JP4273785B2 - Manufacturing equipment for 3D shaped objects - Google Patents

Manufacturing equipment for 3D shaped objects Download PDF

Info

Publication number
JP4273785B2
JP4273785B2 JP2003048276A JP2003048276A JP4273785B2 JP 4273785 B2 JP4273785 B2 JP 4273785B2 JP 2003048276 A JP2003048276 A JP 2003048276A JP 2003048276 A JP2003048276 A JP 2003048276A JP 4273785 B2 JP4273785 B2 JP 4273785B2
Authority
JP
Japan
Prior art keywords
powder
wiper
layer
dimensional shaped
storage unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003048276A
Other languages
Japanese (ja)
Other versions
JP2004143581A (en
Inventor
喜万 東
諭 阿部
隆史 松尾
卯三 太田
光弘 新郷
広 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2003048276A priority Critical patent/JP4273785B2/en
Publication of JP2004143581A publication Critical patent/JP2004143581A/en
Application granted granted Critical
Publication of JP4273785B2 publication Critical patent/JP4273785B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Description

【0001】
【発明の属する技術分野】
本発明は、粉末材料を層状に敷いて粉末層を形成し、この粉末層の任意位置に光ビームを照射して焼結層を形成する工程を繰り返し行い、複数層の焼結層を積層一体化して三次元形状造形物を形成させるような三次元形状造形物の製造装置に関する発明である。
【0002】
【従来の技術】
従来から、無機質粉末(金属)や有機質粉末(樹脂)に対して光ビームL(指向性エネルギービーム、レーザー)を照射して焼結させるといった原理を用い、無機質粉末(金属)や有機質粉末(樹脂)で構成した粉末材料Aを造形物を形成させる造形テーブル20上に層状に敷いて粉末層Bを形成する工程、この粉末層Bの任意位置に光ビームLを照射して焼結層Cを形成する工程を繰り返し行い、複数層の焼結層Cを積層一体化して三次元形状造形物を製造するといった製造方法が知られている(たとえば、特許文献1参照)。
【0003】
【特許文献1】
特許第2620353号明細書
【0004】
【発明が解決しようとする課題】
しかしながら、この工法では、以下(1)〜(3)の問題が生じることで、良好な三次元形状造形物の製造が阻害される恐れがあった。
(1)図15に示すように、粉末層Bに光ビームLを照射して粉末材料Aを焼結させる際には火花が飛び散り、その火花に含まれる粉末溶融塊が焼結層Cの表面などに付着して焼結層Cの表面に突部Tを発生させる場合がある。そして、この突部Tに粉末層Bを形成させるワイパー状の機械部品が乗り上げたりすると、この機械部品の正常動作が妨げられ、良好な三次元形状造形物の製造が阻害されてしまうのである。
(2)図16に示すように、光ビームLの照射条件によっても、溶融した粉末材料Aの表面張力により焼結層Cの表面に予期し得ない突部Tを発生させる場合がある。そして、この突部Tが、設定する粉末層Bの厚みよりも大きく生成された場合には、次の粉末層Bを形成させるように動作する機械部品(材料供給ワイパー8)が突部Tに衝突してしまい、つまり機械部品の正常動作が妨げられて、良好な三次元形状造形物の製造が阻害されてしまうのである。
(3)図17に示すように、造形テーブル20上に新たな粉末層Bを形成させる機械部品(材料供給ワイパー8)は造形テーブル20上を往復するように作動するのであるが、この機械部品の表面には湿気や磁力などにより粉末材料Aが付着する場合があり、そして、この機械部品に付着していた粉末材料Aが復路時に粉末層B上に落下し、そのまま気付かず光ビームLを照射させてしまうと、焼結層Cの表面に予期し得ない突部Tを発生させる場合がある。この突部Tが、設定した粉末層Bの厚みよりも大きく生成された場合には、次の粉末層Bを形成させるように動作する機械部品が突部Tに衝突してしまい、つまり機械部品の正常動作が妨げられて、良好な三次元形状造形物の製造が阻害されてしまうのである。
【0005】
本発明は上記の点に鑑みてなされたものであり、装置の正常動作を確保して確実に良好な三次元形状造形物を製造できる三次元形状造形物の製造装置を提供することを課題とするものである。
【0006】
【課題を解決するための手段】
上記課題を解決するために本発明に係る三次元形状造形物の製造装置は、無機質あるいは有機質の粉末材料Aを貯蔵する貯蔵部1を有し、三次元形状造形物を造形させる造形テーブル5上に貯蔵部1の粉末材料Aを供給すると共にならして所定厚の粉末層Bを形成させる粉末供給機構3を有し、この粉末層Bの任意部位に光ビームLを照射して焼結層Cを形成させる光ビーム照射部を有し、この粉末供給機構3による粉末層Bの形成と光ビーム照射部による焼結層Cの形成を繰り返して複数層の焼結層Cを積層一体化して三次元形状造形物を形成させるような三次元形状造形物の製造装置において、上記粉末供給機構3は、造形テーブル5上への粉末敷設時に作動する振動機構9を備えたことを特徴とする。
【0007】
これによると、突部Tが形成された焼結層Cの上を粉末供給機構3が通過する際には、振動機構9によって振動する粉末供給機構3が突部Tに断続的に押圧負荷を加えることができ、つまり粉末供給機構3は突部Tを潰しつつ粉末層Bを形成させることができる。また、振動する粉末供給機構3には粉末材料Aの付着が抑制されることから突部Tの発生をも低減させることができる。したがって、装置の正常動作を確保できて良好な三次元形状造形物を製造することができる。
【0008】
また、本発明に係る三次元形状造形物の製造装置は、無機質あるいは有機質の粉末材料Aを貯蔵する貯蔵部1を有し、三次元形状造形物を造形させる造形テーブル5上に貯蔵部1の粉末材料Aを供給すると共にならして所定厚の粉末層Bを形成させる粉末供給機構3を有し、この粉末層Bの任意部位に光ビームを照射して焼結層Cを形成させる光ビーム照射部を有し、この粉末供給機構3による粉末層Bの形成と光ビーム照射部による焼結層Cの形成を繰り返して複数層の焼結層Cを積層一体化して三次元形状造形物を形成させるような三次元形状造形物の製造装置において、上記粉末供給機構3は、貯蔵部1及び造形テーブル5上を通るように往復駆動する往復摺動体7と、この往復摺動体7に取付けて貯蔵部1の所定の粉末材料Aを移動させて造形テーブル5上にならして所定厚の粉末層Bを形成させる材料供給ワイパー8とで構成し、材料供給ワイパー8の往復摺動体7への取付け角度を、往復摺動体7の往復方向と直交する方向aに対して、所定の角度θをもたせて設定したことを特徴とする。
【0009】
これによると、突部Tが形成された焼結層Cの上を材料供給ワイパー8が通過する際には、往復摺動体7の往復方向と直交する方向aに対して所定の角度θをもたせて往復摺動体7に取付けられた材料供給ワイパー8によって、往復摺動体7の駆動力を個々の突部Tに集中的に押圧させることができ、つまり粉末供給機構3は突部Tを潰しつつ粉末層Bを形成させることができる。また、突部Tに材料供給ワイパー8が衝突した際の材料供給ワイパー8にかかる衝撃は、往復摺動体7のスライド方向とずれている材料供給ワイパー8の長手方向に逃がすことができ、つまり材料供給ワイパー8が受ける衝撃抵抗を弱めることができて装置の長寿命化をも図ることができる。
【0010】
また、本発明に係る三次元形状造形物の製造装置は、無機質あるいは有機質の粉末材料Aを貯蔵する貯蔵部1を有し、三次元形状造形物を造形させる造形テーブル5上に貯蔵部1の粉末材料Aを供給すると共にならして所定厚の粉末層Bを形成させる粉末供給機構3を有し、この粉末層Bの任意部位に光ビームを照射して焼結層Cを形成させる光ビーム照射部を有し、この粉末供給機構3による粉末層Bの形成と光ビーム照射部による焼結層Cの形成を繰り返して複数層の焼結層Cを積層一体化して三次元形状造形物を形成させるような三次元形状造形物の製造装置において、上記粉末供給機構3は、造形テーブル5上への粉末敷設時に作動する振動機構9を備えると共に、貯蔵部1及び造形テーブル5上を通るように往復駆動する往復摺動体7と、この往復摺動体7に取付けて貯蔵部1の所定の粉末材料Aを移動させて造形テーブル5上にならして所定厚の粉末層Bを形成させる材料供給ワイパー8とで構成し、材料供給ワイパー8の往復摺動体7への取付け角度を、往復摺動体7の往復方向と直交する方向aに対して、所定の角度θをもたせて設定したことを特徴とする。
【0011】
これによると、振動機構9による粉末供給機構3の振動によって突部Tに断続的に押圧負荷が加えさせたり、往復摺動体7の往復方向と直交する方向aに対して所定の角度θをもたせて往復摺動体7に取付けられた材料供給ワイパー8によって、往復摺動体7の駆動力を個々の突部Tに集中的に押圧させたりすることが同時に行え、つまり粉末供給機構3は、より効果的に突部Tを潰しつつ粉末層Bを形成させることができる。また、振動する粉末供給機構3には粉末材料Aが付着しにくく突部Tの発生を低減できる利点や、突部Tに衝突した際の材料供給ワイパー8にかかる衝撃抵抗を弱めて装置の長寿命化を図る利点も、同時に奏することができる。
【0012】
また、造形テーブル5上を往復する際の材料供給ワイパー8の造形テーブル5までの高さ設定を、材料供給ワイパー8の往路、復路で異なるように設定したことも好ましい。これによると、貯蔵部1から造形テーブル5に至る材料供給ワイパー8の往路では材料供給ワイパー8の造形テーブル5までの高さ設定を大にし、造形テーブル5から貯蔵部1に戻る材料供給ワイパー8の復路では材料供給ワイパー8の造形テーブル5までの高さ設定を小にするようにして、2度にわけて造形テーブル5上に形成する粉末層Bの厚さを決定するようにできるのであり、たとえ焼結層C上に比較的大きな突部Tが生じていても、この突部Tを往路及び復路の材料供給ワイパー8によって徐々に潰すことができ、つまり材料供給ワイパー8に過大な負担をかけずに突部Tを確実に潰すようにできることから、装置の正常動作を確保できて良好な三次元形状造形物の製造を更に可能にできるのである。
【0013】
また、材料供給ワイパー8を、粉末材料Aよりも高い硬度を有する材料で形成したことも好ましい。これによると、たとえ焼結層C上に比較的大きな突部Tが生じていて材料供給ワイパー8が突部Tに衝突しても、この突部Tを材料供給ワイパー8で直接削ることができて装置の正常動作の確保が図られるのであり、また材料供給ワイパー8の損傷も防止されて装置の長寿命化も図ることができる。
【0014】
また、貯蔵部1から造形テーブル5上を通り過ぎた往路後の材料供給ワイパー8に付着した粉末材料Aを除去する除去機構10を備えたことも好ましい。これによると、除去機構10によって往路後の材料供給ワイパー8に付着した粉末材料Aを掃き落とすことができて、復路時の材料供給ワイパー8には粉末材料Aが付着していない状態にでき、つまり、焼結層C上に突部Tが生成される原因の一つとされる材料供給ワイパー8への粉末材料Aの付着を防止することができ、したがって、突部Tの発生を低減化することができ、装置の正常動作を確保できて良好な三次元形状造形物の製造を更に可能にできるのである。
【0015】
また、本発明に係る三次元形状造形物の製造装置は、無機質あるいは有機質の粉末材料Aを貯蔵する貯蔵部1を有し、三次元形状造形物Dを造形させる造形テーブル5上に貯蔵部1の粉末材料Aを供給すると共にならして所定厚の粉末層Bを形成させる粉末供給機構3を有し、この粉末層Bの任意部位に光ビームLを照射して焼結層Cを形成させる光ビーム照射部を有し、この粉末供給機構3による粉末層Bの形成と光ビーム照射部による焼結層Cの形成を繰り返して複数層の焼結層Cを積層一体化して三次元形状造形物Dを形成させるような三次元形状造形物の製造装置において、上記粉末供給機構3は、貯蔵部1及び造形テーブル5上を通って貯蔵部1の所定の粉末材料Aを移動させて造形テーブル5上にならして所定厚の粉末層Bを形成させる材料供給ワイパー8を有し、この材料供給ワイパー8は、粉末層Bの所定厚以上の粉末材料Aを造形テーブル5上に敷く荒ならしワイパーと、荒ならしワイパーが敷いた粉末材料Aを所定厚に削って粉末層Bを仕上げる仕上ならしワイパーとで構成されたことを特徴とする。
【0016】
これによると、粉末供給機構3が造形テーブル5上にならして所定厚の粉末層Bを形成させるときには、荒ならしワイパーがまず所定厚以上の粉末材料Aを造形テーブル5上に敷き、続けて仕上ならしワイパーが造形テーブル5上に敷いた粉末材料Aを所定厚にして粉末層Bを仕上げるようになるが、このとき材料供給ワイパー8が通る造形テーブル5上に突部Tが形成されていたら、まず荒ならしワイパーで突部Tを荒く削り、次いで仕上ならしワイパーで残った突部Tを削ることができ、つまり突部Tを徐々に削ることができるのであり、結果、突部Tが材料供給ワイパー8にかける負荷の大きさを小さく抑えることができるから、装置の正常動作を確保できて良好な三次元形状造形物Dを製造することができる。
【0017】
また、仕上ならしワイパーの下端部分を下端が自由端となるブラシ体16で構成したことも好ましい。これによると、仕上ならしワイパーで粉末層Bを仕上げるときには、仕上ならしワイパーの下端のブラシ体16は仕上ならしワイパーに衝突する突部Tの衝撃を吸収することができ、仕上ならしワイパーには突部Tの衝撃負荷がかからないようになり、更に確実に装置の正常動作を確保できて良好な三次元形状造形物Dを製造することができる。
【0018】
また、本発明に係る三次元形状造形物の製造装置は、無機質あるいは有機質の粉末材料Aを貯蔵する貯蔵部1を有し、三次元形状造形物Dを造形させる造形テーブル5上に貯蔵部1の粉末材料Aを供給すると共にならして所定厚の粉末層Bを形成させる粉末供給機構3を有し、この粉末層Bの任意部位に光ビームLを照射して焼結層Cを形成させる光ビーム照射部を有し、この粉末供給機構3による粉末層Bの形成と光ビーム照射部による焼結層Cの形成を繰り返して複数層の焼結層Cを積層一体化して三次元形状造形物Dを形成させるような三次元形状造形物の製造装置において、上記粉末供給機構3は、貯蔵部1及び造形テーブル5上を通って貯蔵部1の所定の粉末材料Aを移動させて造形テーブル5上にならして所定厚の粉末層Bを形成させる材料供給ワイパー8を有し、この材料供給ワイパー8は上下移動可能にされると共に下方への弾性付勢が施されたことを特徴とする。
【0019】
これによると、材料供給ワイパー8が通る造形テーブル5上に突部Tが形成されていて、この突部Tが摺動する材料供給ワイパー8に衝突しても、材料供給ワイパー8は上下移動可能にされると共に下方に弾性付勢を施されているから、突部Tの材料供給ワイパー8への衝撃は弾性によって吸収されると共に、材料供給ワイパー8が突部Tをスムーズに乗り越えることができ、装置の正常動作を確保できて良好な三次元形状造形物Dを製造することができる。
【0020】
また、本発明に係る三次元形状造形物の製造装置は、無機質あるいは有機質の粉末材料Aを貯蔵する貯蔵部1を有し、三次元形状造形物Dを造形させる造形テーブル5上に貯蔵部1の粉末材料Aを供給すると共にならして所定厚の粉末層Bを形成させる粉末供給機構3を有し、この粉末層Bの任意部位に光ビームLを照射して焼結層Cを形成させる光ビーム照射部を有し、この粉末供給機構3による粉末層Bの形成と光ビーム照射部による焼結層Cの形成を繰り返して複数層の焼結層Cを積層一体化して三次元形状造形物Dを形成させるような三次元形状造形物の製造装置において、上記粉末供給機構3は、貯蔵部1及び造形テーブル5上を通って貯蔵部1の所定の粉末材料Aを移動させて造形テーブル5上にならして所定厚の粉末層Bを形成させる材料供給ワイパー8を有し、この材料供給ワイパー8にその下端から上方に向って切り込んだ複数の切込み18を並設し、切込み18間の部位である材料供給ワイパー8の撓み部19を下方が自由端として材料供給ワイパー8の移動方向に撓み自在にしたことを特徴とする。
【0021】
これによると、材料供給ワイパー8が通る造形テーブル5上に突部Tが形成されていて、この突部Tが材料供給ワイパー8に衝突しても、突部Tが衝突する材料供給ワイパー8の部位にある撓み部19のみが上記衝撃を受けて撓むことで、この衝撃が材料供給ワイパー8にまともに負荷されないようこの撓み部で吸収させることができ、装置の正常動作を確保できて良好な三次元形状造形物Dを製造することができる。
【0022】
【発明の実施の形態】
以下、本発明を添付図面に示す実施形態に基づいて説明する。
【0023】
図1乃至図3に本発明の実施の形態の例を示す。三次元形状造形物の製造装置は、粉末材料Aを貯蔵する貯蔵部1と、三次元形状造形物を造形させる造形部2とが隣接配置され、造形部2に貯蔵部1の粉末材料Aを供給すると共にならして所定厚の粉末層Bを形成させる粉末供給機構3を備えると共に、造形部2に形成された粉末層Bの任意部位に光ビームL(指向性エネルギービーム、レーザー)を照射して焼結層Cを形成させる光ビーム照射部(図示せず)を備えて構成されている。
【0024】
ここで、貯蔵部1に貯蔵される粉末材料Aは無機質粉末(金属)や有機質粉末(樹脂)であり、たとえば平均粒径約20μmの球形の鉄粉が用いられる。また、光ビームLは指向性エネルギービームやレーザーであり、たとえば炭酸ガスレーザーが用いられる。また、貯蔵部1及び造形部2は、それぞれ上下が開口する筒状のシリンダ内にピストンを上下に昇降自在に設けて構成されている。貯蔵部1のピストンは、貯蔵部1内に貯蔵された粉末材料Aを押し上げる部位あって材料テーブル4と称し、造形部2のピストンは、その上面に三次元形状造形物を形成させる部位であって造形テーブル5と称する。
【0025】
また、粉末供給機構3は、貯蔵部1及び造形部2の幅方向端部に沿って配設された直線状のレール6と、このレール6から略直角に突出して貯蔵部1及び造形部2上に往復駆動する角棒状の往復摺動体7と、この往復摺動体7の下面に沿って下方に突設したへら板状の材料供給ワイパー8とで構成されている。この材料供給ワイパー8は、少なくとも貯蔵部1や造形部2のシリンダの内幅よりも長い長さ寸法を有すると共に、その下端部分は造形テーブル5の上面に平行に対向する平面状に形成されており、粉末材料Aや粉末材料Aの焼結物よりも高い硬度を有する材料にて形成されている。たとえば、粉末材料Aや粉末材料Aの焼結物が100〜400Hvの硬度(ヴィッカース硬度)を有するものならば、材料供給ワイパー8の材料には600Hv以上の硬度(ヴィッカース硬度)を有する工具鋼の焼き入れ材を使用するのが良い。そして、この材料供給ワイパー8は、貯蔵部1及び造形部2のシリンダの上面に沿わせつつ、造形テーブル5の上面に対して平行にスライドするように設定されている。また、この材料供給ワイパー8には材料供給ワイパー8自らを上下左右に微少振動させる振動機構9が備えられている。本例の振動機構9には、圧電素子から構成されて20〜40kHz程度の周波数で発振する超音波振動子9aが用いられている。
【0026】
上述した三次元形状造形物の製造装置を用いて三次元形状造形物を製造するには、図2(a)に示すように、まず、貯蔵部1上にある材料供給ワイパー8(初期位置)を造形部2に向けてスライドさせる。このとき、材料供給ワイパー8は貯蔵部1に貯蔵された粉末材料Aをかき集め、このかき集めた粉末材料Aを造形部2に移動させると共に、この粉末材料Aを造形部2の造形テーブル5上にならして層状に堆積させて所定厚の粉末層Bを形成させる。たとえば粉末材料Aに平均粒径約20μmの球形の鉄粉を用いた場合には粉末層Bの厚さは約50μm程とする。なお、材料供給ワイパー8が貯蔵部1上をスライドする以前には、貯蔵部1の材料テーブル4を適宜上昇させておき、所定厚の粉末層Bを形成させ得る量の粉末材料Aが貯蔵部1から材料供給ワイパー8によってかき集められるようにされている。また、造形テーブル5上に所定厚の粉末層Bを形成させるには、造形テーブル5上を通過する材料供給ワイパー8の下面と造形テーブル5上面との間の距離が上記所定厚の高さ寸法になるように造形テーブル5を下降させることで行われる。
【0027】
次に、図2(b)に示すように、上記粉末層Bの所定位置に光ビーム照射部から光ビームLを照射し、粉末層Bを焼結させて焼結層Cを形成させる。なお、光ビーム照射部から照射される光ビームLは、粉末層B上面のX−Y方向(つまり、平面方向)の任意位置に照射できるようにされており、この光ビームLの照射は制御部(図示せず)により制御される。ここで、制御部には、製造したい三次元形状造形物の三次元CADモデルをその上下方向に所定のピッチ(本例では0.05mm)でスライスすることで得られた平面断面の各輪郭形状データが入力されており、この各輪郭形状データに基いて光ビームLの照射位置が位置制御されるのである。なお、上記焼結層Cを形成させた後には、材料供給ワイパー8は初期位置に戻される。
【0028】
上述した工程[図2(a),図2(b)]を繰り返し行うことで、複数層の焼結層Cが生成されるのであり、各焼結層Cの生成時には下層の焼結層Cとその都度融着されるので、上記複数層の焼結層Cは積層一体化されて三次元形状造形物Dが形成されるのである[図2(c)]。
【0029】
ここで、従来技術では、光ビームLの粉末層Bへの照射時の火花の飛び散りや、光ビームLの照射条件や、材料供給ワイパー8への粉末材料Aの付着などが原因となって焼結層C上面に突部Tが生成されると、この突部Tによって材料供給ワイパー8の正常な摺動が阻害され、良好な三次元形状造形物を得ることができないといった問題があったが、本例では上述したように材料供給ワイパー8に振動機構9を設けたことで上記問題を解消させているのである。
【0030】
つまり、この振動機構9によると材料供給ワイパー8が上下左右に微少振動することから、まず、粉末材料Aを材料供給ワイパー8に付着させにくくできる。したがって、突部Tの発生を抑制することができるのである。また、この材料供給ワイパー8が造形テーブル5上に粉末層Bを形成する際には、材料供給ワイパー8の下面が粉末層Bに上から押圧荷重を断続的に負荷させることができ、たとえ焼結層C上面に突部Tが生成されていたとしてもこの突部Tを潰しながら粉末層Bを形成させることができるのである。なお、焼結層C上面に生成された突部Tが新たに形成させる粉末層Bの厚さよりも大きい場合にも、振動する材料供給ワイパー8は突部Tを直接効果的に削ることができるから、この場合も突部Tを潰しながら粉末層Bを形成させることができるのである。このように、材料供給ワイパー8に振動機構9を設けたことで、焼結層C上面に突部Tが生成されていたとしても、この突部Tを潰しながら新たに粉末層Bを形成させることができるので、装置の正常動作が確保されて良好な三次元形状造形物の製造が可能とされているのである。また、材料供給ワイパー8への粉末材料Aの付着も抑制されて突部Tの発生の低減化もなされているから、これによっても装置の正常動作の確保に資することができるのである。
【0031】
なお、図3に示すように、造形テーブル5上を往復する材料供給ワイパー8の往路と復路の2度にわけて、造形テーブル5上に形成する粉末層Bの厚さを決定するようにしてもよい。つまり、貯蔵部1から造形テーブル5に至る材料供給ワイパー8の往路では、図3(a)にあるように材料供給ワイパー8の造形テーブル5までの高さ寸法を大にするように造形テーブル5を低い位置に設定し、造形テーブル5上に所定厚さより多少厚めの粉末層Bを形成し、造形テーブル5から貯蔵部1に戻る材料供給ワイパー8の復路では、図3(b)にあるように材料供給ワイパー8の造形テーブル5までの高さ寸法を小にするように造形テーブル5を高い位置に設定し、余分な厚さの粉末層Bを除去して所定厚の粉末層Bを形成させるようにするのである。これによると、たとえ焼結層C上に比較的大きな突部Tが生じていても、この突部Tを往路及び復路の材料供給ワイパー8によって徐々に削って潰すことができ、つまり、材料供給ワイパー8に過大な負担をかけずに突部Tを確実に潰すようにできるのである。たとえば、粉末層Bの所定厚寸法を50μmとすると、往路における材料供給ワイパー8の造形テーブル5までの高さ寸法は100〜150μmにするのが好ましい。したがって、装置の正常動作の確保を確実にし、良好な三次元形状造形物の製造を更に可能にできるのである。
【0032】
以下、本発明の実施の形態の他例を列挙する。これらの例において、先の実施の形態の例の三次元形状造形物の製造装置と同様部位には、同符号を付して説明を省略し、相違する部位につき説明する。
【0033】
図4に示す本発明の実施の形態の他例は、振動機構9の構成を変えた例である。つまり、本例の振動機構9は、往復摺動体7や材料供給ワイパー8を断続的に叩いて材料供給ワイパー8を上下左右に振動させるカム装置9bで構成されている。このカム装置9bは、図4(a)に示すように中心から偏心した位置に回転軸9bを備えて偏心回転をする円盤状のカム9bで構成されており、図4(b)にあるように回転軸9bを中心に回転させたときの偏心量Hを振動機構9の振動量としている。このカム装置9bで振動機構9を構成しても、先の実施の形態の例と同様の作用効果を得られるのは言うまでもない。
【0034】
図5に示す本発明の実施の形態の他例は、粉末供給機構3に振動機構9を備える代わりに、材料供給ワイパー8の往復摺動体7への取付け角度を、往復摺動体7の往復方向と直交する方向aに対して所定の角度θをもたせて設定した例である。この例では、上述したように、往復摺動体7の往復方向と直交する方向aに対して所定の角度θを傾けて材料供給ワイパー8を往復摺動体7に取付けているので、突部Tが形成された焼結層Cの上を材料供給ワイパー8が通過する際には、往復摺動体7の往復方向と直交する方向aに対して所定の角度θをもたせて往復摺動体7に取付けられた材料供給ワイパー8によって、往復摺動体7の駆動力を一の突部Tに集中的に押圧させることができるのである。詳述すると、突部Tは、光ビームLの粉末材料Aへの照射時の火花に含有した粉末溶融塊や光ビームLの照射条件などによって生じることから、複数できたとしても比較的近接した位置にできるものである。したがって、往復摺動体7の往復方向と直交する方向aに対して所定の角度θをもたせて往復摺動体7に取付けられた材料供給ワイパー8は、往復摺動体7の往復方向と直交する方向aにずれてできた突部T上にはタイミングをずらして通過させることができ、個々の突部Tに集中的に往復摺動体7の駆動力を負荷させることができるのである。このように、本例の粉末供給機構3にあっても、突部Tを潰しつつ粉末層Bを形成させることができるのであり、装置の正常動作の確保を確実にし、良好な三次元形状造形物の製造を可能にできるのである。また、本例にあっては、突部Tに材料供給ワイパー8が衝突した際の材料供給ワイパー8にかかる衝撃は、往復摺動体7のスライド方向とずれている材料供給ワイパー8の長手方向に逃がすことができ、つまり材料供給ワイパー8が受ける衝撃抵抗を弱めることができて装置の長寿命化をも図ることができるようになっている。
【0035】
なお、図示はしないが、振動機構9を設けた先の実施の形態の例の粉末供給機構3に、往復摺動体7の往復方向と直交する方向aに対して所定の角度θを傾けて材料供給ワイパー8を往復摺動体7に取付けた構成を付加させてもよいものである。これによると、振動機構9による粉末供給機構3の振動が突部Tに断続的に押圧負荷を加えたり、往復摺動体7の往復方向と直交する方向aに対して所定の角度θをもたせて往復摺動体7に取付けられた材料供給ワイパー8によって、往復摺動体7の駆動力を一の突部Tに集中的に押圧させたりすることが同時に行え、つまり粉末供給機構3は、より効果的に突部Tを潰しつつ粉末層Bを形成させることができるものである。また、振動する粉末供給機構3には粉末材料が付着しにくく突部Tの発生を低減できる利点や、突部Tに衝突した材料供給ワイパー8にかかる衝撃抵抗が弱められて装置の長寿命化が図られる利点も、同時に奏することができるのであり、装置の正常動作の確保を確実にし、良好な三次元形状造形物の製造を更に可能にできるのである。
【0036】
図6〜図9に示す本発明の実施の形態の他例は、先の実施の形態の各例の三次元形状造形物の製造装置に、貯蔵部1から造形テーブル5上を通り過ぎた往路後の材料供給ワイパー8に付着した粉末材料Aを直接除去する除去機構10を付加した例である。
【0037】
図6の例は、造形部2の貯蔵部1と反対側の端部に、間に溝11を介在させて、ブラシ12からなる除去機構10を設けた例である。詳述すると、このブラシ12は少なくとも材料供給ワイパー8の長さ寸法よりも長い長さ寸法を有し、貯蔵部1から造形テーブル5上を通り過ぎた材料供給ワイパー8がそのままブラシ12を通り過ぎるようにすることで[図6(a)→図6(b)]、往路後の材料供給ワイパー8に付着した粉末材料Aにブラシを接触させて、この粉末材料Aを溝11に掃き落とすようにしたものである。また、図7の例は、上記図6のブラシ12を弾性変形可能な薄い金属板13に変更した例である。この例によると、除去機構10の耐久強度を向上させることが可能である。
【0038】
また、図8の例は、造形部2の貯蔵部1と反対側の端部に、間に溝11を介在させて、走行自在にしたブラシ14からなる除去機構10を設けた例である。詳述すると、走行自在にしたブラシ14は材料供給ワイパー8の板面に確実に正面から押し当てることができるので、先の図6,7の例に比べて、より確実に材料供給ワイパー8から粉末材料Aを掃き落とすことができるものである。
【0039】
また、図9の例は、材料供給ワイパー8の長さ方向に亘って摺動するブラシ15を往復摺動体7に装着して除去機構10を構成した例である。詳述すると、このブラシ15は往復摺動体7の長さ方向に設けたレール(図示せず)に沿って摺動自在にされており、材料供給ワイパー8が造形テーブル5上を通り過ぎた後のタイミングで、ブラシ15を材料供給ワイパー8の長さ方向に亘って走査させて材料供給ワイパー8から粉末材料Aを掃き落とすようにしたものである。この例は、先の図8の例同様に確実に材料供給ワイパー8から粉末材料Aを掃き落とすことができるのであり、また、装置の小型化も図ることができるのである。
【0040】
これら図6〜図9の例にあるように、先の実施の形態の例の三次元形状造形物の製造装置に、貯蔵部1から造形テーブル5上を通り過ぎた往路後の材料供給ワイパー8に付着した粉末材料Aを直接除去する除去機構10を付加したものにあっては、除去機構10によって往路後の材料供給ワイパー8に付着した粉末材料Aを掃き落とすことができて、復路時の材料供給ワイパー8には粉末材料Aが付着していない状態にでき、つまり、焼結層C上に突部Tが生成される原因の一つとされる材料供給ワイパー8への粉末材料Aの付着を防止することができ、したがって、突部Tの発生を低減化することができ、装置の正常動作を確保できて良好な三次元形状造形物の製造を更に可能にできるのである。
【0041】
