JPH01232027A - Shaping method using heat fusing powder - Google Patents

Shaping method using heat fusing powder

Info

Publication number
JPH01232027A
JPH01232027A JP63059853A JP5985388A JPH01232027A JP H01232027 A JPH01232027 A JP H01232027A JP 63059853 A JP63059853 A JP 63059853A JP 5985388 A JP5985388 A JP 5985388A JP H01232027 A JPH01232027 A JP H01232027A
Authority
JP
Japan
Prior art keywords
powder
flat layer
molten
beams
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63059853A
Other languages
Japanese (ja)
Other versions
JPH0698687B2 (en
Inventor
Shigeru Nagamori
茂 永森
Katsumi Sato
勝美 佐藤
Katsuhide Murata
勝英 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP63059853A priority Critical patent/JPH0698687B2/en
Publication of JPH01232027A publication Critical patent/JPH01232027A/en
Publication of JPH0698687B2 publication Critical patent/JPH0698687B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49013Deposit layers, cured by scanning laser, stereo lithography SLA, prototyping

Abstract

PURPOSE:To shape a specified shape material with an inexpensive material by moving beams toward a flat layer of powder to irradiate it, forming a section shaped molten curved material, feeding the powder continuously, directing the beams and forming the molten cured material. CONSTITUTION:Heat fusing powder 18 is fed from a quantitative feeder 20 onto a table 12 to form flat layer. Then, beams 32 are directed toward the upper surface of a flat layer of the powder 18 by actuating a laser transmitter 30 and also the beams 32 are moved after the section shape of an object shaped material by actuating a laser scanning device 26 and varying continuously the angle of a mirror 24. The powder 18 irradiated with the beams 32 is immediately melted and cured to form a molten cured material 34. Further, a table 12 is lowered by required height, and the powder 18 is fed onto a powder flat layer, while the beams 32 are directed and moved. The object shaped material is formed as a laminated molten cured material 34 by repeating said procedures. The object shaped material shaped thus can be shaped with an inexpensive material such as metallic powder or the like.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は金属粉末、熱可塑性樹脂粉末などの熱溶融性粉
末を用いて立体形状の造形体を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a three-dimensional shaped body using a heat-fusible powder such as a metal powder or a thermoplastic resin powder.

詳しくは、該粉末にレーザビーム等の高エネルギー密度
ビームを照射して部分的に溶融硬化体を形成する工程を
有する造形方法に関する。
Specifically, the present invention relates to a shaping method that includes a step of irradiating the powder with a high energy density beam such as a laser beam to partially form a molten hardened body.

[従来の技術] 光硬化性流動物質に光束を照射して、該照射部分を硬化
させ、この硬化部分を水平方向に連続させると共に、さ
らにその上側に光硬化性流動物質を供給して同様にして
、硬化させることにより上下方向にも硬化体を連続させ
、これを繰り返すことにより目的形状の硬化体を製造す
る光学的造形法は特開昭60−247515号、62−
35966号、62−101408号などにより公知で
ある。また、目的形状の硬化体の一断面に相当するスリ
ットを有する造形用マスクを通して光を照射して硬化さ
せ、次に硬化層の上に未硬化の光硬化性流動物質を存在
させると共にこの造形用マスクを目的形状の硬化体の高
さ方向に隣接する一断面に相当するスリットを有するも
のに交換し、再び光を照射する工程を繰り返すことによ
り目的形状の硬化体を製造する光学的造形方法も公知で
ある(例えば、上記特開昭62−35966号)。
[Prior Art] A light curable fluid material is irradiated with a light beam to harden the irradiated portion, and this hardened portion is made to continue in the horizontal direction, and a photo curable fluid material is further supplied above the irradiated portion to perform the same process. JP-A No. 60-247515, 62-8 discloses an optical modeling method in which the cured body is made to continue in the vertical direction by curing, and by repeating this process, a cured body of the desired shape is manufactured.
It is publicly known from No. 35966, No. 62-101408, etc. In addition, light is irradiated through a modeling mask having a slit corresponding to one cross section of the cured product in the desired shape to cure the material, and then an uncured photocurable fluid material is placed on the cured layer and the material is used for modeling. There is also an optical modeling method in which a cured product with the desired shape is manufactured by replacing the mask with one having a slit corresponding to one cross section adjacent to the height direction of the cured product with the desired shape and repeating the process of irradiating light again. It is publicly known (for example, the above-mentioned Japanese Patent Application Laid-Open No. 62-35966).

