JP3446733B2 - Method and apparatus for manufacturing three-dimensional shaped object - Google Patents

Method and apparatus for manufacturing three-dimensional shaped object

Info

Publication number
JP3446733B2
JP3446733B2 JP2000306546A JP2000306546A JP3446733B2 JP 3446733 B2 JP3446733 B2 JP 3446733B2 JP 2000306546 A JP2000306546 A JP 2000306546A JP 2000306546 A JP2000306546 A JP 2000306546A JP 3446733 B2 JP3446733 B2 JP 3446733B2
Authority
JP
Japan
Prior art keywords
powder
layer
sintered
dimensional shaped
shaped object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000306546A
Other languages
Japanese (ja)
Other versions
JP2002115004A (en
Inventor
諭 阿部
徳雄 吉田
喜万 東
裕彦 峠山
勲 不破
修士 上永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18787215&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3446733(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2000306546A priority Critical patent/JP3446733B2/en
Priority to TW090123973A priority patent/TW506868B/en
Priority to US09/964,626 priority patent/US6657155B2/en
Priority to CNB011411619A priority patent/CN1283413C/en
Priority to DE10148967A priority patent/DE10148967B4/en
Priority to KR10-2001-0061382A priority patent/KR100436121B1/en
Publication of JP2002115004A publication Critical patent/JP2002115004A/en
Priority to HK02107915.5A priority patent/HK1046383A1/en
Publication of JP3446733B2 publication Critical patent/JP3446733B2/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/364Process control of energy beam parameters for post-heating, e.g. remelting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/44Radiation means characterised by the configuration of the radiation means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/49Scanners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/80Plants, production lines or modules
    • B22F12/82Combination of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/86Serial processing with multiple devices grouped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/247Removing material: carving, cleaning, grinding, hobbing, honing, lapping, polishing, milling, shaving, skiving, turning the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は粉末材料を光ビーム
で焼結硬化させることで三次元形状造形物を製造する三
次元形状造形物の製造方法及びその装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional shaped article manufacturing method and apparatus for producing a three-dimensional shaped article by sintering and curing a powder material with a light beam.

【0002】[0002]

【従来の技術】光造形法として知られている三次元形状
造形物の製造方法がある。特許第2620353号など
に示された該製造方法は、図18(a)に示すように、無
機質あるいは有機質の粉末材料の層の所定箇所に光ビー
ムLを照射して該当個所の粉末を焼結することで焼結層
11を形成し、この焼結層11の上に粉末材料の新たな
層10を被覆して該粉末層10の所定箇所に光ビームL
を照射して該当個所の粉末を焼結することで下層の焼結
層11と一体になった新たな焼結層11を形成すること
を繰り返すことによって、複数の焼結層が積層一体化さ
れた粉末焼結部品(三次元形状造形物)を作成するもの
であり、三次元形状造形物の設計データ(CADデー
タ)であるモデルを所望の層厚みにスライスして生成す
る各層の断面形状データをもとに光ビームLを照射する
ことから、いわゆるCAM装置が無くとも任意形状の三
次元形状造形物を製造することができるほか、切削加工
などによる製造方法に比して、迅速に所望の形状の造形
物を得ることができる。
2. Description of the Related Art There is a method of manufacturing a three-dimensional shaped object known as a stereolithography method. As shown in FIG. 18 (a), the manufacturing method disclosed in Japanese Patent No. 2620353 is performed by irradiating a predetermined portion of a layer of an inorganic or organic powder material with a light beam L to sinter the powder at that portion. By doing so, a sintered layer 11 is formed, a new layer 10 of powder material is coated on the sintered layer 11, and the light beam L is applied to a predetermined portion of the powder layer 10.
Is repeatedly irradiated to sinter the powder at the relevant position to form a new sintered layer 11 integrated with the lower sintered layer 11 to stack and integrate a plurality of sintered layers. And a cross-sectional shape data of each layer generated by slicing a model, which is design data (CAD data) of the three-dimensional shaped object, into a desired layer thickness. Since the light beam L is irradiated on the basis of the laser beam, it is possible to manufacture a three-dimensional shaped object having an arbitrary shape without using a so-called CAM device, and it is possible to rapidly produce a desired shape as compared with a manufacturing method such as cutting. A shaped object can be obtained.

【0003】[0003]

【発明が解決しようとする課題】ところで、図20に示
すように、光ビームLを照射して焼結硬化させた部分の
周囲には伝達された熱が原因となって不要な粉末15が
付着するものであり、該付着粉末は密度の低い表面層1
6を造形物に形成してしまう。
By the way, as shown in FIG. 20, unnecessary powder 15 adheres to the periphery of the portion where the light beam L is irradiated and sintered and hardened due to the heat transferred. The attached powder is a surface layer 1 having a low density.
6 is formed into a molded article.

【0004】特開2000−73108号公報には、焼
結層11を積層することで生じる外表面の段差(図18
(b)参照)を除去することが示されているが、この段差
を除去するだけでは図18(c)に示すように、低密度表
面層16が残ってしまい、滑らかな表面を得ることがで
きない。
In Japanese Patent Laid-Open No. 2000-73108, a step on the outer surface caused by stacking the sintered layers 11 (see FIG. 18).
(see (b)) has been shown to be removed, but simply removing this step can leave the low-density surface layer 16 as shown in FIG. 18 (c), and obtain a smooth surface. Can not.

【0005】また焼結工程において十分な密度(低気孔
率)の焼結体を形成しておかないと、段差を除去しても
除去後の表面に気孔が現れて滑らかな表面は得られな
い。
Further, unless a sintered body having a sufficient density (low porosity) is formed in the sintering step, even if the step is removed, pores appear on the surface after the removal and a smooth surface cannot be obtained. .

【0006】さらに造形物を完成させた後に上記低密度
表面層を除去する仕上げを行う場合は、造形物形状に対
して、加工工具による限界が生じる。たとえば深いリブ
等を切削する場合、小径工具では工具長さに制限がある
ために加工不可能となることがあるために、別途放電加
工等の工程が必要となり、時間及びコストの点で問題が
多い。
Further, when finishing the removal of the low-density surface layer after completing the modeled object, the shape of the modeled object is limited by the working tool. For example, when cutting a deep rib or the like, a small-diameter tool may not be able to be machined due to the limited tool length, so a separate process such as electric discharge machining is required, which causes problems in terms of time and cost. Many.

【0007】本発明はこのような点に鑑みなされたもの
であって、その目的とするところは造形物表面をその形
状にかかわらず低コストで滑らかに仕上げることができ
る三次元形状造形物の製造方法及びその装置を提供する
にある。
The present invention has been made in view of the above points, and an object of the present invention is to manufacture a three-dimensional shaped object capable of smoothly finishing the surface of the object regardless of its shape at low cost. A method and an apparatus therefor are provided.

【0008】[0008]

【課題を解決するための手段】しかして本発明に係る三
次元形状造形物の製造方法は、無機質あるいは有機質の
粉末材料の層の所定箇所に光ビームを照射して該当個所
の粉末を焼結することで焼結層を形成し、この焼結層の
上に粉末材料の新たな層を被覆して所定箇所に光ビーム
を照射して該当個所の粉末を焼結することで下層の焼結
層と一体になった新たな焼結層を形成することを繰り返
して、複数の焼結層が積層一体化された粉末焼結部品を
作成するにあたり、三次元形状造形物である粉末焼結部
品の表面を高密度に焼結させておくとともに、焼結層の
形成後にそれまでに作成した造形物の表面部及びまたは
不要部分の除去を行う工程を複数回の焼結層の作成工程
中に挿入して、該除去工程により上記高密度部を露出さ
せることことに特徴を有している。
SUMMARY OF THE INVENTION In the method for producing a three-dimensional shaped object according to the present invention, however, a layer of inorganic or organic powder material is irradiated with a light beam at a predetermined position to sinter the powder at that position. To form a sintered layer, coat a new layer of powder material on this sintered layer, and irradiate a light beam at a predetermined location to sinter the powder at that location to sinter the lower layer. When forming a powder sintered part in which multiple sintered layers are laminated and integrated by repeatedly forming a new sintered layer integrated with a layer, a powder sintered part that is a three-dimensional shaped object
The surface of the product is sintered at a high density, and the process of removing the surface part and / or unnecessary parts of the modeled object created up to that time after forming the sintered layer is performed multiple times during the process of creating the sintered layer. And remove the high density part by the removing process.
It is characterized by making it possible.

【0009】[0009]

【0010】除去工程は切削やレーザーによって行うこ
とができる。
The removing step can be performed by cutting or laser.

【0011】除去工程の直前に除去対象部に光ビームを
照射して除去対象部を軟化させたり、除去工程の直後に
除去対象部を除去した部分に溶融硬化もしくは熱処理用
の光ビームを照射するようにしてもよい。
Immediately before the removing step, the object to be removed is irradiated with a light beam to soften the object to be removed, and immediately after the removing step, the part where the object to be removed is removed is irradiated with a light beam for melt hardening or heat treatment. You may do it.

【0012】また、除去工程における除去作業と同時に
三次元形状造形物である粉末焼結部品の周囲の未焼結粉
末や除去作業で発生する屑の排除作業を行うことも好ま
しく、未焼結粉末の排除は除去工程の直前に行ってもよ
い。
Further, it is also preferable to carry out the removal work in the removal process at the same time as the removal work of the unsintered powder around the powder-sintered part which is a three-dimensional shaped object and the scraps generated in the removal work. May be removed immediately before the removal step.