図10〜図14に示す本発明の実施の形態の諸例は、先の実施の形態の各例の三次元形状造形物の製造装置と同様に、装置の正常動作を確保させて良好な三次元形状造形物Dを製造可能にすることを目的とするものであるが、材料供給ワイパー8が通る造形テーブル5上に突部Tが形成されていて突部Tが摺動する材料供給ワイパー8に衝突した場合に、突部Tの材料供給ワイパー8への衝撃負荷を小さく抑えたり吸収させたりすることで、材料供給ワイパー8の安定稼動を確保すると共に、上記衝撃によって材料供給ワイパー8、ひいては装置全体を振動させないことで、この振動の影響による三次元形状造形物Dの配置誤差の発生を回避して高い精度での三次元形状造形物Dの製造を可能にしたものである。
【0042】
図10に示す本発明の実施の形態の他例における三次元形状造形物の製造装置では、材料供給ワイパー8が前側ワイパー8aと後側ワイパー8bとを重ね合わせて構成されている。詳しくは、前側ワイパー8aは、後側ワイパー8bよりも貯蔵部1から造形テーブル5に移動する方向である前方に配置され、その下端高さは後側ワイパー8bの下端高さよりも高い位置に形成されている(段差b)。しかして、この三次元形状造形物の製造装置では、粉末供給機構3の材料供給ワイパー8が造形テーブル5上にならして所定厚の粉末層Bを形成させるときには、前側ワイパー8aがまず所定厚以上の粉末材料Aを造形テーブル5上に敷き、続けて後側ワイパー8bが造形テーブル5上に敷いた粉末材料Aを所定厚にして粉末層Bを仕上げるようになっている。つまり、前側ワイパー8aが請求項7でいう粉末層Bの所定厚以上の粉末材料Aを造形テーブル5上に敷く荒ならしワイパーを構成しており、後側ワイパー8bが請求項7でいう荒ならしワイパーが敷いた粉末材料Aを所定厚に削って粉末層Bを仕上げる仕上ならしワイパーを構成している。そして、この三次元形状造形物の製造装置では、材料供給ワイパー8が通る造形テーブル5上に突部Tが形成されていても、まず前側ワイパー8aで突部Tを荒く削り、次いで後側ワイパー8bで残った突部Tを削ることができ、つまり突部Tを徐々に削ることができるのであり、結果、突部Tが材料供給ワイパー8にかける負荷の大きさを小さく抑えることができるから、装置の正常動作を確保できると共に、衝撃による装置への振動を抑えて三次元形状造形物Dの配置誤差の発生を低減でき、三次元形状造形物Dの精度の良い製造が可能にされているのである。
【0043】
図11に示す本発明の実施の形態の他例の三次元形状造形物の製造装置は、図10の三次元形状造形物の製造装置における後側ワイパー8bの下端部分を下端が自由端となるブラシ体16で構成されたものである。しかして、この三次元形状造形物の製造装置では、後側ワイパー8bで粉末層Bを仕上げるときに、後側ワイパー8bの下端のブラシ体16で後側ワイパー8bに衝突する突部Tの衝撃を吸収することができ、つまり後側ワイパー8bには突部Tの衝撃負荷がかからないようになり、更に確実に装置の正常動作を確保でき、精度良く三次元形状造形物Dの製造を行い得るようされているのである。
【0044】
図12に示す本発明の実施の形態の他例の三次元形状造形物の製造装置は、横長の縦板状の材料供給ワイパー8の幅方向両端部分にサスペンション17を備え、このサスペンションにて材料供給ワイパー8を粉末供給機構3の往復摺動体7(図示せず)などの駆動部分に保持させたものである。つまり、両端のサスペンション17によって、材料供給ワイパー8は幅方向両端部が独立するかたちで上下に移動自在にされると共に下方への弾性付勢が施されている。しかして、この三次元形状造形物の製造装置では、材料供給ワイパー8が通る造形テーブル5上に突部Tが形成されていて、この突部Tが摺動する材料供給ワイパー8に衝突しても、図12(b)のように、この衝撃を逃すようにサスペンション17が収縮して材料供給ワイパー8が突部Tを乗り越えるように上方に位置されるのである。なお、突部Tを乗り越えた材料供給ワイパー8はサスペンション17の弾性復帰により定位置にすぐに戻されるのである。このように突部Tの材料供給ワイパー8への衝撃はサスペンション17の収縮によって吸収され、材料供給ワイパー8は突部Tをスムーズに乗り越えて摺動することができるようにされているので、突部Tの材料供給ワイパー8への衝突負荷を低減できて装置の正常動作を確保できると共に、突部Tの材料供給ワイパー8への衝撃による装置への振動を有効に抑えて三次元形状造形物Dの配置誤差の発生を低減でき、三次元形状造形物Dの精度の良い製造が可能にされているのである。
【0045】
図13に示す本発明の実施の形態の他例の三次元形状造形物の製造装置は、材料供給ワイパー8の下端から上方に向って切り込んだ切込み18を材料供給ワイパー8の幅方向に並設して切込み18間の部位にそれぞれ撓み部19を形成し、この撓み部19を下方が自由端となって材料供給ワイパー8の移動方向に撓み自在にしたものである。ここで、材料供給ワイパー8の材質は弾性のあるバネ材等を用いており、撓み部19の撓み変形が確保されるようにされている。しかして、この三次元形状造形物の製造装置では、材料供給ワイパー8が通る造形テーブル5上に突部Tが形成されていて、この突部Tが摺動する材料供給ワイパー8に衝突した場合には、図14に示すように、突部Tが衝突した材料供給ワイパー8の部位にある撓み部19のみが上記衝撃を受けて撓むことで、この衝撃は撓み部19で吸収されて材料供給ワイパー8にまともに負荷されないようになっている。なお、突部Tを通過した後には弾性復帰にて撓み部19は定位置に戻るようになっている。このように、突部Tの材料供給ワイパー8への衝突負荷を低減できて装置の正常動作を確保できると共に、突部Tの材料供給ワイパー8への衝撃による装置への振動を有効に抑えて三次元形状造形物Dの配置誤差の発生を低減でき、三次元形状造形物Dの精度の良い製造が可能にされているのである。
【0046】
【発明の効果】
上記のように本発明の請求項1記載の発明にあっては、叙述したように、粉末供給機構は、造形テーブル上への粉末敷設時に作動する振動機構を備えたので、突部が形成された焼結層の上を粉末供給機構が通過する際には、振動機構によって振動する粉末供給機構が突部に断続的に押圧負荷を加えることができ、つまり粉末供給機構は突部を潰しつつ粉末層を形成することができるのであり、また、振動する粉末供給機構には粉末材料の付着が抑制されることから突部の発生をも低減させることができることから、装置の正常動作を確保できて良好な三次元形状造形物の製造を確保することができるのである。
【0047】
また、請求項2記載の発明にあっては、粉末供給機構は、貯蔵部及び造形テーブル上を通るように往復駆動する往復摺動体と、この往復摺動体に取付けて貯蔵部の所定の粉末材料を移動させて造形テーブル上にならして所定厚の粉末層を形成させる材料供給ワイパーとで構成し、材料供給ワイパーの往復摺動体への取付け角度を、往復摺動体の往復方向と直交する方向に対して、所定の角度をもたせて設定したので、突部が形成された焼結層の上を材料供給ワイパーが通過する際には、往復摺動体の往復方向と直交する方向に対して所定の角度をもたせて往復摺動体に取付けた材料供給ワイパーによって、往復摺動体の駆動力を個々の突部に集中的に押圧させることができ、つまり粉末供給機構は突部を潰しつつ粉末層を形成させることができるのであって、装置の正常動作を確保できて良好な三次元形状造形物の製造を図ることができるのであり、また、突部に材料供給ワイパーが衝突した際の材料供給ワイパーにかかる衝撃は、往復摺動体のスライド方向とずれている材料供給ワイパーの長手方向に逃がすことができ、つまり材料供給ワイパーが受ける衝撃抵抗を弱めることができ、装置の耐久性能を向上させて装置の長寿命化をも図ることができるのである。
【0048】
また、請求項3記載の発明にあっては、粉末供給機構は、造形テーブル上への粉末敷設時に作動する振動機構を備えると共に、貯蔵部及び造形テーブル上を通るように往復駆動する往復摺動体と、この往復摺動体に取付けて貯蔵部の所定の粉末材料を移動させて造形テーブル上にならして所定厚の粉末層を形成させる材料供給ワイパーとで構成し、材料供給ワイパーの往復摺動体への取付け角度を、往復摺動体の往復方向と直交する方向に対して、所定の角度をもたせて設定したので、振動機構による粉末供給機構の振動が突部に断続的に押圧負荷を加えたり、往復摺動体の往復方向と直交する方向に対して所定の角度をもたせて往復摺動体に取付けた材料供給ワイパーによって、往復摺動体の駆動力を個々の突部に集中的に押圧させたりすることが同時に行え、つまり粉末供給機構は、より効果的に突部を潰しつつ粉末層を形成させることができるのであり、加えて、振動する粉末供給機構には粉末材料が付着しにくく突部の発生を低減できる利点や、突部に衝突した材料供給ワイパーにかかる衝撃抵抗が弱められて装置の長寿命化が図られる利点も、同時に奏することができるのであり、装置の正常動作を確保できて良好な三次元形状造形物の製造を効果的に図ることや、装置の長寿命化を図ることができるのである。
【0049】
また、請求項4記載の発明にあっては、請求項2又は3の効果に加えて、造形テーブル上を往復する際の材料供給ワイパーの造形テーブルまでの高さ設定を、材料供給ワイパーの往路、復路で異なるように設定したので、貯蔵部から造形テーブルに至る材料供給ワイパーの往路では材料供給ワイパーの造形テーブルまでの高さ設定を大にし、造形テーブルから貯蔵部に戻る材料供給ワイパーの復路では材料供給ワイパーの造形テーブルまでの高さ設定を小にするようにして、2度にわけて造形テーブル上に形成する粉末層の厚さを決定するようにできるものであり、たとえ焼結層上に比較的大きな突部が生じていても、この突部を往路及び復路の材料供給ワイパーによって徐々に潰すことができ、つまり材料供給ワイパーに過大な負担をかけずに突部を確実に潰すことができることから、装置の正常動作を確保できて良好な三次元形状造形物の製造を更に可能にできるのである。
【0050】
また、請求項5記載の発明にあっては、請求項2又は3の効果に加えて、材料供給ワイパーを、粉末材料よりも高い硬度を有する材料で形成したので、たとえ焼結層上に比較的大きな突部が生じていて材料供給ワイパーが突部に衝突しても、この突部を材料供給ワイパーで直接削ることができて装置の正常動作の確保が図られるのであり、また材料供給ワイパーの損傷も防止されて装置の長寿命化も図ることができる。
【0051】
また、請求項6記載の発明にあっては、請求項2又は3の効果に加えて、貯蔵部から造形テーブル上を通り過ぎた往路後の材料供給ワイパーに付着した粉末材料を除去する除去機構を備えたので、往路後の材料供給ワイパーに付着した粉末材料を掃き落とすことができて、復路時の材料供給ワイパーには粉末材料が付着していない状態にでき、つまり、焼結層上に突部が生成される原因の一つとされる材料供給ワイパーへの粉末材料の付着を防止することができ、したがって、突部の発生を低減化することができ、装置の正常動作を確保できて良好な三次元形状造形物の製造を更に可能にできるのである。
【0052】
また、請求項7記載の発明にあっては、粉末供給機構は、貯蔵部及び造形テーブル上を通って貯蔵部の所定の粉末材料を移動させて造形テーブル上にならして所定厚の粉末層を形成させる材料供給ワイパーを有し、この材料供給ワイパーは、粉末層の所定厚以上の粉末材料を造形テーブル上に敷く荒ならしワイパーと、荒ならしワイパーが敷いた粉末材料を所定厚に削って粉末層を仕上げる仕上ならしワイパーとで構成されたので、粉末供給機構が造形テーブル上にならして所定厚の粉末層を形成させるときには、荒ならしワイパーがまず所定厚以上の粉末材料Aを造形テーブル上に敷き、続けて仕上ならしワイパーが造形テーブル上に敷いた粉末材料を所定厚にして粉末層を仕上げるようになるが、このとき材料供給ワイパーが通る造形テーブル上に突部が形成されていたら、まず荒ならしワイパーで突部を荒く削り、次いで仕上ならしワイパーで残った突部を削ることができ、つまり突部を徐々に削ることができるようにされており、結果、突部が材料供給ワイパーにかける衝撃負荷の大きさを小さく抑えることができるから、装置の正常動作を確保できると共に、衝撃による装置への振動を抑えて三次元形状造形物の配置誤差の発生を低減できて三次元形状造形物の精度の良い製造が確保できるのである。
【0053】
また、請求項8記載の発明にあっては、請求項7の効果に加え、仕上ならしワイパーの下端部分を下端が自由端となるブラシ体で構成したので、仕上ならしワイパーで粉末層を仕上げるときには、仕上ならしワイパーの下端のブラシ体は仕上ならしワイパーに衝突する突部の衝撃を有効に吸収することができ、つまり仕上ならしワイパーには突部の衝撃負荷がかからないようになり、更に確実に装置の正常動作を確保できて精度の良好な三次元形状造形物の製造が確保できるのである。
【0054】
また、請求項9記載の発明にあっては、粉末供給機構は、貯蔵部及び造形テーブル上を通って貯蔵部の所定の粉末材料を移動させて造形テーブル上にならして所定厚の粉末層を形成させる材料供給ワイパーを有し、この材料供給ワイパーは上下移動可能にされると共に下方への弾性付勢が施されているので、材料供給ワイパーが通る造形テーブル上に突部が形成されていて、この突部が摺動する材料供給ワイパーに衝突しても、材料供給ワイパーは上下移動可能にされると共に下方への弾性付勢が施されているから、突部の材料供給ワイパーへの衝撃は弾性によって吸収されると共に、突部の衝撃を受けた材料供給ワイパーは上方に移動するから材料供給ワイパーは突部をスムーズに乗り越えるようになり、突部の材料供給ワイパーへの衝突負荷を低減できて装置の正常動作を確保できると共に、突部の材料供給ワイパーへの衝撃による装置への振動を有効に抑えて三次元形状造形物の配置誤差の発生を低減できて三次元形状造形物の精度の良い製造が確保できるのである。
【0055】
また、請求項10記載の発明にあっては、粉末供給機構は、貯蔵部及び造形テーブル上を通って貯蔵部の所定の粉末材料を移動させて造形テーブル上にならして所定厚の粉末層を形成させる材料供給ワイパーを有し、この材料供給ワイパーにその下端から上方に向って切り込んだ複数の切込みを並設し、切込み間の材料供給ワイパーの部位である撓み部を下方が自由端として材料供給ワイパーの移動方向に撓み自在にしたので、材料供給ワイパーが通る造形テーブル上に突部が形成されていて、この突部が材料供給ワイパーに衝突しても、突部が衝突する材料供給ワイパーの部位にある撓み部のみが上記衝撃を受けて撓むことで、この衝撃が材料供給ワイパーにまともに負荷されないようこの撓み部で吸収させることができ、したがって突部の材料供給ワイパーへの衝突負荷を低減できて装置の正常動作を確保できると共に、突部の材料供給ワイパーへの衝撃による装置への振動を有効に抑えて三次元形状造形物の配置誤差の発生を低減でき、三次元形状造形物の精度の良い製造が確保できるのである。
【図面の簡単な説明】
【図1】本発明の実施の形態の例を示す三次元形状造形物の製造装置の斜視図である。
【図2】同上の製造装置を用いて三次元形状造形物を製造する製造方法を説明する説明図であり、(a)は粉末層を形成する状態を示し、(b)は光ビームにより焼結層を形成する状態を示し、(c)は三次元形状造形物が完成した状態を示している。
【図3】同上の他の製造方法を説明する説明図であり、(a)は材料供給ワイパーが往路にある状態を示し、(b)は材料供給ワイパーが復路にある状態を示している。
【図4】本発明の実施の形態の他例を示すもので、(a)は振動機構を構成するカム装置の平面図であり、(b)は(a)のカム装置の動作説明図である。
【図5】本発明の実施の形態の更に他例を示す三次元形状造形物の製造装置の平面図である。
【図6】(a)(b)は本発明の実施の形態の更に他例の三次元形状造形物の製造装置の要部を示して動作を説明する動作説明図である。
【図7】(a)(b)は本発明の実施の形態の更に他例の三次元形状造形物の製造装置の要部を示して動作を説明する動作説明図である。
【図8】本発明の実施の形態の更に他例の三次元形状造形物の製造装置の要部の側断面図である。
【図9】本発明の実施の形態の更に他例の三次元形状造形物の製造装置の要部の斜視図である。
【図10】本発明の実施の形態の更に他例の三次元形状造形物の製造装置の要部の側面図である。
【図11】本発明の実施の形態の更に他例の三次元形状造形物の製造装置の要部の側面図である。
【図12】(a)は本発明の実施の形態の更に他例の三次元形状造形物の製造装置の要部の正面図であり、(b)は同製造装置の動作を説明する説明図である。
【図13】本発明の実施の形態の更に他例の三次元形状造形物の製造装置の要部の正面断面図である。
【図14】同上の三次元形状造形物の製造装置の動作を説明する説明図であって、(a)は正面図であり、(b)は(a)の側面図である。
【図15】従来技術の突部発生のメカニズムを説明する説明図である。
【図16】従来技術の突部発生の他のメカニズムを説明する説明図である。
【図17】従来技術の突部発生の更に他のメカニズムを説明する説明図である。
【符号の説明】
1 貯蔵部
2 造形部
3 粉末供給機構
4 材料テーブル
5 造形テーブル
6 レール
7 往復摺動体
8 材料供給ワイパー
8a 前側ワイパー
8b 後側ワイパー
9 振動機構
10 除去機構
16 ブラシ体
17 サスペンション
18 切込み
19 撓み部
A 粉末材料
B 粉末層
C 焼結層
D 三次元形状造形物
L 光ビーム
T 突部
[0001]
BACKGROUND OF THE INVENTION
In the present invention, a powder material is laid in layers to form a powder layer, and a process of forming a sintered layer by irradiating a light beam at an arbitrary position of the powder layer is repeated, and a plurality of sintered layers are laminated and integrated It is invention regarding the manufacturing apparatus of a three-dimensional shape modeling thing which makes it form and forms a three-dimensional shape modeling thing.
[0002]
[Prior art]
Conventionally, inorganic powders (metals) and organic powders (resins) are irradiated with a light beam L (directed energy beam, laser) and sintered. The powder material A constructed in the above step is laid in layers on the modeling table 20 on which a model is formed, and the powder layer B is formed. A light beam L is irradiated to an arbitrary position of the powder layer B to form the sintered layer C. A manufacturing method is known in which a three-dimensional shaped object is manufactured by repeating the forming step and stacking and integrating a plurality of sintered layers C (for example, see Patent Document 1).
[0003]
[Patent Document 1]
Japanese Patent No. 2620353
[0004]
[Problems to be solved by the invention]
However, in this construction method, the following problems (1) to (3) may occur, which may hinder the production of a good three-dimensional shaped object.
(1) As shown in FIG. 15, when the powder material B is irradiated with the light beam L to sinter the powder material A, sparks are scattered, and the powder molten mass contained in the sparks is the surface of the sintered layer C. In some cases, the protrusion T is generated on the surface of the sintered layer C. And if the wiper-like machine part which forms the powder layer B on this protrusion T gets on, normal operation | movement of this machine part will be prevented and manufacture of a favorable three-dimensional shaped molded article will be inhibited.
(2) As shown in FIG. 16, an unexpected projection T may be generated on the surface of the sintered layer C due to the surface tension of the melted powder material A depending on the irradiation condition of the light beam L. And when this protrusion T is produced | generated larger than the thickness of the powder layer B to set, the mechanical component (material supply wiper 8) which operate | moves so that the next powder layer B may be formed in the protrusion T. It collides, that is, the normal operation of the machine parts is hindered, and the production of a good three-dimensional shaped object is hindered.
(3) As shown in FIG. 17, the mechanical component (material supply wiper 8) for forming a new powder layer B on the modeling table 20 operates so as to reciprocate on the modeling table 20. The powder material A may adhere to the surface due to moisture, magnetic force, etc., and the powder material A adhering to this machine part falls on the powder layer B on the return path, and the light beam L is not noticed as it is. If it is irradiated, an unexpected projection T may be generated on the surface of the sintered layer C. When the protrusion T is generated to be larger than the set thickness of the powder layer B, a mechanical component that operates to form the next powder layer B collides with the protrusion T, that is, the mechanical component. The normal operation is hindered, and the production of a good three-dimensional shaped object is hindered.
[0005]
The present invention has been made in view of the above points, and it is an object of the present invention to provide a three-dimensional shaped article manufacturing apparatus that can ensure normal operation of the apparatus and reliably manufacture a good three-dimensional shaped article. To do.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the three-dimensional shaped article manufacturing apparatus according to the present invention has a storage unit 1 for storing an inorganic or organic powder material A, and forms a three-dimensional shaped article on the modeling table 5. And a powder supply mechanism 3 for supplying a powder material A in the storage unit 1 to form a powder layer B having a predetermined thickness, and irradiating a light beam L to an arbitrary portion of the powder layer B to form a sintered layer. A light beam irradiation part for forming C, and by repeating the formation of the powder layer B by the powder supply mechanism 3 and the formation of the sintered layer C by the light beam irradiation part, a plurality of sintered layers C are laminated and integrated. In the three-dimensional shaped article manufacturing apparatus for forming a three-dimensional shaped article, the powder supply mechanism 3 includes a vibration mechanism 9 that operates when powder is laid on the modeling table 5.
[0007]
According to this, when the powder supply mechanism 3 passes over the sintered layer C on which the protrusion T is formed, the powder supply mechanism 3 vibrated by the vibration mechanism 9 intermittently applies a pressing load to the protrusion T. That is, the powder supply mechanism 3 can form the powder layer B while crushing the protrusion T. In addition, since the powder material A is prevented from adhering to the vibrating powder supply mechanism 3, the occurrence of the protrusions T can be reduced. Therefore, normal operation of the apparatus can be ensured and a good three-dimensional shaped object can be manufactured.
[0008]
Moreover, the three-dimensional shaped article manufacturing apparatus according to the present invention has a storage unit 1 for storing an inorganic or organic powder material A, and the storage unit 1 is formed on the modeling table 5 for modeling the three-dimensional shaped article. A light beam for supplying a powder material A and having a powder supply mechanism 3 for forming a powder layer B having a predetermined thickness and irradiating an arbitrary portion of the powder layer B with a light beam to form a sintered layer C A three-dimensional shaped object is obtained by repeating the formation of the powder layer B by the powder supply mechanism 3 and the formation of the sintered layer C by the light beam irradiation unit by laminating and integrating the plurality of sintered layers C. In the manufacturing apparatus for a three-dimensional shaped object to be formed, the powder supply mechanism 3 is attached to the reciprocating sliding body 7 and the reciprocating sliding body 7 that reciprocates to pass over the storage unit 1 and the modeling table 5. Move the specified powder material A in the storage unit 1 And a material supply wiper 8 that forms a powder layer B having a predetermined thickness on the modeling table 5, and the mounting angle of the material supply wiper 8 to the reciprocating sliding body 7 is set to the reciprocating direction of the reciprocating sliding body 7. It is characterized in that it is set with a predetermined angle θ with respect to a direction a orthogonal to.
