 44 described above. The transfer blade 30 moves beyond the powder material P, leaving the powder material P on the supply surface 50. The light irradiation step is performed in the modeling unit 20 while the transfer blade 30 is out of the modeling unit 20 to carry the powder material P to the mounting surface 52 and is operated by the rotating unit 44.

【0064】次に、移送ブレード30を元の方向に移動
させる。このときは、回転部44は作動させないので、
移送ブレード30は同じ高さ位置で直線運動を行う。移
送ブレード30は、載置面52に残っている1層分の粉
末材料Pを押し動かして、造形部20に供給する。造形
部20に粉末材料Pを全て供給した移送ブレード30
は、再び最初の配置状態に戻る。
Next, the transfer blade 30 is moved in the original direction. At this time, since the rotating unit 44 is not operated,
The transfer blade 30 performs a linear motion at the same height position. The transfer blade 30 pushes and moves one layer of the powder material P remaining on the mounting surface 52 to supply the powder material P to the modeling unit 20. The transfer blade 30 that supplies all the powder material P to the modeling part 20
Returns to the initial arrangement state again.

【0065】このような工程を繰り返すことで、移送ブ
レード30と造形部20との間に1層分づつの粉末材料
Pを供給する方法に比べて、粉末材料Pの供給に要する
手間や時間が削減でき、移送ブレード30の復帰動作時
にも造形部20への粉末材料Pの供給が行えるので、作
業効率が向上し、造形時間が短縮される。 〔移送シート〕図14に示す実施形態は、粉末材料Pを
移送する手段として移送シートを用いる。
By repeating such a process, the labor and time required for supplying the powder material P can be reduced as compared with the method of supplying one layer of the powder material P between the transfer blade 30 and the modeling portion 20. Since the powder material P can be supplied to the modeling unit 20 even during the return operation of the transfer blade 30, the working efficiency is improved and the modeling time is shortened. [Transfer Sheet] In the embodiment shown in FIG. 14, a transfer sheet is used as means for transferring the powder material P.

【0066】造形部20および供給部10を備えている
点は前記図1の実施形態などと共通している。連続した
長尺状の帯材からなり可撓性を有する移送シート80
が、供給部10の外側から供給部10および造形部20
の上面を経て造形部20の外側まで走行するように配置
されている。
The point that the shaping section 20 and the supply section 10 are provided is common to the embodiment shown in FIG. A flexible transfer sheet 80 made of a continuous long strip material
Are supplied from outside the supply unit 10 to the supply unit 10 and the modeling unit 20.
Is arranged so as to travel to the outside of the shaping section 20 via the upper surface of the.

【0067】移送シート80には、供給部10および造
形部20の平面形状と同じ形状の開口部82が、長手方
向に沿って等間隔で貫通形成されている。隣接する開口
部82の間隔は、供給部10と造形部20との間隔に合
わせている。移送シート80の厚みは、造形部20で硬
化層Mを形成するのに必要な1層分の粉末材料Pの厚み
に合わせて設定される。具体的には、例えば、0.11
〜0.3mm程度の厚みに設定できる。
In the transfer sheet 80, openings 82 having the same shape as the planar shape of the supply unit 10 and the modeling unit 20 are formed at regular intervals in the longitudinal direction. The interval between the adjacent openings 82 is adjusted to the interval between the supply unit 10 and the modeling unit 20. The thickness of the transfer sheet 80 is set in accordance with the thickness of one layer of the powder material P necessary for forming the hardened layer M in the modeling unit 20. Specifically, for example, 0.11
The thickness can be set to about 0.3 mm.

【0068】移送シート80を断続的に走行させなが
ら、開口部82が供給部10に配置されたときに、供給
部10の底面12を上昇させると、収容された粉末材料
Pの表面が持ち上げられ、開口部82に粉末材料Pが入
り込む。この状態で、移送シート80を移動させると、
開口部82に入り込んだ粉末材料Pは、開口部82とと
もに移動して、造形部20に移送される。
When the bottom surface 12 of the supply unit 10 is raised when the opening 82 is disposed in the supply unit 10 while the transfer sheet 80 is intermittently running, the surface of the stored powder material P is lifted. The powder material P enters the opening 82. When the transfer sheet 80 is moved in this state,
The powder material P that has entered the opening 82 moves with the opening 82 and is transferred to the modeling unit 20.

【0069】開口部82が造形部20に配置されると、
開口部82に入り込んだ粉末材料Pは落下して造形部2
0に供給される。その後、前記した光ビームLの照射に
よる硬化層Mの形成が行われる。造形部20には貫通空
間である開口部82が配置されているので、光ビームL
の照射には全く支障はない。このとき、供給部10の上
には次の開口部82が配置されているので、前記した供
給部10の底面12を上昇させて次の開口部82に粉末
材料Pを供給する作業が並行して進行する。
When the opening 82 is arranged in the modeling section 20,
The powder material P that has entered the opening 82 falls down and
0 is supplied. Thereafter, the hardened layer M is formed by irradiation with the light beam L described above. Since the opening 82 which is a through space is arranged in the modeling part 20, the light beam L
There is no problem at all in the irradiation. At this time, since the next opening 82 is arranged on the supply unit 10, the operation of raising the bottom surface 12 of the supply unit 10 and supplying the powder material P to the next opening 82 is performed in parallel. Progress.