【0013】上記排除を行う場合は、除去工程の直後に
除去部及び排除部に対して樹脂またはろう材を流し込
み、次いで次の粉末材料の層の形成及び焼結を行うよう
にしてもよい。
When performing the above-mentioned removal, a resin or a brazing material may be poured into the removed portion and the removed portion immediately after the removing step, and then the next layer of powder material may be formed and sintered.

【0014】焼結層の形成直後もしくは除去工程の直後
にそれまでに形成した造形物の形状及び位置の計測を行
い、該計測結果に基づき、次の焼結層の形成のための光
ビームの照射経路データ及び次の除去工程での被除去部
の除去加工経路データの修正を行うことも好ましい。。
Immediately after the formation of the sintered layer or immediately after the removal step, the shape and position of the modeled object formed so far are measured, and based on the measurement result, the light beam for forming the next sintered layer is measured. It is also preferable to correct the irradiation path data and the removal processing path data of the removed portion in the next removal step. .

【0015】除去工程の前に未焼結粉末を固化させてお
くようにしてもよく、この場合の固化は、未焼結粉末を
冷凍したり、樹脂またはろう材を用いるとよい。
The unsintered powder may be solidified before the removing step. In this case, the unsintered powder may be frozen or a resin or a brazing material may be used.

【0016】そして本発明に係る三次元形状造形物の製
造装置は、無機質あるいは有機質の粉末材料の層を形成
する粉末層形成手段と、上記粉末層の所定箇所に光ビー
ムを照射して該当個所の粉末を焼結して焼結層を形成す
る焼結層形成手段と、焼結層形成手段と焼結層との相対
距離を調整する調整手段とを備えるとともに、造形物の
表面部及びまたは不要部分の除去を行う除去手段を備え
ていることに特徴を有している。
The apparatus for producing a three-dimensional shaped object according to the present invention comprises a powder layer forming means for forming a layer of an inorganic or organic powder material, and a predetermined portion of the powder layer irradiated with a light beam. And a means for adjusting the relative distance between the sintered layer forming means and the sintered layer, and the surface portion of the modeled object and / or It is characterized in that it comprises a removing means for removing an unnecessary portion.

【0017】未焼結粉末や除去手段による除去工程で発
生する屑を排除する排除手段を備えたものとしてもよ
く、この排除手段は、粉末層形成手段に付設したもの
や、XY駆動機構を有して造形物の断面輪郭形状に沿っ
て排除作業を行うものを好適に用いることができる。
It is also possible to provide a means for eliminating the unsintered powder and scraps generated in the removing step by the removing means, and this removing means has a powder layer forming means or an XY drive mechanism. It is possible to suitably use the one that performs the exclusion work along the cross-sectional contour shape of the modeled object.

【0018】また、焼結層の形成直後もしくは除去工程
の直後にそれまでに形成した造形物の形状及び位置の計
測を行う計測手段と、計測手段による計測結果に基づい
て焼結層形成手段の動作を補正する補正手段とを備えた
ものとするのも好ましく、この場合の計測手段には、X
Y駆動機構を有して造形物の断面輪郭形状に沿って計測
を行うものを好適に用いることができる。
Further, immediately after the formation of the sintered layer or immediately after the removal step, the measuring means for measuring the shape and position of the modeled object formed so far, and the measuring means for measuring the sintered layer forming means based on the measurement result. It is also preferable to provide a correction means for correcting the operation, and in this case, the measurement means is X
A device having a Y drive mechanism and performing measurement along the cross-sectional contour shape of the modeled object can be suitably used.

【0019】[0019]

【発明の実施の形態】以下本発明を実施の形態の一例に
基づいて詳述すると、図3は本発明に係る三次元形状造
形物の製造装置を示しており、シリンダーで外周が囲ま
れた空間内を上下に昇降する昇降テーブル20上に供給
した無機質あるいは有機質の粉末材料をスキージング用
ブレード21でならすことで所定厚みΔt1の粉末層1
0を形成する粉末層形成手段2と、レーザー発振器30
から出力されたレーザーをガルバノミラー31等のスキ
ャン光学系を介して上記粉末層10に照射することで粉
末を焼結して焼結層11を形成する焼結層形成手段3
と、上記粉末層形成手段2のベース部にXY駆動機構
(高速化の点で直動リニアモータ駆動のものが好まし
い)40を介してミーリングヘッド41を設けて、除去
手段4を形成してある。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below with reference to an example of an embodiment. FIG. 3 shows an apparatus for manufacturing a three-dimensional shaped object according to the present invention, in which the outer circumference is surrounded by a cylinder. The squeegee blade 21 smoothes the inorganic or organic powder material supplied onto the elevating table 20 that moves up and down in the space to form the powder layer 1 having a predetermined thickness Δt1.
Powder layer forming means 2 for forming 0 and laser oscillator 30
Sintered layer forming means 3 that sinters the powder to form the sintered layer 11 by irradiating the powder layer 10 with the laser beam output from the laser beam through the scanning optical system such as the galvanometer mirror 31.
The milling head 41 is provided on the base portion of the powder layer forming means 2 via an XY drive mechanism (preferably a linear motion linear motor drive in terms of speedup) 40 to form the removing means 4. .

【0020】このものにおける三次元形状造形物の製造
は、図1に示すように、焼結層形成手段と焼結層との相
対距離を調整する調整手段であるところの昇降テーブル
20上面の造形用ベース22表面に無機質または有機質
の粉末材料を供給してブレード21でならすことで第1
層目の粉末層10を形成し、この粉末層10の硬化させ
たい箇所に光ビーム(レーザー)Lを照射して粉末を焼
結させてベース22と一体化した焼結層11を形成す
る。
As shown in FIG. 1, the manufacturing of the three-dimensional shaped article in this article is performed on the upper surface of the lifting table 20 which is an adjusting means for adjusting the relative distance between the sintered layer forming means and the sintered layer. First, by supplying an inorganic or organic powder material to the surface of the base 22 and smoothing it with the blade 21
The powder layer 10 of the first layer is formed, and a portion of the powder layer 10 to be cured is irradiated with a light beam (laser) L to sinter the powder and form a sintered layer 11 integrated with the base 22.

【0021】この後、昇降テーブル20を少し下げて再
度無機質または有機質の粉末材料を供給してブレード2
1でならすことで第2層目の粉末層10を形成し、この
粉末層10の硬化させたい箇所に光ビーム(レーザー)
Lを照射して粉末を焼結させて下層の焼結層11と一体
化した焼結層11を形成する。
After that, the elevating table 20 is lowered a little and the inorganic or organic powder material is again supplied to the blade 2
The second powder layer 10 is formed by smoothing with 1, and a light beam (laser) is applied to the portion of the powder layer 10 to be cured.
L is irradiated to sinter the powder to form the sintered layer 11 integrated with the lower sintered layer 11.

【0022】昇降テーブル20を下降させて新たな粉末
層10を形成し、光ビームを照射して所要箇所を焼結層
11とする工程を繰り返すことで、目的とする三次元形
状造形物を製造するものであり、たとえば、粉末材料と
して平均粒径約20μmの球形の鉄粉、光ビームとして
は炭酸ガスレーザー、粉末層10の厚みΔt1としては
0.05mmが好適である。
By repeating the process of lowering the elevating table 20 to form a new powder layer 10 and irradiating it with a light beam to form a desired layer as the sintered layer 11, a desired three-dimensional shaped object is manufactured. For example, a spherical iron powder having an average particle diameter of about 20 μm as a powder material, a carbon dioxide laser as a light beam, and a thickness Δt1 of the powder layer 10 of 0.05 mm are preferable.

【0023】光ビームの照射経路は、予め三次元CAD
データから作成しておく。すなわち、従来のものと同様
に、三次元CADモデルから生成したSTLデータを等
ピッチ(ここでは0.05mm)でスライスした各断面
の輪郭形状データを用いる。この時、三次元形状造形物
の少なくとも最表面が高密度(気孔率5%以下)となる
ように焼結させることができるように光ビームの照射を
行うのが好ましい。除去手段によって後述する表面除去
を行っても、露出した部分がポーラスであれば、除去加
工後の表面もポーラスな状態となるためであり、このた
めに予め形状モデルデータを図4に示すように、表層部
Sと内部Nとに分割しておき、内部Nについてはポーラ
スとなるような焼結条件、表層部Sはほぼ粉末が溶融し
て高密度となる条件で光ビームを照射する。図5(a)の
図中12が高密度部を示しており、図中16は前述の付
着粉末によるところの低密度表面層である。
The light beam irradiation path is preliminarily defined by three-dimensional CAD.
Create from data. That is, similarly to the conventional one, the contour shape data of each cross section obtained by slicing the STL data generated from the three-dimensional CAD model at an equal pitch (here, 0.05 mm) is used. At this time, it is preferable to perform irradiation with a light beam so that at least the outermost surface of the three-dimensional shaped object can be sintered so as to have a high density (porosity of 5% or less). This is because even if the surface removal described later is performed by the removing means, if the exposed portion is porous, the surface after the removal processing will also be in a porous state. Therefore, as shown in FIG. The surface layer portion S and the inside N are divided, and the inside N is irradiated with a light beam under a sintering condition such that the inside N is porous, and the surface layer portion S is under the condition that the powder is almost melted to have a high density. In FIG. 5 (a), 12 indicates a high density portion, and 16 in the drawing is a low density surface layer formed by the above-mentioned adhered powder.