[発明が解決しようとする課題] 上記の光硬化性流動物質を用いた造形法によれば、鋳造
法では製作できない中空体等であっても製作可能である
反面、次の如き解決課題が存在する。
[Problems to be Solved by the Invention] According to the above-mentioned modeling method using the photocurable fluid material, it is possible to manufacture hollow bodies etc. that cannot be manufactured by casting methods, but on the other hand, there are the following problems to be solved. do.

(イ) 光硬化性流動物質は一般に極めて高価である。(a) Photocurable fluid materials are generally extremely expensive.

(ロ) 光硬化性流動物質の硬化体は強度が低い。(b) The cured product of the photocurable fluid material has low strength.

(ハ) 光硬化性流動物質は硬化時の収縮が大きく、亀
裂が生じたり、硬化物の寸法に大きな誤差が生じる。
(c) The photocurable fluid material shrinks significantly during curing, resulting in cracks and large errors in the dimensions of the cured product.

[課題を解決するための手段] 本発明の熱溶融性粉末(以下、粉末と略)を用いた造形
方法は次の第1、第2及び第3の工程を有している。
[Means for Solving the Problems] A modeling method using a heat-fusible powder (hereinafter abbreviated as powder) of the present invention includes the following first, second, and third steps.

第1の工程は、粉末を平坦に均して平坦層を形成する工
程である。
The first step is to level the powder to form a flat layer.

第2の工程は、該平坦層に向けて高エネルギー密度ビー
ム(以下、ビームと略)を目的形状体の断面形状に倣っ
て移動させながら照射して該断面形状の溶融硬化物を形
成する工程である。
The second step is a step of irradiating the flat layer with a high energy density beam (hereinafter referred to as beam) while moving it following the cross-sectional shape of the object to form a molten hardened product with the cross-sectional shape. It is.

第3の工程は、第2の工程に引き続いて行なうものであ
り、該溶融硬化物及び平坦層の上に粉末を供給して平坦
に均して平坦層を形成し、再度該平坦層に向けて前記ビ
ームを照射して溶融硬化物を形成し、かつこの平坦層の
形成及び該ビームの照射による溶融硬化物の形成を繰り
返して行なう工程である。
The third step is performed following the second step, in which powder is supplied onto the molten and hardened material and the flat layer, and the powder is leveled flat to form a flat layer, and then the powder is directed onto the flat layer again. In this process, a molten hardened product is formed by irradiating the beam, and the formation of this flat layer and the formation of a molten hardened product by irradiation of the beam are repeated.

[作用] 該粉末の平坦層に向けてビームを照射しながら移動させ
ると、該ビームが照射された部分の粉末は溶融又は軟化
し、粉末同志が融合又は融着する。この融合又は融着物
は、ビームが通り過ぎた後に周囲に奪熱され、冷却硬化
して硬化物となる。(このように、−回溶融した後に硬
化した物質を、本発明において溶融硬化物という。)し
かして、上記ビームを目的形状体の断面形状に倣って連
続的に移動させることにより、該断面形状に倣った形状
の溶融硬化物が形成される。
[Operation] When the flat layer of powder is moved while being irradiated with a beam, the powder in the portion irradiated with the beam melts or softens, and the powders fuse or fuse together. After the beam passes, this fused or fused material is heat-absorbed by the surroundings, and is cooled and hardened to become a hardened material. (In this invention, the material that has been cured after being melted twice is referred to as a molten hardened material.) By continuously moving the beam to follow the cross-sectional shape of the object, the cross-sectional shape can be changed. A molten and hardened product is formed with a shape that follows.

この溶融硬化物及び該溶融硬化物の周囲の粉末よりなる
平坦層の上にさらに粉末を供給して平坦に均し、再度同
様にしてビームを照射すると、先に形成されていた溶融
硬化物の上側に別の溶融硬化物が形成される。このよう
にして、上下方向に溶融硬化物を積重ねることにより、
目的形状体をいわゆる輪切りの如き薄肉断面物の積重体
として形成できる。
Further powder is supplied on top of this molten hardened material and a flat layer of powder around the molten hardened material to make it flat, and when the beam is irradiated again in the same manner, the molten hardened material that was previously formed is Another molten hardened material is formed on the upper side. In this way, by stacking the molten and hardened materials in the vertical direction,
The object shape can be formed as a stack of thin cross-sections such as so-called ring slices.