【0070】上記実施形態では、移送シート80を一定
の方向に断続的に走行させるだけで、供給部10から1
層分の粉末材料Pを取り出し、造形部20へと供給する
作業を繰り返すことができる。したがって、比較的に簡
単な構造で能率的に造形作業が実行でき、造形時間の短
縮・効率化が図れる。 〔移送容器〕図15に示す実施形態は、移送ブレードや
移送シートの代わりに移送容器を用いる。
In the above-described embodiment, the feeding section 10 is moved from the feeding section 10 to the
The operation of taking out the powder material P for the layer and supplying it to the modeling unit 20 can be repeated. Therefore, the molding operation can be efficiently performed with a relatively simple structure, and the molding time can be reduced and the efficiency can be improved. [Transfer Container] In the embodiment shown in FIG. 15, a transfer container is used instead of a transfer blade or a transfer sheet.

【0071】造形部20の両端外側には平坦な支持面5
4を備える。筒状の移送容器90が、造形部20の側方
に配置されたガイドレール40に支持されて、支持面5
4から造形部20の上方へと移動自在になっている。移
送容器90には粉末材料Pが収容されるとともに、移送
容器90の下端は、造形部20と同じ形状で開口する供
給口92になっている。
A flat support surface 5 is provided on both outer sides of the shaping portion 20.
4 is provided. The cylindrical transfer container 90 is supported by the guide rail 40 arranged on the side of the modeling section 20, and is supported by the support surface 5.
4 so that it can move upward from the modeling part 20. The powder material P is stored in the transfer container 90, and the lower end of the transfer container 90 is a supply port 92 that opens in the same shape as the modeling unit 20.

【0072】移送容器90が支持面54に配置された状
態では、移送容器90の下端の供給口92は支持面54
で蓋をされているので、移送容器90内の粉末材料Pが
脱落することはない。移送容器90を支持面54から造
形部20へと移動させると、供給口92から造形部20
の内部へと粉末材料Pが供給される。
When the transfer container 90 is placed on the support surface 54, the supply port 92 at the lower end of the transfer container 90 is connected to the support surface 54.
, The powder material P in the transfer container 90 does not fall off. When the transfer container 90 is moved from the support surface 54 to the modeling part 20, the
Is supplied with the powder material P.

【0073】その後、移送容器90を造形部20から支
持面54へと移動させると、造形部20の上端よりも内
側に供給された粉末材料Pは造形部20にそのまま残る
が、移送容器90の下端よりも上方に収容されている粉
末材料Pは、移送容器90とともに支持面54に移送さ
れる。言い換えると、移送容器90の下端が、前記した
移送ブレード30と同様の機能を果して、造形部20に
所定厚みの1層分の粉末材料Pのみを供給することにな
る。
Thereafter, when the transfer container 90 is moved from the modeling portion 20 to the support surface 54, the powder material P supplied inside the upper end of the modeling portion 20 remains in the modeling portion 20 as it is, The powder material P stored above the lower end is transferred to the support surface 54 together with the transfer container 90. In other words, the lower end of the transfer container 90 performs the same function as the transfer blade 30, and supplies only one layer of the powder material P having a predetermined thickness to the modeling unit 20.

【0074】したがって、移送容器90を、支持面54
と造形部20との間で往復動作させるだけで、造形部2
0に対して所定量の粉末材料Pを確実に供給することが
できる。移送容器90が支持面54に配置されている状
態で、造形部20では光ビームLの照射による硬化層M
の形成が行われる。
Therefore, the transfer container 90 is moved to the support surface 54.
By simply reciprocating between the molding unit 20 and the molding unit 20, the molding unit 2
A predetermined amount of the powder material P with respect to 0 can be reliably supplied. In the state where the transfer container 90 is arranged on the support surface 54, the hardened layer M by the irradiation of the light beam L
Is formed.

【0075】上記実施形態では、移送容器90の水平移
動という極めて簡単で迅速に行える動作だけで粉末材料
Pの供給が行えるので、造形部20への粉末材料Pの供
給作業の効率が向上し、造形時間の短縮を図ることがで
きる。
In the above embodiment, the supply of the powder material P can be performed only by the horizontal movement of the transfer container 90, which is an extremely simple and quick operation. Therefore, the efficiency of the supply operation of the powder material P to the modeling part 20 is improved. The molding time can be reduced.