[0009]
According to this, when the material supply wiper 8 passes over the sintered layer C on which the protrusions T are formed, a predetermined angle θ is given to the direction a perpendicular to the reciprocating direction of the reciprocating sliding body 7. Thus, the material supply wiper 8 attached to the reciprocating sliding body 7 can intensively press the driving force of the reciprocating sliding body 7 against the individual protrusions T, that is, the powder supply mechanism 3 crushes the protrusions T. The powder layer B can be formed. Further, the impact applied to the material supply wiper 8 when the material supply wiper 8 collides with the protrusion T can be released in the longitudinal direction of the material supply wiper 8 which is deviated from the sliding direction of the reciprocating sliding body 7. The impact resistance received by the supply wiper 8 can be weakened and the life of the apparatus can be extended.
[0010]
Moreover, the three-dimensional shaped article manufacturing apparatus according to the present invention has a storage unit 1 for storing an inorganic or organic powder material A, and the storage unit 1 is formed on the modeling table 5 for modeling the three-dimensional shaped article. A light beam for supplying a powder material A and having a powder supply mechanism 3 for forming a powder layer B having a predetermined thickness and irradiating an arbitrary portion of the powder layer B with a light beam to form a sintered layer C A three-dimensional shaped object is obtained by repeating the formation of the powder layer B by the powder supply mechanism 3 and the formation of the sintered layer C by the light beam irradiation unit by laminating and integrating the plurality of sintered layers C. In the three-dimensional shaped article manufacturing apparatus to be formed, the powder supply mechanism 3 includes a vibration mechanism 9 that operates when powder is laid on the modeling table 5, and passes through the storage unit 1 and the modeling table 5. Reciprocating sliding 7 and a material supply wiper 8 that is attached to the reciprocating sliding body 7 and moves a predetermined powder material A of the storage unit 1 to form a powder layer B having a predetermined thickness on the modeling table 5, An attachment angle of the material supply wiper 8 to the reciprocating sliding body 7 is set with a predetermined angle θ with respect to a direction a perpendicular to the reciprocating direction of the reciprocating sliding body 7.
[0011]
According to this, a pressing load is intermittently applied to the protrusion T by the vibration of the powder supply mechanism 3 by the vibration mechanism 9, or a predetermined angle θ is given to the direction a perpendicular to the reciprocating direction of the reciprocating sliding body 7. Thus, the material supply wiper 8 attached to the reciprocating sliding body 7 can simultaneously press the driving force of the reciprocating sliding body 7 against the individual projections T. That is, the powder supply mechanism 3 is more effective. Thus, the powder layer B can be formed while crushing the protrusion T. Further, the powder material A is less likely to adhere to the vibrating powder supply mechanism 3 and the advantage that the occurrence of the protrusion T can be reduced, and the impact resistance applied to the material supply wiper 8 when it collides with the protrusion T is weakened. The advantage of extending the life can also be achieved at the same time.
[0012]
It is also preferable that the height setting of the material supply wiper 8 to the modeling table 5 when reciprocating on the modeling table 5 is set to be different between the forward path and the return path of the material supply wiper 8. According to this, in the forward path of the material supply wiper 8 from the storage unit 1 to the modeling table 5, the material supply wiper 8 that increases the height of the material supply wiper 8 to the modeling table 5 and returns from the modeling table 5 to the storage unit 1. In the return path, the height of the material supply wiper 8 up to the modeling table 5 can be reduced, and the thickness of the powder layer B formed on the modeling table 5 can be determined in two steps. Even if a relatively large protrusion T is formed on the sintered layer C, the protrusion T can be gradually crushed by the material supply wiper 8 in the forward path and the return path, that is, an excessive burden is placed on the material supply wiper 8. Since the projecting portion T can be reliably crushed without applying any of the above, the normal operation of the apparatus can be secured and the production of a good three-dimensional shaped object can be further made possible.
[0013]
It is also preferable that the material supply wiper 8 is formed of a material having a hardness higher than that of the powder material A. According to this, even if a relatively large protrusion T occurs on the sintered layer C and the material supply wiper 8 collides with the protrusion T, the protrusion T can be directly cut by the material supply wiper 8. Thus, the normal operation of the apparatus can be ensured, and the material supply wiper 8 can be prevented from being damaged, and the life of the apparatus can be extended.
[0014]
It is also preferable to provide a removal mechanism 10 that removes the powder material A adhering to the material supply wiper 8 after the outward path that has passed over the modeling table 5 from the storage unit 1. According to this, the powder material A adhering to the material supply wiper 8 after the forward path can be swept away by the removing mechanism 10, and the powder material A can be made not to adhere to the material supply wiper 8 at the time of the return path, That is, it is possible to prevent the powder material A from adhering to the material supply wiper 8 which is one of the causes of the protrusion T being generated on the sintered layer C, and therefore, the generation of the protrusion T is reduced. Therefore, the normal operation of the apparatus can be ensured, and the production of a good three-dimensional shaped object can be further made possible.
[0015]
Moreover, the three-dimensional shaped article manufacturing apparatus according to the present invention has a storage unit 1 for storing an inorganic or organic powder material A, and a storage unit 1 on a modeling table 5 for modeling the three-dimensional shaped article D. And a powder supply mechanism 3 that forms a powder layer B having a predetermined thickness while supplying a powder material A, and irradiates a light beam L to an arbitrary portion of the powder layer B to form a sintered layer C. It has a light beam irradiation part, and by repeating the formation of the powder layer B by the powder supply mechanism 3 and the formation of the sintered layer C by the light beam irradiation part, a plurality of sintered layers C are laminated and integrated to form a three-dimensional shape In the manufacturing apparatus for a three-dimensional shaped object that forms the object D, the powder supply mechanism 3 moves the predetermined powder material A in the storage unit 1 through the storage unit 1 and the modeling table 5 to form the modeling table. 5 to form a powder layer B of a predetermined thickness The material supply wiper 8 includes a roughening wiper that lays a powder material A of a predetermined thickness or more of the powder layer B on the modeling table 5, and a powder material A that is spread by the roughening wiper. It is characterized by comprising a finishing wiper that finishes the powder layer B by cutting to a predetermined thickness.
[0016]
According to this, when the powder supply mechanism 3 forms a powder layer B having a predetermined thickness on the modeling table 5, the roughening wiper first lays the powder material A having a predetermined thickness or more on the modeling table 5, and continues. Then, the finishing wiper finishes the powder layer B with the powder material A spread on the modeling table 5 having a predetermined thickness. At this time, a protrusion T is formed on the modeling table 5 through which the material supply wiper 8 passes. If this is the case, the projecting portion T can be sharply shaved first with a roughening wiper, and then the remaining projecting portion T can be shaved with a finishing wiper. In other words, the projecting portion T can be gradually scraped. Since the magnitude | size of the load which the part T applies to the material supply wiper 8 can be restrained small, normal operation | movement of an apparatus can be ensured and the favorable three-dimensional shaped molded article D can be manufactured.
[0017]
Further, it is also preferable that the lower end portion of the finish leveling wiper is constituted by a brush body 16 having a lower end as a free end. According to this, when finishing the powder layer B with a finish wiper, the brush body 16 at the lower end of the finish wiper can absorb the impact of the protrusion T colliding with the finish wiper. Thus, the impact load of the protrusion T is not applied, and the normal operation of the apparatus can be ensured more reliably, and a good three-dimensional shaped article D can be manufactured.
[0018]
Moreover, the three-dimensional shaped article manufacturing apparatus according to the present invention has a storage unit 1 for storing an inorganic or organic powder material A, and a storage unit 1 on a modeling table 5 for modeling the three-dimensional shaped article D. And a powder supply mechanism 3 that forms a powder layer B having a predetermined thickness while supplying a powder material A, and irradiates a light beam L to an arbitrary portion of the powder layer B to form a sintered layer C. It has a light beam irradiation part, and by repeating the formation of the powder layer B by the powder supply mechanism 3 and the formation of the sintered layer C by the light beam irradiation part, a plurality of sintered layers C are laminated and integrated to form a three-dimensional shape In the manufacturing apparatus for a three-dimensional shaped object that forms the object D, the powder supply mechanism 3 moves the predetermined powder material A in the storage unit 1 through the storage unit 1 and the modeling table 5 to form the modeling table. 5 to form a powder layer B of a predetermined thickness It has a material supply wiper 8 which, the material supply wiper 8, characterized in that the elastically biased downward while being in movable vertically is performed.
[0019]
According to this, a protrusion T is formed on the modeling table 5 through which the material supply wiper 8 passes, and the material supply wiper 8 can move up and down even if the protrusion T collides with the sliding material supply wiper 8. Since the elastic biasing is applied downward, the impact of the projection T on the material supply wiper 8 is absorbed by the elasticity, and the material supply wiper 8 can smoothly get over the projection T. The normal operation of the apparatus can be ensured and a good three-dimensional shaped article D can be manufactured.
[0020]
Moreover, the three-dimensional shaped article manufacturing apparatus according to the present invention has a storage unit 1 for storing an inorganic or organic powder material A, and a storage unit 1 on a modeling table 5 for modeling the three-dimensional shaped article D. And a powder supply mechanism 3 that forms a powder layer B having a predetermined thickness while supplying a powder material A, and irradiates a light beam L to an arbitrary portion of the powder layer B to form a sintered layer C. It has a light beam irradiation part, and by repeating the formation of the powder layer B by the powder supply mechanism 3 and the formation of the sintered layer C by the light beam irradiation part, a plurality of sintered layers C are laminated and integrated to form a three-dimensional shape In the manufacturing apparatus for a three-dimensional shaped object that forms the object D, the powder supply mechanism 3 moves the predetermined powder material A in the storage unit 1 through the storage unit 1 and the modeling table 5 to form the modeling table. 5 to form a powder layer B of a predetermined thickness The material supply wiper 8 has a plurality of cuts 18 cut upward from the lower end of the material supply wiper 8, and the bent portion 19 of the material supply wiper 8, which is a portion between the cuts 18, is disposed below. Is free to bend in the moving direction of the material supply wiper 8 as a free end.
[0021]
According to this, the protrusion T is formed on the modeling table 5 through which the material supply wiper 8 passes, and even if this protrusion T collides with the material supply wiper 8, the protrusion T collides with the material supply wiper 8. Since only the bending portion 19 in the part is bent by receiving the impact, the impact can be absorbed by the bending portion so that the material supply wiper 8 is not loaded properly, and normal operation of the apparatus can be secured. 3D shaped object D can be manufactured.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described based on embodiments shown in the accompanying drawings.
[0023]