この成形物は、光硬化性流動物質以外の金属粉末や樹脂
粉末を原料とするから、安価でかつ強度が高く、硬化収
縮も小さい。
Since this molded product is made from metal powder or resin powder other than the photocurable fluid material, it is inexpensive, has high strength, and has little curing shrinkage.

[実施例] 第1図は本発明の実施例方法を示す斜視図である。[Example] FIG. 1 is a perspective view showing an embodiment of the method of the present invention.

符号10は容器であり、その内部に昇降自在にテーブル
12が設置され、駆動装置14により昇降可能とされて
いる。このテーブル12上の容器10内には粉末(本実
施例では金属粉末)18が収容されている。符号20は
粉末の定量供給器であり、本実施例では容器10の上面
に沿って往復動自在とされ、かつ粉末の均し板22が装
着されている。
Reference numeral 10 denotes a container, and a table 12 is installed inside the container so that it can be raised and lowered, and can be raised and lowered by a drive device 14. Powder (metal powder in this embodiment) 18 is housed in a container 10 on this table 12. Reference numeral 20 denotes a powder quantitative feeder, which in this embodiment is movable back and forth along the upper surface of the container 10, and is equipped with a powder leveling plate 22.

容器10の上方にはミラー24が設置されている。該ミ
ラー24はレーザスキャナ装置26によって傾動自在と
されており、発信器30から入射されるビーム(本実施
例ではレーザビーム)32を粉末18に向けて照射し、
かつその傾動により照射位置を連続して移動させ得る構
成となっている。
A mirror 24 is installed above the container 10. The mirror 24 is tiltable by a laser scanner device 26, and irradiates the powder 18 with a beam 32 (laser beam in this embodiment) incident from a transmitter 30.
In addition, the structure is such that the irradiation position can be continuously moved by tilting the irradiation position.

なお、第2図に示す如く、テーブル12の縁部と容器1
0の上部内縁との間は蛇腹状の伸縮シール材28によっ
て対画されており、粉末がテーブル12の縁部からこぼ
れ落ちないよう構成されている。
In addition, as shown in FIG. 2, the edge of the table 12 and the container 1
0 and the upper inner edge of the table 12 is separated by a bellows-shaped expandable sealing material 28, which is configured to prevent powder from spilling from the edge of the table 12.

また、第3図は上記装置のシステム構成を示すブロック
図であり、図示の如くレーザスキャナ験置26、テーブ
ル駆動装置14、粉末の定量供給器20及びレーザ発信
器30はコンピュータ36によって制御されている。
FIG. 3 is a block diagram showing the system configuration of the above-mentioned apparatus, and as shown, the laser scanner station 26, table drive device 14, powder quantitative feeder 20, and laser transmitter 30 are controlled by a computer 36. There is.

次に、かかる装置を用いた造形法について説明する。Next, a modeling method using such an apparatus will be explained.

まず、テーブル12の上面が容器10の上面かられずか
に下方となるようにテーブル駆動装置14にてテーブル
12の位置決めを行なう。そして、定量供給器20から
粉末を該テーブル12の上に供給すると共に、該定量供
給器20を容器10の上面の一端から他端に向けて移動
させ、該テーブル12上に粉末を平坦に均して平坦層を
形成する。
First, the table 12 is positioned using the table driving device 14 so that the top surface of the table 12 is slightly below the top surface of the container 10. Then, the powder is supplied from the quantitative feeder 20 onto the table 12, and the quantitative feeder 20 is moved from one end of the upper surface of the container 10 to the other end, so that the powder is evenly distributed on the table 12. to form a flat layer.

次に、レーザ発信器30を作動させ粉末18の平坦層上
面に向けてビーム32を照射する。これと同時にレーザ
スキャナ装置26を作動させ、ミラー24の角度を連続
的に変化させることにより、ビーム32を目的形状体の
断面形状に倣って8勤させる。ビームが照射された粉末
18は直ちに溶融し、かつビームが通り過ぎた後はこの
溶融物が硬化して溶融硬化体34となる。
Next, the laser transmitter 30 is activated to irradiate the beam 32 onto the top surface of the flat layer of the powder 18. At the same time, the laser scanner device 26 is operated to continuously change the angle of the mirror 24, thereby making the beam 32 move eight times along the cross-sectional shape of the target object. The powder 18 irradiated with the beam immediately melts, and after the beam passes, this melt hardens to become a molten hardened body 34.