【0024】そして、上記粉末層10を形成しては光ビ
ームを照射して焼結層11を形成することを繰り返して
いくのであるが、焼結層11の全厚みがたとえばミーリ
ングヘッド41の工具長さなどから求めた所要の値にな
れば、いったん除去手段4を作動させてそれまでに造形
した造形物の表面を切削する。たとえば、ミーリングヘ
ッド41の工具(ボールエンドミル)が直径1mm、有
効刃長3mmで深さ3mmの切削加工が可能であり、粉
末層10の厚みΔt1が0.05mmであるならば、6
0層の焼結層11を形成した時点で、除去手段4を作動
させる。
The formation of the powder layer 10 and irradiation of a light beam to form the sintered layer 11 is repeated, but the total thickness of the sintered layer 11 is, for example, a tool of the milling head 41. When the required value obtained from the length or the like is reached, the removing means 4 is once operated to cut the surface of the modeled object modeled up to that point. For example, if the tool (ball end mill) of the milling head 41 is capable of cutting with a diameter of 1 mm, an effective blade length of 3 mm and a depth of 3 mm, and the thickness Δt1 of the powder layer 10 is 0.05 mm, then 6
The removal means 4 is operated at the time when the 0 sintered layer 11 is formed.

【0025】この除去手段4による切削加工により、図
5に示すように、造形物表面に付着した粉末による低密
度表面層16を除去すると同時に、高密度部12まで削
り込むことで、造形物表面に高密度部12を全面的に露
出させる。このために、所望の形状Mよりも焼結層11
が少し大きくなるようにしておく。
As shown in FIG. 5, the low-density surface layer 16 of the powder adhering to the surface of the shaped article is removed by the cutting process by the removing means 4, and at the same time, the high-density portion 12 is ground, whereby the surface of the shaped article is cut. Then, the high-density portion 12 is entirely exposed. For this reason, the sintered layer 11 is more than the desired shape M.
To be a little larger.

【0026】この除去手段4による切削加工経路は、光
ビームの照射経路と同様に予め三次元CADデータから
作成しておく。この時、等高線加工を適用して加工経路
を決定するが、Z方向ピッチは焼結時の積層ピッチにこ
だわる必要はなく、緩い傾斜の場合はZ方向ピッチをよ
り細かくして補間することで、滑らかな表面を得られる
ようにしておく。切削加工を直径1mmのボールエンド
ミルで行う場合は、切り込み量を0.1〜0.5mm、
送り速度を5m/min〜50m/min、工具回転数
を20,000rpm〜100,000rpmとするの
が好ましい。
The cutting route by the removing means 4 is created in advance from the three-dimensional CAD data, like the light beam irradiation route. At this time, the contour line machining is applied to determine the machining path, but the Z-direction pitch does not need to be particular about the stacking pitch at the time of sintering, and in the case of a gentle inclination, the Z-direction pitch is made finer and interpolated, Be prepared to get a smooth surface. When cutting with a ball end mill with a diameter of 1 mm, the cutting depth is 0.1 to 0.5 mm,
The feed speed is preferably 5 m / min to 50 m / min, and the tool rotation speed is preferably 20,000 rpm to 100,000 rpm.

【0027】なお、切削による除去に際しては、図6に
示すように、切削加工の直前の部分にエネルギー密度を
小さくした光ビーム(レーザー)Lを照射して加熱する
ことで軟化させておき、この軟化した状態の部分を工具
44が切削していくようにすると、切削抵抗が小さくな
るために切削加工時間を短くできるとともに工具44の
寿命を延ばすことができる。
At the time of removal by cutting, as shown in FIG. 6, a portion immediately before cutting is irradiated with a light beam (laser) L having a reduced energy density and heated to be softened. When the tool 44 cuts the softened portion, the cutting resistance is reduced, so that the cutting time can be shortened and the life of the tool 44 can be extended.

【0028】また、図7に示すように、切削除去直後の
部分に再度光ビームLを照射して溶融硬化させたり熱処
理することで、密度を高めるようにすることも好まし
い。
Further, as shown in FIG. 7, it is also preferable to increase the density by irradiating the portion immediately after the cutting with the light beam L to melt and harden or heat the portion.

【0029】図8に示すものは、焼結層形成手段3であ
るレーザー発振器30からのレーザーを光ファイバー3
6を通じて受けて出力する照射ヘッド35を除去手段4
におけるXY駆動機構40に取り付けている。共用部品
が増えるために部品点数を少なくすることができる。
In FIG. 8, the laser from the laser oscillator 30, which is the sintered layer forming means 3, is used for the optical fiber 3.
The irradiation head 35 for receiving and outputting through 6 is a removing means 4
Attached to the XY drive mechanism 40. Since the number of common parts increases, the number of parts can be reduced.

【0030】ところで、除去手段4による造形物表面及
び不要部分の除去に際して、未焼結粉末や除去手段4に
よる切削屑が除去作業の邪魔になる上に、次の粉末層1
0の形成に際して、ブレード21に切削屑が引っかかっ
て平坦な粉末層10を形成することができなかったり、
ブレード21と造形物との間に切削屑が挟まってブレー
ド21が停止してしまうことがある。このために、図9
及び図10(a)あるいは図10(b)に示すように、たとえ
ばエアポンプ50に接続した吸引ノズル51を工具44
に隣接させて配置して、切削と同時に未焼結粉末及び切
削屑を吸引排除してしまうとよい。吸引ノズル51で工
具44を囲んでいる図10(b)に示すものでは、工具4
4としてスピンドルヘッドを好適に用いることができ
る。
By the way, when the removal means 4 removes the surface of the shaped article and the unnecessary portion, the unsintered powder and the cutting scraps produced by the removal means 4 interfere with the removal work, and the next powder layer 1
At the time of forming 0, the cutting powder is caught on the blade 21 and the flat powder layer 10 cannot be formed,
The cutting waste may be caught between the blade 21 and the modeled object, and the blade 21 may stop. For this reason, FIG.
Also, as shown in FIG. 10A or FIG. 10B, for example, the suction nozzle 51 connected to the air pump 50 is attached to the tool 44.
It is advisable to dispose the green powder and cutting chips by suction at the same time as cutting so as to be removed by suction. In the case where the tool 44 is surrounded by the suction nozzle 51, as shown in FIG.
A spindle head can be suitably used as 4.

【0031】図11に示すように、切削加工前に未焼結
粉末のみを吸引除去し、切削加工と同時に切削屑を吸引
除去するようにしてもよく、この場合、未焼結粉末に切
削屑が混入することがないために、未焼結粉末の再利用
が容易となる。
As shown in FIG. 11, only the unsintered powder may be sucked and removed before the cutting work, and the cutting debris may be sucked and removed at the same time as the cutting process. Since the powder does not mix, it becomes easy to reuse the unsintered powder.

【0032】ところで、未焼結粉末を吸引排除してしま
った場合、除去工程後にさらに粉末層10を積層する
時、多量の粉末が必要となり、除去工程を複数回繰り返
す場合、その都度、未焼結粉末を排除した全空間に粉末
を埋めなくてはならず、時間的なロスが大きくなる。
By the way, if the unsintered powder is removed by suction, a large amount of powder is required when the powder layer 10 is further laminated after the removing step, and when the removing step is repeated a plurality of times, the unsintered powder is removed each time. The powder must be filled in the entire space excluding the binding powder, resulting in a large time loss.

【0033】このために、未焼結粉末を排除した空間に
は、図12に示すように、樹脂あるいはろう材を流し込
んで固化させることで固化部18を形成し、次の粉末層
10は最上層の焼結層11と上記固化部18の上面に形
成するとよい。使用する粉末量を削減することができ
る。
For this reason, as shown in FIG. 12, a solidified portion 18 is formed by pouring a resin or a brazing material into the space where the unsintered powder has been removed, and solidifying the resin or brazing material. It may be formed on the upper surface of the upper sintered layer 11 and the solidified portion 18. The amount of powder used can be reduced.

【0034】なお、上記エアポンプ50及び吸引ノズル
51からなる排除手段における吸引ノズル51は、除去
工程に先だって未焼結粉末を排除するものについては、
図13に示すように、粉末層形成手段2におけるブレー
ド21の駆動部に取り付けておくと、全域の未焼結粉末
の排除を行うことができるとともに吸引ノズル51のた
めの専用の駆動機構を必要としなくなるために、装置構
成を簡単にすることができる。
Regarding the suction nozzle 51 in the excluding means composed of the air pump 50 and the suction nozzle 51, which removes the unsintered powder prior to the removing step,
As shown in FIG. 13, when it is attached to the drive part of the blade 21 in the powder layer forming means 2, it is possible to remove the unsintered powder in the entire area and a dedicated drive mechanism for the suction nozzle 51 is required. Therefore, the device configuration can be simplified.