An example of an embodiment of the present invention is shown in FIGS. In the three-dimensional shaped article manufacturing apparatus, the storage unit 1 that stores the powder material A and the modeling unit 2 that forms the three-dimensional modeled object are arranged adjacent to each other, and the powder material A of the storage unit 1 is placed in the modeling unit 2. Along with the supply, a powder supply mechanism 3 for forming a powder layer B of a predetermined thickness is provided, and a light beam L (directional energy beam, laser) is irradiated to an arbitrary part of the powder layer B formed in the modeling part 2 Thus, a light beam irradiation part (not shown) for forming the sintered layer C is provided.
[0024]
Here, the powder material A stored in the storage unit 1 is an inorganic powder (metal) or an organic powder (resin), and for example, spherical iron powder having an average particle diameter of about 20 μm is used. The light beam L is a directional energy beam or a laser, for example, a carbon dioxide laser. Moreover, the storage part 1 and the modeling part 2 are each provided with a piston that can be moved up and down in a cylindrical cylinder that opens upward and downward. The piston of the storage unit 1 is a part that pushes up the powder material A stored in the storage part 1 and is referred to as a material table 4, and the piston of the modeling part 2 is a part that forms a three-dimensional shaped object on its upper surface. This is referred to as a modeling table 5.
[0025]
The powder supply mechanism 3 includes a linear rail 6 disposed along the widthwise ends of the storage unit 1 and the modeling unit 2, and the storage unit 1 and the modeling unit 2 projecting from the rail 6 at a substantially right angle. A reciprocating sliding body 7 having a rectangular bar shape that reciprocates upward, and a spatula-shaped material supply wiper 8 projecting downward along the lower surface of the reciprocating sliding body 7. The material supply wiper 8 has a length that is at least longer than the inner width of the cylinder of the storage unit 1 or the modeling unit 2, and a lower end portion of the material supply wiper 8 is formed in a planar shape facing the upper surface of the modeling table 5 in parallel. And formed of a material having a hardness higher than that of the powder material A or a sintered material of the powder material A. For example, if the powder material A or the sintered material of the powder material A has a hardness of 100 to 400 Hv (Vickers hardness), the material of the material supply wiper 8 is made of tool steel having a hardness of 600 Hv or more (Vickers hardness). It is better to use a hardened material. The material supply wiper 8 is set so as to slide parallel to the upper surface of the modeling table 5 along the cylinder upper surfaces of the storage unit 1 and the modeling unit 2. Further, the material supply wiper 8 is provided with a vibration mechanism 9 that slightly vibrates the material supply wiper 8 up and down and left and right. In the vibration mechanism 9 of this example, an ultrasonic vibrator 9a that is composed of a piezoelectric element and oscillates at a frequency of about 20 to 40 kHz is used.
[0026]
In order to manufacture a three-dimensional shaped article using the above-described three-dimensional shaped article manufacturing apparatus, first, as shown in FIG. 2A, first, a material supply wiper 8 (initial position) on the storage unit 1 is provided. Is slid toward the modeling part 2. At this time, the material supply wiper 8 collects the powder material A stored in the storage unit 1, moves the collected powder material A to the modeling unit 2, and places the powder material A on the modeling table 5 of the modeling unit 2. Then, the powder layer B having a predetermined thickness is formed by depositing in layers. For example, when spherical iron powder having an average particle diameter of about 20 μm is used for the powder material A, the thickness of the powder layer B is about 50 μm. In addition, before the material supply wiper 8 slides on the storage unit 1, the material table 4 of the storage unit 1 is appropriately raised, and the amount of the powder material A that can form the powder layer B having a predetermined thickness is stored in the storage unit. The material is wiped from 1 by a material supply wiper 8. In order to form the powder layer B having a predetermined thickness on the modeling table 5, the distance between the lower surface of the material supply wiper 8 passing over the modeling table 5 and the upper surface of the modeling table 5 is the height dimension of the predetermined thickness. It is performed by lowering the modeling table 5 so as to become.
[0027]
Next, as shown in FIG. 2B, a predetermined position of the powder layer B is irradiated with a light beam L from a light beam irradiation unit, and the powder layer B is sintered to form a sintered layer C. The light beam L irradiated from the light beam irradiation unit can be irradiated to an arbitrary position in the XY direction (that is, the plane direction) on the upper surface of the powder layer B. The irradiation of the light beam L is controlled. Controlled by a unit (not shown). Here, in the control unit, each contour shape of the plane cross section obtained by slicing the three-dimensional CAD model of the three-dimensional shaped object to be manufactured at a predetermined pitch (0.05 mm in this example) in the vertical direction. Data is input, and the irradiation position of the light beam L is controlled based on each contour shape data. In addition, after forming the sintered layer C, the material supply wiper 8 is returned to the initial position.
[0028]
A plurality of layers of sintered layers C are generated by repeatedly performing the above-described steps [FIG. 2A, FIG. 2B]. When each sintered layer C is generated, the lower layer of sintered layers C is formed. Since each of the sintered layers C is laminated and integrated, a three-dimensional shaped object D is formed [FIG. 2 (c)].
[0029]
Here, in the prior art, the sparks are scattered when the powder layer B is irradiated with the light beam L, the irradiation conditions of the light beam L, the adhesion of the powder material A to the material supply wiper 8, and the like. When the protrusion T is generated on the upper surface of the layer C, there is a problem that the normal sliding of the material supply wiper 8 is hindered by the protrusion T, and a good three-dimensional shaped object cannot be obtained. In this example, the above problem is solved by providing the material supply wiper 8 with the vibration mechanism 9 as described above.
[0030]
That is, according to the vibration mechanism 9, since the material supply wiper 8 slightly vibrates vertically and horizontally, first, the powder material A can be hardly adhered to the material supply wiper 8. Therefore, generation | occurrence | production of the protrusion T can be suppressed. Further, when the material supply wiper 8 forms the powder layer B on the modeling table 5, the lower surface of the material supply wiper 8 can intermittently apply a pressing load to the powder layer B from above. Even if the protrusion T is generated on the upper surface of the binding layer C, the powder layer B can be formed while the protrusion T is crushed. In addition, even when the protrusion T generated on the upper surface of the sintered layer C is larger than the thickness of the newly formed powder layer B, the vibrating material supply wiper 8 can directly and effectively scrape the protrusion T. Therefore, also in this case, the powder layer B can be formed while the protrusion T is crushed. Thus, by providing the vibration mechanism 9 in the material supply wiper 8, even if the protrusion T is generated on the upper surface of the sintered layer C, a new powder layer B is formed while the protrusion T is crushed. Therefore, the normal operation of the apparatus is ensured, and a good three-dimensional shaped article can be manufactured. Moreover, since the adhesion of the powder material A to the material supply wiper 8 is also suppressed and the occurrence of the protrusion T is reduced, this can also contribute to ensuring the normal operation of the apparatus.
[0031]
As shown in FIG. 3, the thickness of the powder layer B formed on the modeling table 5 is determined in two directions, the forward path and the return path of the material supply wiper 8 that reciprocates on the modeling table 5. Also good. That is, in the outward path of the material supply wiper 8 from the storage unit 1 to the modeling table 5, the modeling table 5 is set so that the height dimension of the material supply wiper 8 to the modeling table 5 is increased as shown in FIG. Is set at a low position, a powder layer B slightly thicker than a predetermined thickness is formed on the modeling table 5, and the return path of the material supply wiper 8 returning from the modeling table 5 to the storage unit 1 is as shown in FIG. In order to reduce the height of the material supply wiper 8 to the modeling table 5, the modeling table 5 is set at a high position, and the excessively thick powder layer B is removed to form a powder layer B having a predetermined thickness. To make it happen. According to this, even if a relatively large protrusion T is formed on the sintered layer C, the protrusion T can be gradually scraped and crushed by the material supply wiper 8 in the forward path and the return path. The protrusion T can be reliably crushed without imposing an excessive burden on the wiper 8. For example, when the predetermined thickness dimension of the powder layer B is 50 μm, the height dimension of the material supply wiper 8 to the modeling table 5 in the forward path is preferably 100 to 150 μm. Therefore, it is possible to ensure the normal operation of the apparatus and further enable the production of a good three-dimensional shaped object.
[0032]
Hereinafter, other examples of the embodiment of the present invention will be listed. In these examples, the same parts as those in the three-dimensional shaped object manufacturing apparatus of the previous embodiment are denoted by the same reference numerals, description thereof will be omitted, and different parts will be described.
[0033]
Another example of the embodiment of the present invention shown in FIG. 4 is an example in which the configuration of the vibration mechanism 9 is changed. That is, the vibration mechanism 9 of this example is configured by the cam device 9b that vibrates the material supply wiper 8 up and down and left and right by intermittently hitting the reciprocating sliding body 7 and the material supply wiper 8. As shown in FIG. 4A, the cam device 9b has a rotating shaft 9b at a position eccentric from the center. 2 Disc-shaped cam 9b that rotates eccentrically 1 As shown in FIG. 4B, the rotating shaft 9b 2 The amount of eccentricity H when the center of rotation is rotated is used as the amount of vibration of the vibration mechanism 9. It goes without saying that even if the vibration mechanism 9 is constituted by the cam device 9b, the same operation and effect as in the example of the previous embodiment can be obtained.
[0034]
In another example of the embodiment of the present invention shown in FIG. 5, instead of providing the powder supply mechanism 3 with the vibration mechanism 9, the attachment angle of the material supply wiper 8 to the reciprocating sliding body 7 is set to the reciprocating direction of the reciprocating sliding body 7. This is an example in which a predetermined angle θ is set with respect to a direction a perpendicular to the direction a. In this example, as described above, since the material supply wiper 8 is attached to the reciprocating sliding body 7 at a predetermined angle θ with respect to the direction a perpendicular to the reciprocating direction of the reciprocating sliding body 7, the protrusion T is When the material supply wiper 8 passes over the formed sintered layer C, it is attached to the reciprocating sliding body 7 with a predetermined angle θ with respect to a direction a perpendicular to the reciprocating direction of the reciprocating sliding body 7. The driving force of the reciprocating sliding body 7 can be intensively pressed against the one protrusion T by the material supply wiper 8. More specifically, the protrusions T are relatively close to each other even if there are a plurality of protrusions T because they are caused by the powder molten lump contained in the spark when the powder material A is irradiated with the light beam L or the irradiation conditions of the light beam L. It can be in position. Therefore, the material supply wiper 8 attached to the reciprocating sliding body 7 with a predetermined angle θ with respect to the direction a orthogonal to the reciprocating direction of the reciprocating sliding body 7 is a direction a orthogonal to the reciprocating direction of the reciprocating sliding body 7. It is possible to pass the projections T on the projections T that are shifted to each other at different timings, so that the driving force of the reciprocating sliding body 7 can be loaded on the individual projections T in a concentrated manner. Thus, even in the powder supply mechanism 3 of the present example, the powder layer B can be formed while the protrusion T is crushed, ensuring the normal operation of the apparatus, and good three-dimensional shape modeling The production of things can be made possible. In this example, the impact applied to the material supply wiper 8 when the material supply wiper 8 collides with the projecting portion T is in the longitudinal direction of the material supply wiper 8 which is deviated from the sliding direction of the reciprocating sliding body 7. It is possible to escape, that is, the impact resistance applied to the material supply wiper 8 can be weakened, and the life of the apparatus can be extended.
[0035]