目的形状体の断面形状に沿ってビーム32を移動させた
後、該ビーム32の照射を一旦停止し、テーブル12を
所要高さだけ下降させる。
After the beam 32 is moved along the cross-sectional shape of the target object, the irradiation of the beam 32 is temporarily stopped, and the table 12 is lowered by a required height.

そして、第4図の如く、定量供給器20から再度粉末を
それまで存在していた粉末平坦層の上に供給し、該定量
併給器20を移動させることによりそれまでの平坦層及
び生じた溶融硬化体34の上に新たな粉末の平坦層を形
成する。しかる後、第5図の如く、レーザ発信器30か
らビーム32を再度粉末18の平坦層に向けて照射し、
かつレーザスキャナ装置26によりビーム32を連続的
に移動させる。上記手順を繰り返すことにより、目的形
状体が溶融硬化体34の積重体として形成される。
Then, as shown in FIG. 4, the powder is again supplied from the quantitative feeder 20 onto the powder flat layer that had existed up until then, and by moving the quantitative cofeeder 20, the flat layer and the molten layer that has been formed are melted. A new flat layer of powder is formed on the cured body 34. Thereafter, as shown in FIG. 5, the beam 32 is irradiated from the laser transmitter 30 again toward the flat layer of the powder 18.
And the beam 32 is continuously moved by the laser scanner device 26. By repeating the above procedure, a target shaped body is formed as a stack of molten and hardened bodies 34.

しかして、この目的形状体は金属粉末等光硬化性流動物
以外の物質からなるものであり、安価であると共に、硬
化収縮が小さく亀裂の発生がなくしかも寸法精度が良い
This object shaped body is made of a substance other than a photocurable fluid such as metal powder, and is inexpensive, has little curing shrinkage, is free from cracking, and has good dimensional accuracy.

上記実施例ではテーブル12を徐々に下降させ、その上
に金属粉末を次々と注ぎ足して容器10の上面方向へと
平坦層表面を形成しているが、本発明にあってはテーブ
ル12は固定方式とし、新たに粉末を供給してそれだけ
平坦層の上面が上昇するようにしても良い、この場合に
は、例えばミラー24を平坦層上面の上昇に見合って上
昇させるように構成したり、あるいはビーム32の焦点
位置を上方にシフトさせるようレンズ操作を行う。
In the above embodiment, the table 12 is gradually lowered and metal powder is poured onto it one after another to form a flat layer surface toward the upper surface of the container 10, but in the present invention, the table 12 is fixed. In this case, for example, the mirror 24 may be configured to rise in proportion to the rise of the top surface of the flat layer, or A lens operation is performed to shift the focal position of the beam 32 upward.

本発明において、粉末としては鉄、銅、鉛、アルミニウ
ムなどの金属や合金の粉末、アクリル樹脂、塩化ビニル
樹脂等の熱可塑性樹脂の粉末、ガラス等の無機熱軟化性
物質の粉末等各種の粉末を採用することができる。
In the present invention, the powder includes various powders such as powders of metals and alloys such as iron, copper, lead, and aluminum, powders of thermoplastic resins such as acrylic resin and vinyl chloride resin, and powders of inorganic thermosoftening substances such as glass. can be adopted.

ビームとしてはルビー、YAG、炭酸ガス、アルゴン等
のレーザのばか電子ビーム等の上記粉末を加熱溶融させ
得るエネルギー密度を有する各種ビームを採用できる。
As the beam, various beams having an energy density capable of heating and melting the powder, such as an electron beam of a laser such as ruby, YAG, carbon dioxide, or argon, can be used.

[効果] 以上の通り、本発明方法によれば安価な材料により目的
形状体を造形することができる。この得られる造形体は
硬化時の収縮が少なく精度が良いと共に、収縮によるひ
ずみや亀裂の発生がなく、健全な品質なものが確実に製
造される。
[Effects] As described above, according to the method of the present invention, a target-shaped object can be formed using inexpensive materials. The resulting shaped body exhibits little shrinkage during curing, has good precision, and does not suffer from distortion or cracking due to shrinkage, ensuring that it is of sound quality.