【0076】[0076]

【発明の効果】本発明の三次元形状造形物の製造方法
は、造形領域に移送され層状に堆積した粉末材料に光ビ
ームを照射して硬化層を形成する工程の間に、造形領域
に粉末材料を移送する移送部材を所定位置に配置したり
移送部材で移送する粉末材料を供給したりする準備工程
が行えるので、作業工程の無駄がなく、効率的に造形作
業を行うことができる。
According to the method for producing a three-dimensionally shaped object of the present invention, the step of irradiating a light beam onto the powder material transferred to the modeling region and depositing it in a layer form to form a hardened layer in the molding region is performed. Since a preparation step of arranging the transfer member for transferring the material at a predetermined position or supplying the powder material to be transferred by the transfer member can be performed, the working process can be efficiently performed without wasting the work process.

【0077】その結果、造形時間の短縮・効率化を図る
ことができる。
As a result, the molding time can be shortened and the efficiency can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施形態となる基本工程を示す模式
的断面図
FIG. 1 is a schematic cross-sectional view showing a basic process according to an embodiment of the present invention.

【図2】 別の実施形態を示す斜視図(a) および動作説
明図(b)
FIG. 2 is a perspective view (a) and an operation explanatory view (b) showing another embodiment.

【図3】 別の実施形態を示す斜視図FIG. 3 is a perspective view showing another embodiment.

【図4】 別の実施形態を示す斜視図FIG. 4 is a perspective view showing another embodiment.

【図5】 別の実施形態を示す斜視図FIG. 5 is a perspective view showing another embodiment.

【図6】 別の実施形態を示す斜視図FIG. 6 is a perspective view showing another embodiment.

【図7】 別の実施形態を示す斜視図FIG. 7 is a perspective view showing another embodiment.

【図8】 別の実施形態を示す斜視図FIG. 8 is a perspective view showing another embodiment.

【図9】 別の実施形態を示す動作説明斜視図FIG. 9 is an operation explanatory perspective view showing another embodiment.

【図10】 別の実施形態を示す動作説明斜視図FIG. 10 is an operation explanatory perspective view showing another embodiment.

【図11】 別の実施形態を示す斜視図(a) および動作
説明図(b)
FIG. 11A is a perspective view showing another embodiment, and FIG.

【図12】 別の実施形態を示す斜視図(a) および動作
説明図(b)
FIG. 12 is a perspective view (a) and an operation explanatory view (b) showing another embodiment.

【図13】 別の実施形態を示す斜視図(a) および動作
説明図(b)
FIG. 13 is a perspective view (a) and an operation explanatory view (b) showing another embodiment.

【図14】 別の実施形態を示す平面図および正面図FIG. 14 is a plan view and a front view showing another embodiment.

【図15】 別の実施形態を示す斜視図FIG. 15 is a perspective view showing another embodiment.

【符号の説明】[Explanation of symbols]

10 供給部 20 造形部 30 移送ブレード 40 ガイドレール 44 回転部 50 供給面 52 載置面 54 支持面 60 粉末供給装置 62 供給ノズル 70 粉末供給装置 72 コンテナ容器 80 移送シート 82 開口部 90 移送容器 L 光ビーム M 硬化層 P 粉末材料 DESCRIPTION OF SYMBOLS 10 Supply part 20 Modeling part 30 Transfer blade 40 Guide rail 44 Rotation part 50 Supply surface 52 Placement surface 54 Support surface 60 Powder supply device 62 Supply nozzle 70 Powder supply device 72 Container container 80 Transfer sheet 82 Opening 90 Transfer container L Light Beam M Hardened layer P Powder material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 武南 正孝 大阪府門真市大字門真1048番地 松下電工 株式会社内 (72)発明者 浦田 昇 大阪府門真市大字門真1048番地 松下電工 株式会社内 Fターム(参考) 4F213 WA25 WB01 WL02 WL12 WL26 WL32 WL35 WL95 4K018 CA50 EA51 EA60 JA05  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masataka Takenan 1048 Kadoma Kadoma, Kadoma-shi, Osaka Matsushita Electric Works, Ltd. Reference) 4F213 WA25 WB01 WL02 WL12 WL26 WL32 WL35 WL95 4K018 CA50 EA51 EA60 JA05