Although not shown, the powder supply mechanism 3 of the example of the previous embodiment provided with the vibration mechanism 9 is tilted at a predetermined angle θ with respect to a direction a perpendicular to the reciprocating direction of the reciprocating sliding body 7. A configuration in which the supply wiper 8 is attached to the reciprocating sliding body 7 may be added. According to this, the vibration of the powder supply mechanism 3 by the vibration mechanism 9 intermittently applies a pressing load to the protrusion T, or has a predetermined angle θ with respect to the direction a perpendicular to the reciprocating direction of the reciprocating sliding body 7. The material supply wiper 8 attached to the reciprocating sliding body 7 can simultaneously press the driving force of the reciprocating sliding body 7 against one protrusion T, that is, the powder supply mechanism 3 is more effective. The powder layer B can be formed while crushing the protrusion T. Further, the powder supply mechanism 3 that vibrates hardly adheres to the powder material, and the advantage that the generation of the protrusion T can be reduced, and the impact resistance applied to the material supply wiper 8 that collides with the protrusion T is weakened, thereby extending the life of the apparatus. The advantages of the above can be achieved at the same time, ensuring the normal operation of the apparatus, and further enabling the production of a good three-dimensional shaped object.
[0036]
Another example of the embodiment of the present invention shown in FIG. 6 to FIG. 9 is after the outward path that has passed over the modeling table 5 from the storage unit 1 to the three-dimensional shaped object manufacturing apparatus of each example of the previous embodiment. This is an example in which a removal mechanism 10 for directly removing the powder material A adhering to the material supply wiper 8 is added.
[0037]
The example of FIG. 6 is an example in which a removal mechanism 10 including a brush 12 is provided at an end portion of the modeling portion 2 opposite to the storage portion 1 with a groove 11 interposed therebetween. More specifically, the brush 12 has a length that is at least longer than the length of the material supply wiper 8, so that the material supply wiper 8 that has passed from the storage unit 1 on the modeling table 5 passes the brush 12 as it is. Thus, [FIG. 6 (a) → FIG. 6 (b)], the brush material was brought into contact with the powder material A adhering to the material supply wiper 8 after the forward path, and the powder material A was swept into the groove 11. Is. The example of FIG. 7 is an example in which the brush 12 of FIG. 6 is changed to a thin metal plate 13 that can be elastically deformed. According to this example, the durability of the removal mechanism 10 can be improved.
[0038]
Further, the example of FIG. 8 is an example in which a removal mechanism 10 including a brush 14 is provided at an end portion of the modeling portion 2 opposite to the storage portion 1 with a groove 11 interposed therebetween. More specifically, since the brush 14 that can run freely can be reliably pressed against the plate surface of the material supply wiper 8 from the front, it can be more reliably removed from the material supply wiper 8 as compared with the example of FIGS. The powder material A can be swept off.
[0039]
The example of FIG. 9 is an example in which the removal mechanism 10 is configured by mounting the brush 15 that slides in the length direction of the material supply wiper 8 on the reciprocating sliding body 7. More specifically, the brush 15 is slidable along a rail (not shown) provided in the length direction of the reciprocating sliding body 7, and after the material supply wiper 8 passes over the modeling table 5. At the timing, the brush 15 is scanned over the length direction of the material supply wiper 8 to sweep the powder material A from the material supply wiper 8. In this example, the powder material A can be surely swept off from the material supply wiper 8 as in the previous example of FIG. 8, and the apparatus can be downsized.
[0040]
As shown in the examples of FIGS. 6 to 9, to the three-dimensional shaped article manufacturing apparatus of the example of the previous embodiment, to the material supply wiper 8 after the outbound path from the storage unit 1 over the modeling table 5. In the case where the removal mechanism 10 for directly removing the adhered powder material A is added, the removal material 10 can sweep off the powder material A adhered to the material supply wiper 8 after the forward path, so that the material during the return path can be removed. It is possible to make the powder material A not attached to the supply wiper 8, that is, the adhesion of the powder material A to the material supply wiper 8, which is one of the causes of the protrusion T being generated on the sintered layer C. Therefore, the occurrence of the protrusions T can be reduced, the normal operation of the apparatus can be secured, and the production of a good three-dimensional shaped object can be further made possible.
[0041]
The examples of the embodiment of the present invention shown in FIG. 10 to FIG. 14 are the same as the three-dimensional shaped object manufacturing apparatus of each example of the previous embodiment, and ensure a normal operation of the apparatus and a good tertiary. Although it aims at enabling manufacture of the original shape molded article D, the material supply wiper 8 in which the protrusion T is formed on the modeling table 5 through which the material supply wiper 8 passes and the protrusion T slides. In the case of collision, the impact load on the material supply wiper 8 of the projection T is suppressed or absorbed to ensure stable operation of the material supply wiper 8, and the material supply wiper 8 and thus the By not vibrating the entire apparatus, it is possible to manufacture the three-dimensional shaped object D with high accuracy by avoiding the occurrence of the placement error of the three-dimensional shaped object D due to the influence of the vibration.
[0042]
In the three-dimensional shaped article manufacturing apparatus in another example of the embodiment of the present invention shown in FIG. 10, the material supply wiper 8 is configured by superimposing the front wiper 8a and the rear wiper 8b. Specifically, the front wiper 8a is disposed in front of the rear wiper 8b in the direction of moving from the storage unit 1 to the modeling table 5, and the lower end height thereof is higher than the lower end height of the rear wiper 8b. (Step b). Thus, in this three-dimensional shaped article manufacturing apparatus, when the material supply wiper 8 of the powder supply mechanism 3 is leveled on the modeling table 5 to form the powder layer B having a predetermined thickness, the front wiper 8a is first set to the predetermined thickness. The above powder material A is laid on the modeling table 5, and then the powder material A laid on the modeling table 5 by the rear wiper 8b is made to have a predetermined thickness to finish the powder layer B. That is, the front wiper 8a constitutes a roughening wiper that lays the powder material A having a predetermined thickness or more of the powder layer B as defined in claim 7 on the modeling table 5, and the rear wiper 8b is defined as roughening in claim 7. The finish leveling wiper is configured to finish the powder layer B by grinding the powder material A spread by the leveling wiper to a predetermined thickness. In this three-dimensional shaped article manufacturing apparatus, even if the protrusion T is formed on the modeling table 5 through which the material supply wiper 8 passes, the protrusion T is first roughly cut by the front wiper 8a, and then the rear wiper. The protrusion T remaining at 8b can be cut, that is, the protrusion T can be gradually cut. As a result, the magnitude of the load applied to the material supply wiper 8 by the protrusion T can be kept small. In addition to ensuring the normal operation of the apparatus, it is possible to reduce the occurrence of an arrangement error of the three-dimensional shaped object D by suppressing the vibration to the apparatus due to an impact, and the three-dimensional shaped object D can be manufactured with high accuracy. It is.
[0043]
The three-dimensional shaped article manufacturing apparatus of another example of the embodiment of the present invention shown in FIG. 11 has a lower end at the lower end of the rear wiper 8b in the three-dimensional shaped article manufacturing apparatus of FIG. The brush body 16 is configured. Thus, in this three-dimensional shaped article manufacturing apparatus, when the powder layer B is finished with the rear wiper 8b, the impact of the protrusion T that collides with the rear wiper 8b with the brush body 16 at the lower end of the rear wiper 8b. That is, the rear wiper 8b is not subjected to the impact load of the projection T, and the normal operation of the apparatus can be ensured more reliably, and the three-dimensional shaped article D can be manufactured with high accuracy. It is being done.
[0044]
The manufacturing apparatus for a three-dimensional shaped object according to another example of the embodiment of the present invention shown in FIG. 12 includes suspensions 17 at both ends in the width direction of the horizontally long vertical plate-shaped material supply wiper 8, and the suspension uses the material. The supply wiper 8 is held by a driving part such as a reciprocating sliding body 7 (not shown) of the powder supply mechanism 3. That is, the material supply wiper 8 is movable up and down by the suspensions 17 at both ends so that both end portions in the width direction are independent and elastically biased downward. Thus, in this three-dimensional shaped article manufacturing apparatus, the protrusion T is formed on the modeling table 5 through which the material supply wiper 8 passes, and the protrusion T collides with the sliding material supply wiper 8. However, as shown in FIG. 12B, the suspension 17 contracts so as to release this impact, and the material supply wiper 8 is positioned above the protrusion T so as to escape. The material supply wiper 8 that has passed over the protrusion T is immediately returned to a fixed position by the elastic return of the suspension 17. Thus, the impact of the protrusion T on the material supply wiper 8 is absorbed by the contraction of the suspension 17, and the material supply wiper 8 can smoothly move over the protrusion T and slide. The collision load on the material supply wiper 8 of the part T can be reduced, and the normal operation of the apparatus can be ensured, and the vibration to the apparatus due to the impact on the material supply wiper 8 of the projection T can be effectively suppressed, and the three-dimensional shaped object The occurrence of an arrangement error of D can be reduced, and the three-dimensional shaped object D can be manufactured with high accuracy.
[0045]
In the apparatus for manufacturing a three-dimensional shaped object according to another example of the embodiment of the present invention shown in FIG. 13, incisions 18 cut upward from the lower end of the material supply wiper 8 are arranged in parallel in the width direction of the material supply wiper 8. Then, the bent portions 19 are formed in the respective portions between the cuts 18, and the bent portions 19 are freely bent in the moving direction of the material supply wiper 8 with the lower portion as a free end. Here, the material supply wiper 8 is made of an elastic spring material or the like, so that the bending deformation of the bending portion 19 is ensured. Therefore, in this three-dimensional shaped article manufacturing apparatus, when the projection T is formed on the modeling table 5 through which the material supply wiper 8 passes, and the projection T collides with the sliding material supply wiper 8. As shown in FIG. 14, only the bending portion 19 in the portion of the material supply wiper 8 where the projection T collides is bent by receiving the impact, and this impact is absorbed by the bending portion 19 and the material. The supply wiper 8 is not properly loaded. In addition, after passing the protrusion T, the bending part 19 returns to a fixed position by elastic return. In this way, the collision load of the projection T on the material supply wiper 8 can be reduced, and the normal operation of the apparatus can be secured, and vibrations to the apparatus due to the impact of the projection T on the material supply wiper 8 can be effectively suppressed. Generation | occurrence | production of the arrangement | positioning error of the three-dimensional shape molded article D can be reduced, and manufacture with the sufficient precision of the three-dimensional shape molded article D is enabled.
[0046]
【The invention's effect】
As described above, in the invention described in claim 1 of the present invention, since the powder supply mechanism includes the vibration mechanism that operates when the powder is laid on the modeling table, the protrusion is formed. When the powder supply mechanism passes over the sintered layer, the powder supply mechanism that is vibrated by the vibration mechanism can intermittently apply a pressing load to the protrusion, that is, the powder supply mechanism is crushing the protrusion. A powder layer can be formed, and the powder supply mechanism that vibrates suppresses the adhesion of powder material, so that the occurrence of protrusions can be reduced, so that the normal operation of the apparatus can be secured. In addition, it is possible to ensure the manufacture of a good three-dimensional shaped object.
[0047]