【0035】また、図14に示すように、吸引ノズル5
1を専用のXY駆動機構55、もしくは除去手段4にお
けるXY駆動機構40に取り付けた場合には、造形物の
断面輪郭線形状に沿って吸引ノズル51を移動させるこ
とができる。
Further, as shown in FIG. 14, the suction nozzle 5
When 1 is attached to the dedicated XY drive mechanism 55 or the XY drive mechanism 40 in the removing means 4, the suction nozzle 51 can be moved along the cross-sectional contour line shape of the modeled object.

【0036】未焼結粉末については、除去工程の直前に
吸引排除してしまうのではなく、例えば液体窒素などを
吹き付ける(必要とあれば湿気を含んだガスを同時に吹
き付ける)ことで未焼結粉末を固化させたり、樹脂やろ
う材などを流し込んで固化させておき、この状態で除去
手段4を動作させるようにしてもよい。切削屑が未焼結
粉末内に入り込んでしまうことがないために、切削屑の
排除を容易に行うことができる。
The unsintered powder is not removed by suction immediately before the removing step, but is sprayed with liquid nitrogen or the like (at the same time, a gas containing moisture is sprayed if necessary). May be solidified, or resin or brazing material may be poured to solidify, and the removing means 4 may be operated in this state. Since the cutting dust does not enter the unsintered powder, it is possible to easily remove the cutting dust.

【0037】図15に示すものは、焼結直後もしくは除
去加工直後の造形物の形状及び位置を測定するための計
測手段6を設けたものを示している。光ビームの照射精
度や除去加工の加工精度をオンマシンで計測することが
できるものであり、計測結果をフィードバックして、測
定データ(位置座標データ)とCADデータを比較する
ことで、造形精度を算出することができるとともに、比
較結果に基づいて次の光ビーム照射経路データを修正し
たり、次の除去加工経路データを修正したりすること
で、より高精度な造形が可能となる。
The one shown in FIG. 15 shows one provided with a measuring means 6 for measuring the shape and position of the modeled object immediately after sintering or immediately after removal processing. The irradiation accuracy of the light beam and the processing accuracy of the removal processing can be measured on-machine. By feeding back the measurement results and comparing the measurement data (position coordinate data) with the CAD data, the modeling accuracy can be improved. In addition to being able to calculate, by correcting the next light beam irradiation path data or the next removal processing path data based on the comparison result, it is possible to perform more accurate modeling.

【0038】上記計測手段6がたとえば圧電型接触セン
サである場合には、除去手段4におけるXY駆動機構4
0に計測手段6を設けると、計測手段6のための専用駆
動機構を必要とすることなく、計測を行うことができ
る。
When the measuring means 6 is, for example, a piezoelectric contact sensor, the XY drive mechanism 4 in the removing means 4 is used.
When the measuring means 6 is provided at 0, measurement can be performed without requiring a dedicated drive mechanism for the measuring means 6.

【0039】また、計測手段6としてはCCDカメラの
ような撮像手段を用いてもよい。測定しようとする点が
画像の中心となるように撮像手段を移動させて、画像中
心と造形物中の測定しようとしている点とのずれた画素
数からずれ量を計測するのである。
As the measuring means 6, an image pickup means such as a CCD camera may be used. The image pickup means is moved so that the point to be measured becomes the center of the image, and the displacement amount is measured from the number of pixels displaced from the image center and the point to be measured in the modeled object.

【0040】以上の各例では、除去手段4として切削で
除去を行うものを示したが、このほか、高出力レーザー
で除去を行うようにしてもよい。たとえばピーク出力が
10kW以上のQスイッチYAGレーザーを使用すれ
ば、造形物表面の低密度表面層16を瞬時に蒸発させて
除去することができる。また、除去部分は造形物の表面
部に限るものではなく、造形の都合上、本来ならば不要
である部分も造形しなくてはならない場合、この不要部
分の除去も行うことができる。
In each of the above examples, the removal means 4 is one that removes by cutting, but in addition to this, the removal may be performed by a high-power laser. For example, if a Q-switched YAG laser having a peak output of 10 kW or more is used, the low-density surface layer 16 on the surface of the modeled object can be instantly evaporated and removed. Further, the removed portion is not limited to the surface portion of the modeled object, and if the originally unneeded part has to be modeled for the sake of modeling, this unnecessary part can be removed.

【0041】[0041]

【発明の効果】以上のように本発明の三次元形状造形物
の製造方法は、無機質あるいは有機質の粉末材料の層の
所定箇所に光ビームを照射して該当個所の粉末を焼結す
ることで焼結層を形成し、この焼結層の上に粉末材料の
新たな層を被覆して所定箇所に光ビームを照射して該当
個所の粉末を焼結することで下層の焼結層と一体になっ
た新たな焼結層を形成することを繰り返して、複数の焼
結層が積層一体化された粉末焼結部品を作成するにあた
り、三次元形状造形物である粉末焼結部品の表面を高密
度に焼結させておくとともに、焼結層の形成後にそれま
でに作成した造形物の表面部及びまたは不要部分の除去
を行う工程を複数回の焼結層の作成工程中に挿入して、
該除去工程により上記高密度部を露出させることことか
ら、つまりは表面を高密度に焼結させた焼結層の作成と
造形物の表面部及びまたは不要部分の除去による高密度
部を露出させることとを繰り返し行うために、仕上げに
ドリル長などの制約を受けることなく表面の面粗度を高
くしてきれいに仕上げることができる。
As described above, according to the method for producing a three-dimensional shaped object of the present invention, by irradiating a predetermined portion of the layer of the inorganic or organic powder material with a light beam and sintering the powder at the corresponding portion. Forming a sintered layer, coating a new layer of powder material on this sintered layer, irradiating a light beam at a predetermined location to sinter the powder at the relevant location, and integrate it with the lower sintered layer. By repeating the formation of a new sintered layer, the surface of the powder sintered part, which is a three-dimensional shaped object, is created in order to create a powder sintered part in which multiple sintered layers are laminated and integrated. High density
In addition to sintering, the process of removing the surface part and / or unnecessary part of the modeled object created up to that time after the formation of the sintered layer is inserted into the process of creating the sintered layer multiple times .
Since the high density portion is exposed by the removing step , that is, the formation of a sintered layer in which the surface is sintered at high density
High density by removing the surface and / or unnecessary parts of the model
Because the exposed part is repeatedly performed, the surface roughness of the surface is high without being restricted by the drill length etc. for finishing.
You can comb it to get a nice finish.

【0042】[0042]

【0043】[0043]

【0044】除去工程の直前に除去対象部に光ビームを
照射して除去対象部を軟化させるならば、除去を切削で
行う場合、切削抵抗を下げることができるために、切削
時間の短縮及び切削工具寿命の向上を図ることができ
る。
Immediately before the removal step, if the removal target portion is irradiated with a light beam to soften the removal target portion, the cutting resistance can be lowered when the removal is performed by cutting. The tool life can be improved.

【0045】また、除去工程の直後に除去対象部を除去
した部分に溶融硬化もしくは熱処理用の光ビームを照射
するならば、表面密度を向上させることができる。
Further, if the light beam for melt hardening or heat treatment is irradiated to the portion where the portion to be removed is removed immediately after the removing step, the surface density can be improved.

【0046】そして、除去工程における除去作業と同時
に三次元形状造形物である粉末焼結部品の周囲の未焼結
粉末や除去作業で発生する屑の排除作業を行うと、切削
屑の処理が可能であって、次の粉末層の形成に際して切
削屑が悪影響を及ぼしてしまうことを避けることができ
る。未焼結粉末の排除は除去工程の直前に行ってもよ
く、この場合、未焼結粉末と切削屑とを分離して処理す
ることができるために未焼結粉末の再利用が容易とな
る。
When removing the unsintered powder around the powder-sintered part, which is a three-dimensional shaped object, and the scraps generated during the removing operation, the cutting scraps can be treated at the same time as the removing operation in the removing step. Therefore, it is possible to prevent the cutting chips from exerting a bad influence upon forming the next powder layer. The removal of the unsintered powder may be performed immediately before the removal step. In this case, since the unsintered powder and the cutting waste can be treated separately, it is easy to reuse the unsintered powder. .

【0047】上記排除を行う場合は、除去工程の直後に
除去部及び排除部に対して樹脂またはろう材を流し込
み、次いで次の粉末材料の層の形成及び焼結を行うと、
粉末の使用量を削減することができる。
In the case of performing the above-mentioned removal, if a resin or a brazing material is poured into the removed portion and the removed portion immediately after the removing step, and then a layer of the next powder material is formed and sintered,
The amount of powder used can be reduced.

【0048】焼結層の形成直後もしくは除去工程の直後
にそれまでに形成した造形物の形状及び位置の計測を行
い、該計測結果に基づき、次の焼結層の形成のための光
ビームの照射経路データ及び次の除去工程での被除去部
の除去加工経路データの修正を行うことで、より高精度
な造形が可能となる。
Immediately after the formation of the sintered layer or immediately after the removal step, the shape and position of the modeled object formed so far are measured, and based on the measurement result, the light beam for forming the next sintered layer is measured. By correcting the irradiation path data and the removal processing path data of the part to be removed in the next removing step, more accurate modeling can be performed.