本発明において、特に粉末として金属粉末を用いれば極
めて強度の高い成形体を製造することができ、この成形
体は鋳型製作や倣い加工等の金型母型として利用できる
In the present invention, especially if a metal powder is used as the powder, a molded body with extremely high strength can be produced, and this molded body can be used as a mold matrix for mold production, copying, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例方法を説明する斜視図、第2図
は同装置の要部断面図、第3図は同装置のシステム構成
を示すブロック図、第4図及び第5図は作動を説明する
概略的な断面図である。 10・・・容器、    12・・・テーブル、14・
・・テーブル駆動装置、 18・・・粉末、    20・・・定量供給器、24
・・・ミラー。
FIG. 1 is a perspective view illustrating an embodiment of the method of the present invention, FIG. 2 is a cross-sectional view of the main parts of the device, FIG. 3 is a block diagram showing the system configuration of the device, and FIGS. 4 and 5 are It is a schematic sectional view explaining operation. 10... Container, 12... Table, 14.
...Table drive device, 18...Powder, 20...Quantitative feeder, 24
···mirror.

Claims (1)

【特許請求の範囲】[Claims] (1)熱溶融性粉末を平坦に均して平坦層を形成する第
1の工程、 該平坦層に向けて高エネルギー密度ビームを目的形状体
の断面形状に倣って移動させながら照射して該断面形状
の溶融硬化物を形成する第2の工程、 該第2の工程の後、該溶融硬化物及び平坦層の上に熱溶
融性粉末を供給して平坦に均して平坦層を形成し、再度
該平坦層に向けて前記ビームを照射して溶融硬化物を形
成し、かつこの平坦層の形成及び該ビームの照射による
溶融硬化物の形成を繰り返して行なう第3の工程、 を有する熱溶融性粉末を用いた造形方法。
(1) The first step is to level the heat-fusible powder to form a flat layer, and irradiate the flat layer with a high-energy density beam while moving it along the cross-sectional shape of the target object. a second step of forming a molten and cured product having a cross-sectional shape; after the second step, a hot melt powder is supplied onto the molten and cured product and the flat layer to form a flat layer; , a third step of irradiating the beam again toward the flat layer to form a molten hardened material, and repeating the formation of this flat layer and the formation of the molten hardened material by irradiating the beam. A modeling method using meltable powder.
JP63059853A 1988-03-14 1988-03-14 Modeling method using heat-meltable powder Expired - Lifetime JPH0698687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63059853A JPH0698687B2 (en) 1988-03-14 1988-03-14 Modeling method using heat-meltable powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63059853A JPH0698687B2 (en) 1988-03-14 1988-03-14 Modeling method using heat-meltable powder

Publications (2)

Publication Number Publication Date
JPH01232027A true JPH01232027A (en) 1989-09-18
JPH0698687B2 JPH0698687B2 (en) 1994-12-07

Family

ID=13125167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63059853A Expired - Lifetime JPH0698687B2 (en) 1988-03-14 1988-03-14 Modeling method using heat-meltable powder

Country Status (1)