Further, in the invention of claim 2, the powder supply mechanism includes a reciprocating sliding body that reciprocates so as to pass over the storage section and the modeling table, and a predetermined powder material of the storage section attached to the reciprocating sliding body. In a direction perpendicular to the reciprocating direction of the reciprocating sliding body, the mounting angle of the material supplying wiper to the reciprocating sliding body On the other hand, when the material supply wiper passes over the sintered layer on which the protrusions are formed, the predetermined angle with respect to the direction perpendicular to the reciprocating direction of the reciprocating sliding body is set. With the material supply wiper attached to the reciprocating sliding body with an angle of, the driving force of the reciprocating sliding body can be intensively pressed against the individual protrusions, that is, the powder supply mechanism crushes the protrusions while the powder layer is crushed. Can be formed Therefore, the normal operation of the apparatus can be ensured and a good three-dimensional shaped object can be manufactured, and the impact on the material supply wiper when the material supply wiper collides with the protrusion is The material supply wiper can escape in the longitudinal direction, which is displaced from the sliding direction of the reciprocating sliding body. In other words, the impact resistance applied to the material supply wiper can be weakened, and the durability of the device is improved and the life of the device is extended. Can also be achieved.
[0048]
In the invention according to claim 3, the powder supply mechanism includes a vibration mechanism that operates when the powder is laid on the modeling table, and reciprocatingly slides to reciprocate so as to pass on the storage unit and the modeling table. And a material supply wiper that is attached to the reciprocating sliding body and moves a predetermined powder material in the storage unit to form a powder layer of a predetermined thickness on the modeling table, and the reciprocating sliding body of the material supply wiper Since the mounting angle is set at a predetermined angle with respect to the direction perpendicular to the reciprocating direction of the reciprocating sliding body, the vibration of the powder supply mechanism by the vibration mechanism intermittently applies a pressing load to the protrusion. The driving force of the reciprocating sliding body is intensively pressed against each protrusion by a material supply wiper attached to the reciprocating sliding body at a predetermined angle with respect to the direction orthogonal to the reciprocating direction of the reciprocating sliding body. In other words, the powder supply mechanism can form a powder layer while crushing the protrusion more effectively. In addition, the powder supply mechanism that vibrates hardly adheres to the powder material. The advantages of reducing the occurrence and the advantage that the impact resistance applied to the material supply wiper that collided with the protrusion is weakened and the life of the device can be extended can be achieved at the same time, ensuring the normal operation of the device. It is possible to effectively produce a good three-dimensional shaped object and to prolong the life of the apparatus.
[0049]
In addition, in the invention according to claim 4, in addition to the effect of claim 2 or 3, the height setting of the material supply wiper to the modeling table when reciprocating on the modeling table is set to the forward path of the material supply wiper. Since the material supply wiper goes from the storage unit to the modeling table, the height of the material supply wiper from the storage unit to the modeling table is increased, and the material supply wiper returns from the modeling table to the storage unit. Then, the height setting of the material supply wiper to the modeling table can be made small, and the thickness of the powder layer formed on the modeling table can be determined twice, even if the sintered layer Even if there is a relatively large protrusion on the top, this protrusion can be gradually crushed by the material supply wiper in the forward path and the return path, that is, an excessive burden is placed on the material supply wiper. Since it is possible to crush protrusion to reliably, it can be further possible to produce normal operating it can be ensured good three-dimensionally shaped object of the device.
[0050]
In addition, in the invention according to claim 5, in addition to the effect of claim 2 or 3, since the material supply wiper is formed of a material having a hardness higher than that of the powder material, it is compared even on the sintered layer. Even if the material supply wiper collides with the protrusion, the protrusion can be cut directly with the material supply wiper to ensure the normal operation of the device, and the material supply wiper Damage to the device can be prevented and the life of the device can be extended.
[0051]
In addition, in the invention of claim 6, in addition to the effect of claim 2 or 3, there is provided a removal mechanism for removing the powder material adhering to the material supply wiper after the outward path that has passed over the modeling table from the storage unit. As a result, the powder material adhering to the material supply wiper after the forward path can be swept away, and the powder material does not adhere to the material supply wiper during the return path. It is possible to prevent the powder material from adhering to the material supply wiper, which is considered to be one of the causes of the generation of the parts, and therefore, the occurrence of protrusions can be reduced, and the normal operation of the apparatus can be ensured. This makes it possible to further manufacture a three-dimensional shaped object.
[0052]
In the invention according to claim 7, the powder supply mechanism moves a predetermined powder material in the storage unit through the storage unit and the modeling table, and smoothes the powder layer on the modeling table. The material supply wiper includes a roughening wiper on which a powder material having a predetermined thickness or more of a powder layer is laid on a modeling table, and a powder material on which the roughening wiper is spread to a predetermined thickness. Since it is composed of a finishing wiper that cuts and finishes the powder layer, when the powder supply mechanism forms a powder layer with a predetermined thickness on the modeling table, the roughening wiper first has a powder material with a predetermined thickness or more. A is placed on the modeling table, and the finishing wiper finishes the powder layer with the predetermined thickness of the powder material laid on the modeling table. If a protrusion is formed on the bull, you can first sharpen the protrusion with a roughening wiper, then scrape the remaining protrusion with a finishing wiper, that is, gradually reduce the protrusion As a result, the size of the impact load that the protrusions apply to the material supply wiper can be kept small, so that the normal operation of the device can be ensured and the vibration to the device due to the impact can be suppressed to create a three-dimensional shape. It is possible to reduce the occurrence of an object placement error and to ensure accurate production of a three-dimensional shaped object.
[0053]
In addition, in the invention of claim 8, in addition to the effect of claim 7, since the lower end portion of the finish smoothing wiper is constituted by a brush body whose lower end is a free end, the powder layer is formed with the finish smoothing wiper. When finishing, the brush body at the bottom of the finish level wiper can effectively absorb the impact of the projection that collides with the finish level wiper, that is, the finish level wiper is not subject to the impact load of the projection. Furthermore, the normal operation of the apparatus can be ensured more reliably, and the manufacture of a three-dimensional shaped object with good accuracy can be ensured.
[0054]
In the invention according to claim 9, the powder supply mechanism moves a predetermined powder material in the storage unit through the storage unit and the modeling table, and smoothes the powder layer on the modeling table. Since the material supply wiper is movable up and down and elastically biased downward, a protrusion is formed on the modeling table through which the material supply wiper passes. Even if the protrusion collides with the sliding material supply wiper, the material supply wiper is movable up and down and elastically biased downward. The impact is absorbed by elasticity, and the material supply wiper that receives the impact of the protrusion moves upward, so that the material supply wiper gets over the protrusion smoothly, and the protrusion collides with the material supply wiper. The load can be reduced to ensure the normal operation of the device, and the vibration to the device due to the impact of the material supply wiper of the projection can be effectively suppressed to reduce the occurrence of the placement error of the three-dimensional shaped object and the three-dimensional shape Thus, it is possible to ensure accurate production of the shaped object.
[0055]
In the invention of claim 10, the powder supply mechanism moves a predetermined powder material in the storage unit through the storage unit and the modeling table, smooths the powder layer on the modeling table, and has a predetermined thickness. The material supply wiper has a plurality of cuts cut upward from the lower end of the material supply wiper, and the bent portion, which is the part of the material supply wiper between the cuts, has a free end at the bottom. Since the material supply wiper can be freely bent in the moving direction, a protrusion is formed on the modeling table through which the material supply wiper passes, and even if this protrusion collides with the material supply wiper, the material supply that the protrusion collides with. Since only the flexure at the wiper site is bent by the impact, the impact can be absorbed by the flexure so that the material supply wiper is not properly loaded. The impact load on the material supply wiper can be reduced to ensure the normal operation of the device, and the vibration to the device due to the impact of the protrusion on the material supply wiper can be effectively suppressed to generate the placement error of the 3D shaped object. It is possible to reduce, and it is possible to secure a highly accurate production of a three-dimensional shaped object.
[Brief description of the drawings]
FIG. 1 is a perspective view of an apparatus for producing a three-dimensional shaped object showing an example of an embodiment of the present invention.
FIGS. 2A and 2B are explanatory diagrams for explaining a manufacturing method for manufacturing a three-dimensional shaped object using the same manufacturing apparatus, wherein FIG. 2A shows a state in which a powder layer is formed, and FIG. The state which forms a bonded layer is shown, (c) has shown the state which the three-dimensional shape molded article was completed.
FIGS. 3A and 3B are explanatory views for explaining another manufacturing method, wherein FIG. 3A shows a state where the material supply wiper is in the forward path, and FIG. 3B shows a state where the material supply wiper is in the return path.
4A and 4B show another example of the embodiment of the present invention, in which FIG. 4A is a plan view of a cam device that constitutes a vibration mechanism, and FIG. 4B is an operation explanatory view of the cam device of FIG. is there.
FIG. 5 is a plan view of a three-dimensional shaped object manufacturing apparatus showing still another example of the embodiment of the present invention.
FIGS. 6A and 6B are operation explanatory views for explaining the operation by showing a main part of a manufacturing apparatus for a three-dimensional shaped object according to still another example of the embodiment of the present invention.
7 (a) and 7 (b) are operation explanatory views illustrating the operation by showing the main part of a manufacturing apparatus for a three-dimensional shaped object according to still another example of the embodiment of the present invention.
FIG. 8 is a side cross-sectional view of a main part of a manufacturing apparatus for a three-dimensional shaped object according to still another example of the embodiment of the present invention.
FIG. 9 is a perspective view of a main part of a three-dimensionally shaped object manufacturing apparatus according to still another example of the embodiment of the present invention.
FIG. 10 is a side view of a main part of a three-dimensionally shaped object manufacturing apparatus according to still another example of the embodiment of the present invention.
FIG. 11 is a side view of a main part of a three-dimensionally shaped object manufacturing apparatus according to still another example of the embodiment of the present invention.
FIG. 12A is a front view of a main part of a manufacturing apparatus for a three-dimensional shaped object according to still another example of the embodiment of the present invention, and FIG. 12B is an explanatory view for explaining the operation of the manufacturing apparatus. It is.
FIG. 13 is a front cross-sectional view of a main part of a three-dimensional shaped object manufacturing apparatus according to still another example of the embodiment of the present invention.
FIGS. 14A and 14B are explanatory diagrams for explaining the operation of the manufacturing apparatus for a three-dimensional shaped article, wherein FIG. 14A is a front view, and FIG. 14B is a side view of FIG.
FIG. 15 is an explanatory diagram for explaining a mechanism of occurrence of protrusions in the prior art.
FIG. 16 is an explanatory view for explaining another mechanism of occurrence of a protrusion in the prior art.
FIG. 17 is an explanatory diagram illustrating still another mechanism for occurrence of a protrusion in the prior art.
[Explanation of symbols]
1 storage
2 Modeling Department
3 Powder supply mechanism
4 Material table
5 Modeling table
6 rails
7 Reciprocating sliding body
8 Material supply wiper
8a Front wiper
8b Rear wiper
9 Vibration mechanism
10 Removal mechanism
16 Brush body
17 Suspension
18 notches
19 Deflection part
A Powder material
B Powder layer
C Sintered layer
D Three-dimensional shaped object
L Light beam
T protrusion