【0049】除去工程の前に未焼結粉末を固化させてお
くようにしてもよく、この場合の固化は、未焼結粉末を
冷凍したり、樹脂またはろう材を用いるとよい。このよ
うに固化させた場合、粉末の再充填などを必要とするこ
となく、切削屑のみを容易に除去することができる。
The unsintered powder may be solidified before the removing step. In this case, the unsintered powder may be frozen or a resin or a brazing material may be used. When solidified in this manner, only cutting chips can be easily removed without the need for refilling with powder or the like.

【0050】そして本発明に係る三次元形状造形物の製
造装置は、無機質あるいは有機質の粉末材料の層を形成
する粉末層形成手段と、上記粉末層の所定箇所に光ビー
ムを照射して該当個所の粉末を焼結して焼結層を形成す
る焼結層形成手段と、焼結層形成手段と焼結層との相対
距離を調整する調整手段とを備えるとともに、造形物の
表面部及びまたは不要部分の除去を行う除去手段を備え
ていることから、造形加工後の表面粗度の向上を図るこ
とができるものであり、また上記製造方法を簡便に実施
することができる。
The apparatus for producing a three-dimensional shaped object according to the present invention comprises a powder layer forming means for forming a layer of an inorganic or organic powder material, and a predetermined portion of the powder layer irradiated with a light beam to a corresponding portion. And a means for adjusting the relative distance between the sintered layer forming means and the sintered layer, and the surface portion of the modeled object and / or Since the removal means for removing the unnecessary portion is provided, the surface roughness after modeling can be improved, and the above manufacturing method can be carried out easily.

【0051】未焼結粉末や除去手段による除去工程で発
生する屑を排除する排除手段を備えたものとすること
で、屑の影響を避けることができるものとなる。
The effect of scraps can be avoided by providing the removing means for removing the unsintered powder and scraps generated in the removing step by the removing means.

【0052】また、焼結層の形成直後もしくは除去工程
の直後にそれまでに形成した造形物の形状及び位置の計
測を行う計測手段と、XY駆動機構を有して造形物の断
面輪郭形状に沿って計測を行う上記計測手段による計測
結果に基づいて焼結層形成手段の動作を補正する補正手
段とを備えたものとすることで、高精度な造形物を容易
に得ることができるものとなる。
Immediately after the formation of the sintered layer or immediately after the removal step, a measuring means for measuring the shape and position of the modeled object formed so far, and an XY drive mechanism are provided to obtain the cross-sectional contour shape of the modeled object. By providing a correction unit that corrects the operation of the sintered layer forming unit based on the measurement result of the above-described measuring unit that performs measurement along with, it is possible to easily obtain a highly accurate modeled object. Become.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態の一例に係る動作説明図で
ある。
FIG. 1 is an operation explanatory diagram according to an example of an embodiment of the present invention.

【図2】同上のブロック図である。FIG. 2 is a block diagram of the above.

【図3】同上の概略斜視図である。FIG. 3 is a schematic perspective view of the above.

【図4】同上の表面高密度部に関する説明図である。FIG. 4 is an explanatory diagram related to the surface high density portion of the above.

【図5】(a)(b)は同上の除去工程を示す断面図である。5 (a) and 5 (b) are cross-sectional views showing the same removing step as above.

【図6】同上の他例の動作を示す斜視図である。FIG. 6 is a perspective view showing an operation of another example of the above.

【図7】同上の更に他例の動作を示す斜視図である。FIG. 7 is a perspective view showing an operation of still another example of the same.

【図8】別の例の概略斜視図である。FIG. 8 is a schematic perspective view of another example.

【図9】さらに他例の概略斜視図である。FIG. 9 is a schematic perspective view of still another example.

【図10】(a)(b)は夫々排除手段の一例を示している概
略断面図である。
10 (a) and 10 (b) are schematic cross-sectional views each showing an example of an excluding means.

【図11】(a)(b)は排除手段の他例の動作を示す概略断
面図である。
11A and 11B are schematic cross-sectional views showing the operation of another example of the excluding means.

【図12】(a)(b)は排除加工後の処理を示す概略断面図
である。
12 (a) and 12 (b) are schematic cross-sectional views showing a process after the exclusion process.

【図13】排除手段のさらに他例を示す概略断面図であ
る。
FIG. 13 is a schematic cross-sectional view showing still another example of the excluding means.

【図14】排除手段の別の例を示す概略斜視図である。FIG. 14 is a schematic perspective view showing another example of the excluding means.

【図15】計測手段を備えた例の概略斜視図である。FIG. 15 is a schematic perspective view of an example including measuring means.

【図16】(a)(b)は同上の動作を示す断面図である。16 (a) and 16 (b) are cross-sectional views showing the same operation.

【図17】計測手段の他例を示す概略斜視図である。FIG. 17 is a schematic perspective view showing another example of measuring means.

【図18】(a)は焼結層の形成に際しての粉末の付着を
説明する断面図、(b)は低密度表面層を示す断面図、(c)
は段差のみを除去した場合の断面図である。
FIG. 18 (a) is a cross-sectional view illustrating adhesion of powder during formation of a sintered layer, (b) is a cross-sectional view showing a low-density surface layer, (c).
[Fig. 3] is a cross-sectional view when only a step is removed.

【符号の説明】[Explanation of symbols]

L 光ビーム 4 除去手段 10 粉末層 11 焼結層 L light beam 4 Removal means 10 powder layer 11 Sintered layer

フロントページの続き (72)発明者 峠山 裕彦 大阪府門真市大字門真1048番地松下電工 株式会社内 (72)発明者 不破 勲 大阪府門真市大字門真1048番地松下電工 株式会社内 (72)発明者 上永 修士 大阪府門真市大字門真1048番地松下電工 株式会社内 (56)参考文献 特開2000−73108(JP,A) 特開 平3−183530(JP,A) 特開 平9−109269(JP,A) 特表 平9−511705(JP,A) 特許2620353(JP,B2) 国際公開97/024217(WO,A1) (58)調査した分野(Int.Cl.7,DB名) B22F 1/00 - 7/08 B29C 67/00 - 67/24 B23K 26/00 - 26/18 Front page continued (72) Inventor Hirohiko Togeyama 1048, Kadoma, Kadoma, Osaka Prefecture Matsushita Electric Works Co., Ltd. (72) Isao Fuwa, 1048, Kadoma, Kadoma City, Osaka Prefecture (72) Inventor Ei Master, 1048, Kadoma, Kadoma, Osaka Prefecture, Matsushita Electric Works Co., Ltd. (56) Reference JP 2000-73108 (JP, A) JP 3-183530 (JP, A) JP 9-109269 (JP, A) Special Table 9-511705 (JP, A) Patent 2620353 (JP, B2) International Publication 97/024217 (WO, A1) (58) Fields investigated (Int.Cl. 7 , DB name) B22F 1/00 -7/08 B29C 67/00-67/24 B23K 26/00-26/18