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】造形領域において、無機質もしくは有機質
の粉末材料を層状に堆積させ光ビームを照射して硬化層
を形成することを繰り返して三次元形状造形物を製造す
る方法において、 前記造形領域の外側から上方へと移動する移送部材を造
形領域の外側の供給開始位置に配置させる工程(a) と、 造形領域の外側で移送部材の移動経路上に前記粉末材料
を供給する工程(b) と、 移送部材を移動させ、前記粉末材料を造形領域の外側か
ら造形領域へと移送して層状に堆積させる工程(c) と、 造形領域に移送され層状に堆積した粉末材料に光ビーム
を照射して硬化層を形成する工程(d) とを含み、 前記工程(a) および工程(b) が、前記工程(d) の間に行
われる三次元形状造形物の製造方法。
1. A method of producing a three-dimensionally shaped object by repeatedly depositing a layer of an inorganic or organic powder material in a modeling region and irradiating a light beam to form a hardened layer, the method comprising the steps of: (A) disposing a transfer member that moves upward from the outside to a supply start position outside the modeling region, and (b) supplying the powder material onto a movement path of the transfer member outside the modeling region. Moving the transfer member, transferring the powder material from the outside of the modeling region to the modeling region and depositing it in a layer (c); irradiating the powder material transferred to the modeling region and deposited in a layer with a light beam (D) forming a cured layer by performing the steps (a) and (b) during the step (d).
【請求項2】複数の移送部材を順次用いて、各層の粉末
材料を造形領域へと移送する請求項1に記載の三次元形
状造形物の製造方法。
2. The method for manufacturing a three-dimensionally shaped object according to claim 1, wherein the powder material of each layer is transferred to the forming region by using a plurality of transfer members in sequence.
【請求項3】前記工程(a) が、前記移送部材を、前記工
程(b) に使用したあと、前記工程(c) における光ビーム
の照射領域を通過させずに、前記供給開始位置に復帰さ
せる請求項1に記載の三次元形状造形物の製造方法。
3. In the step (a), after using the transfer member in the step (b), the transfer member is returned to the supply start position without passing through the light beam irradiation area in the step (c). The method for producing a three-dimensionally shaped object according to claim 1.
【請求項4】前記移送部材を、前記工程(c) における移
動面と同じ平面上でループ状に旋回移動させる請求項3
に記載の三次元形状造形物の製造方法。
4. The method according to claim 3, wherein the transfer member is turned in a loop on the same plane as the moving surface in the step (c).
3. The method for producing a three-dimensionally shaped object according to item 1.
【請求項5】前記移送部材を、前記造形領域の下方を通
過させる請求項3に記載の三次元形状造形物の製造方
法。
5. The method for manufacturing a three-dimensionally shaped object according to claim 3, wherein the transfer member is passed below the modeling region.
【請求項6】前記移送部材の供給開始位置、前記粉末材
料の供給位置、および、前記造形領域を同じ円周上に配
置し、 移送部材を上記円周に沿って旋回移動させ、 前記工程(a) が、工程(c) における移送部材の移動と同
じ方向に移送部材を旋回させて、前記供給開始位置に復
帰させる請求項3に記載の三次元形状造形物の製造方
法。
6. The supply start position of the transfer member, the supply position of the powder material, and the modeling region are arranged on the same circumference, and the transfer member is swirled along the circumference, and the step ( 4. The method for producing a three-dimensionally shaped object according to claim 3, wherein a) rotates the transfer member in the same direction as the movement of the transfer member in step (c) to return the transfer member to the supply start position.
【請求項7】前記円周上の複数個所に造形領域を配置し
ておく請求項6に記載の三次元形状造形物の製造方法。
7. The method for manufacturing a three-dimensionally shaped object according to claim 6, wherein modeling regions are arranged at a plurality of positions on the circumference.
【請求項8】複数の移送部材を、同じ移動経路上を間隔
をあけて順次移動させる請求項4〜7の何れかに記載の
三次元形状造形物の製造方法。
8. The method for manufacturing a three-dimensionally shaped object according to claim 4, wherein the plurality of transfer members are sequentially moved on the same movement path at intervals.
【請求項9】複数の移送部材を等間隔で配置しておく請
求項4〜7の何れかに記載の三次元形状造形物の製造方
法。
9. The method according to claim 4, wherein a plurality of transfer members are arranged at equal intervals.
【請求項10】移送部材と前記工程(c) で移送部材を直
線移動させる駆動機構とを一緒に、前記移送部材が造形
領域から造形領域の側方に後退し造形領域に沿って前記
供給開始位置の側方に移動し供給開始位置に復帰するよ
うに移動させる請求項3に記載の三次元形状造形物の製
造方法。
10. The transfer member together with a drive mechanism for linearly moving the transfer member in the step (c), the transfer member retreats from the modeling region to the side of the modeling region, and starts the supply along the modeling region. The method for manufacturing a three-dimensionally shaped object according to claim 3, wherein the three-dimensionally shaped object is moved to the side of the position and moved to return to the supply start position.
【請求項11】移送部材を、前記造形領域の端部で前記
工程(c) における移送部材の移動方向と平行になるよう
に折り畳み、造形領域の側方に沿って前記供給開始位置
の側方まで移動させ、前記折り畳み状態から元の状態に
戻して供給開始位置に配置する請求項3に記載の三次元
形状造形物の製造方法。