Claims (10)

無機質あるいは有機質の粉末材料を貯蔵する貯蔵部を有し、三次元形状造形物を造形させる造形テーブル上に貯蔵部の粉末材料を供給すると共にならして所定厚の粉末層を形成させる粉末供給機構を有し、この粉末層の任意部位に光ビームを照射して焼結層を形成させる光ビーム照射部を有し、この粉末供給機構による粉末層の形成と光ビーム照射部による焼結層の形成を繰り返して複数層の焼結層を積層一体化して三次元形状造形物を形成させるような三次元形状造形物の製造装置において、上記粉末供給機構は、造形テーブル上への粉末敷設時に作動する振動機構を備えたことを特徴とする三次元形状造形物の製造装置。A powder supply mechanism having a storage unit for storing an inorganic or organic powder material, and supplying a powder material of the storage unit on a modeling table for modeling a three-dimensional shaped object, thereby forming a powder layer of a predetermined thickness A light beam irradiating unit for irradiating a light beam to an arbitrary part of the powder layer to form a sintered layer, and forming a powder layer by the powder supply mechanism and forming a sintered layer by the light beam irradiating unit. In a three-dimensional shaped article manufacturing apparatus that repeats formation and stacks and integrates a plurality of sintered layers to form a three-dimensional shaped article, the powder supply mechanism operates when laying the powder on the modeling table. An apparatus for producing a three-dimensionally shaped object characterized by comprising a vibration mechanism that performs the following. 無機質あるいは有機質の粉末材料を貯蔵する貯蔵部を有し、三次元形状造形物を造形させる造形テーブル上に貯蔵部の粉末材料を供給すると共にならして所定厚の粉末層を形成させる粉末供給機構を有し、この粉末層の任意部位に光ビームを照射して焼結層を形成させる光ビーム照射部を有し、この粉末供給機構による粉末層の形成と光ビーム照射部による焼結層の形成を繰り返して複数層の焼結層を積層一体化して三次元形状造形物を形成させるような三次元形状造形物の製造装置において、上記粉末供給機構は、貯蔵部及び造形テーブル上を通るように往復駆動する往復摺動体と、この往復摺動体に取付けて貯蔵部の所定の粉末材料を移動させて造形テーブル上にならして所定厚の粉末層を形成させる材料供給ワイパーとで構成し、材料供給ワイパーの往復摺動体への取付け角度を、往復摺動体の往復方向と直交する方向に対して、所定の角度をもたせて設定したことを特徴とする三次元形状造形物の製造装置。A powder supply mechanism having a storage unit for storing an inorganic or organic powder material, and supplying a powder material of the storage unit on a modeling table for modeling a three-dimensional shaped object, thereby forming a powder layer of a predetermined thickness A light beam irradiating unit for irradiating a light beam to an arbitrary part of the powder layer to form a sintered layer, and forming a powder layer by the powder supply mechanism and forming a sintered layer by the light beam irradiating unit. In a three-dimensional shaped article manufacturing apparatus that repeats formation and stacks and integrates a plurality of sintered layers to form a three-dimensional shaped article, the powder supply mechanism passes over the storage unit and the modeling table. A reciprocating sliding body that is reciprocally driven, and a material supply wiper that is attached to the reciprocating sliding body and moves a predetermined powder material in the storage unit to form a powder layer of a predetermined thickness on a modeling table, material The mounting angle of the reciprocating slide feed wiper, reciprocally with respect to the direction orthogonal to the reciprocating direction of the slider, apparatus for producing three-dimensionally shaped object, characterized in that the set imparted a predetermined angle. 無機質あるいは有機質の粉末材料を貯蔵する貯蔵部を有し、三次元形状造形物を造形させる造形テーブル上に貯蔵部の粉末材料を供給すると共にならして所定厚の粉末層を形成させる粉末供給機構を有し、この粉末層の任意部位に光ビームを照射して焼結層を形成させる光ビーム照射部を有し、この粉末供給機構による粉末層の形成と光ビーム照射部による焼結層の形成を繰り返して複数層の焼結層を積層一体化して三次元形状造形物を形成させるような三次元形状造形物の製造装置において、上記粉末供給機構は、造形テーブル上への粉末敷設時に作動する振動機構を備えると共に、貯蔵部及び造形テーブル上を通るように往復駆動する往復摺動体と、この往復摺動体に取付けて貯蔵部の所定の粉末材料を移動させて造形テーブル上にならして所定厚の粉末層を形成させる材料供給ワイパーとで構成し、材料供給ワイパーの往復摺動体への取付け角度を、往復摺動体の往復方向と直交する方向に対して、所定の角度をもたせて設定したことを特徴とする三次元形状造形物の製造装置。A powder supply mechanism having a storage unit for storing an inorganic or organic powder material, and supplying a powder material of the storage unit on a modeling table for modeling a three-dimensional shaped object, thereby forming a powder layer of a predetermined thickness A light beam irradiating unit for irradiating a light beam to an arbitrary part of the powder layer to form a sintered layer, and forming a powder layer by the powder supply mechanism and forming a sintered layer by the light beam irradiating unit. In a three-dimensional shaped article manufacturing apparatus that repeats formation and stacks and integrates a plurality of sintered layers to form a three-dimensional shaped article, the powder supply mechanism operates when laying the powder on the modeling table. A reciprocating sliding body that is reciprocatingly driven so as to pass over the storage unit and the modeling table, and a predetermined powder material in the storage unit is moved on the modeling table by being attached to the reciprocating sliding body. The material supply wiper forms a powder layer with a predetermined thickness, and the angle of attachment of the material supply wiper to the reciprocating sliding body is set at a predetermined angle with respect to the direction perpendicular to the reciprocating direction of the reciprocating sliding body. An apparatus for producing a three-dimensional shaped object characterized by being set. 造形テーブル上を往復する際の材料供給ワイパーの造形テーブルまでの高さ設定を、材料供給ワイパーの往路、復路で異なるように設定したことを特徴とする請求項2又は3記載の三次元形状造形物の製造装置。The three-dimensional shape modeling according to claim 2 or 3, wherein the height setting of the material supply wiper to the modeling table when reciprocating on the modeling table is set to be different between the forward path and the return path of the material supply wiper. Manufacturing equipment. 上記材料供給ワイパーを、粉末材料よりも高い硬度を有する材料で形成したことを特徴とする請求項2又は3記載の三次元形状造形物の製造装置。The apparatus for producing a three-dimensional shaped article according to claim 2 or 3, wherein the material supply wiper is formed of a material having a hardness higher than that of the powder material. 貯蔵部から造形テーブル上を通り過ぎた往路後の材料供給ワイパーに付着した粉末材料を除去する除去機構を備えたことを特徴とする請求項2又は3記載の三次元形状造形物の製造装置。The apparatus for producing a three-dimensional shaped object according to claim 2 or 3, further comprising a removal mechanism that removes the powder material adhering to the material supply wiper after the outward path from the storage part passing over the modeling table. 無機質あるいは有機質の粉末材料を貯蔵する貯蔵部を有し、三次元形状造形物を造形させる造形テーブル上に貯蔵部の粉末材料を供給すると共にならして所定厚の粉末層を形成させる粉末供給機構を有し、この粉末層の任意部位に光ビームを照射して焼結層を形成させる光ビーム照射部を有し、この粉末供給機構による粉末層の形成と光ビーム照射部による焼結層の形成を繰り返して複数層の焼結層を積層一体化して三次元形状造形物を形成させるような三次元形状造形物の製造装置において、上記粉末供給機構は、貯蔵部及び造形テーブル上を通って貯蔵部の所定の粉末材料を移動させて造形テーブル上にならして所定厚の粉末層を形成させる材料供給ワイパーを有し、この材料供給ワイパーは、粉末層の所定厚以上の粉末材料を造形テーブル上に敷く荒ならしワイパーと、荒ならしワイパーが敷いた粉末材料を所定厚に削って粉末層を仕上げる仕上ならしワイパーとで構成されたことを特徴とする三次元形状造形物の製造装置。A powder supply mechanism having a storage unit for storing an inorganic or organic powder material, and supplying a powder material of the storage unit on a modeling table for modeling a three-dimensional shaped object, thereby forming a powder layer of a predetermined thickness A light beam irradiating unit for irradiating a light beam to an arbitrary part of the powder layer to form a sintered layer, and forming a powder layer by the powder supply mechanism and forming a sintered layer by the light beam irradiating unit. In the manufacturing apparatus of a three-dimensional shaped object that forms a three-dimensional shaped object by repeating the formation and stacking and integrating a plurality of sintered layers, the powder supply mechanism passes over the storage unit and the shaping table. It has a material supply wiper that moves a predetermined powder material in the storage unit to form a powder layer of a predetermined thickness on the modeling table, and this material supply wiper forms a powder material of a predetermined thickness or more of the powder layer The A three-dimensional shaped product, which is composed of a roughening wiper laid on the surface and a finishing wiper that finishes the powder layer by grinding the powder material spread by the roughening wiper to a predetermined thickness. apparatus. 仕上ならしワイパーの下端部分を下端が自由端となるブラシ体で構成したことを特徴とする請求項7記載の三次元形状造形物の製造装置。8. The apparatus for producing a three-dimensional shaped article according to claim 7, wherein a lower end portion of the finish leveling wiper is configured by a brush body having a lower end as a free end. 無機質あるいは有機質の粉末材料を貯蔵する貯蔵部を有し、三次元形状造形物を造形させる造形テーブル上に貯蔵部の粉末材料を供給すると共にならして所定厚の粉末層を形成させる粉末供給機構を有し、この粉末層の任意部位に光ビームを照射して焼結層を形成させる光ビーム照射部を有し、この粉末供給機構による粉末層の形成と光ビーム照射部による焼結層の形成を繰り返して複数層の焼結層を積層一体化して三次元形状造形物を形成させるような三次元形状造形物の製造装置において、上記粉末供給機構は、貯蔵部及び造形テーブル上を通って貯蔵部の所定の粉末材料を移動させて造形テーブル上にならして所定厚の粉末層を形成させる材料供給ワイパーを有し、この材料供給ワイパーは上下移動可能にされると共に下方への弾性付勢が施されたことを特徴とする三次元形状造形物の製造装置。A powder supply mechanism having a storage unit for storing an inorganic or organic powder material, and supplying a powder material of the storage unit on a modeling table for modeling a three-dimensional shaped object, thereby forming a powder layer of a predetermined thickness A light beam irradiating unit for irradiating a light beam to an arbitrary part of the powder layer to form a sintered layer, and forming a powder layer by the powder supply mechanism and forming a sintered layer by the light beam irradiating unit. In the manufacturing apparatus of a three-dimensional shaped object that forms a three-dimensional shaped object by repeating the formation and stacking and integrating a plurality of sintered layers, the powder supply mechanism passes over the storage unit and the shaping table. It has a material supply wiper that moves a predetermined powder material in the storage unit to form a powder layer of a predetermined thickness on the modeling table, and this material supply wiper can be moved up and down and has downward elasticity. Apparatus for producing a three-dimensionally shaped object, characterized in that is applied. 無機質あるいは有機質の粉末材料を貯蔵する貯蔵部を有し、三次元形状造形物を造形させる造形テーブル上に貯蔵部の粉末材料を供給すると共にならして所定厚の粉末層を形成させる粉末供給機構を有し、この粉末層の任意部位に光ビームを照射して焼結層を形成させる光ビーム照射部を有し、この粉末供給機構による粉末層の形成と光ビーム照射部による焼結層の形成を繰り返して複数層の焼結層を積層一体化して三次元形状造形物を形成させるような三次元形状造形物の製造装置において、上記粉末供給機構は、貯蔵部及び造形テーブル上を通って貯蔵部の所定の粉末材料を移動させて造形テーブル上にならして所定厚の粉末層を形成させる材料供給ワイパーを有し、この材料供給ワイパーにその下端から上方に向って切り込んだ複数の切込みを並設し、切込み間の材料供給ワイパーの部位である撓み部を下方が自由端として材料供給ワイパーの移動方向に撓み自在にしたことを特徴とする三次元形状造形物の製造装置。A powder supply mechanism having a storage unit for storing an inorganic or organic powder material, and supplying a powder material of the storage unit on a modeling table for modeling a three-dimensional shaped object, thereby forming a powder layer of a predetermined thickness A light beam irradiating unit for irradiating a light beam to an arbitrary part of the powder layer to form a sintered layer, and forming a powder layer by the powder supply mechanism and forming a sintered layer by the light beam irradiating unit. In the manufacturing apparatus of a three-dimensional shaped object that forms a three-dimensional shaped object by repeating the formation and stacking and integrating a plurality of sintered layers, the powder supply mechanism passes over the storage unit and the shaping table. A material supply wiper that moves a predetermined powder material in the storage unit to form a powder layer of a predetermined thickness on the modeling table, and has a plurality of cut into the material supply wiper from its lower end upward Juxtaposed the write apparatus for manufacturing a three-dimensionally shaped object that the deflection unit is a portion of the material supply wiper between cuts is downward, characterized in that the freely flexing in the direction of movement of the material supply wiper as a free end.
JP2003048276A 2002-08-27 2003-02-25 Manufacturing equipment for 3D shaped objects Expired - Lifetime JP4273785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003048276A JP4273785B2 (en) 2002-08-27 2003-02-25 Manufacturing equipment for 3D shaped objects