Claims (16)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 無機質あるいは有機質の粉末材料の層の
所定箇所に光ビームを照射して該当個所の粉末を焼結す
ることで焼結層を形成し、この焼結層の上に粉末材料の
新たな層を被覆して所定箇所に光ビームを照射して該当
個所の粉末を焼結することで下層の焼結層と一体になっ
た新たな焼結層を形成することを繰り返して、複数の焼
結層が積層一体化された粉末焼結部品を作成するにあた
り、三次元形状造形物である粉末焼結部品の表面を高密
度に焼結させておくとともに、焼結層の形成後にそれま
でに作成した造形物の表面部及びまたは不要部分の除去
を行う工程を複数回の焼結層の作成工程中に挿入して、
該除去工程により上記高密度部を露出させることを特徴
とする三次元形状造形物の製造方法。
1. A sintered layer is formed by irradiating a predetermined portion of an inorganic or organic powder material layer with a light beam to sinter the powder at that portion, and a sintered material layer is formed on the sintered layer. By coating a new layer and irradiating a predetermined location with a light beam to sinter the powder at the relevant location to form a new sintered layer integrated with the lower sintered layer, a plurality of layers are repeatedly formed. When creating a powder-sintered part in which the above-mentioned sintered layers are integrated , the surface of the powder-sintered part, which is a three-dimensional shaped object, is highly dense.
In addition to sintering, the process of removing the surface part and / or unnecessary part of the modeled object created up to that time after the formation of the sintered layer is inserted into the process of creating the sintered layer multiple times .
A method for manufacturing a three-dimensional shaped object, which comprises exposing the high-density portion by the removing step .
【請求項2】 除去工程を切削によって行うことを特徴
とする請求項1記載の三次元形状造形物の製造方法。
2. The removing step is performed by cutting.
The method for manufacturing a three-dimensional shaped object according to claim 1 .
【請求項3】 除去工程をレーザーによって行うことを
特徴とする請求項1記載の三次元形状造形物の製造方
法。)
3. A laser is used for the removing step.
The method for producing a three-dimensional shaped object according to claim 1, which is characterized in that . )
【請求項4】 除去工程の直前に除去対象部に光ビーム
を照射して除去対象部を軟化させることを特徴とする請
求項1〜3のいずれかの項に記載の三次元形状造形物の
製造方法。
4. A light beam is applied to a portion to be removed immediately before the removing step.
Contractor characterized by irradiating the material to soften the part to be removed.
The method for producing a three-dimensional shaped object according to any one of claims 1 to 3 .
【請求項5】 除去工程の直後に除去対象部を除去した
部分に溶融硬化もしくは熱処理用の光ビームを照射する
ことを特徴とする請求項1〜4のいずれかの項に記載の
三次元形状造形物の製造方法。
5. The part to be removed is removed immediately after the removing step.
Irradiate a part with a light beam for melt hardening or heat treatment
The method for producing a three-dimensional shaped object according to any one of claims 1 to 4, characterized in that .
【請求項6】 除去工程における除去作業と同時に三次
元形状造形物である粉末焼結部品の周囲の未焼結粉末や
除去作業で発生する屑の排除作業を行うことを特徴とす
る請求項1〜5のいずれかの項に記載の三次元形状造形
物の製造方法。
6. A removal process and a tertiary process at the same time as the removal work.
The unsintered powder around the powder-sintered part, which is the original shape,
Characterized by removing the scraps generated during the removal work
The method for manufacturing a three-dimensional shaped object according to any one of claims 1 to 5 .
【請求項7】 除去工程の直前に未焼結粉末の排除を行
うことを特徴とする請求項1〜5のいずれかの項に記載
三次元形状造形物の製造方法。
7. The unsintered powder is removed immediately before the removing step.
The method according to any one of claims 1 to 5, characterized in that
Manufacturing method of the three-dimensional shaped object.
【請求項8】 除去工程の直後に除去部及び排除部に対
して樹脂またはろう材を流し込み、次いで次の粉末材料
の層の形成及び焼結を行うことを特徴とする請求項1〜
7のいずれかの項に記載の三次元形状造形物の製造方
法。
8. The removing section and the removing section are paired immediately after the removing step.
Resin or brazing material and then the next powder material
The formation and the sintering of the layers are performed.
7. The method for producing a three-dimensional shaped object according to any one of items 7 .
【請求項9】 焼結層の形成直後もしくは除去工程の直
後にそれまでに形成し た造形物の形状及び位置の計測を
行い、該計測結果に基づき、次の焼結層の形成のための
光ビームの照射経路データ及び次の除去工程での被除去
部の除去加工経路データの修正を行うことを特徴とする
請求項1〜8のいずれかの項に記載の三次元形状造形物
の製造方法。
9. Immediately after forming the sintered layer or directly after the removing step.
After that , measure the shape and position of the formed object
And for the formation of the next sintered layer based on the measurement results.
Light beam irradiation path data and removal target in the next removal process
The feature is that the removal processing route data of the part is corrected.
The method for manufacturing a three-dimensional shaped object according to any one of claims 1 to 8 .
【請求項10】 除去工程の前に未焼結粉末を固化させ
ることを特徴とする請求項1〜9のいずれかの項に記載
三次元形状造形物の製造方法。
10. The green powder is solidified before the removing step.
It is characterized by what is described in any one of Claims 1-9.
Manufacturing method of the three-dimensional shaped object.
【請求項11】 未焼結粉末を冷凍にて固化させること
を特徴とする請求項10記載の三次元形状造形物の製造
方法。
11. Solidification of unsintered powder by freezing
The method for manufacturing a three-dimensional shaped object according to claim 10 .
【請求項12】 未焼結粉末を樹脂またはろう材にて固
化させることを特徴とする請求項10記載の三次元形状
造形物の製造方法。
12. An unsintered powder is solidified with a resin or a brazing material.
The method for producing a three-dimensional shaped object according to claim 10, wherein the three-dimensional shaped object is produced.
【請求項13】 無機質あるいは有機質の粉末材料の層
を形成する粉末層形成手段と、上記粉末層の所定箇所に
光ビームを照射して該当個所の粉末を焼結して焼結層を
形成する焼結層形成手段と、焼結層形成手段と焼結層と
の相対距離を調整する調整手段とを備えるとともに、造
形物の表面部及びまたは不要部分の除去を行う除去手段
を備えていることを特徴とする三次元形状造形物の製造
装置
13. A layer of inorganic or organic powder material
Means for forming a powder layer and a predetermined portion of the powder layer
Irradiate a light beam to sinter the powder at the relevant location to form a sintered layer.
Formed sintered layer forming means, sintered layer forming means and sintered layer
And adjusting means for adjusting the relative distance of the
Removal means for removing the surface portion and / or unnecessary portion of the shaped article
Manufacturing of three-dimensional shaped objects characterized by being equipped with
Equipment .
【請求項14】 未焼結粉末や除去手段による除去工程
で発生する屑を排除する排除手段を粉末層形成手段に付
設していることを特徴とする請求項13記載の三次元形
状造形物の製造装置
14. A removal process using unsintered powder or removal means.
Attached to the powder layer forming means is an excluding means for eliminating the dust generated in
The three-dimensional shape according to claim 13, wherein the three-dimensional shape is provided.
Equipment for manufacturing shaped objects .
【請求項15】 未焼結粉末や除去手段による除去工程
で発生する屑を排除する排除手段を備えるとともに該排
除手段はXY駆動機構を有して造形物の断面輪郭形状に
沿って排除作業を行うものであることを特徴とする請求
項13記載の三次元形状造形物の製造装置。
15. A step of removing the non-sintered powder or removing means.
Is equipped with a means for eliminating the dust generated in the
The removing means has an XY drive mechanism to change the cross-sectional contour shape of the modeled object.
Claims characterized by carrying out exclusion work
Item 13. A device for manufacturing a three-dimensional shaped object according to item 13 .
【請求項16】 焼結層の形成直後もしくは除去工程の
直後にそれまでに形成した造形物の形状及び位置の計測
を行う計測手段と、計測手段による計測結果に基づいて
焼結層形成手段の動作を補正する補正手段とを備えると
ともに、上記計測手段は、XY駆動機構を有して造形物
の断面輪郭形状に沿って計測を行うものであることを特
徴とする請求項13〜15のいずれかの項に記載の三次
元形状造形物の製造装置。
16. Immediately after the formation of the sintered layer or in the removal step
Immediately after that, measurement of the shape and position of the formed object
Based on the measurement means to perform and the measurement result by the measurement means
And a correction means for correcting the operation of the sintered layer forming means.
In both cases, the measuring means has an XY drive mechanism and
The feature is that the measurement is performed along the cross-sectional contour shape of
The apparatus for manufacturing a three-dimensional shaped object according to any one of claims 13 to 15, which is a characteristic .
JP2000306546A 2000-10-05 2000-10-05 Method and apparatus for manufacturing three-dimensional shaped object Expired - Lifetime JP3446733B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2000306546A JP3446733B2 (en) 2000-10-05 2000-10-05 Method and apparatus for manufacturing three-dimensional shaped object
TW090123973A TW506868B (en) 2000-10-05 2001-09-27 Method of and apparatus for making a three-dimensional object
US09/964,626 US6657155B2 (en) 2000-10-05 2001-09-28 Method of and apparatus for making a three-dimensional object
CNB011411619A CN1283413C (en) 2000-10-05 2001-09-29 Method and apparatus for producing three-dimensional objects
DE10148967A DE10148967B4 (en) 2000-10-05 2001-10-04 Method and device for producing a three-dimensional object
KR10-2001-0061382A KR100436121B1 (en) 2000-10-05 2001-10-05 Method of and apparatus for making a three-dimensional object
HK02107915.5A HK1046383A1 (en) 2000-10-05 2002-10-31 Method of and apparatus for making a three-dimensional object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000306546A JP3446733B2 (en) 2000-10-05 2000-10-05 Method and apparatus for manufacturing three-dimensional shaped object

Publications (2)

Publication Number Publication Date
JP2002115004A JP2002115004A (en) 2002-04-19
JP3446733B2 true JP3446733B2 (en) 2003-09-16

Family

ID=18787215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000306546A Expired - Lifetime JP3446733B2 (en) 2000-10-05 2000-10-05 Method and apparatus for manufacturing three-dimensional shaped object

Country Status (5)

Country Link
JP (1) JP3446733B2 (en)
KR (1) KR100436121B1 (en)
CN (1) CN1283413C (en)
DE (1) DE10148967B4 (en)
HK (1) HK1046383A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7941241B2 (en) 2006-10-30 2011-05-10 Matsuura Machinery Corporation Optical fabrication method
KR101843493B1 (en) 2016-06-01 2018-03-29 한국기계연구원 3d printing apparatus comprising measuring member of density of metal powder and 3d printing method using the same