11. A transfer member is folded at an end of the modeling region so as to be parallel to the moving direction of the transfer member in the step (c), and is laterally located at the supply start position along a side of the modeling region. 4. The method of manufacturing a three-dimensionally shaped object according to claim 3, wherein the three-dimensionally shaped object is moved from the folded state to the original state and placed at the supply start position.
【請求項12】前記工程(b) が、前記供給開始位置に配
置された移送部材と造形領域との間の供給面に、1層分
の粉末材料を供給する請求項1に記載の三次元形状造形
物の製造方法。
12. The three-dimensional method according to claim 1, wherein in the step (b), one layer of powder material is supplied to a supply surface between a transfer member disposed at the supply start position and a modeling region. Manufacturing method of shaped objects.
【請求項13】前記1層分の粉末材料が収容された複数
台のコンテナを、前記供給面の上方に循環移動させ、各
コンテナから供給面へ順次粉末材料を供給する請求項1
2に記載の三次元形状造形物の製造方法。
13. A plurality of containers accommodating said one layer of powder material are circulated and moved above said supply surface, and the powder material is sequentially supplied from each container to the supply surface.
3. The method for producing a three-dimensionally shaped object according to item 2.
【請求項14】前記工程(b) が、前記供給開始位置に配
置された移送部材と造形領域との間の供給面に、複数層
分の粉末材料を供給し、 前記工程(c) が、移送部材を造形領域から造形領域の外
側に設けられた載置面まで移動させ、造形領域には1層
分の粉末材料だけを層状に堆積させ、残りの粉末材料を
載置面に移送し、その後、移送部材を載置面に移送され
た粉末材料の上方を通過させて粉末材料の外側に移送部
材を配置し、 次回の工程(c) は、移送部材を元の方向に移動させて、
載置面に移送された粉末材料を移送部材で造形領域へと
移送して層状に堆積させる請求項1に記載の三次元形状
造形物の製造方法。
14. The step (b) comprises supplying a plurality of layers of powdered material to a supply surface between a transfer member disposed at the supply start position and a modeling region, wherein the step (c) comprises: The transfer member is moved from the modeling area to the mounting surface provided outside the modeling area, only one layer of powder material is deposited in a layer on the modeling area, and the remaining powder material is transferred to the mounting surface, Thereafter, the transfer member is passed over the powder material transferred to the mounting surface, and the transfer member is disposed outside the powder material.The next step (c) is to move the transfer member in the original direction,
The method for manufacturing a three-dimensionally shaped object according to claim 1, wherein the powder material transferred to the mounting surface is transferred to a modeling region by a transfer member and deposited in a layer.
【請求項15】前記工程(a) が、前記移送部材として、
造形領域と同形状の開口部が移動方向に沿って間隔をあ
けて多数配置された移送シートを用い、移送シートの一
つの開口部を造形領域の外側に配置し、 前記工程(b) が、造形領域の外側で移送シートの開口部
内に前記粉末材料を供給し、 前記工程(c) が、前記移送シートの移動させ、開口部内
の粉末材料を造形領域の外側から造形領域へと移送して
層状に堆積させる請求項1に記載の三次元形状造形物の
製造方法。
15. The method according to claim 15, wherein the step (a) comprises:
Using a transfer sheet in which a plurality of openings having the same shape as the modeling area are arranged at intervals along the movement direction, disposing one opening of the transfer sheet outside the modeling area, the step (b) includes: Supplying the powder material into the opening of the transfer sheet outside the modeling area, the step (c) moves the transfer sheet, and transfers the powder material in the opening from the outside of the modeling area to the modeling area. The method for manufacturing a three-dimensionally shaped object according to claim 1, wherein the three-dimensionally shaped object is deposited in a layered manner.
【請求項16】前記工程(a) および工程(b) が、移送部
材として、前記粉末材料が収容され下面に造形領域と同
形状の供給口を有する移送容器を用い、移送容器を造形
領域の外側に配置された待機面上に配置し、 前記工程(c) が、移送容器を造形領域の上に移動させ、
移送容器の供給口から粉末材料を造形領域に落下させた
あと、移送容器を造形領域の外側に移動させることで、
造形領域に粉末材料を層状に堆積させる三次元形状造形
物の製造方法。
16. The step (a) and the step (b) are characterized in that a transfer container containing the powder material and having a supply port on the lower surface having the same shape as the modeling region is used as the transfer member. Arranging on a standby surface arranged outside, the step (c) moving the transfer container over the modeling area,
After dropping the powder material from the supply port of the transfer container to the modeling area, by moving the transfer container outside the modeling area,
A method for manufacturing a three-dimensionally shaped object in which a powder material is deposited in a layered manner on a modeling region.
JP33517799A 1999-11-25 1999-11-25 Manufacturing method of three-dimensional shaped object Expired - Lifetime JP3557970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33517799A JP3557970B2 (en) 1999-11-25 1999-11-25 Manufacturing method of three-dimensional shaped object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33517799A JP3557970B2 (en) 1999-11-25 1999-11-25 Manufacturing method of three-dimensional shaped object