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002246718 2002-08-27
JP2003048276A JP4273785B2 (en) 2002-08-27 2003-02-25 Manufacturing equipment for 3D shaped objects

Publications (2)

Publication Number Publication Date
JP2004143581A JP2004143581A (en) 2004-05-20
JP4273785B2 true JP4273785B2 (en) 2009-06-03

Family

ID=32472691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003048276A Expired - Lifetime JP4273785B2 (en) 2002-08-27 2003-02-25 Manufacturing equipment for 3D shaped objects

Country Status (1)

Country Link
JP (1) JP4273785B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104043830A (en) * 2014-06-30 2014-09-17 湖南华曙高科技有限责任公司 Additive manufacturing device composite powder compacting and spreading device and method
CN104451669A (en) * 2014-12-15 2015-03-25 华中科技大学 Follow-up falling-type powder laying device
CN105328188A (en) * 2015-11-30 2016-02-17 天津清研智束科技有限公司 Additive manufacturing device
CN105648436A (en) * 2016-01-21 2016-06-08 苏州大学 Laser-cladding forming process and laser-cladding forming device for curvature solid piece

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7871551B2 (en) * 2005-05-11 2011-01-18 Arcam Ab Systems, apparatus, and methods to feed and distribute powder used to produce three-dimensional objects
WO2007010598A1 (en) * 2005-07-19 2007-01-25 Homs Engineering Inc. Process for producing stent and powder sintering apparatus
JP4792905B2 (en) * 2005-10-07 2011-10-12 パナソニック株式会社 Manufacturing method of three-dimensional shaped object
JP4351218B2 (en) * 2006-02-20 2009-10-28 株式会社松浦機械製作所 Manufacturing equipment for 3D modeling products
JP5751118B2 (en) * 2011-09-29 2015-07-22 ブラザー工業株式会社 3D modeling equipment
JP6123538B2 (en) * 2013-07-18 2017-05-10 トヨタ自動車株式会社 Laminated modeling apparatus and manufacturing method of modeled object
JP6046027B2 (en) * 2013-12-09 2016-12-14 本田技研工業株式会社 3D modeling equipment
KR101795994B1 (en) 2014-06-20 2017-12-01 벨로3디, 인크. Apparatuses, systems and methods for three-dimensional printing
WO2016051801A1 (en) * 2014-10-01 2016-04-07 パナソニックIpマネジメント株式会社 Method for manufacturing three-dimensionally shaped molding
JP5841652B1 (en) * 2014-11-21 2016-01-13 株式会社ソディック Additive manufacturing equipment
TWI580556B (en) * 2015-06-11 2017-05-01 財團法人國家實驗研究院 3d printing powder paving device and method thereof
US10850444B2 (en) 2015-06-22 2020-12-01 Ricoh Company, Ltd. Method and apparatus for fabricating three-dimensional object
JP6543105B2 (en) * 2015-06-23 2019-07-10 株式会社アスペクト Powder material conveying member, powder bed fusion bonding apparatus and powder bed fusion bonding method
JP2017087469A (en) * 2015-11-04 2017-05-25 株式会社リコー Apparatus for three-dimensional fabrication
EP3370948A4 (en) 2015-11-06 2019-07-24 Velo3d Inc. Adept three-dimensional printing
US10071422B2 (en) 2015-12-10 2018-09-11 Velo3D, Inc. Skillful three-dimensional printing
US10252335B2 (en) 2016-02-18 2019-04-09 Vel03D, Inc. Accurate three-dimensional printing
US11691343B2 (en) 2016-06-29 2023-07-04 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
US10286452B2 (en) 2016-06-29 2019-05-14 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
DE102016218249A1 (en) * 2016-09-22 2018-03-22 Siemens Aktiengesellschaft A method of producing a workpiece by an additive manufacturing method and apparatus suitable for carrying out the method
WO2018128695A2 (en) 2016-11-07 2018-07-12 Velo3D, Inc. Gas flow in three-dimensional printing
CN106735200B (en) * 2016-11-30 2018-11-23 沈阳航空航天大学 A kind of laser gain material manufacture assisting ultrasonic vibration hammering device and application method
US20180186081A1 (en) 2017-01-05 2018-07-05 Velo3D, Inc. Optics in three-dimensional printing
CN106583725B (en) * 2017-01-26 2018-09-21 顺德职业技术学院 The vibration drum-type power spreading device of 3D printer
US10442003B2 (en) 2017-03-02 2019-10-15 Velo3D, Inc. Three-dimensional printing of three-dimensional objects
US20180281283A1 (en) 2017-03-28 2018-10-04 Velo3D, Inc. Material manipulation in three-dimensional printing
CN107626921A (en) * 2017-09-26 2018-01-26 芜湖天梦信息科技有限公司 Melt equipment in a kind of selective laser
CN107803502B (en) * 2017-12-08 2019-09-24 四川航天长征装备制造有限公司 Selective laser fusing forming vibration equipment power spreading device
US10272525B1 (en) 2017-12-27 2019-04-30 Velo3D, Inc. Three-dimensional printing systems and methods of their use
US10144176B1 (en) 2018-01-15 2018-12-04 Velo3D, Inc. Three-dimensional printing systems and methods of their use
JP7114444B2 (en) * 2018-11-22 2022-08-08 ローランドディー.ジー.株式会社 3D printer
JP7171466B2 (en) * 2019-02-18 2022-11-15 キヤノン株式会社 Manufacturing method, three-dimensional modeling apparatus
JP7192615B2 (en) * 2019-03-29 2022-12-20 株式会社Ihi POWDER SUPPLY DEVICE, THREE-DIMENSIONAL MODELING APPARATUS, AND METHOD FOR MODELING THREE-DIMENSIONAL PRODUCT
US11633912B2 (en) 2019-08-23 2023-04-25 Canon Kabushiki Kaisha Additive manufacturing apparatuses with movable roll supports and controller for cutting edge of sheet member
US11141912B2 (en) * 2019-10-10 2021-10-12 Lawrence Livermore National Laboratory, Llc Additive manufacturing powder spreading technology to mitigate surface defects
KR102614053B1 (en) * 2021-09-28 2023-12-15 주식회사 테라웍스 Apparatus for manufacturing products and method for manufacturing products using therewith

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3446733B2 (en) * 2000-10-05 2003-09-16 松下電工株式会社 Method and apparatus for manufacturing three-dimensional shaped object

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104043830A (en) * 2014-06-30 2014-09-17 湖南华曙高科技有限责任公司 Additive manufacturing device composite powder compacting and spreading device and method
CN104043830B (en) * 2014-06-30 2016-02-24 湖南华曙高科技有限责任公司 Increase material manufacturing equipment and compound rolling power spreading device, method
CN104451669A (en) * 2014-12-15 2015-03-25 华中科技大学 Follow-up falling-type powder laying device
CN105328188A (en) * 2015-11-30 2016-02-17 天津清研智束科技有限公司 Additive manufacturing device
CN105648436A (en) * 2016-01-21 2016-06-08 苏州大学 Laser-cladding forming process and laser-cladding forming device for curvature solid piece
CN105648436B (en) * 2016-01-21 2018-06-29 苏州大学 Curvature physical member laser cladding forming technique and device

Also Published As

Publication number Publication date
JP2004143581A (en) 2004-05-20

Similar Documents

Publication Publication Date Title
JP4273785B2 (en) Manufacturing equipment for 3D shaped objects
KR101913979B1 (en) Method for manufacturing three-dimensionally shaped molding
EP3612331B1 (en) Metering build material in three-dimensional (3d) printing using a tool
CN104043830B (en) Increase material manufacturing equipment and compound rolling power spreading device, method
US20200001364A1 (en) Ultrasonically assisted powder bed additive manufacturing
JP6612122B2 (en) Manufacturing apparatus and control method of shaped object
CN102195517B (en) The manufacture method of vibration wave driving device and vibrating body thereof
JP6744107B2 (en) Powder sinter laminating equipment
EP2440387A1 (en) Method of manufacturing a three-dimensional object having an internal structure
JP2013517153A (en) Modeling plate for stereolithography machine, stereolithography machine using the modeling plate, and tool for cleaning the modeling plate
CN203992396U (en) Increase material manufacturing equipment compound rolling power spreading device and increase material manufacturing equipment
KR20180099788A (en) Method for manufacturing three-dimensional sculpture
EP3246148A1 (en) Additive layer manufacturing base plate
CN107848203A (en) The manufacture method of three dimensional structure
CN104608379A (en) Selective region bonding based solid powder 3D printer
CN102195515B (en) Vibrator in vibration type driving apparatus and manufacture method thereof
CN112020419A (en) Frequency control of dispensing device vibration
JP4973827B2 (en) Elliptical vibration cutting method
KR102625927B1 (en) Cross layer fiber entanglement to increase strength of 3d part
CN111107977B (en) Assembly and method for creating 3D structures
JP2008137251A (en) Optical shaping device
KR102003218B1 (en) Three-dimensional object
CN113333783A (en) Powder paving mechanism, 3D printing device and powder paving method
JP4341384B2 (en) Reciprocating blade manufacturing method and reciprocating blade manufactured using the same
KR102388239B1 (en) Method for additive manufacturing of a green body from a powder or paste-like material with cutting elements arranged in a defined manner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090223

R151 Written notification of patent or utility model registration

Ref document number: 4273785

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

EXPY Cancellation because of completion of term