Families Citing this family (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10157647C5 (en) * 2001-11-26 2012-03-08 Cl Schutzrechtsverwaltungs Gmbh Method for producing three-dimensional workpieces in a laser material processing system or a stereolithography system
JP3433745B2 (en) * 2001-11-29 2003-08-04 松下電工株式会社 Manufacturing method and manufacturing apparatus for three-dimensional shaped object
EP1348506B1 (en) 2002-03-26 2010-07-28 Panasonic Electric Works Co., Ltd. Method of making sintered object by selective laser sintering
JP3446756B1 (en) * 2002-03-26 2003-09-16 松下電工株式会社 Surface finishing method for powder sintered parts
DE10219984C1 (en) * 2002-05-03 2003-08-14 Bego Medical Ag Device for producing freely formed products through a build-up of layers of powder-form material, has powder spread over a lowerable table, and then solidified in layers by a laser energy source
JP3770206B2 (en) * 2002-05-28 2006-04-26 松下電工株式会社 Manufacturing equipment for 3D shaped objects
JP4273785B2 (en) * 2002-08-27 2009-06-03 パナソニック電工株式会社 Manufacturing equipment for 3D shaped objects
JP2004082556A (en) * 2002-08-27 2004-03-18 Matsushita Electric Works Ltd Method and apparatus for manufacturing three-dimensional shape molding
DE10344901B4 (en) * 2002-09-30 2006-09-07 Matsushita Electric Works, Ltd., Kadoma Method for producing a three-dimensional sintered product
JP2004122489A (en) * 2002-09-30 2004-04-22 Matsushita Electric Works Ltd Apparatus for manufacturing three-dimensional shaped article and mold manufacturing method using same
DE10344902B4 (en) 2002-09-30 2009-02-26 Matsushita Electric Works, Ltd., Kadoma Method for producing a three-dimensional object
JP3599054B2 (en) * 2002-09-30 2004-12-08 松下電工株式会社 Manufacturing method of three-dimensional shaped object
JP2004122490A (en) * 2002-09-30 2004-04-22 Matsushita Electric Works Ltd Method for manufacturing three-dimensionally shaped article
JP3911471B2 (en) * 2002-11-13 2007-05-09 ローランドディー.ジー.株式会社 3D modeling method and 3D modeling apparatus
JP2004168610A (en) * 2002-11-21 2004-06-17 Toyota Motor Corp Manufacturing method of three dimensional sintered body and three dimensional sintered body
JP4384420B2 (en) * 2003-01-31 2009-12-16 株式会社メディアプラス Additive manufacturing method
DE112004000302B3 (en) 2003-02-25 2010-08-26 Panasonic Electric Works Co., Ltd., Kadoma-shi Method and device for producing a three-dimensional object
US8062020B2 (en) 2003-02-25 2011-11-22 Panasonic Electric Works Co., Ltd. Three dimensional structure producing device and producing method
JP3599059B2 (en) * 2003-02-25 2004-12-08 松下電工株式会社 Method and apparatus for manufacturing three-dimensional shaped object
US20040254665A1 (en) * 2003-06-10 2004-12-16 Fink Jeffrey E. Optimal dimensional and mechanical properties of laser sintered hardware by thermal analysis and parameter optimization
JP3687672B2 (en) * 2003-11-25 2005-08-24 松下電工株式会社 Surface finishing method for powder sintered parts
DE102004009126A1 (en) 2004-02-25 2005-09-22 Bego Medical Ag Method and device for generating control data sets for the production of products by free-form sintering or melting and device for this production
JP4130813B2 (en) * 2004-05-26 2008-08-06 松下電工株式会社 Three-dimensional shaped object manufacturing apparatus and light beam irradiation position and processing position correction method thereof
JP4561187B2 (en) * 2004-05-26 2010-10-13 パナソニック電工株式会社 Method for producing three-dimensional shaped object and powder material recycling apparatus for producing three-dimensional shaped object
JP3687677B1 (en) 2004-10-26 2005-08-24 松下電工株式会社 Stereolithography method, stereolithography system, and stereolithography program
KR100993923B1 (en) * 2005-11-15 2010-11-11 파나소닉 전공 주식회사 Process of fabricating three-dimensional object
JP4661842B2 (en) * 2006-08-28 2011-03-30 パナソニック電工株式会社 Method for producing metal powder for metal stereolithography and metal stereolithography
WO2008143106A1 (en) * 2007-05-14 2008-11-27 Panasonic Electric Works Co., Ltd. Method and apparatus for manufacture of three-dimensionally shaped article
JP4867790B2 (en) * 2007-05-24 2012-02-01 パナソニック電工株式会社 Manufacturing method of three-dimensional shaped object
DE112008000027B4 (en) 2007-05-30 2015-05-21 Panasonic Intellectual Property Management Co., Ltd. Lamination shaping device
CN102015258B (en) 2008-04-21 2013-03-27 松下电器产业株式会社 Laminate molding device
JP4798185B2 (en) 2008-08-05 2011-10-19 パナソニック電工株式会社 Additive manufacturing equipment
JP5447809B2 (en) * 2008-10-21 2014-03-19 株式会社松浦機械製作所 Cutting method capable of forming a sharp angle
JP5456379B2 (en) * 2009-06-05 2014-03-26 パナソニック株式会社 Manufacturing method of three-dimensional shaped object
PL2266727T3 (en) * 2009-06-22 2016-04-29 Gillette Co A method of forming a functional razor cartridge
JP5137993B2 (en) * 2010-04-14 2013-02-06 株式会社松浦機械製作所 Artificial bone manufacturing method and artificial bone manufactured by the method
US8562324B2 (en) 2010-08-18 2013-10-22 Makerbot Industries, Llc Networked three-dimensional printing
US20120092724A1 (en) * 2010-08-18 2012-04-19 Pettis Nathaniel B Networked three-dimensional printing
KR101666102B1 (en) * 2012-07-09 2016-10-13 파나소닉 아이피 매니지먼트 가부시키가이샤 Method for manufacturing three-dimensional molding
JP2015533650A (en) * 2012-07-27 2015-11-26 エアロジェット ロケットダイン オブ ディーイー,インコーポレイテッド Selective laser melting solid axisymmetric powder bed.
US9901977B2 (en) * 2012-12-14 2018-02-27 The Board Of Trustees Of Western Michigan University Patternless sand mold and core formation for rapid casting
US9646729B2 (en) * 2013-01-18 2017-05-09 Westinghouse Electric Company Llc Laser sintering systems and methods for remote manufacture of high density pellets containing highly radioactive elements
US10532303B2 (en) * 2013-03-15 2020-01-14 Pyrotek Incorporated Ceramic filters
CN103128972B (en) * 2013-03-24 2015-07-01 张哲夫 Assembly-free 3D (three dimensional) printing formation method and device
DE102013208651A1 (en) 2013-05-10 2014-11-13 Eos Gmbh Electro Optical Systems A method of automatically calibrating a device for generatively producing a three-dimensional object
EP3007881B1 (en) 2013-06-11 2020-04-29 Renishaw Plc. Additive manufacturing apparatus and method
JP5612735B1 (en) * 2013-07-10 2014-10-22 パナソニック株式会社 Manufacturing method and manufacturing apparatus for three-dimensional shaped object
JP5599921B1 (en) * 2013-07-10 2014-10-01 パナソニック株式会社 Manufacturing method of three-dimensional shaped object
CN103341591A (en) * 2013-07-18 2013-10-09 大连理工大学 Selective-failure-based 3D (three-dimensional) printing method for preparing mold
US9751260B2 (en) 2013-07-24 2017-09-05 The Boeing Company Additive-manufacturing systems, apparatuses and methods
JP2015168877A (en) * 2014-03-10 2015-09-28 日本電子株式会社 Three-dimentional lamination molding device and three-dimentional lamination molding method
DE102014206697A1 (en) * 2014-04-07 2015-10-08 Homag Holzbearbeitungssysteme Gmbh Device and method for creating solids
GB201410484D0 (en) * 2014-06-12 2014-07-30 Renishaw Plc Additive manufacturing apparatus and a flow device for use with such apparatus
CN106536093A (en) * 2014-07-18 2017-03-22 应用材料公司 Additive manufacturing with laser and gas flow
DE102014012286B4 (en) * 2014-08-22 2016-07-21 Cl Schutzrechtsverwaltungs Gmbh Apparatus and method for producing three-dimensional objects
BR112017005476A2 (en) * 2014-09-19 2017-12-05 Moog Inc additive manufacturing method.
JP5806773B1 (en) * 2014-10-16 2015-11-10 アビー株式会社 Stereolithography equipment
CN117429052A (en) * 2014-11-14 2024-01-23 株式会社 尼康 Molding apparatus and molding method
CN111168066B (en) 2014-11-14 2023-04-07 株式会社尼康 Molding device and molding method
EP3023237B1 (en) * 2014-11-21 2020-11-11 Airbus Operations GmbH Method and system for manufacturing a three-dimensional object by means of additive manufacturing
WO2016106615A1 (en) * 2014-12-30 2016-07-07 深圳市圆梦精密技术研究院 Multi-electron-beam melting and milling composite 3d printing apparatus
CN104526359A (en) * 2014-12-30 2015-04-22 深圳市圆梦精密技术研究院 Multi-electron-beam fusing and milling composite 3D printing device
WO2016106607A1 (en) * 2014-12-30 2016-07-07 深圳市圆梦精密技术研究院 Laser melting and laser milling composite 3d printing apparatus
EP3228405A4 (en) * 2014-12-30 2018-09-19 Yuanmeng Precision Technology (Shenzhen) Institut Electron beam melting and laser milling composite 3d printing apparatus
CN104493165A (en) * 2014-12-30 2015-04-08 深圳市圆梦精密技术研究院 Electron beam melting and laser milling composite 3D printing apparatus
DE102015000100A1 (en) * 2015-01-14 2016-07-14 Cl Schutzrechtsverwaltungs Gmbh Method for the production of three-dimensional components
EP3269535A4 (en) * 2015-03-12 2018-11-07 Nikon Corporation Apparatus for manufacturing three-dimensional shaped object, and method for manufacturing structure
JP6192677B2 (en) * 2015-04-06 2017-09-06 株式会社ソディック Additive manufacturing method and additive manufacturing apparatus
JP5888826B1 (en) * 2015-04-27 2016-03-22 株式会社ソディック Additive manufacturing equipment
JP6030186B1 (en) 2015-05-13 2016-11-24 株式会社ダイヘン Copper alloy powder, manufacturing method of layered object, and layered object
WO2016208213A1 (en) 2015-06-25 2016-12-29 パナソニックIpマネジメント株式会社 Method for manufacturing three-dimensionally shaped object
FR3041278B1 (en) * 2015-09-23 2017-11-03 Manutech-Usd SYSTEM AND METHOD FOR ADDITIVE FABRICATION BY LASER FUSION OF A BED OF POWDER
EP3159081B1 (en) * 2015-10-21 2023-12-06 Nikon SLM Solutions AG Powder application arrangement comprising two cameras
JP2017087459A (en) * 2015-11-04 2017-05-25 株式会社リコー Three-dimensional model-forming apparatus
JP6129945B1 (en) * 2015-12-22 2017-05-17 株式会社ソディック Laminate modeling apparatus and misalignment correction method for additive modeling apparatus
JP6350559B2 (en) * 2016-02-23 2018-07-04 マツダ株式会社 Method for manufacturing body for working fluid control mechanism and method for manufacturing working fluid control mechanism using the body
JP6262275B2 (en) * 2016-03-23 2018-01-17 株式会社ソディック Additive manufacturing equipment
JP6026688B1 (en) 2016-03-24 2016-11-16 株式会社松浦機械製作所 3D modeling method
WO2018003883A1 (en) * 2016-06-29 2018-01-04 パナソニックIpマネジメント株式会社 Manufacturing method for multiple sprue bushes
WO2018079304A1 (en) 2016-10-25 2018-05-03 株式会社ダイヘン Copper alloy powder, laminate molding production method, and laminate molding
JP6389557B1 (en) * 2016-10-25 2018-09-12 株式会社ダイヘン Copper alloy powder, manufacturing method of layered object, and layered object
JP6386008B2 (en) * 2016-11-04 2018-09-05 株式会社ソディック Additive manufacturing equipment
DE102016222564A1 (en) * 2016-11-16 2018-05-17 Siemens Aktiengesellschaft Process for additive production with selective removal of base material
DE102016222555A1 (en) * 2016-11-16 2018-05-17 Siemens Aktiengesellschaft Method for additive production of a component and computer-readable medium
CN109963700B (en) * 2016-11-22 2021-08-17 科思创德国股份有限公司 Method and system for manufacturing an article by layer-by-layer building in a stamping process
JP6177412B1 (en) * 2016-11-22 2017-08-09 株式会社ソディック Additive manufacturing equipment
US20180345379A1 (en) * 2017-05-31 2018-12-06 General Electric Company Apparatus and method for real-time simultaneous additive and subtractive manufacturing
CN110678281B (en) * 2017-08-08 2022-04-29 三菱重工业株式会社 Three-dimensional laminated molding device, three-dimensional laminated molding method, and three-dimensional laminated molded article
DK3473441T3 (en) * 2017-10-23 2021-08-23 Gen Electric MOVABLE MOLDING DEVICE FOR ADDITIONAL MANUFACTURE
JP7041391B2 (en) * 2018-02-28 2022-03-24 セイコーエプソン株式会社 3D modeling equipment
EP3564034A1 (en) * 2018-05-04 2019-11-06 CL Schutzrechtsverwaltungs GmbH Apparatus for additively manufacturing three-dimensional objects
JP6956044B2 (en) * 2018-06-04 2021-10-27 株式会社日立製作所 Powdered additive manufacturing and its manufacturing method
JP7004088B2 (en) * 2018-11-29 2022-02-04 日立金属株式会社 Manufacturing method of addition manufacturing body and manufacturing equipment of addition manufacturing body
CN109622961B (en) * 2018-12-26 2023-12-22 深圳市圆梦精密技术研究院 3D metal printer
KR102119452B1 (en) * 2018-12-28 2020-06-05 주식회사 성우하이텍 Layer laminating device and 3d printing method using the same
CN117601436A (en) * 2019-04-09 2024-02-27 株式会社 尼康 Modeling unit and modeling method, processing unit and processing method
JP2019137071A (en) * 2019-05-24 2019-08-22 株式会社ニコン Shaping apparatus and shaping method
DE102019116503A1 (en) * 2019-06-18 2020-12-24 SLM Solutions Group AG Method and device for manufacturing a multi-material workpiece
IT201900023991A1 (en) 2019-12-13 2021-06-13 Cms Spa Work center and method for machining pieces
JP7047864B2 (en) * 2020-06-22 2022-04-05 株式会社ニコン Modeling equipment and modeling method
DE102021105228A1 (en) 2021-03-04 2022-09-08 KSB SE & Co. KGaA Removal of the support structure with a laser beam integrated on a robotic arm
WO2022234658A1 (en) * 2021-05-07 2022-11-10 三菱電機株式会社 Numerical control device and numerical control method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE116179T1 (en) * 1986-10-17 1995-01-15 Univ Texas METHOD AND DEVICE FOR PRODUCING MOLDED BODIES BY PARTIAL INTERNATION.
AU643700B2 (en) * 1989-09-05 1993-11-25 University Of Texas System, The Multiple material systems and assisted powder handling for selective beam sintering
DE4436695C1 (en) * 1994-10-13 1995-12-21 Eos Electro Optical Syst Stereolithography, the making of a three dimensional object by irradiation of powder or liquid layers
DE19514740C1 (en) * 1995-04-21 1996-04-11 Eos Electro Optical Syst Appts. for producing three-dimensional objects by laser sintering
DE19533960C2 (en) * 1995-09-13 1997-08-28 Fraunhofer Ges Forschung Method and device for producing metallic workpieces
JP3366512B2 (en) * 1995-10-17 2003-01-14 ローランドディー.ジー.株式会社 3D modeling method
EP0967067A4 (en) * 1995-12-31 2000-10-04 Shinko Sellbic Co Ltd Moldless molding method using no mold and apparatus therefor
JP3446618B2 (en) * 1998-08-26 2003-09-16 松下電工株式会社 Surface finishing method for metal powder sintered parts
DE19853978C1 (en) * 1998-11-23 2000-05-25 Fraunhofer Ges Forschung Apparatus for selective laser smelting comprises a roller that moves over the processing surface using an element to distribute powder
DE19905067A1 (en) * 1999-02-08 2000-08-10 Matthias Fockele Layer-wise molding build-up apparatus, especially for laser prototyping of metallic articles, has a grinding tool for removing irregularities from a previously laser melted and solidified layer region