Publications (2)

Publication Number Publication Date
JP2001150557A true JP2001150557A (en) 2001-06-05
JP3557970B2 JP3557970B2 (en) 2004-08-25

Family

ID=18285628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33517799A Expired - Lifetime JP3557970B2 (en) 1999-11-25 1999-11-25 Manufacturing method of three-dimensional shaped object

Country Status (1)

Country Link
JP (1) JP3557970B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003245981A (en) * 2002-02-25 2003-09-02 Matsushita Electric Works Ltd Method and device for manufacturing three- dimensionally shaped article
JP2005534543A (en) * 2002-08-02 2005-11-17 イーオーエス ゲゼルシャフト ミット ベシュレンクテル ハフツング イレクトロ オプティカル システムズ Device and method for manufacturing three-dimensional objects by generative manufacturing methods
WO2007010598A1 (en) * 2005-07-19 2007-01-25 Homs Engineering Inc. Process for producing stent and powder sintering apparatus
JP2008126671A (en) * 2006-11-22 2008-06-05 Eos Gmbh Electro Optical Systems Coating device for coating powdery molding material layer in apparatus for producing layered shape of three-dimensional object
JP2010137482A (en) * 2008-12-15 2010-06-24 Nagano Japan Radio Co Three-dimensional molding machine
JP2010149359A (en) * 2008-12-25 2010-07-08 Nagano Japan Radio Co Three dimensional molding machine
JP4809423B2 (en) * 2005-05-11 2011-11-09 アルカム・アクチボラゲット Powder coating system
JP2012505773A (en) * 2008-10-20 2012-03-08 イフォクレール ヴィヴァデント アクチェンゲゼルシャフト Devices and methods for processing photopolymerizable materials to build objects in layers
JP2014028996A (en) * 2012-07-31 2014-02-13 Aspect Inc Powder laminate molding apparatus and powder laminate molding method
JP2015199196A (en) * 2014-04-04 2015-11-12 株式会社松浦機械製作所 Laminate molding apparatus and laminate molding method
KR20160147633A (en) * 2015-06-15 2016-12-23 엑스와이지프린팅, 인크. Printing method for low melting-point material of 3D printer
JP2017020110A (en) * 2016-07-06 2017-01-26 株式会社東芝 Nozzle device and lamination molding device
CN107249790A (en) * 2014-12-23 2017-10-13 赛峰航空器发动机 The method that turbine parts are produced by laser technology
WO2017184166A1 (en) * 2016-04-22 2017-10-26 Hewlett-Packard Development Company, L.P. Moveable belt to carry a build material
WO2017196326A1 (en) * 2016-05-12 2017-11-16 Hewlett-Packard Development Company, L.P. Distributing powder
WO2017196324A1 (en) * 2016-05-12 2017-11-16 Hewlett-Packard Development Company, L.P. Contaminant barrier
EP3281727A1 (en) * 2016-08-10 2018-02-14 SLM Solutions Group AG Apparatus for producing three-dimensional workpiece comprising a plurality of powder application devices
WO2018042631A1 (en) * 2016-09-02 2018-03-08 技術研究組合次世代3D積層造形技術総合開発機構 Three-dimensional laminate molding device, control method of three-dimensional laminate molding device, and control program of three-dimensional laminate molding device
JP2018144486A (en) * 2017-03-01 2018-09-20 トゥロワデセラム Method for producing piece with additive manufacturing technology by processing of paste with improved supply of paste and production machine for conducting said method
DE102018129027A1 (en) * 2018-11-19 2020-05-20 AMCM GmbH Additive manufacturing process and system
JP2021042465A (en) * 2019-09-06 2021-03-18 日本電子株式会社 Three-dimensional laminate molding apparatus
CN114042937A (en) * 2021-12-15 2022-02-15 苏州三峰激光科技有限公司 3D printing special equipment for printing hollow cylindrical component and printing method thereof
US11254049B2 (en) 2016-08-05 2022-02-22 Shashin Kagaku Co., Ltd. Optical fabricating apparatus and optical fabricating method
WO2023285404A1 (en) * 2021-07-12 2023-01-19 Sintratec Ag Raw material positioning unit for an additive manufacturing device and method for raw material supply
JP2023084123A (en) * 2021-12-06 2023-06-16 國立臺北科技大學 Slurry solid light curing molding facility

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6076532B1 (en) 2016-06-14 2017-02-08 株式会社ソディック Additive manufacturing equipment
JP6533817B2 (en) 2017-09-29 2019-06-19 本田技研工業株式会社 Modeling method and modeling object