Country Link
JP (1) JPH0698687B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997021259A1 (en) * 1995-12-06 1997-06-12 Hitachi Metals, Ltd. Laser resonator, laser device, device applying laser, and method for oscillation of laser beam
US5658412A (en) * 1993-01-11 1997-08-19 Eos Gmbh Electro Optical Systems Method and apparatus for producing a three-dimensional object
JPH09509270A (en) * 1993-12-01 1997-09-16 マラソン テクノロジーズ コーポレイション Fast recovery from failure / Computational processing that is resistant to failure
EP0856393A3 (en) * 1997-01-29 1998-09-23 Toyota Jidosha Kabushiki Kaisha Method for producing a laminated object and apparatus for producing the same
US6155331A (en) * 1994-05-27 2000-12-05 Eos Gmbh Electro Optical Systems Method for use in casting technology
JP2001150557A (en) * 1999-11-25 2001-06-05 Matsushita Electric Works Ltd Method for manufacturing three-dimensionally shaped object
JP2003245981A (en) * 2002-02-25 2003-09-02 Matsushita Electric Works Ltd Method and device for manufacturing three- dimensionally shaped article
JP2005537134A (en) * 2002-08-28 2005-12-08 ザ ピーオーエム グループ Shape-independent real-time closed-loop weld pool temperature control system for multi-layer DMD processes
JP2012506799A (en) * 2008-10-31 2012-03-22 ビーエーエスエフ ソシエタス・ヨーロピア Ion exchanger molded product and method for producing the same
JP2015196254A (en) * 2014-03-31 2015-11-09 国立研究開発法人産業技術総合研究所 Powder material feeder for three-dimensional molding apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5658412A (en) * 1993-01-11 1997-08-19 Eos Gmbh Electro Optical Systems Method and apparatus for producing a three-dimensional object
JPH09509270A (en) * 1993-12-01 1997-09-16 マラソン テクノロジーズ コーポレイション Fast recovery from failure / Computational processing that is resistant to failure
US6155331A (en) * 1994-05-27 2000-12-05 Eos Gmbh Electro Optical Systems Method for use in casting technology
WO1997021259A1 (en) * 1995-12-06 1997-06-12 Hitachi Metals, Ltd. Laser resonator, laser device, device applying laser, and method for oscillation of laser beam
EP0856393A3 (en) * 1997-01-29 1998-09-23 Toyota Jidosha Kabushiki Kaisha Method for producing a laminated object and apparatus for producing the same
JP2001150557A (en) * 1999-11-25 2001-06-05 Matsushita Electric Works Ltd Method for manufacturing three-dimensionally shaped object
JP2003245981A (en) * 2002-02-25 2003-09-02 Matsushita Electric Works Ltd Method and device for manufacturing three- dimensionally shaped article
JP2005537134A (en) * 2002-08-28 2005-12-08 ザ ピーオーエム グループ Shape-independent real-time closed-loop weld pool temperature control system for multi-layer DMD processes
JP2012506799A (en) * 2008-10-31 2012-03-22 ビーエーエスエフ ソシエタス・ヨーロピア Ion exchanger molded product and method for producing the same
JP2015196254A (en) * 2014-03-31 2015-11-09 国立研究開発法人産業技術総合研究所 Powder material feeder for three-dimensional molding apparatus

Also Published As

Publication number Publication date
JPH0698687B2 (en) 1994-12-07

Similar Documents

Publication Publication Date Title
CN109622954B (en) Laminated molding device and method for manufacturing laminated molded article
US11801635B2 (en) Laser pulse shaping for additive manufacturing
US6861613B1 (en) Device and method for the preparation of building components from a combination of materials
US20210078077A1 (en) Heat treatment to anneal residual stresses during additive manufacturing
US10723071B2 (en) Device and method for generatively producing a three-dimensional object
US6827988B2 (en) Process and a device for producing ceramic molds
KR100271208B1 (en) Selective infiltration manufacturing method and apparatus
US20170173736A1 (en) Additive manufacturing method using large and small beam sizes
JP2559194B2 (en) Gas turbine blade and method for manufacturing core / model combination for manufacturing the same
JPH09511705A (en) Method for manufacturing three-dimensional object
WO1990003893A1 (en) An improved apparatus and method for forming an integral object from laminations
JP2004284346A (en) Method for producing molded article by using powder stereolithographic process or sintering process
JPH01232027A (en) Shaping method using heat fusing powder
JP2002069507A (en) Method for manufacturing metal article, apparatus thereof, and laser beam condensing unit
US10919114B2 (en) Methods and support structures leveraging grown build envelope
US20210221050A1 (en) Method for manufacturing a part of electroconductive material by additive manufacturing
US20220024122A1 (en) Improved calibration method for a system for powder bed-based generating of three-dimensional components by means of electromagnetic radiation
JP3066606B2 (en) Method and apparatus for manufacturing a three-dimensional object
JPH0857967A (en) Three-dimensional shaping method
JP6659660B2 (en) Additional three-dimensional object manufacturing method and apparatus
US8389896B2 (en) Rapid prototyping device and method with indirect laser exposure
JP6643643B2 (en) Manufacturing method of three-dimensional shaped object
JP2617532B2 (en) Method and apparatus for forming a three-dimensional shape
JP2680925B2 (en) Metal powder molding method using laser
KR101856370B1 (en) Device and method for indicating position of inset block in the 3D printer