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7941241B2 (en) 2006-10-30 2011-05-10 Matsuura Machinery Corporation Optical fabrication method
KR101843493B1 (en) 2016-06-01 2018-03-29 한국기계연구원 3d printing apparatus comprising measuring member of density of metal powder and 3d printing method using the same

Also Published As

Publication number Publication date
KR20020027259A (en) 2002-04-13
HK1046383A1 (en) 2003-10-17
DE10148967B4 (en) 2008-06-12
JP2002115004A (en) 2002-04-19
KR100436121B1 (en) 2004-06-14
CN1347783A (en) 2002-05-08
CN1283413C (en) 2006-11-08
DE10148967A1 (en) 2002-04-18

Similar Documents

Publication Publication Date Title
JP3446733B2 (en) Method and apparatus for manufacturing three-dimensional shaped object
KR101648442B1 (en) Method of manufacturing three-dimensional sculpture
KR100553644B1 (en) Method of manufacturing a three dimensional object
JP3943315B2 (en) Manufacturing method of three-dimensional shaped object
JP3472779B2 (en) Variable welding laminated rapid molding method and rapid molding apparatus
US6827988B2 (en) Process and a device for producing ceramic molds
JP4655063B2 (en) Manufacturing method of three-dimensional shaped object
JP3599059B2 (en) Method and apparatus for manufacturing three-dimensional shaped object
JP5539347B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object obtained therefrom
JP5653657B2 (en) Method for producing three-dimensional shaped object, three-dimensional shaped object to be obtained, and method for producing molded product
KR100574268B1 (en) Method of manufacturing a three dimensional object
WO2012160811A1 (en) Method for producing three-dimensional shape structure
JP4487636B2 (en) Manufacturing method of three-dimensional shaped object
WO2004076103A1 (en) Three dimensional structure producing method and producing device
CN107848212B (en) Method for manufacturing three-dimensional shaped object
JP2010132961A (en) Lamination forming device and lamination forming method
JP4867790B2 (en) Manufacturing method of three-dimensional shaped object
JP3491627B2 (en) Manufacturing method of three-dimensional shaped object
JP5588925B2 (en) Manufacturing method of three-dimensional shaped object
JP2012224907A (en) Method for manufacturing three-dimensionally shaped article
JP3433745B2 (en) Manufacturing method and manufacturing apparatus for three-dimensional shaped object
JP2004122490A (en) Method for manufacturing three-dimensionally shaped article
JP6192677B2 (en) Additive manufacturing method and additive manufacturing apparatus
WO2018003798A1 (en) Method for manufacturing three-dimensionally shaped molding
Pham et al. Rapid prototyping processes

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030603

R151 Written notification of patent or utility model registration

Ref document number: 3446733

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080704

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100704

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100704

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 10