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01232027A (en) * 1988-03-14 1989-09-18 Mitsui Eng & Shipbuild Co Ltd Shaping method using heat fusing powder
WO1993025377A1 (en) * 1992-06-05 1993-12-23 Laser 3D Method and device for making an industrial part model in order to achieve a partial transformation of a liquid under the action of the light
JPH07501019A (en) * 1991-11-08 1995-02-02 ディーティーエム・コーポレーション Multipowder feeding for selective laser sintering
JPH08502703A (en) * 1994-01-11 1996-03-26 イーオーエス ゲゼルシャフト ミット ベシュレンクテル ハフツング イレクトロ オプティカル システムズ Method and apparatus for producing three-dimensional object
WO1997025194A1 (en) * 1996-01-03 1997-07-17 Allanic Andre Luc Rapid prototyping process for the production of industrial parts and device for implementing such process

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01232027A (en) * 1988-03-14 1989-09-18 Mitsui Eng & Shipbuild Co Ltd Shaping method using heat fusing powder
JPH07501019A (en) * 1991-11-08 1995-02-02 ディーティーエム・コーポレーション Multipowder feeding for selective laser sintering
WO1993025377A1 (en) * 1992-06-05 1993-12-23 Laser 3D Method and device for making an industrial part model in order to achieve a partial transformation of a liquid under the action of the light
JPH08502703A (en) * 1994-01-11 1996-03-26 イーオーエス ゲゼルシャフト ミット ベシュレンクテル ハフツング イレクトロ オプティカル システムズ Method and apparatus for producing three-dimensional object
WO1997025194A1 (en) * 1996-01-03 1997-07-17 Allanic Andre Luc Rapid prototyping process for the production of industrial parts and device for implementing such process

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003245981A (en) * 2002-02-25 2003-09-02 Matsushita Electric Works Ltd Method and device for manufacturing three- dimensionally shaped article
JP2005534543A (en) * 2002-08-02 2005-11-17 イーオーエス ゲゼルシャフト ミット ベシュレンクテル ハフツング イレクトロ オプティカル システムズ Device and method for manufacturing three-dimensional objects by generative manufacturing methods
JP4790264B2 (en) * 2002-08-02 2011-10-12 イーオーエス ゲゼルシャフト ミット ベシュレンクテル ハフツング イレクトロ オプティカル システムズ Device and method for manufacturing three-dimensional objects by generative manufacturing methods
US8172562B2 (en) 2002-08-02 2012-05-08 Eos Gmbh Electro Optical Systems Device and method for producing a three-dimensional object by means of a generative production method
JP4809423B2 (en) * 2005-05-11 2011-11-09 アルカム・アクチボラゲット Powder coating system
WO2007010598A1 (en) * 2005-07-19 2007-01-25 Homs Engineering Inc. Process for producing stent and powder sintering apparatus
JP2008126671A (en) * 2006-11-22 2008-06-05 Eos Gmbh Electro Optical Systems Coating device for coating powdery molding material layer in apparatus for producing layered shape of three-dimensional object
JP2012505773A (en) * 2008-10-20 2012-03-08 イフォクレール ヴィヴァデント アクチェンゲゼルシャフト Devices and methods for processing photopolymerizable materials to build objects in layers
JP2010137482A (en) * 2008-12-15 2010-06-24 Nagano Japan Radio Co Three-dimensional molding machine
JP2010149359A (en) * 2008-12-25 2010-07-08 Nagano Japan Radio Co Three dimensional molding machine
JP2014028996A (en) * 2012-07-31 2014-02-13 Aspect Inc Powder laminate molding apparatus and powder laminate molding method
JP2015199196A (en) * 2014-04-04 2015-11-12 株式会社松浦機械製作所 Laminate molding apparatus and laminate molding method
CN107249790A (en) * 2014-12-23 2017-10-13 赛峰航空器发动机 The method that turbine parts are produced by laser technology
KR20160147633A (en) * 2015-06-15 2016-12-23 엑스와이지프린팅, 인크. Printing method for low melting-point material of 3D printer
KR101956690B1 (en) 2015-06-15 2019-03-11 엑스와이지프린팅, 인크. Printing method for low melting-point material of 3D printer
WO2017184166A1 (en) * 2016-04-22 2017-10-26 Hewlett-Packard Development Company, L.P. Moveable belt to carry a build material
WO2017196326A1 (en) * 2016-05-12 2017-11-16 Hewlett-Packard Development Company, L.P. Distributing powder
WO2017196324A1 (en) * 2016-05-12 2017-11-16 Hewlett-Packard Development Company, L.P. Contaminant barrier
US11377302B2 (en) 2016-05-12 2022-07-05 Hewlett-Packard Development Company, L.P. Distributing powder
US11376791B2 (en) 2016-05-12 2022-07-05 Hewlett-Packard Development Company, L.P. Contaminant barrier
JP2017020110A (en) * 2016-07-06 2017-01-26 株式会社東芝 Nozzle device and lamination molding device
US11254049B2 (en) 2016-08-05 2022-02-22 Shashin Kagaku Co., Ltd. Optical fabricating apparatus and optical fabricating method
EP3281727A1 (en) * 2016-08-10 2018-02-14 SLM Solutions Group AG Apparatus for producing three-dimensional workpiece comprising a plurality of powder application devices
CN109843480A (en) * 2016-08-10 2019-06-04 Slm方案集团股份公司 For producing the equipment including multiple powder bringing devices of 3 D workpiece
US20190168304A1 (en) * 2016-08-10 2019-06-06 SLM Solutions Group AG Apparatus for producing three-dimensional workpiece comprising a plurality of powder application devices
WO2018029059A1 (en) * 2016-08-10 2018-02-15 SLM Solutions Group AG Apparatus for producing three-dimensional workpiece comprising a plurality of powder application devices
JPWO2018042631A1 (en) * 2016-09-02 2018-08-30 技術研究組合次世代3D積層造形技術総合開発機構 Control method for three-dimensional additive manufacturing apparatus, control method for three-dimensional additive manufacturing apparatus, and control program for three-dimensional additive manufacturing apparatus
US11077613B2 (en) 2016-09-02 2021-08-03 Technology Research Association For Future Additive Manufacturing Three-dimensional laminating and shaping apparatus, control method of three-dimensional laminating and shaping apparatus, and control program of three-dimensional laminating and shaping apparatus
WO2018042631A1 (en) * 2016-09-02 2018-03-08 技術研究組合次世代3D積層造形技術総合開発機構 Three-dimensional laminate molding device, control method of three-dimensional laminate molding device, and control program of three-dimensional laminate molding device
JP2018144486A (en) * 2017-03-01 2018-09-20 トゥロワデセラム Method for producing piece with additive manufacturing technology by processing of paste with improved supply of paste and production machine for conducting said method
DE102018129027A1 (en) * 2018-11-19 2020-05-20 AMCM GmbH Additive manufacturing process and system
JP2021042465A (en) * 2019-09-06 2021-03-18 日本電子株式会社 Three-dimensional laminate molding apparatus
WO2023285404A1 (en) * 2021-07-12 2023-01-19 Sintratec Ag Raw material positioning unit for an additive manufacturing device and method for raw material supply
JP2023084123A (en) * 2021-12-06 2023-06-16 國立臺北科技大學 Slurry solid light curing molding facility
JP7510205B2 (en) 2021-12-06 2024-07-03 品瓷科技股▲ふん▼有限公司 Slurry 3D light curing molding equipment
CN114042937A (en) * 2021-12-15 2022-02-15 苏州三峰激光科技有限公司 3D printing special equipment for printing hollow cylindrical component and printing method thereof

Also Published As

Publication number Publication date
JP3557970B2 (en) 2004-08-25

Similar Documents

Publication Publication Date Title
JP2001150557A (en) Method for manufacturing three-dimensionally shaped object
JP6625717B2 (en) Device for manufacturing 3D components
JP6487941B2 (en) Apparatus and method for producing tangible objects by layered production
TWI601626B (en) Method and apparatus for making tangible products by layerwise manufacturing
JP6946319B2 (en) Manufacturing method and manufacturing equipment
CN103009630B (en) Three-dimensional shaping apparatus
EP3140103B1 (en) Multi-material three dimensional printer
US20170014910A1 (en) Selective material dispensing in additive manufacturing
KR101856644B1 (en) 3D concrete print system
KR20200094800A (en) Additive manufacturing using powder distribution
JP2003245981A (en) Method and device for manufacturing three- dimensionally shaped article
KR20160102420A (en) Device and method for 3d printing methods, with accelerated execution
WO2016083234A1 (en) Additive manufacturing method and additive manufacturing apparatus
US10987868B2 (en) Production line for making tangible products by layerwise manufacturing
KR20220050981A (en) 3D printers, printing methods and parts for additive manufacturing of multilayer parts
CN206415603U (en) A kind of many material laser selective melting shaped devices
TW202147430A (en) Additive manufacturing of polishing pads on a conveyor
KR20190100540A (en) 3d printing apparatus comprising cleansing module and 3d printing method
WO2020003312A1 (en) Structure supporting an object during additive manufacturing and method for forming
US20190322052A1 (en) Production line for making tangible products by layerwise manufacturing
CN116967480A (en) Metal multi-material powder selective laying method and laser printing device
JPH10211656A (en) Laminate shaping apparatus
JP4141379B2 (en) Method and apparatus for modeling a three-dimensional object
JP2023506138A (en) Additive manufacturing machine
JP2023174905A (en) Three-dimensional printer for additive manufacturing of members and printing method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040510

R151 Written notification of patent or utility model registration

Ref document number: 3557970

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080528

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

EXPY Cancellation because of completion of term